
Component-based Design and Analysis: A Case Study

Yan Jin Charles Lakos Robert Esser

School of Computer Science, University of Adelaide, SA 5005, Australia
{yan, charles, esser}@cs.adelaide.edu.au

Abstract

In this paper, we introduce a component-based design
methodology and present a practical analysis approach that
makes use of the modular nature of component-based de-
signs to alleviate the state space explosion problem, a well-
known obstacle to system verification. In addition, the ap-
proach is illustrated by application to a non-trivial case
study: the production cell. It is shown that not only the basic
consistency property, viz. the freedom from unexpected re-
ception and deadlock, but also other important safety prop-
erties in the design can be proved.

1. Introduction

In recent years, component-based software development
has become more popular for the production of large-scale
software applications. By building systems from inde-
pendently developed components, a promising means of
achieving software reuse, rapid development and complex-
ity management is provided. However, as noted in [3]:

“system complexity, and hence the likely num-
ber of design errors, grows exponentially with the
number of interacting system components”.

This is a consequence of the well-known state space ex-
plosion problem and it largely limits the applicability of
exhaustive analysis. To overcome this problem, various
reduction techniques have been proposed in the literature.
Among them, modular analysis (or compositional reason-
ing) [2, 7, 10, 11, 15, 20] is a powerful divide-and-conquer
technique for decomposing the analysis task of a system
into subtasks of individual components of the system. The
key to this is to consider each component in conjunction
with assumptions about the context of the component, and
to consider the composition of components in conjunction
with the interface behaviour of components.

In component-based systems, however, this key informa-
tion is often missing or only informally described. Cur-
rently, the interface specifications of components tend to

be rather restricted, capturing only the signatures, i.e. the
names, data types and direction of information flow, but
excluding information about the communication protocols
of components. This is because software engineers lack a
formal means for precisely specifying the interfaces behind
which components encapsulate their services. As a result,
components cannot be analysed independently due to the
lack of information about the environments in which they
are embedded, and the composition of components cannot
be analysed due to the lack of rigorous specification of the
interface behaviour of components.

We have developed a formal technique which focuses on
communication protocols while abstracting away from the
data values being communicated. The protocol of a compo-
nent describes the services it provides, the way it reacts to its
inputs and what it expects from its environment. It does not,
however, disclose the implementation detail of the compo-
nent. We use interface automata (IAs), a formal lightweight
language proposed in [5], as the notation for describing pro-
tocols.

With the contextual assumptions captured by an inter-
face automaton (IA), each component can be checked for
conformance with the IA in isolation from the system. This
ensures that a component is able to abide by the interaction
protocol given by the IA, provided its environment behaves
as expected. Furthermore, the composition of components
can be analysed utilising the interface behaviour of com-
ponents specified by the IAs while disregarding the internal
activities of components. Using this divide-and-conquer ap-
proach, the state space explosion problem can be alleviated.

This paper focuses on the application of the above tech-
nique to a non-trivial case study. The formal presentation
of this technique and comparison with related techniques is
found elsewhere [14, 15]. The technique has been imple-
mented in the context of the Moses tool suite [6], which
presents an additional challenge to component-based devel-
opment in that it supports the modelling and simulation of
heterogeneous discrete-event systems, where components
are modelled by different languages [6, 12, 13], e.g. pro-
cess networks, Petri nets, Statecharts, etc.

1

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

The paper is structured as follows. In section 2, this
research is compared with related work. Our approach to
component-based design and analysis is presented in sec-
tion 3 and is applied to the production cell case study in
section 4. Finally, section 5 contains the conclusions.

It should be emphasised that throughout this paper the
word analysis is used in the sense of verifying system prop-
erties rather than in any sense of requirements elicitation.

2. Related work

Many authors have contributed to the production cell
case study, e.g. [16, 8, 9, 17]. Among these contributions,
the closest to our approach is the work in [8, 9], where a
detailed model of the production cell is found. Our design
builds on this model but segments it into 7 loosely-coupled
reusable components. Also, that work differs from ours in
the analysis method employed. There, the analysis was di-
rectly conducted on the state space of the whole system with
the help of reduction techniques such as stubborn set meth-
ods. In our work, the costly construction of the system state
space is avoided. Instead, system properties are proved on
the basis of independent model-checking of a group of small
state spaces with the help of interface automata.

In [17], a design and verification approach to the produc-
tion cell using UML is presented. There, components are
modelled as UML Statecharts and the verification is con-
ducted using the vUML tool which invokes the SPIN tool
for executing the model checking task. As in [8, 9], this
approach employs reduction techniques in order to explore
all possible states of the system. This, however, trades time
for memory. In contrast, our approach requires much less
time and memory due to the smaller state spaces that need
to be handled. Furthermore, our approach is not dedicated
to a particular modelling language, but accommodates var-
ious notations for modelling components, including UML
Statecharts [13].

