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Abstract

Problems requiring accurate determination of parame-
ters from image-based quantities arise often in computer vi-
sion. Two recent, independently developed frameworks for
estimating such parameters are the FNS and HEIV schemes.
Here it is shown that FNS and a core version of HEIV are
essentially equivalent, solving a common underlying equa-
tion via different means. The analysis is driven by the search
for a non-degenerate form of a certain generalised eigen-
value problem, and effectively leads to a new derivation of
the relevant case of the HEIV algorithm. This work may be
seen as an extension of previous efforts to rationalise and
inter-relate a spectrum of estimators, including the renor-
malisation method of Kanatani and the normalised eight-
point method of Hartley.

1. Introduction

Estimation of the parameters that describe a relationship
between image feature locations, possibly across multiple
cameras, is a central problem in computer vision. Basic
examples include the stereo and motion problems of esti-
mating coefficients of the epipolar equation [7] and the dif-
ferential epipolar equation [1], and conic fitting [8]. The
principal equation applicable in a variety of situations, in-
cluding those specified above, takes the form

0" u(x) =0. (1)

Here @ = [61,...,0/]7 is a vector representing unknown
parameters; € = [x1,...,x;]7 is a vector representing an
element of the data (for example, the locations of a pair of
corresponding points); and u(x) = [ui(x),. .., u(x)]! is
a vector with the data transformed in a problem-dependent
manner such that: (i) each component u;(x) is a quadratic
form in the compound vector [z, 1]7, (ii) one component
is equal to 1. In some cases, the parameters are subject to
an ancillary constraint not involving feature locations. A

common form of the ancillary constraint is
$(6) =0, @

where, for some real number &, ¢ is a scalar-valued func-
tion homogeneous of degree k—that is such that ¢(t0) =
t" (@) for every 8 and every non-zero scalar ¢.

The estimation problem associated with (1) and (2) can
be stated as follows: Given a collection {1, . . ., &, } of im-
age data and a meaningful cost function that characterises
the extent to which any particular 0 fails to satisfy the sys-
tem of the copies of equation (1) associated with x = x;
(i=1,...,n), find @ # 0 satisfying (2) for which the cost
function attains its minimum. The Gaussian model of errors
in data combined with the principle of maximum likelihood
leads to the cost function

JAML(O;wl,---

7

n 0T wu(z)u(x;)’o
o=y Oulute)0_
— 07 0zu(x;) Az, Oxu(x;)” 0

where, for any length & vector y, O, u(y) denotes the [ X k
matrix of the partial derivatives of the function x — wu(x)
evaluated at y, and, foreach¢ = 1,...,n, Ag, isak x k
symmetric covariance matrix describing the uncertainty of
the data point x; (see [2,4,9]). If Jaymr is minimised over
those non-zero parameter vectors for which (2) holds, then
the vector at which the minimum of Ja, is attained, the
constrained minimiser of Jamy,, defines the approximated
maximum likelihood estimate @anp,. The unconstrained
minimiser of Jay, obtained by ignoring the ancillary con-
straint and searching over all of the parameter space defines
the unconstrained approximated maximum likelihood esti-
mate, 0% ,1,. The function @ — Jamr(0;x1,...,x,) is
homogeneous of degree zero and the zero set of ¢ is unaf-
fected by multiplication by non-zero scalars, so both 0 AML
and /G\KML are determined only up to scale.

Various methods are available for finding b\XML. One
is the fundamental numerical scheme (FNS) introduced by
Chojnacki et al. in [4]. Another is, as will be revealed
shortly, a certain version of the heteroscedastic errors-in-
variables (HEIV) scheme that was first proposed by Leedan
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1. Set 6y = b\ALS~

2. Assuming that 6, is known, compute the
matrix X, _, .

3. Compute a normalised eigenvector of
Xg, , corresponding to the eigenvalue
closest to zero (in absolute value) and take
this eigenvector for 0},.

4. If 6y, is sufficiently close to 81, then ter-
minate the procedure; otherwise increment k&
and return to Step 2.

FIGURE 1. Fundamental numerical scheme.

and Meer [10] and further developed by Matei and Meer
[11,12]. The FNS method operates over the entire param-
eter space, whereas the HEIV method operates essentially
on a subspace of one dimension less and recuperates the
missing dimension in a single final step. This paper aims to
understand the previously unclear relationship between the
two schemes. It is shown that the algorithms are two dif-
ferent, but intimately related, means for numerically solv-
ing one and the same equation characterising @KML. In
the analysis that follows, FNS is taken as a starting point,
and HEIV is evolved via reduction of a certain generalised
eigenvalue problem to a non-degenerate form. This ap-
proach effectively results in a new derivation of the relevant
case of the HEIV algorithm.

