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Abstract

Transformation is key to any program improvement process and a key to successful
transformation is the medium in which it takes place. BMF (Bird-Meertens Formal-
ism) is a medium specialised for program improvement via incremental transformation.
While much theoretical work exists, there has, to date, been a paucity of actual imple-
mentations employing BMF in an automated process of program improvement. In this
paper we describe such an implementation, targeted to distributed architectures.

1 Overview

Transformation is the key to any program improvement process. Highly transformable
notations pave the way for the application of deep and pervasive program improvement
techniques. Functional programming languages are more amenable to transformation than
their more traditional imperative counterparts. Moreover, functional programs specify only
true dependencies between values, making improvements that reveal and exploit parallelism
much easier. Some functional programming notations are more transformable than others.
BMF is a functional notation intentionally developed as a medium for transformational
program development[1].

1.1 BMF

BMF is a set of theories of various aggregate types. Each theory has a open-ended set of
operations over its type and an open-ended set of transformation rules that apply to these
operations. Typically, at some level, BMF programs are expressed as a sequence of composed
functions of the form:

fn ◦ · · · ◦ f2 ◦ f1

where input data flows into the function f1, whose output flows to f2 and so on until the
output eventually emerges from fn. A concrete example of a BMF program is:

sqrt ◦ sqr

which uses the square and square-root functions to find the absolute value of some numerical
input. Primitive functions that take other functions as parameters (second-order functions)
are commonly used to raise operations to the level of an aggregate type. For example, the
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Obstacle Remedy
Infinite transformation space Use goal-oriented transformation.
Case explosion Use normalising transformations to limit cases

appearing in code.
Hard-to-transform recursive definitions Ban recursion (for now).
Eureka steps Avoid completely/Put trust in programmer.
No knowledge of run-time data Perform only statically justifiable improve-

ments.

Table 1: Obstacles to using BMF and our remedies

map function (denoted ∗) applies a given function to each element of an aggregate input
type. The function sqr∗ takes an aggregate containing numbers and returns an aggregate
containing the squares of those numbers1. Another important function, reduce (denoted /)
uses a given binary operator to to reduce an aggregate to a single value. For example, the
function +/ returns the sum of a aggregate containing numbers.

Note that all of the functions above have no explicitly-named input parameters. Pro-
grams composed of such functions are said to be in point-free form. Point-free programs are
very easily transformed using equational rules. One such rule is:

f ∗ ◦g∗ = (f ◦ g)∗

This rule could, for example, be applied to the program: (sqrt) ∗ ◦(sqr)∗ to produce: (sqrt ◦
sqr)∗ which is semantically the same but more efficient because it produces less intermediate
data.

With the right set of rules very impressive, and provably correct, feats of program devel-
opment can be achieved[2, 3]. Other desirable features of BMF include: naturally parallel
implementation of building-blocks such as map and reduce; reversible transformations; the
existence of good sequential and distributed cost models[4] which can be used to quickly
benchmark programs during the transformation process. Of all programming notations,
BMF has perhaps unrivalled potential as medium for safe, transparent, effective, mechanis-
able, program improvement in both a parallel and sequential context.

1.2 Scope of this work

This work exploits some of the potential of BMF by using it as the primary intermediate
form in a compilation process from a simple functional language, Adl[5], to a distributed
parallel architecture. To the best of our knowledge, there is no other implementation that
uses BMF to the same extent.

For all of its advantages, in using BMF there also are a number of obstacles to overcome.
Table 1 summarises some of these and the remedies used in the Adl project. The first four
obstacles are typically encountered in automated theorem proving. The last is more germane
to program optimisation.

The first obstacle is overcome by defining rules that work, deterministically, toward
some goal without recourse to cost analysis. The second obstacle is dealt with by constantly
normalising code to narrow the range of cases that appear. The third obstacle, recursive
definitions, arises because such definitions, though elegant and pure, throw up barriers to

1Any ordering in that aggregate is not affected.



transformation2. The fourth obstacle,the presence of eureka steps, occurs because some
transformations need insight for their derivation/application. Insight is not a mechanical
process. The Adl solution is to not derive new steps and to trust the programmer to,
indirectly, inform us if an extant eureka step is applicable3. The last obstacle is one faced
by any static program improvement process and the Adl implementation overcomes it in the
usual manner.