In [16] there is a collection of other contributions and
also a detailed comparative survey. To the best of our
knowledge, there exists no other approach to the modular
analysis of the production cell.

3. An approach to component-based design
and analysis

When designing a system, an important step in decom-
posing the system into components is to specify the inter-
action protocols for components. These protocols serve as
the contract between the system and components and guide
component development. However, in the current practice
of component-based development, software engineers often
lack a formal means to capture protocols and instead use in-
formal languages to express them. As a consequence, the

correctness of component implementations is ensured only
by the experience of the engineers, testing or some infor-
mal reasoning against the protocols. This approach is often
error-prone with the design of the intermediate protocols
providing no means of precise analysis.

By contrast, we introduce interface automata (IAs) [5] as
a formal language that can describe the interaction protocol
of every component at a high level of abstraction. The pro-
tocol includes not only how a component produces outputs
in response to its inputs but also assumptions that the com-
ponent makes on the environment as to when or what inputs
are expected. The protocol, on the other hand, abstracts
away the implementation details of the component, such as
data values and internal behaviours. According to its pro-
tocol, a component can then be independently implemented
and analysed.

The introduction of IAs breaks the system analysis task
into a series of smaller tasks. Firstly, the conformance of
each component with its associated IA is ensured, i.e. every
component communicates with the environment in a way
that conforms to the interaction protocol defined by its IA.
Secondly, the consistency property of the system, viz. the
freedom from deadlock and unexpected reception, can be
determined by checking the compatibility of the interface
automata. The compatibility refers to unspecified reception
in an abstract system composed of these IAs. Because of the
abstraction from components to their interface behaviour,
the state space of the abstract system is much smaller than
the component system. Hence the state space explosion
problem is alleviated.

On the other hand, also due to the abstraction, safety
properties dependent on the internal behaviour of compo-
nents cannot be directly checked on the abstract system. We
shall show that these properties can be proved by checking
the state combinations of components deduced from the ab-
stract system and individual component state spaces.

3.1. Interface automata

The IAs used here are deterministic finite state machines
(FSMs) where input and output events are distinguished.
The distinction reflects the fact that in asynchronous sys-
tems a component has control over its outputs but no con-
trol over its inputs. That is, a component decides when to
produce an output, while the environment decides when an
input event occurs.

Figure 1 shows an example IA, where bullets and arcs
represent states and steps (or transitions), respectively. The
state having an incoming arrow with no source denotes the
initial state. Each transition is labelled by an event. For
example, the IA has two input events “a” and “b” and an
output event “c”. This example IA specifies the interaction
protocol for an adder component.

2

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

s0

s1

a?

s2

b?

c!

Figure 1. An adder IA

The information contained in an IA is twofold. On the
one hand, it restricts the output events that a component im-
plementing it can produce in a particular state. On the other
hand, it captures the designer’s expectation that the environ-
ment should never provide an unspecified input event to the
component. For example, figure 1 states that the environ-
ment can deliver a and b only once before c is produced.
Also, it guarantees that the component does not produce c
until both a and b have occurred.

3.2. Components

In this context, components are (finite) state machines
assumed to communicate through input/output ports by dis-
crete events. They consume data fed to input ports and pro-
duce data via output ports. An input/output event of the
component refers to an occurrence of message transfer at
one of its ports. Also, like [18, chapter 8], a component
is required to be input-universal, i.e. it never refuses an in-
put, so that writing to a component never blocks. This ac-
knowledges the fact that components are often developed to
function properly in unknown environments. This is also a
requirement for independent deployment of components.

Let an IA event represent a class of component events as-
sociated with a particular port. Then we are able to use IAs
to describe both the required interface behaviour and the en-
vironment assumptions of components. More specifically,
an component event is considered to be a tuple 〈e, v〉 with e
an IA event (thus a component port) and v a parameter (the
data being communicated). We abbreviate such an event as
e.v. The parameter can be arbitrary for a component input
event, while for a component output event it is fixed and
determined by the internal logic of the component. The as-
sociation between IAs and components makes it possible
to develop and analyse each component independently of
other components and the ultimate context.

For example, we can develop an adder component or se-
lect one from the component library, according to the pro-
tocol specified by figure 1. Suppose we obtain the model
shown in figure 2. The model is written in a variant of high-
level Petri nets [12], where triangles represent the input and
output ports and the body is given in the usual Petri net
notation with circles, boxes and arcs representing places,
transitions and the flow relationships, respectively. From
the component perspective, an input port represents a (Petri

b: [0..N]
func: c = a + b
add

pa

pb

c: [0..2N]

a: [0..N]

b

a

c

Figure 2. An adder component

net) transition of the environment which can fire only when
expected by the IA and thus put a token into the connected
place, while an output port represents a place of the envi-
ronment for holding the tokens generated by the connected
transition. The ports are typed with “[0..N]”, meaning that
in this example only tokens with integer values between 0
and a constant N can be transmitted via the ports.