Determination of 8 AML is a much more complicated task
than isolation of égML. Recently, an integrated method for
calculating 0 AmL Was proposed that extends the FNS tech-
nique [5, 13]. The present contribution may provide a basis
for designing a similar extension to the HEIV framework.
From a broader perspective, this work may also be seen
as an extension of previous efforts to rationalise and inter-
relate a spectrum of estimators, including the renormalisa-
tion method of Kanatani [3] and the normalised eight-point
method of Hartley [6].

2. Fundamental Numerical Scheme

The unconstrained minimiser 8%, satisfies the varia-
tional equation for unconstrained minimisation

[89JAML(0;a:1,...,wn)]ezgxML = OT (3)

with OgJamr the row vector of the partial derivatives of
Jawmr with respect to 8. Direct computation shows that

where X g is an [ X [ symmetric matrix given by

A " 9TA,0
Xp = - Bia
=2 Gpe 2 (67 B.6)2

i=1 i=1

A; = u(@)u(z)”, B; = 0u(®;) A, 0pu(x;)’.

Thus (3) can be written as

(X o0] =0. (5)

0=0 3\

An algorithm for numerically solving this equation pro-
posed in [4] exploits the fact that a vector 0 satisfies (5) if
and only if it is a solution of the ordinary eigenvalue prob-
lem

Xo€ = A (6)

corresponding to the eigenvalue A = 0. Thus if 6;_; is
an approximate solution, then an improved solution can
be obtained by picking a vector 6, from that eigenspace
of X g, , which most closely approximates the null space
of X p; this eigenspace is, of course, the one correspond-
ing to the eigenvalue closest to zero in absolute value.
The fundamental numerical scheme [4] implementing this
idea is presented in Figure 1. The scheme is seeded
with the algebraic least squares (ALS) estimate, ﬁALS,
defined as the unconstrained minimiser of the cost func-
tion Jars(@;x1,...,z,) = |02, 07 A0, with
o) = (22:1 62)1/2. The estimate OaLs coincides,
up to scale, with an eigenvector of ). | A; associated
with the smallest eigenvalue, and this can be found by
performing singular-value decomposition of the matrix

[u(xy),... ,u(mn)]T.
3. Basic HEIV Scheme

An alternative parameter estimation framework, derived
in a quite different manner to FNS, has been proposed by
Leedan and Meer [10] and further extended by Matei and
Meer [11, 12]. As will become apparent shortly, a core
method of this framework that we will term HEIV with
carrier bias correction eliminated is effectively a different
means for numerically solving (5). In one form this method
relies upon re-expressing X g as

X9 =Mg— Ny

with

A " 07A,0
Mg = ; 7011310, Ng = ; 7(0TBZ-0)2 B;,

and restating the variational equation (5) as

[0 JamL (05 T1, - .., zn)]" = 2X 68, 4) Mg = N0, (7
Proceedings of the 12th International Conference on Image Analysis and Processing (ICIAP’03) ‘FF“
COMPUTER

0-7695-1948-2/03 $17.00 © 2003 IEEE SOCIETY



1. Set 6y = b\ALS~

2. Assuming that 6, is known, compute the
matrices Mg, _, and Ng,_,.

3. Compute a normalised eigenvector of the
eigenvalue problem

M9k-—1£ = )‘N91c—1£

corresponding to the eigenvalue closest to 1
and take this eigenvector for 0.

4. If 6y, is sufficiently close to 8y_1, then ter-
minate the procedure; otherwise increment k
and return to Step 2.

FIGURE 2. Basic HEIV scheme.

where the evaluation at @gML is dropped for clarity. The
matrices Mg and INg are non-negative definite (with Mg
generically positive definite if n > 1), so 8 can be viewed
as a solution of the generalised eigenvalue problem

Mo& = ANg§ ®)

corresponding to the eigenvalue A = 1. The basic het-
eroscedastic errors-in-variables scheme is an algorithm for
solving (7) that exploits the above eigenvalue problem in a
manner analogous to that in which FNS utilises the eigen-
value problem (6). The scheme is a variation on the tech-
nique proposed in [10-12]. The details are given in Fig-
ure 2.

As is easily seen from (11) below, the null space of each
matrix B; contains the length [ vector [0, ..., 0,1]%. Con-
sequently, N g is singular. It turns out that the eigenvalue
problem (8) can be reduced to a similar problem involving
a positive definite right-hand side matrix. A specific reduc-
tion will be described next, namely one resulting from a
suitable reformulation of the variational equation (7).

