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Abstract

In this paper we present a distance-hereditary de-
composition of optimal chordal rings of 2k2 nodes
into a set of rings of 2k nodes, where k is the di-
ameter. All the rings belonging to this set have the
same length and their diameter corresponds to the
diameter of the chordal ring in which they are em-
bedded. The members of this embedded set of rings
are non-disjoint and preserve the minimal routing
of the original circulant graph. Besides its practi-
cal consequences, our research allows the presen-
tation of these optimal circulant graphs as a par-
ticular evolution of the traditional ring topology.

Key words.– Circulant graphs, Chordal Rings, Cy-
cles, Ádam’s Conjecture, Graph Embedding.

1. Introduction

Circulant graphs have deserved signifıcant atten-
tion in the last decades. From a theoretical point of
view, there are thousands of publications analyzing
their algebraic properties. From a more practical
perspective, circulant graphs have been employed
in several applications. In the sixties, these graphs
were used to build interconnection networks for
distributed and parallel systems [8], [6]. In the sev-
enties, circulant graphs constituted the basis for de-
signing certain data alignment networks for com-

plex memory systems [9]. In the eighties, several
optimizations related to the diameter minimization
of degree four circulant graphs, enhancing their ap-
plicability to the design of effıcient interconnec-
tion networks [5], [4]. Nowadays, the analysis and
characterization of circulant graphs and their appli-
cations still constitute active research areas.

A class of circulant graphs of degree four, with
minimal topological distances, was presented in
[2] as a basis for building interconnection networks
for parallel computers. One of these graphs exists
for any given number of nodes, which is defıned
by means of a single parameter. These graphs, de-
noted as midimew networks, are optimal because
they have the minimum average distance among
all circulant graphs of degree four; consequently,
their diameters are also minimal. In addition, these
graphs are regular, vertex-symmetric, maximally
connected and, after an adequate transformation,
they can be represented as mesh-connected topolo-
gies.

Several applications in computer science and en-
gineering suggest the study of graph embedding
techniques as a fundamental prerequisite to obtain-
ing fast solutions to computational problems mod-
elled as graphs or networks. In this paper we will
consider graph embeddings in undirected chordal
rings of degree four. As is well known, the struc-
ture of these graphs consists of an undirected ring
in which a constant-length chord is added to ev-
ery node in the ring. All the chordal rings consid-
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ered here are optimal as they have minimum aver-
age distance and diameter. Although all these opti-
mal chordal rings have minimum distance-related
properties, we will show that just half of them are
isomorphic to midimew networks.
The main outcome of this research is a distance-
hereditary decomposition of optimal chordal rings
into a set of rings. All the rings belonging to this
set have the same length and their diameter corre-
sponds to the diameter of the chordal ring in which
they are embedded. The members of this embed-
ded set of rings are non-disjoint and preserve the
minimal routing of the original circulant graph.
Besides its practical consequences, our research
allows the presentation of these optimal circulant
graphs as a particular evolution of the traditional
ring topology.
The rest of this paper is organized as follows: Sec-
tion 2 is devoted to introducing some notation and
to presenting the decomposition of certain optimal
circulants of degree four into circulants of degree
two. In section 3, we introduce a new class of opti-
mal chordal rings. Section 4 is dedicated to estab-
lishing a new distance-hereditary decomposition of
such chordal rings. Finally, section 5 summarizes
the main conclusions of this research.

