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Abstract

Many parameter estimation methods used in computer vi-
sion are able to utilise covariance information describing
the uncertainty of data measurements. This paper consid-
ers the value of this information to the estimation process
when applied to measured image point locations. Covari-
ance matrices are first described and a procedure is then
outlined whereby covariances may be associated with im-
age features located via a measurement process. An empir-
ical study is made of the conditions under which covariance
information enables generation of improved parameter esti-
mates. Also explored is the extent to which the noise should
be anisotropic and inhomogeneous if improvements are to
be obtained over covariance-free methods. Critical in this
is the devising of synthetic experiments under which noise
conditions can be precisely controlled. Given that covari-
ance information is, in itself, subject to estimation error,
tests are also undertaken to determine the impact of impre-
cise covariance information upon the quality of parameter
estimates. Finally, an experiment is carried out to assess the
value of covariances in estimating the fundamental matrix
from real images.

1. Introduction

Many problems in computer vision can be couched in
terms of parameter estimation from image-based measure-
ments. Such problems arise in stereo vision, with the es-
timation of the fundamental matrix [8, 12, 15, 18], in conic
fitting, with the estimation of an ellipse’s coefficients [3,17],
and in many other areas. Because such problems are typi-
cally very sensitive to noise, there has recently been consid-
erable interest in assessing how parameter estimation might
be improved if additional information is available charac-
terising the uncertainty of the data [1, 4, 10, 11, 16]. This
uncertainty information is usually expressed in terms of co-
variance matrices.

This paper investigates conditions under which the use
of covariance matrices enables parameter estimates of im-

proved quality to be obtained. Several novel experiments
are carried out under carefully controlled conditions. Prior
to describing these, however, we first examine the mathe-
matical form of covariance matrices.

2. Covariance matrices

Suppose that � is a scalar measurement or observation of
an underlying true value ��, and that the measurement pro-
cess exhibits errors conforming to a zero-mean Gaussian
distribution. Treating � as a sample value of a random vari-
able, we may write, for some positive number �,

� � ������ �� � ���� ����

where �� is a random variable representing measurement
errors and ‘� ���� ���’ means ‘distributed with the Gaus-
sian distribution having zero mean and standard deviation �

(or, equivalently, variance �
�)’. The characteristic parame-

ters of the distribution are defined explicitly by

� ���	 � �� �
�
�����

�
� �

�
�

where ���	 denotes the expected value of the random vari-
able �.

A multi-dimensional analogue of this model is readily
developed using covariance matrices. Confining our atten-
tion to the two-dimensional case, suppose that a two-entry
vector � represents a contaminated measurement of a true
value �, with measurement errors in each entry conform-
ing to a zero-mean Gaussian distribution. We then have, for
some positive definite matrix �,

� � � ��� � �� � �������

where ������ denotes the bivariate Gaussian distribution
with mean � and covariance matrix �. With �� �
�������� , the parameters of the distribution are defined
explicitly by

�� ���	 �� ���	�� � ��

� � �
�
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�
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A simple form of covariance matrix is given by

� �

�
��� �
� ���

�
�

When �� � ��, the graph of the corresponding probabil-
ity density function (pdf) is a rotationally symmetric, bell-
shaped surface, with circular level-sets. Perturbations gov-
erned by this pdf are equally likely to arise in any direction
from the underlying true value. For this reason, the corre-
sponding probability distribution is termed isotropic. In the
event that �� �� �� , the distribution is termed anisotropic.
Perturbations in the �- and �-directions governed by the cor-
responding pdf are independent of each other and have vari-
ances ��� and ��� , respectively. If �� � ��, the level sets of
the graph of the pdf are ellipses with the major and minor
axes aligned with the �- and �-axes, respectively. It is useful
to note that� may equivalently be represented as

� � �

�
� �
� �� �

�
�

where � � ��� � ��� and � � ������
�

� � ���� are the scale
and eccentricity of �.

The most general form of a covariance matrix may be
expressed as

� � ���

�
� �
� �� �

�
�

�
� � (1)

where

�� �

�
��� 	 � �	
 	
�	
 	 ��� 	

�

is the matrix representing anti-clockwise rotation by the an-
gle 	. The level sets of the graph of the corresponding pdf
are ellipses as before, but rotated anti-clockwise by the an-
gle 	. This makes explicit the geometrical factors determin-
ing the nature of the elliptical level sets, namely the overall
scale, �, the eccentricity, �, and the angle of orientation, 	,
the first two parameters being given by

� � ���� � �
�



��� ��� �� �������� ����������

The ranges of �, �, and 	, are �����, ���
� �� and ��� 
�,
respectively.