4. Reduced Variational Equation

The vector u(x) has one entry equal to 1 and can be
written as

u(z) = [z(x)",1]", ©9)

where z () is a ‘pure measurement’ vector of length [ — 1.
The vector of parameters 8 can be partitioned conformally
as

0=[n",a

with 17 a length [ — 1 vector and « a scalar. An immediate
consequence of (9) is the representation

A; = u(z)u(z)’ = [z’? z’} (10)
z; 1
foreachi =1,...,n, where z; is short for z(xz;). Another

consequence of (9) is the identity

Doulz) = [8mz(w)] ,

OT
which implies that, foreach: = 1,...,n,
BY o

with BY = 0p2(x;) Ag,0pz(x;)" . Foreachi = 1,...,n,
define a weight
1

Bi =~
nt'B in
that depends on the ¢th element of data x;, its covariance

Az, and the parameter vector 77. Let Z be the centroid of
the z; given by

_ Zzlzl Bizi
2= =n 5 >
Ei:1 6@'
and, foreachi =1,...,n,let

2=z — %
be the ith pure measurement vector relative to 2. Define
two (I — 1) x (I — 1) matrices
- 2
T 0
N, = Z (Bizi'm)” B;.
i=1

n
1 1 T
M, = g BiziZi
i=1

Upon introducing
0 _ _r 1T
A =zizi,

the matrices M '7, and N ;7 can also be written as

UTA?”I 0
—— o Bis
i=1 (nTBz T’)Z
which reveals their resemblance to Mg and Ng. Obvi-
ously, M;, and N, both depend not only on 7 but also on
the data and their covariances.
A fundamental result that can now be established is that
0 = [nT,a]T satisfies (7) if and only if the following sys-
tem of equations holds:

1 _ i
M’r]n - N’r]"?) (12)
a=-zn. (13)

n Ao
Ml — 1 ) N/ —
K ; n”Bin K

The first of these equations involves only 7 and can be
solved in isolation; the second expresses « in terms of 7.
Of the two constraints, the first plays a leading role and will
be called the reduced variational equation. A key feature
of this equation is that its right-hand side matrix IN' , un-
like N g, is generically positive definite it n > 1.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 12th International Conference on Image Analysis and Processing (ICIAP’03)
0-7695-1948-2/03 $17.00 © 2003 IEEE



L. Setny = 7NaLs.

2. Assuming that 77, _; is known, compute the
matrices M, and N, .
k—1 Me—1

3. Compute a normalised eigenvector of the
eigenvalue problem
! _ !
M”?k—1c - /\N”M—1C

corresponding to the eigenvalue closest to 1
and take this eigenvector for 77,,.

4. If n,, is sufficiently close to 1,_,, then ter-
minate the procedure; otherwise increment k
and return to Step 2.

FIGURE 3. Reduced HEIV scheme.

5. Reduced HEIV Scheme

The algebraic least squares estimates 7751, and Gars are
naturally defined as the respective components in the repre-
sentation R

OaLs = [(TiaLs)” @ars]”
Analogously, the unconstrained approximated maximum
likelihood estimates 1% ,,;, and a%,,; are defined via the
decomposition

) =~ T ~ T
O = [(MAme) " @AM -
In view of (13), &%y, is uniquely determined by 7%y, —
when the centroid z is taken with the weights
1

@) TBY N,

B =

then @%,;, = —2 1%, Now, the generalised eigenvalue
problem
! !
M = AN, (14)

is non-degenerate: the matrix N ;7 is positive-definite. Ac-
cordingly, 1%, can be determined with use of a simple
modification of the HEIV algorithm. The steps of this re-
duced HEIV scheme are given in Figure 3. It is essentially
in this form that the HEIV algorithm was first advanced
[10, 12]. The original version employs a slightly different,
bias-corrected form of the vector of carriers u(x). The re-
duced scheme, based solely on u(x), constitutes HEIV with
carrier bias correction eliminated. Both versions are com-
parable in performance, but since the one with carrier bias
correction eliminated is somewhat simpler, it is this version
that was eventually recognised as the fundamental form of
the HEIV algorithm [11].

Max. diff, | ALS ~ FNS HB HR

HEIV 146 4.7x107% 7.5x107° 2.6x10°®
HR 146 4.7x107% 7.5x107°

HB 146 7.1x107°

FNS 146

Avg. diff. | ALS FNS HB HR
HEIV 24.8 5.7x107% 2.0x107¢ 2.5x10°°
HR 248 5.8x107% 2.0x10°¢

HB 24.8 2.0x10°

FNS 248

TABLE 1. Maximum and average differences in
JamL values for different estimation methods.