2. Dense Optimal Circulants of Degree
Four

For a self contained paper, we are going to intro-
duce here some notation, defınitions and known re-
sults, for later use.
A circulant graph with N vertices and jumps
j1, j2, . . . , jm is an undirected graph in which each
vertex n, 0 ≤ n ≤ N −1, is adjacent to all the ver-
tices n ± ji mod N , with 1 ≤ i ≤ m. We denote
this graph as CN (j1, j2, . . . , jm). The family of
circulant graphs includes the complete graph and
the cyclic graph or ring among its members.
We say that a circulant is dense if it has the maxi-
mum possible number of nodes for a given diame-
ter. Thus, if k is a positive integer, a dense ring or
CN (1) of degree two has 2k + 1 = k + (k + 1)
nodes. Conversely, the non-dense ring has 2k =
k + k nodes. When adding another jump to the
list, every integer k defınes a family of 4k optimal
CN (j1, j2) graphs or midimew networks of diam-
eter k, with j1 = b − 1 and j2 = b, where b =

�
√

N
2 �, see [2]. The dense graph, CN (k, k + 1),

contains 2k2 + 2k + 1 nodes. The other graphs in

the family correspond to non-dense values ofN . In
the following sections we will focus our attention
on optimal non-dense CN (j1, j2) graphs in which
N = 2k2 = k2 + k2.
In [3] it has been shown how dense CN (k, k + 1)
graphs or midimew networks can be decomposed
into a non-disjoint collection of 2N rings that pre-
serves the distance-related properties of the origi-
nal graph. These rings, or circulants of degree two,
are also dense and their diameter is the diameter of
the circulant in which they are embedded. In short,
a dense CN (k, k + 1), with N = 2k2 + 2k + 1 =
k2 +(k +1)2, can be decomposed into a set of 2N
rings, each of them having 2k + 1 = k + (k + 1)
nodes. Every vertex is present in 2(2k + 1) rings.
It is straightforward to prove that if CN (j1, j2)
and CN (i1, i2) are two dense optimal circulants,
then CN (j1, j2) is isomorphic to CN (i1, i2), that
is, CN (j1, j2) ∼= CN (i1, i2). Consequently, every
dense optimal circulant of degree four can be de-
composed into the same distance-hereditary set of
dense rings, which can be calculated by the graph
isomorphism mapping CN (k, k +1) onto this one.
Now we introduce the Ádam’s Conjecture, see [1],
which it is known to be a theorem for circulants of
degree four, see [7]. We are using it for fınding out
the isomorphism between the graphs CN (k, k +1)
andCN (1, 2k+1). As usual, we denote by U(ZN )
the group of the units of the ring ZN (the ring of
the integers modulo N ), that is, U(ZN ) = {u ∈
ZN | gcd(u,N) = 1}.
Theorem 1 Let N be a natural number. We
have, CN (j1, j2) ∼= CN (i1, i2) ⇔ ∃u ∈
U(ZN ) | u{±j1,±j2} = {±i1,±i2} mod N.

Hence, the element u = (k + 1)−1 ∈ U(ZN )
provides the adequate isomorphism between the
graphs CN (k, k + 1) and CN (1, 2k + 1), where
N = 2k2 + 2k + 1. Consequently, for every natu-
ral number k > 1 the optimal graphsCN (1, 2k+1)
also have a distance-hereditary non-disjoint de-
composition into 2N rings of length 2k + 1.
Finally, it is interesting to remark that we can see
a dense CN (1, 2k + 1) chordal ring graph, with
N = k2 +(k +1)2, as a particular evolution of the
dense CN (1) graph, with N = k + (k + 1).

3. Optimal Non-Dense Chordal Rings of
Degree Four

In this section we present a new class of optimal
circulants of degree four, with N = 2k2 nodes.
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The following proposition provides an optimal
chordal ring with this number of nodes, which was
not covered by the ones presented in [2].

Proposition 2 Let k > 1 be an integer number.
The graph C2k2(1, 2k − 1) is optimal.