Note that some of the compromises above preclude an exhaustive search for the best
version of a program. Rather the aim of the process is to produce a better program.

Next, we very briefly summarise related work. The four sections after that describe the
source-language, translation, optimisation, parallelisation/targeting respectively. Finally,
we briefly summarise our findings.

2 Related work

Mottl provides a good overview of the issues surrounding automated program transformation
in his thesis[7]. There is much work on program development using BMF. Bird provides
one of the seminal works[1] and a good followup volume[2]. Skillicorn[8] motivated the
application of BMF to parallel computing. Much related work has been done since (see [9]
and [10] for some more recent examples). Martin and Nipkow[11] utilised a theorem prover
to partially automate BMF derivations. The Adl implementation is more pervasive in its
use and requires less assistance in its use than any work we have seen to date.

There are strong structural similarities between the parallel functions produced by the
Adl implementation and functional skeletons[12]. BMF shares many features with the point-
free intermediate form, FP*, used by Rao and Walinsky in their implementation of EL*[13].
Unlike our work, their work is not strongly focused on transformation within the intermediate
form.

3 The source language

Adl is a simple, strict, non-recursive functional language with simple scoping rules, primitive
operations over aggregates and constructs for selection and iteration. One-dimensional,
nestable arrays, called vectors are well-supported. Aggregate operations such as map and
reduce, the vector-generating function iota and vector-indexing are all provided. Aggregate
operations on vectors are implicitly parallel. Record-types are supported as tuples through
pattern-matching. Concrete types for most entities are inferred by the compiler. Once
the few primitive building blocks are understood Adl is a relatively easy and reasonably
expressive programming language to work with.

Figure 1 shows a simple Adl program to calculate a convolution over an input vector
where every element of the vector is replaced with the sum of the absolute difference between
it and every other element of the vector. If, for example, remote.Adl is given the input
vector [1, 2, 3, 4, 5] its output will be [10, 7, 6, 7, 10].

2See Sand’s article[6] for a lucid explanation of one reason why this is so.
3An example is that Adl trusts a programmer to use an associative binary operator in parallelisable

versions of reduce.



main a: vof int :=
let
f x :=
let
add(x ,y) := x+y;
abs x := if x<0 then -x else x endif;
dist y := abs(x-y)

in
reduce(add, 0, map(dist, a))

endlet
in
map(f, a)

endlet

Figure 1: Source code for remote.Adl.

(reduce exp ◦ (id, (abs ◦ (id,minus)◦) ∗ ◦distl ◦ (id, π1)◦)◦ ◦ id) ∗ ◦distl ◦ (id, id)◦ ◦ id
where

reduce exp = if(6= ◦(K0,# ◦ π2)◦, oplus/ ◦ distl,K0 ◦ π1)
oplus = + ◦ (π1 ◦ π2, π2 ◦ π2)◦ ◦ (π1 ◦ π1, (π2 ◦ π1, π2 ◦ π2)◦)◦)◦

abs = if(< ◦(π2,K0)◦, u − ◦π2, π2)
u− = primitive operation (unary minus)
minus = − ◦ (π2 ◦ π1, π2)◦

Figure 2: BMF translation of remote.Adl

4 Translation to BMF

The translation process from Adl to BMF is relatively straightforward. The main task is to
eliminate explicit parameters and build infrastructure for transporting the values in scope,
embedded in a nested tuple, to each function that needs them. Each translated function
projects the values it needs from its input tuple by using πi functions. Figure 2 shows the
BMF translation of remote.Adl. While space constraints preclude a full description of this
program4 some features to note are: that every entity in the above code is a function; the
original map (∗) and reduce (/) functions are present in the code; there is heavy use of the
distl function which distributes the first element of its input tuple over the second element
of its input tuple.