6. Stable HEIV Scheme

The reduced HEIV scheme is locally convergent—to
work it requires the initial iterate to be close to a solution
of (12). A more stable version of the algorithm, able to
cope with a less accurate initial iterate, results from select-
ing the eigenvector corresponding to the smallest eigenvalue
instead of the eigenvector corresponding to the eigenvalue
closest to 1. Leedan and Meer remark that this modified
method converges successfully (in fact with high conver-
gence rate) even when seeded with a random initial esti-
mate. Typically, the minimal eigenvalues computed after
a first iteration are also the closest to 1, and so from the
second iteration onwards the modified algorithm acts effec-
tively as the original version. Without the modification, the
scheme may exhibit slow convergence or even divergence.

7. Experiments

Relative performance of the FNS and HEIV methods
was experimentally assessed by running a series of simula-
tions involving synthetic data. The particular problem con-
sidered was estimation of epipolar geometry. It turns out
that in this case the vector of carriers is unbiased and the
original version of HEIV involving bias corrected carriers
coincides with the version with carrier bias correction elim-
inated. A single element of data took the form of matched
corresponding points from left and right images of a stereo
pair, and the goal was to estimate the associated fundamen-
tal matrix. Details of the various expressions involved are
presented elsewhere [4].

In our experiments, five estimation methods were tested,
denoted as ALS, FNS, HB, HR, and HEIV. ALS is the sim-
ple, direct algebraic least squares method described in Sec-
tion 2. It is included as a method of a different category to
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FIGURE 4. Performance histograms for each of the
methods, with Japr, bins on the z-axes, and frequen-
cies of occurrence on the y-axes.

give a sense of scale to the forthcoming numerical results.
The FNS, HB, and HR methods were implemented as spec-
ified in Figures 1, 2, and 3, respectively. These iterative
methods were terminated when the difference in norm be-
tween successive estimates was less than a common, very
small threshold. Estimates of the final method, HEIV, were
obtained using the MATLAB source code supplied by the
authors of the original HEIV papers.!

The simulations were based on a set of ‘true’ pairs of cor-
responding points generated by selecting a realistic stereo
camera configuration, randomly choosing many 3D points,
and projecting the 3D points onto two image planes. Only
those scene points were considered that had both projec-
tions confined to the image size of 1,000 x 1,000 pixels.

For each of N = 5,000 iterations, the true correspond-
ing points were perturbed by homogeneous Gaussian jitter
to produce noisy points. These noisy points were then used
to generate a fundamental matrix estimate for each of the
five estimation methods. For each estimate, the value of the
JamL cost function was computed. Comparison was under-
taken in this realm as Ja i, is the basis for our rationalis-
ing and linking of the various iterative methods considered.
Note that the singularity constraint was not imposed as this
would otherwise obfuscate comparison (the constraint is

Uhttp://www.caip.rutgers.edu/riul/research/code.html

usually implemented as a separate post-process). In these
tests, the level of noise was fixed at 0 = 1.0 pixels, al-
though similar results were obtained using different noise
levels.

Figure 4 shows the histograms of Japnp values asso-
ciated with each of the estimators. In contrast with the
ALS method, the iterative methods generate very simi-
lar response profiles. Table 1 compares estimators pair-
wise by showing both the maximum and average differ-
ences in associated Jang, values over the complete set of
trials. The respective top left elements are computed via

the expressions Maxi<i<N | JamL (Bhgry )A— Jamn(0%16)]
and N7 00 [Jane Ofpry) — Jamn (@ ps)]. The re-
sults demonstrate that the methods FNS, HB, HR, and
HEIV deliver estimates whose associated Ja i, values are
extremely close. As would be expected from the earlier the-
ory, the HR and HEIV methods prove to be almost numeri-

cally identical.

8. Conclusion

In this work, aspects of the FNS and HEIV frameworks
for estimating parameters from image-based data were ex-
amined. It was shown that FNS and a core version of HEIV
are essentially equivalent, both in terms of analytical for-
mulation and numerical outcome. In this way, further un-
derstanding is gained about the inter-relationships between
members of the spectrum of estimators available for compu-
tation of geometric parameters. Given that the FNS scheme
has been recently upgraded to incorporate constraint in a
fully integrated manner, the opportunity now exists to en-
hance the HEIV framework in a similar manner.
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