Sketch of the Proof.– In order to show that
C2k2(1, 2k − 1) has minimum average distance, it
suffıces to prove that the mapping f : Dk−1 −→
Z2k2 defıned as f(x, y) = x+(2k−1)y mod 2k2

is injective, whereDk−1 = {(x, y) ∈ Z×Z | |x|+
|y| ≤ k − 1}. Suppose f(x, y) = f(x′, y′) with
(x, y), (x′, y′) ∈ Dk−1. We have, x+(2k−1)y =
x′ + (2k − 1)y′ mod 2k2 and there exists α ∈ Z

such that (x − x′) + (2k − 1)(y − y′) = 2αk2.
Taking absolute values on both sides of the previ-
ous equality we get 2k2|α| ≤ 4k(k − 1). Hence
|α| ≤ 2 − 2

k ≤ 1, that is, α ∈ {−1, 0, 1}. An-
alyzing the three cases, we obtain that the unique
solution is α = 0. Hence, the only possibility is
x = x′, y = y′. Consequently the injectivity of the
mapping f(x, y) has been proved. �

Next we will show that the chordal ring defıned in
Proposition 2 is really new, that is, it is not isomor-
phic to the corresponding CN (b − 1, b) midimew
graph, where N = 2k2.

Theorem 3 Let k be a natural number. The
graphs C2k2(1, 2k−1) and C2k2(k−1, k) are not
isomorphic.

Sketch of the Proof.– Suppose the contrary, that is,
C2k2(1, 2k−1) andC2k2(k−1, k) are isomorphic.
By Theorem 1, there exits u ∈ U(Z2k2), such that:

u{±1,±(2k − 1)} = {±(k − 1),±k} mod 2k2.

Obviously k /∈ U(Z2k2) and gcd(2k2,−4k +1) =
1, it shows a contradiction. �

4. Ring embedding in Non-dense Opti-
mal Chordal Rings

In this section we compute explicitly a decompo-
sition of CN (1, 2k − 1), where N = 2k2, into
2N rings with 2k nodes and preserving the min-
imal routing of the original graph.
In order to obtain these kind of rings without
repeating cases in our study, we only consider
rings of 2k nodes obtained taking positive steps

in jumps {1, 2k − 1} or taking positive steps in
jumps {1,−(2k − 1)}. Therefore, for the rest
of the paper, a 2k−ring constructed from node
n1 in C2k2(1, 2k − 1) is a cycle such that, if
{n1, n2, . . . , n2k} is its set of nodes, then it must
fulfıll one of these two conditions:

i) ni+1 = ni + 1 mod 2k2 or ni+1 = ni +
(2k − 1) mod 2k2, ∀i ∈ {1, 2, . . . , 2k}

ii) ni+1 = ni + 1 mod 2k2 or ni+1 = ni −
(2k − 1) mod 2k2, ∀i ∈ {1, 2, . . . , 2k}.

Although in the dense case all the optimal cir-
culants of degree four have a decomposition into
dense rings, in this case there are optimal circu-
lants that contain rings whose sizes are different to
2k. As an example, when N = 18, it can be seen
that CN (b − 1, b) = C18(2, 3) contains rings with
7 nodes.
Next, we will show that the optimal graph defıned
in Proposition 2 can be decomposed into 2N
2k−rings. As a fırst step we take a local approach
of the problem: we obtain all the 2k−rings from
node 0. By node symmetry it suffıces to consider
the 2k−rings constructed from a given node, so we
have chosen node 0 for simplicity.
We need the following technical and elementary
result:

Lemma 4 Let k be a positive integer. Consider
the diophantine linear systems in the unknowns
(x, y, α) :

(S1)

{
x + (2k − 1)y − 2k2α = 0

x + y = 2k

(S2)

{
x − (2k − 1)y − 2k2α = 0

x + y = 2k

We have,

i) (x, y, α) = (k, k, 1) is the unique solution of
(S1) verifying x, y ≥ 0.

ii) (x, y, α) = (k − 1, k + 1,−1), (2k − 1, 1, 0)
are the unique solutions of (S2) verifying
x, y ≥ 0.