The program above is correct but not efficient. Each instance of distl ensures that
all values that could be accessed in the original program are supplied to every function
invocation. This is clearly more than is needed and sets up a large copying overhead.

5 Optimisation

The optimiser is the first stage that directly transforms BMF code. The optimiser works
to reduce data transported both within vectors and in tuples. It does this by applying
transformations that incrementally move data-narrowing operations, such as vector indexing

4see [14] for a complete description of the translation process.
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Figure 3: Snapshots of optimisation process. Data flows in the program early (part (a)), later
(part(b)), and still later in the optimisation process (part (c)). The shaded areas represent
the function that is the current focus of optimisation. Note that in part (c) the data widening
and data narrowing functions have eliminated each other resulting in a program with much
reduced data flow throughout.

(+/K0 ◦ (if(< ◦(−,K0)◦, u − ◦−,−)) ∗ ◦distl) ∗ ◦zip ◦ (π1, repeat ◦ (π2,# ◦ π1)◦)◦ ◦ (id, id)◦

Figure 4: Optimised code for Remote.Adl

and tuple-projection as close to the start of the program as possible. The rationale behind
this process is that the closer to the start of a program a data-narrowing operation is, the
less time its large input data exists. As a bonus, often this process brings a data-narrowing
operation and a corresponding data-widening operation into contact, causing their mutual
destruction, eliminating the need for a large intermediate data structure.

Intuitively, this process can be viewed as a front of optimisation sweeping back to the
start of the program. Figure 3 provides a conceptual view of this strategy. At every stage of
this process, semantics are preserved. All transformations operate locally in the area that
is the current focus of optimisation.

The optimisation process, currently, consists of two major passes, one to optimise access
to vectors and one for tuples. Heavy use is made of a few sets of normalisation rules whose
purpose is to shape code to fit subsequent rules. Most of the optimiser’s time is spent
applying sets of normalisation rules.

Figure 4 shows code produced by the optimiser for remote.Adl. The obvious change is
the much shorter code. The other significant change is the removal of all but one instance
of the inefficient distl function and this, necessary, remaining instance now distributes a lot
less data. The new zip and repeat functions are used to join and copy data respectively.

To assess the extent of improvement we ran both the optimised and unoptimised versions
of remote.Adl against an instrumented simulator that records both the time and space
consumption. The results for a very small input vector of ten elements are shown in figure 5.
The time consumption is in the x-axis and the space consumption is in the y-axis. The upper
curve is the trace for the unoptimised version. Even with 10 elements, there is a striking
difference in the performance translator and optimiser code.

For comparison, we also tested a hand-coded version of remote.Adl and its performance
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Figure 5: Traces of the sequential execution of various versions of remote.Adl when applied
to a 10 element vector.

++ /||◦
(+/K0 ◦ (if(< ◦(−,K0)◦, u − ◦−,−)) ∗ ◦distl) ∗ ∗||◦
(zip) ∗|| ◦((π1, repeat ◦ (π2,# ◦ π1)◦)◦) ∗|| ◦
zip|| ◦ (π1, repeat|| ◦ (π2,# ◦ π1)◦)◦ ◦ (split32, id)◦

Figure 6: Parallelised code for remote.Adl targeted to 32 nodes.

curve was almost coincident with that of the optimised code. These results are comparable
to results achieved for other applications including, simple stencil algorithms, maximum-
segment-sum, matrix addition and matrix transpose. The parallelisation process, and its
results are described next.

6 Parallelisation

The same techniques used for optimisation in BMF are also used for parallelisation5. Trans-
formation rules are applied to propagate functions with implicit distributed semantics through
sequential BMF code. For the Adl implementation, parallelisation rules have been defined
and tested. The result of applying these rules, by hand6, to remote.Adl is shown in figure 6.
Again, space precludes a thorough description of this code but the salient features are the
parallel operations. All of these, with the exception of split are superscripted with ‖. The
numeric subscript to split indicates how many nodes the input vector will be distributed
over. This parameter is expected to be supplied to the compiler by the programmer. The
end result is a program that is a sequential composition of distributed functions. All com-
munication takes place in bulk before each function starts so, for realistically sized problems,
the model is constrained by bandwidth rather than latency.