3.3. Conformance checking of components

After a component is developed in this way, we need to
make certain that the component does conform to the pro-
tocol specified by the IA. As the component is always as-
sumed to run in a system where the input assumptions cap-
tured by the IA are respected, the conformance ensures that
the component does not violate the output guarantees spec-
ified by the IA.

To do so, we first build the least helpful but adequate
environment for the component from the IA specification.
This is the environment that will not contradict the assump-
tions of the IA and such that any other suitable environment
will be more helpful, i.e. it will supply less inputs to the
component and will accept more outputs from the compo-
nent. The environment also includes trap steps taken when
a component violates the output guarantees specified by the
IA, i.e. it produces an output event which is unspecified at
a corresponding state of the IA. We refer to such an en-
vironment as the most abstract implementation of the mir-
ror of the IA. For example, such an environment for the
adder component is shown as a compact FSM in figure 3,
where gray arcs represent trap steps, ⊥ a single trap state,
and x, y, z integers in their respective domains.

z: 0..2N;

y: 0..N;

x: 0..N;

s2s0

s1

a.x!

c.z?

b.y!c.z?

c.z?

c.z?

Figure 3. The least helpful environment

We then construct the local state space of the component
paired with this least helpful environment. This will syn-
chronise output events with input events between the com-

3

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

ponent and the environment. The states are tuples 〈s, q〉
with s a IA state or s = ⊥ and q a component state, and
the initial state is a tuple of the initial states of the IA and
the component. We can now determine the conformance of
the component by checking the absence of trap states, states
〈s, q〉 with s = ⊥, and deadlocks in the local state space.

<s0, (_, _)> <s2, (N, 0)>

<s2, (0, 0)>
...

<s1, (N, _)>
...

<s1, (0,_)> ...a.0

b.N b.0c.0 a.1
b.0

a.N b.N

c.N

Figure 4. Local state space of figure 2

For example, the local state space of the adder compo-
nent with respect to the adder IA is illustrated in figure 4.
The initial state is 〈s0, (,)〉, where s0 is the initial state of
the IA and (,) is the marking of the component, indicat-
ing that there are no tokens in either place pa or place pb. In
this state, the environment is expected to provide an integer
v only via port a. As v can lie between 0 and N , there are
N input steps emanating from the state, each receiving an
event a.v with distinct v. Take the step receiving a.0 as an
example. The step ends at a state 〈s1, (0,)〉, where place
pa holds a token with value 0. Likewise, this state also has
N outgoing steps. If event b.0 is triggered, state 〈s2, (0, 0)〉
is entered, where both pa and pb hold a token of value 0.
At this time, transition “add” in the component will be en-
abled and, if fired, will produce an output event c.0 with 0
representing the sum of tokens received via a and b. The re-
sultant state is the initial state. For brevity, we only expose
a small portion of the local state space and omit the rest due
to the structural similarity. As the local state space does not
involve a trap state and is deadlock-free, we know that the
adder component conforms to the adder IA.

3.4. Component-based designs

A typical component-based design process combines
top-down and bottom-up design. Components are identi-
fied during system decomposition. IAs are then used to
specify the interaction protocols for the components and to
design the synchronisation patterns between components.
The synchronisation patterns relate the output events to the
input events of the IAs, while abstracting away the data be-
ing communicated. These resultant protocol specifications
are then used for developing or selecting suitable compo-
nents (or for further decomposition). Once the components
have been developed or selected, they can then form a con-
crete component-based design, where the synchronisation
patterns of IAs are reused for components with the incorpo-

ration of data values.
As an example, suppose two components, a user and an

adder, are identified in a small adder system. We expect
them to follow the protocols described in figures 1 and 6,
respectively, and to synchronise as described in figure 5.
In this case, an input event of one IA is synchronised with
an output event of the other with the same name, e.g. “a?”
of the adder with “a!” of the user. Using these protocols,
we develop two components shown in figures 2 and 7, and
connect them as shown in figure 5 to form the adder system.
The user component randomly chooses two integers from
place “nums” and provides them to the adder component
for computation. Place “nums” initially holds all integers
between 0 and N .

Since the IAs capture the interaction protocols expected
by the designer of the components, we need to ensure that
the components indeed follow these protocols in the execu-
tion of the ultimate system design. In other words, every
input/output step of a component in the system corresponds
to a step of its associated IA, ignoring the data being com-
municated. This property is called the freedom from unex-
pected reception. We also need to ensure that the system
design is free from deadlock. A component-based design
satisfying these is called consistent.