In order to simplify the proof of the remaining re-
sults, we introduce the following notation.
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Notation 5 We represent a 2k − ring as a vec-
tor whose coordinates are in the set {0, 1} or in
{0,−1}, depending on the type of 2k−ring. If we
are considering a 2k−ring in C2k2(1, 2k − 1), 0
represents a (positive) step in the jump 1, 1 repre-
sents a step in 2k − 1 and −1 a step in −(2k − 1).
For example, the 6-tuple (0, 1, 0, 1, 0, 1) denotes
the 6−ring {0, 1, 6, 7, 12, 13} in C18(1, 5).

Proposition 6 Let k be a positive integer. Then,
any 2k−ring from node 0 in C2k2(1, 2k − 1) be-
longs to one of the following sets:
A1 = {(x1, . . . , x2k)|xi = 0, 1,

∑
xi = k}

A2 = {(x1, . . . , x2k)|xi = 0,−1,
∑

|xi| = k+1}
A3 = {(x1, . . . , x2k)|xi = 0,−1,

∑ |xi| = 1}
There are

( 2k
k

)
+

( 2k
k + 1

)
+

( 2k
1

)
2k−rings from node 0 in C2k2(1, 2k − 1).

Sketch of the Proof.– We observe that the solutions
of Lemma 4 are the total number of steps allowed
to construct a 2k−ring, since
x + (2k − 1)y − 2k2α = 0 ⇒ x + (2k − 1)y =
0 mod 2k2 and x − (2k − 1)y − 2k2α = 0 ⇒
x − (2k − 1)y = 0 mod 2k2.
The proof ends just counting the cardinal of the
previous three sets. �

Next, we compute a subset of the set A1 ∪A2. We
will show the cardinality of this set is 2k − 1 and,
every node is reached from node 0with at least one
of the rings of this selection.

Theorem 7 With the above notation, we consider
the following sets of 2k−rings:

i) Ak
1 = {λ1, . . . , λk−1} ⊂ A1 where λi =

(

i︷ ︸︸ ︷
0, . . . , 0,

k︷ ︸︸ ︷
1, . . . , 1,

k−i︷ ︸︸ ︷
0, . . . , 0 ), for i =

1, 2, . . . , k − 1.

ii) Ak
2 = {µ1, . . . , µk} ⊂ A2 where µj =

(

j︷ ︸︸ ︷
−1, . . . ,−1,

k−1︷ ︸︸ ︷
0, . . . , 0,

k−j+1︷ ︸︸ ︷
−1, . . . ,−1 ), for

j = 1, 2, . . . , k.

We have that for every node n of C2k2(1, 2k − 1)
there exists an element in Ak = Ak

1 ∪ Ak
2 contain-

ing n.

Sketch of the Proof.– Given a node n, we have n =
x(2k − 1) + y mod 2k2, for some (x, y) ∈ Dk,
where Dk = {(x, y) ∈ Z × Z | |x| + |y| ≤ k}.

Hence, |x|, |y| ≤ k. We distinguish four cases:
x = k, 0 < x < k, x = 0 and 0 ≤ x ≤ k. In
order to illustrate the proof we only consider the
following case: 0 < x < k.

• If y = 0 then n = x(2k − 1) mod 2k2 =
(k + 1− x)(−(2k − 1)) + (k − 1) mod 2k2.
As 0 < k + 1 − x ≤ k then n ∈ µk+1−x.

• If 0 < y < k then n ∈ λy .

• If |y| = k then x = 0, so this case is not
possible.

• If −k < y < 0 then n = x(2k − 1) +
y mod 2k2 = (k+1−x)(−(2k−1))+(k−1+
y) mod 2k2. Observe that 0 ≤ (k−1)+y ≤ k
and 2 ≤ k + 1 − x ≤ k. Then, n ∈ µk+1−x.

So, n belongs to a 2k−ring of Ak = Ak
1 ∪ Ak

2 . �

Finally, we consider the union of subsets of
2k−rings for all the nodes of the graph. We will
show that this union has 2N different elements. So,
we will have decomposed the graph into a set of
2N 2k−rings, providing a complete picture of the
graph.
We denote by Ak(n) the set of 2k−rings with
2k − 1 elements constructed as we have done for
node 0 in Theorem 7, but for node n. Now, we are
considering the whole set of 2k−rings

Bk =
N−1⋃
n=0

Ak(n).