We currently test our parallel programs on a detailed, highly configurable, simulator of
a high-performance parallel cluster[17] with realistic settings for latency and bandwidth7.

To confirm that the effect of optimisation carried through to parallel code we compared
5Roe[15] produced some good early work exemplifying how this could be done.
6Very close the time of writing, an automated prototype[16] has been built. Early experiments with

remote.Adl produce code with a similar level of performance to the hand-parallelised code. The techniques
used in this prototype are very similar to those employed in the optimiser.

7Bandwidth was rated at 3ns/byte and the latency was 5µs. Average instruction execution time was set
at 1ns.
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Figure 8: Performance of optimised code with 320 input values.

the performance of parallelised unoptimised code to the code shown in figure 6. The re-
sults are shown, for small data, on up to 8 crossbar-connected nodes in figure 7. The
orders-of-magnitude difference in the performance of the programs confirms that the effect
of optimisation does persist.

To see if reasonable speedups can be obtained with optimised code we ran the optimised
program on more nodes of the same machine with more data to get the speedup shown in
figure 8. Reasonable speedup is attained. The bumps at 15 and 32 nodes are artifacts of
the communication primitives used. The general levelling off the curve is the effect of a
decreasing computation to communication ratio as the same sized problem is spread over
more processors. For remote.Adl the amount of levelling off decreases significantly as input
data grows.

6.1 Memory management costs

In order not to overestimate speedup, the experiments above were run with the low on-node
memory management costs - in line with those of a final implementation8. A straightforward
translation9 of BMF to an imperative language gives each function a copy of its input value
and deallocates this value once the output is produced. This scheme, very similar to that

8High memory management costs increase the computation to communication ratio which inflates
speedup estimates.

9A prototype implementation of a translator from parallel BMF to C/MPI has been very recently built[18]
and early experiments have been run, showing reasonable speedup.



traditionally used by APL interpreters[19](pp 19), is robust but very costly. Fortunately, a
reduction of these costs has been very successfully carried out in an implementation of the
functional language,SISAL[20] by employing a raft of techniques to replace re-allocation
with re-use in the imperative form. A-priori, the task should be no harder for BMF code.

7 Conclusions and Future Work

Early results are promising. A range of small programs have been translated and optimised
and parallelised. Speedups are in line with expectations. This demonstrates that program
improvement, incorporating optimisation and parallelisation, by automated transformation
of point-free BMF is an effective compilation technique. The most novel and interesting
aspect of this work thus far has been learning what it is like to compile using BMF. Some
observations are:

Correctness is easy: Temporary bugs that produced incorrect code were a relative rarity.

Efficiency is still hard: Temporary bugs that produced inefficient code were common.

Gaps are costly: Stages seemed to work best when they applied a simple transformation
pervasively. Any gap in a set of rules tended to limit its re-usability and, worse still,
often resulted in the neglected code growing to become a bottleneck in the program.

Cleverness is best avoided: Rules with complicated tests attached, and rules that per-
formed simultaneous tweaking of spatially separated code were the most troublesome.
It is better to refashion code to fit a simpler rule than to have a clever rule.

Normalisation works: This whole exercise would be intractable without heavy use of
normalisation to put things in predictable places for the benefit of subsequent rules.
BMF is extraordinarily amenable to normalisation.

Normalisation is most robust if kept close: The compiler is at it most robust when
normalisation is carried out just before the rule that relies upon it. This eliminates
the chance of anything happening to the code in the interim.

Future work will include a completion and refinement of the prototypes for parallelisation
and code generation. There is also scope for improving the earlier stages by rationalising the
BMF instruction set to ease the compilation process. Medium term goals include introducing
a richer type system to Adl as a pre-cursor to a more flexible partitioning scheme at the final
stage. Finally, the task of producing a better improvement process is open-ended. With sets
of normalisation rules to act as interfaces, special and general-purpose stages can continue
to be added as needed.
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