3.5. Analysis of system properties

The conformance of every component to its correspond-
ing IA makes it possible to determine the system consis-
tency property from an abstract system of IAs. The abstract
system is an intermediate product we have obtained in an
earlier design stage, and shares the same synchronisation
patterns with the component-based system. In the system,
an enabled output event of an IA is synchronised with all
the input events of others related by a synchronisation pat-
tern. The system is consistent if two conditions are satisfied.
On the one hand, all constituent IAs are compatible, that is,
no IA can produce an output event triggering an input event
unspecified at the current state of of another IA. This is also
called the freedom from unspecified reception. On the other
hand, the abstract system is free from deadlock, that is, there
is no deadlocked state in its state space (which is a FSM).
It has been proved by the authors in [15] that the consis-
tency of the abstract system can then serve as a sufficient
condition for the consistency of the concrete system.

For instance, the IA system of the adder system consists
of the IAs in figures 1 and 6 and has the synchronisation
patterns shown in figure 5. Its state space looks like figure 1
except that all events are internal. It is easy to see that the
IA system is consistent. Therefore so is the adder system.
It should be noted that the example system is too small to
demonstrate significant state space reduction using the pro-
posed method.

4

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

c

b

a

adder

c

b

a

user

Figure 5. An adder system

s2

s1

s0

a! b!

c?

Figure 6. A user IA

1`0 +...+ 1`N b: [0..N]

a: [0..N]c: [0..2N]

1`0

a

c

a

bb

c

c

nums

Figure 7. A user component

To determine safety properties other than the above, we
have extended our work in [14, 15]. We have proved that lo-
cal safety properties that are satisfied in the local state space
of a component are also satisfied in a consistent system con-
sisting of the component, as the assumptions captured in the
specification IA are always respected in the system. These
local properties are also called component invariants. The
boundedness property of a system is a typical application
of this theory, as it is the conjunction of the boundedness
of all the components within the system, which is in turn
a special component invariant. We have also justified that
system safety properties can be ensured by proving the de-
composition of the properties on the local state spaces of
the involved components. We examine this in more detail
in section 4.2.

3.6. Overview of the implementation

This approach is aimed at promoting a practical means
for designing and analysing component-based systems. To
achieve this, tool support is of great importance. Due to
its extensibility, the Moses tool suite was chosen to be the
implementation framework for the proposed methods.

The Moses tool suite addresses the definition of a cer-
tain class of visual languages and supports the visual mod-
elling and simulation of discrete-event systems. A variety
of notations can be used for describing components in such
a system, e.g. Petri nets, Statecharts and process networks.
This is made possible by Moses generic tools, such as a
graph editor and a simulator, which are parametrised by vi-
sual language definitions.

On the basis of the Moses framework, we have encoded
the formalism of IAs and developed tools for their compo-
sition and compatibility checking. We have also provided
a tool for generating the local state space and thus the con-
formance checking of components coded in the pre-existing
formalisms. In addition, we have integrated a small prop-
erty specification language into the Moses so that safety
properties can be specified. These include component in-
variants and system safety properties. Component invari-
ants can be automatically checked using a newly-built state
space exploration tool. As noted previously, this only re-
quires the exploration of component local state spaces. The

extensions for automatically checking more general system
safety properties is currently under development.

The Moses tool suite is available at [1]. The tools imple-
menting the techniques described in this paper are available
in a side branch of the repository and will soon be merged
into the main branch. In the meantime contact the authors
for access.

4. Case study: the production cell

The production cell case study, posed in [16], was de-
rived from a metal processing plant. The main task of the
cell is to forge metal blanks in a press. The blanks are trans-
ported to and removed from the press through the collabo-
ration of five other components in the cell: a feed belt, an
elevating rotary table, a robot with two extendable arms, a
deposit belt and a travelling crane. Figure 8 shows the top
view of the cell (taken from [8]).

Figure 8. Top view of the production cell

The production cycle of a metal blank is as follows:
When the feed belt conveys the blank to the table, the ta-
ble rotates and lifts the blank to a position where the robot
can pick it up using one of its arms. After the robot moves
the blank to the press, the press forges the blank and then
goes to a position where the robot can pick it up using the
other arm. The robot then removes the pressed blank and

5

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

Ofull Ifull

Ofree Ifree

OfullLreq

Ureq

Lack

Ifull

Uack

Ofree
Lfin

Ufin

Ifree

arm2

Ofull Ifull

Ofree Ifree
table

OfullIfull

OfreeIfree

press

Lreq

Ofull

Ureq

Lack

Uack

Ifull

Ofree

Lfin

Ufin
Ifree

arm1

Uack2

Uack1

Ureq2

Ufin2

Ureq1

Ufin1

Lack2

Lack1

Lreq2

Lfin2

Lreq1

Lfin1

robot

Ofull Ifull

Ofree Ifree

Ofull Ifull

Ofree Ifree
crane

 belt
feed

 belt
deposit

Figure 9. Architecture of the production cell

puts it onto the deposit belt, which transports it to the end.
The system is made closed and self-contained by the addi-
tion of the crane which fetches the blank from the end of the
deposit belt and returns it to the beginning of the feed belt.