Obviously, for every pair of nodes n,m there ex-
ists a 2k−ring in Bk that contains them. Now, we
study the cardinal of this set.

Theorem 8 Let k be a positive integer and N =
2k2. Then, the cardinal of Bk is 2N .

Sketch of the Proof.– We consider the sets

Bk
1 =

N−1⋃
n=0

Ak
1(n), Bk

2 =
N−1⋃
n=0

Ak
2(n).

Then, card(Bk
1 ) ≤ (k − 1)N and card(Bk

2 ) ≤
kN . It is clear that if there exists a 2k−ring α such
that α ∈ Ak(n)∩Ak(m), then either α ∈ Ak

1(n)∩
Ak

1(m) or α ∈ Ak
2(n)∩Ak

2(m) (where n �= m), so
we can analyze the cardinal of the sets Bk

1 and Bk
2

separately. Therefore, card(Bk) = card(Bk
1 ) +

card(Bk
2 ). Now, we show that every ring in Bk

1
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is repeated k − 1 times and every ring in Bk
2 is

repeated k times, so we obtain card(Bk) ≤ N +
N = 2N . In order to prove this last claim, it is
enough to show this for each ring from node 0.
First, we see that every ring in λi ∈ Ak

1(0) be-
longs to other k − 2 sets of rings from other k − 2
different nodes. In fact, let ns = s mod N . We
consider the following set of k− 1 different nodes:
{n−(k−1−i), . . . n−1, n0, . . . , ni−1}. We have that
n0 = 0 and, since 1 ≤ i ≤ k − 1, this set of
nodes is composed of k − 1 different elements.
Then, this ring appears once in Ak

1(ns) for s =
−(k − 1− i), . . . ,−1, 0, 1, . . . i− 1. The transfor-
mation is done in the following way: λi ∈ Ak

1(0)
becomes λi−s ∈ Ak

1(ns).
Finally, we show that every ring in µj ∈ Ak

2(0)
belongs to other k − 1 sets of rings from other
k − 1 different nodes. In fact, let nt =
t(−(2t − 1)) mod N . We consider the set of k
different nodes {n−(k−j), . . . n−1, n0, . . . , nj−1}.
Again, n0 = 0. Thus, µj ∈ Ak

2(nt), for t =
−(k − j), . . . ,−1, 0, 1, . . . j − 1, and the transfor-
mation is carried out, as in the previous case, trans-
lating the ring in the following way: µj ∈ Ak

2(0)
becomes µj−t ∈ Ak

2(nt), obtaining the k − 1 rep-
etitions.
Observe that the repetitions considered above are
the only ones allowed, so we get the equality. �

5. Conclusions.

In this paper, we have shown that some optimal
chordal rings of degree four, or CN (1, 2k ± 1)
have a distance-hereditary non-disjoint decompo-
sition into 2N rings. This property can be success-
fully exploited to map a great number of parallel
applications that can be solved in terms of rings.
Moreover, this decomposition can also be useful
for a balanced management of a parallel computer
based on these circulant topologies under a policy
of space and time sharing among different parallel
tasks.
In addition, we can conclude that some members
belonging to the family of optimal circulant graphs
of degree four are a particular evolution of the tra-
ditional ring topology or circulants of degree two.
In particular, for k > 1, the non-dense ring or
Ck+k(1) graph has an image into the non-dense
Ck2+k2(1, 2k − 1) optimal chordal ring and the
dense ring or Ck+(k+1)(1) graph has an image into
the dense Ck2+(k+1)2(1, 2k + 1) optimal chordal

ring. All these circulants of degree four can be seen
as a homogeneous collection of 2N rings of diam-
eter k, which conserves the distance properties of
the original graph.
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