The difficulty of designing the cell lies in the fact that the
cell involves 14 sensors and 13 actuators distributed over
the six components. A component learns its current posi-
tion by reading from its sensors and transports (or forges)
the blank by controlling its actuators. The control of the ac-
tuators involves 34 commands in total [8, 9]. For example,
the feed belt transports and delivers blanks to the table by
starting or stopping its motor (or actuator). In order to avoid
a blank being dropped outside the safe area, the belt is also
equipped with a sensor detecting the arrival and departure of
a blank at the end. The robot is the most complex with five
groups of actuators and sensors in charge of arm extension
and retraction, blank grasp, and horizontal rotation.

4.1. Modular design

This design is based on the Petri net model proposed by
Heiner and Deussen [8, 9]. Figure 9 depicts the architec-
ture of the design in a dataflow network. Each component
in the cell corresponds to a component in the design ex-
cept the robot. In [8], the robot in the cell was designed
as two arm components, each of which involves a control
logic for swivelling the robot to its loading or unloading an-
gle. This is counter-intuitive to a component-based system
view. Instead, we build an additional component “robot”
which is in charge of robot swivel at the request of the two
arms. This makes the arms identical and thus helps produce
reusable implementations. The concrete robot now corre-
sponds to three components in the design: “arm1”, “arm2”
and “robot”. To simplify matters, we only deal with a closed

system with five blanks initially residing in the feed belt, the
table, the press, the deposit belt and the crane. Other vari-
ants of the system can be analysed in the same way.

4.1.1. Protocols

To coordinate the concurrent execution of components, we
follow Heiner and Deussen’s approach [8], i.e. components
communicate according to the producer-consumer protocol.
Figure 10(a) show the protocol specification IA for both the
feed belt and the deposit belt, where the event “Ifull” (or
“Ifree”) locks (or unlocks) the input region for blanks and
the event “Ofull” (or “Ofree”) unlocks (or locks) the out-
put region. The IA specifies the need of the feed/deposit
belt for simultaneous control of input and output regions for
blanks [8]. In other words, the belts cannot convey blanks
unless the two regions are locked.

s5

s2

s1

s3

s4

s0

Ifull?

Ofree?

Ofree?

Ifree!

Ofull!

Ifull?

Ifree!
Ofree?

(a) Full version

Save: Ofree?

s0

Save: Ofree?

s1

 s2 s3

Ifull?

Ofree?

Ifree!

Ofull!

(b) Compact version

Figure 10. feed & deposit belt IA

Because of the reactive nature of IAs, the interleaving
of input and output events often makes IA graphs messy,
sometimes even for such simple protocols. To improve
upon this we introduce a “save” attribute for states to spec-
ify an input event, indicating that the event is acceptable but
its processing is irrelevant to the current activities. For ex-
ample, the IA in figure 10(a) can be alternatively depicted

6

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

as in figure 10(b), where states which model the input of ir-
relevant events, e.g. s4 and s5, are removed and saved at the
source states. As a result, the graph is neater and easier to
understand the main factors conveyed by the protocol. Note
that we only regard “save” attributes as a syntactic shortcut.

Save: Ofree?

Save: Ifull?Save: Ofree?

Save: Ifull?

Ofull!

Ifull?

Ifree!

Ofree?

(a) table & press

Save: Ifull?Save: Ofree?

Save: Ofree? Save: Ifull?
Ofull!

Ifull?

Ifree!

Ofree?

(b) crane

Save: Ofree?

Save: Ofree? Save: Ofree? Save: Ofree?Save: Ofree?

Save: Ifull?

Save: Ifull?Save: Ifull?Save: Ifull?Save: Ifull?
Uack?Ufin

Ofull!

Ifull?

Lreq!

Ureq!

Lfin!Lack?
Ifree!

Ofree?

(c) arms

Save: Lreq2? Save: Lreq2? Save: Lreq2? Save: Ureq1?

Save: Lreq2?

Save: Lreq2?

Save: Ureq1?

Save: Ureq1?

Lack1!

Lack2!
Uack1!

Lreq2?
Lfin1?Lreq1?

Ufin1?

Save: Lreq2?

Ureq1?

Save: Ureq1?

Ufin2?

Save: Ureq1?

Uack2!
Save: Ureq1?

Lfin2?

Ureq2?

(d) robot

Figure 11. Interaction protocols

Apart from the above, there are also two variants of
the producer-consumer protocol shown in figures 11(a) and
11(b). Figure 11(a) states that the table/press must exclu-
sively handle inputs or outputs. That is, they need to lock
the input regions in order to change positions. As shown in
figure 11(b), the crane needs only an independent control of
its input and output regions. Put differently, it requires only
one lock at a time to do its work.

To communicate with the neighbouring components,
arms also follow the protocol as shown in figure 11(b).
In addition, they coordinate with the robot component un-
der a resource sharing protocol as depicted in figures 11(c)
and 11(d). The protocol ensures that the sensitive opera-
tions, such as blank pickup, putdown and robot swivel, can
be exclusively and atomically executed without interrup-
tion. Basically, a semaphore is exchanged between them
so that only one component, the one with the semaphore,
can conduct a sensitive operation. Initially, the robot owns
the semaphore. An arm can ask for the semaphore by send-
ing a request via “Lreq” or “Ureq”. The request also in-

dicates the angle at which the arm wants the robot to be,
e.g. “Lreq” (or “Ureq”) for the loading (or unloading) angle
of the arm. Once the robot has swivelled to the requested
angle, it hands over the semaphore to the arm by sending
“Lack” or “Uack”. When the arm finishes the sensitive op-
eration, it returns the semaphore via “Lfin” or “Ufin”. Fur-
thermore, upon receiving a request, the robot may process
it immediately or buffer it for later processing. When both
arms request the semaphore at the same time, the robot will
choose which one to serve. The actions taken depend on
the current angle of the robot and the availability of the
semaphore.

4.1.2. Components

With the interface automata formally describing the inter-
action protocol of components, we can now independently
design a component with respect to an IA. Black-token Petri
nets are used here as the modelling language. Although
the components implement different logic for controlling
actuators and sensors and collaborating with other compo-
nents, they have similar structures. Here, we present the
feed/deposit belt as an example.

With similar functionality and the same actuators and
sensors, the feed belt and the deposit belt share a compo-
nent implementation as shown in figure 12. This model
is borrowed from [8, 9] but flattened and enhanced with
input/output ports. Each belt contains an actuator and
a sensor. The actuator is started or stopped by deposit-
ing a token into places “belt start” or “belt stop” (These
two places are complementary.) Transitions “trans Pstart”,
“trans Cstop” and “trans Pstop” model the process of con-
trolling the transportation of blanks from the beginning to
the end. Likewise, transitions “dlvr Pstart”, “dlvr Cstop”
and “dlvr Pstop” model the delivery process. Whether
a blank has reached or left the end of the belt is indi-
cated by markings of the places “light barrier false” and
“light barrier true” (These two should also be complemen-
tary.) The tokens in the places are only modified by the
sensor as a result of occurrences of transitions “trans csc”
and “dlvr csc”.

Initially, as shown in figure 12, the belt is idle and
stopped with one blank at the beginning. After it fires
“lock input” and transports the blank to the end, the belt is
stopped and the light barrier is true. If the belt has received
a message via “Ofree” indicating the readiness of its neigh-
bouring component for loading, the belt proceeds to deliver
the blank. This involves sequential occurrences of delivery
transitions and the two unlocking transitions participating
in the producer-consumer protocol. As a result, two output
events “Ofull” and “Ifree” will be sequentially produced to
release locks in neighbouring components.

It is worth noting that some invariants are present in

7

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

trans_Pstop

unlock_input

trans_csc

lock_input

Ofree

dlvr_Cstop

Ifree

lock_output

dlvr_csc

Ifull trans_Cstop

Ofull

trans_Pstart

dlvr_Pstartdlvr_Pstop

unlock_output

at_begin

light_barrier_false

dlvr_run

light_barrier_true

trans_rs

idle

belt_start

release_input

dlvr_rs

trans_run

pIfull

belt_stop

empty dlvr_ready

pOfree

at_end

Figure 12. Feed/deposit belt component

this component model, e.g. the complementary places noted
above. These can be ensured with purely local information,
while other invariants would require information on how the
environment behaves. The principle proposed in section 3
assumes the component has an environment that is as help-
ful as is defined by the relevant IA. This allows us to prove
these invariants in the system as will be demonstrated in the
next section.

In designing the concrete robot, we distribute its actua-
tors and sensors into three components. “Arm1” and “arm2”
own actuators and sensors participating in arm extension,
blank grasp, and arm retraction, while “robot” manages
those engaged in robot swivel. Although their models tend
to be more complicated than the belt’s, a similar design ap-
proach can still be applied.

4.2. Modular analysis

To analyse the design, we have extended our work
in [14, 15] to handle mixed states in IAs, i.e. states where
both input and output events originate, e.g. state “s2” in fig-
ure 10(a).

4.2.1. Consistency property

As stated previously, the consistency property refers to the
system’s freedom from deadlock and unexpected reception.
To check this, we apply the modular analysis approach pro-
posed in section 3. First of all, each component is checked
for conformance with its corresponding IA. This ensures
that the component does not break the guarantees speci-
fied by the IA while constructing the component local state
space. This also ensures the deadlock freedom of the com-

ponent in the system. We have performed these checks us-
ing the Moses tool suite and proved the conformance of ev-
ery component in the design. The resultant component local
state spaces turn out to be small, as shown in table 1.

states transitions
feed/deposit belt 21 28

table 44 66
robot 58 87

arm1/arm2 60 90
press 36 54
crane 64 96

Table 1. Component local state space

Secondly, an abstract system is constructed which is
composed of the IA in figure 10(a) and the full versions
of the IAs in figure 11 with the same synchronisation struc-
ture as shown in figure 9. The consistency of this system
is also ensured during the construction. The generated state
space turns to be much smaller than that of the component
system because we have abstracted away from the internal
activity of components. Table 2 shows the size of the two

system states transitions construction
time

Component 1,353,857 5,827,108 45.5 min
IA 692 1191 < 1 sec

Table 2. System state space

systems1. Clearly, this approach results in significant reduc-

1The construction was executed in a SunOS 5.8 Ultra-2 machine

8

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

tion of memory usage and time consumption.

4.2.2. More safety properties

In addition to the consistency property, there are also 21
safety requirements in the production cell design [8]. We
classify these into three catagories: component invariants,
system boundedness and system safety. Then we demon-
strate how to prove them from the previously built state
spaces.

Component invariants are predicates involving only
places in a single component. Examples include the
complementary places, the boundedness of places, the
movement constraints on components. For example, the
feed/deposit belt design requires complementary places,
e.g. “belt start” vs. “belt stop” and “light barrier true” vs.
“light barrier false” etc. Also, it is required that all places
in a component can have at most one token. Furthermore,
the robot is required not to rotate clockwise if its first arm
points towards the table and not to rotate anticlockwise if its
first arm points towards the press.

As stated previously, the invariants that hold in compo-
nent local state spaces also hold in the system. To prove
these invariants in the system, we only need to check the
local state space of the component. We have checked all
component invariants of the above-mentioned kinds in the
design, including seven restrictions on component mobility
given in [8]. They were found to be true in the respective
component local state spaces. Hence they also hold in the
system.

System boundedness refers to the boundedness of all
places in the system. Since the boundedness of every sin-
gle place can be proved as described above, we can prove
that this property holds in our production cell design and the
flattened net of the whole system is a 1-safe Petri net.

System safety refers to properties involving places in two
or more components. These include 4 requirements for
collision avoidance, 5 requirements inhibiting blanks being
dropped outside the safe area, and 5 requirements ensuring
sufficient distance between blanks [8]. We have observed
that all these properties can be expressed in the following
form or the conjunction of terms of this form:

A =⇒ B,

where A involves only places in one component and B in-
volves only places in another component. For example, it is

equipped with dual 200MHZ CPU and 768MB memory. The state space
of the component system is generated by the Maria tool [19] and that of
the abstract system is by the Moses tool.

required that the feed belt conveys a blank through its light
barrier only if the table is stopped in the loading position
and not already loaded. This requirement can be expressed
in the above form, where:

A = f.belt start ∧ (f.dlvr run ∨ f.dlvr rs), (1)

B = t.load angle ∧ t.bottom pos (2)

∧ t.stop horizontal ∧ t.stop vertical (3)

∧ ¬ t.pIfull. (4)

Here, f and t refer to the feed belt and the table, respec-
tively. We also use place names to represent the existence
of a token in the place, because the system is a 1-safe net.
Line 1 indicates that a blank is being delivered. Line 2 states
that the table is in the loading position. Line 3 suggests that
both the actuators in charge of horizontal rotation and ver-
tical movement of the table are stopped. Finally, line 4 im-
plies that the table is not already loaded, where t.pIfull is
the successor place connected with port “Ifull” of the table
and ¬ t.pIfull means the absence of tokens in the place.

To prove these properties, we follow a four-step proce-
dure:

1. Check the local state space of the feed belt component
against A and calculate a set Q of states where A holds.
The states are tuples 〈s, q〉, where s a state of the feed
belt IA and q is a marking of the component net. Note
that the IA refers to figure 10(a).

2. Obtain a subset S of states of the belt IA such that
S = {s | 〈s, q〉 ∈ Q}.

3. Compute a set S′ of states in the table IA which are
associated with a state in S in the state space of the ab-
stract system of IAs, while disregarding states of other
constituent IAs.

4. We can then prove the property if B holds in every
state 〈s′, q′〉 in the local state space of the table com-
ponent for s′ ∈ S′.

We have extended our previous work in [14, 15] and
proved the correctness of this method. Using this method,
we have successfully proved the above-mentioned 14 safety
requirements.

5. Conclusion

We have informally presented a component-based design
and analysis methodology. This uses interface automata
(IAs) to capture the input-output protocol for each compo-
nent, and employs a divide and conquer approach where
components are tested for conformance with corresponding
IAs, and the network of IAs (which matches the network of

9

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

components) is checked for consistency. This, together with
abstraction from the data values transmitted between com-
ponents, leads to a significant reduction in the state space to
be explored. In the case of the production cell case study
which was presented in this paper, there is no abstraction of
transmitted data since the system is modelled by a black-
token Petri net. Still, the technique resulted in approxi-
mately three orders of magnitude improvement in the size
of the state space.

We have also shown how the component-based approach
can be extended to the verification of various safety proper-
ties, particularly those which can be expressed in the form
(or a conjunction of terms of the form): A =⇒ B where A
involves only places in one component and B involves only
places in another component. Essentially, the technique in-
volves abstracting from the local component states satisfy-
ing A, determining the possible matching global states, pro-
jecting these global states into abstract local states for the
second component, determining the matching local com-
ponent states, and checking whether these states satisfy
B. This technique was applied to the production cell case
study, and was able to verify all 21 safety requirements
posed in an earlier paper.

It is worth noting that, although the safety requirements
studied above involve only two neighbouring components
at a time, a similar approach can be taken to verify sys-
tem safety properties involving multiple components. This
will generalise A and B to be a conjunction and disjunc-
tion of component local safety properties, respectively. A
detailed presentation of this work is currently being writ-
ten for further publication. On the other hand, due to the
over-approximation of IAs from components, it is possible
for this approach to give false negatives. In this case, a pro-
cess of progressive refinement will need to be adopted, as
advocated in [4].

Acknowledgements The authors are pleased to acknowl-
edge the helpful assistance of Monika Heiner in providing
materials associated with her papers on the production cell.

References

[1] Moses tool suite. https://sourceforge.net/
projects/mosestoolsuite.

[2] R. Alur and T. A. Henzinger. Reactive modules. Journal of
Formal Methods in System Design, 15(1):7–48, 1999.

[3] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit,
L. Petrucci, P. Schnoebelen, and P. McKenzie. Systems
and Software Verification: Model-Checking Techniques and
Tools. Springer, 2001.

[4] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Proceed-
ings of the Computer Aided Verification, LNCS 1855, pages
154–169, 2000.

[5] L. de Alfaro and T. A. Henzinger. Interface automata. In
Proceedings of the Foundation of Software Engeneering,
volume 26 of Software Engineering Notes, pages 109–122.
ACM Press, 2001.

[6] R. Esser and J. W. Janneck. Moses: A tool suite for visual
modelling of discrete-event systems. In Symposium on Vi-
sual/Multimedia Approaches to Programming and Software
Engineering, HCC, 2001.

[7] S. Graf, B. Steffen, and G. Lüttgen. Compositional minimi-
sation of finite state systems using interface specifications.
Formal Aspects of Computing, 8(5):607–616, 1996.

[8] M. Heiner and P. Deussen. Petri net based qualitative anal-
ysis - A case study. Technical Report I-08, Brandenburg
Technical University, Cottbus, 1995.

[9] M. Heiner, P. Deussen, and J. Spranger. A case study in de-
sign and verification of manufacturing system control soft-
ware with hierarchical Petri nets. Journal of Advanced Man-
ufacturing Technology, 15(2):139–152, 1999.

[10] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You as-
sume, we guarantee: Methodology and case studies. In Pro-
ceedings of the Computer Aided Verification, LNCS 1427,
pages 440–451, 1998.

[11] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Decompos-
ing refinement proofs using assume-guarantee reasoning. In
Proceedings of the Computer Aided Design, pages 245–253.
IEEE Press, 2000.

[12] J. W. Janneck and R. Esser. Higher-order Petri net
modeling–techniques and applications. In Workshop on
Software Engineering and Formal Methods, ICATPN, 2002.

[13] Y. Jin, R. Esser, and J. W. Janneck. Describing the syntax
and semantics of UML Statecharts in a heterogeneous mod-
elling environment. In Proceedings of the Diagrammatic
Representation and Inference, LNAI 2317, pages 320–334.
Springer, 2002.

[14] Y. Jin, R. Esser, and C. Lakos. Lightweight consistency
analysis of dataflow process networks. In Proceedings of
the Australasian Computer Science Conference, pages 291–
300, 2003.

[15] Y. Jin, R. Esser, C. Lakos, and J. W. Janneck. Modular anal-
ysis of dataflow process networks. In Proceedings of the
Fundamental Approaches to Software Engineering, LNCS
2621, pages 184–199. Springer, 2003.

[16] C. Lewerentz and T. Lindner, editors. Formal development
of reactive systems: case study production cell, LNCS 891.
Springer-Verlag, 1995.

[17] J. Lilius and I. P. Paltor. The production cell: An exercise in
formal verification of a UML model. In Proceedings of the
Hawaii International Conference on System Sciences, 2000.

[18] N. Lynch. Distributed Algorithms. Morgan Kaufmann, San
Francisco, USA, 1996.

[19] M. Mäkelä. Maria: Modular reachability analyser for alge-
braic system nets. In Proceedings of the Applications and
Theory of Petri Nets, LNCS 2360, pages 434–444. Springer
Verlag, 2002.

[20] K. L. McMillan. Verification of an implementation of Toma-
sulo’s algorithm by compositional model checking. In Pro-
ceedings of the Computer Aided Verification, LNCS 1427,
pages 110–121, 1998.

10

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