2.1. Collections of covariance matrices

It is useful to review the terminology associated with col-
lections of covariance matrices associated with data. A sim-
ple composite model of measurement error is homogeneous
isotropic noise in which all items of data are assumed to
have the same isotropic distribution. This is depicted graph-
ically in Figure 1(a) with covariance matrices represented

(c)(b)(a) (d)

Figure 1. Different types of noise model: (a)
isotropic homogeneous, (b) isotropic inho-
mogeneous, (c) anisotropic homogeneous,
(d) anisotropic inhomogeneous.

by circles of the same size. We shall term such matrices
identity covariances, given that they are all a common (pos-
sibly unknown) multiple of the identity matrix. In the event
that noise is isotropic but that the standard deviation of each
distribution may change from point to point, we have inho-
mogeneous isotropic noise depicted in Figure 1(b). Here,
each covariance matrix may be a different multiple of the
identity matrix. Similarly, homogeneous anisotropic errors
are depicted in Figure 1(c), while Figure 1(d) captures the
most general type of noise we shall deal with, namely inho-
mogeneous anisotropic noise.

3. Generating covariance matrices for real-
image features

Underlying our analysis is the theoretical assumption
that a measurement process locates a feature, and that this
process generates a measurement error that conforms to a
bivariate normal distribution about the true value. Our aim
at this stage is to associate with each measured feature lo-
cation a covariance matrix capturing the nature of this dis-
tribution. Importantly, we note that different measurement
processes applied to the same feature (image) data will, in
general, give rise to different covariance matrices.

With the parametrisation of covariance matrices given
in (1), the following procedure represents one approach to
associating a covariance matrix with a given measurement
process:

� Determine the maximal direction along which the mea-
surement process is susceptible to the largest perturba-
tions. In view of our assumption that errors conform
to a bivariate normal distribution, it immediately fol-
lows that the minimal direction is orthogonal to this.
The (anti-clockwise) angle that the maximal direction
makes with the horizontal corresponds to the angle 	
in (1).
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Figure 2. �� covariances for image features.

� Compute the ratio � of the expected values of pertur-
bations in the maximal and minimal directions. This
ratio determines the eccentricity parameter � given in
(1) via the formula � � ��� � ����.

� Compute an overall measure of the scale of the error
distribution by adding the expected values of perturba-
tions in the maximal and minimal directions. The sum
determines the parameter � in (1). Note that subse-
quent parameter estimation permits use of covariance
matrices with each � multipled by a common scalar
factor.

This procedure is in practice difficult to follow precisely
and so heuristic methods are usually employed. Perhaps the
most commonly adopted covariance matrix takes the form

�� �
����

�
���
� �

�����
�����

� ���
� �

�����

�
�����

���
�

�
�

Here �� and �� denote the first partial derivatives of the

image � with respect to � and �. ���
� stands for the square

of the derivative (at a point ��� ��) smoothed over a neigh-
bourhood (of ��� ��). One way of computing this is:

���
� � ���

���� �� �
�

�������

��	� 
�� ������ 	� � � 
��
�
�

����� �� � ���� � �� ��� ���� �� ��� ���

��	� 
� � ���
���� ���
�
��	� � 
����
�

�

�
�

where � is a window of pixel values centred at �	� 	� (e.g.
� � 
��� ��� 
��� �� for some positive integer �) and 
�

is a fixed standard deviation expressed in pixels. ���
� , �����

and ����� are defined analogously.
This covariance matrix captures the notion that fea-

tures are best and worst located in the direction of
high and low intensity changes, respectively. The factor
����

�
���
� �

�����
������

�� ensures that greater uncertainty
is associated with lower overall intensity change. �� has
proved useful in such applications as optical flow computa-
tion, texture segmentation, and factorization [2, 13, 14].

Figure 2 shows the covariance ellipses generated when
�� is computed from various corner data. Each ellipse has

its minor axis coinciding with the direction of maximum
gradient. This may or may not coincide with the error dis-
tribution associated with a given corner detector. Indeed,
were an estimator to generate errors with distributions or-
thogonal to these, then the following matrix would be more
appropriate:

�� �
����

�
���
� �

�����
�����

� ���
�

����������
���
�

�
� (2)

Covariances of similar form have been used for centroid es-
timation [6].

4. Experimental setup

In order to analyse the value of covariance information
in the estimation process various tests were performed. The
first set of tests aims to determine the accuracy required of
covariances if they are to be of value. The second set of
tests analyses the utility of the covariance estimation pro-
cess given in Section 3.

4.1. Testing strategy

It is only in a purely synthetic environment that we can
have complete control of the noise conditions. Our aim with
this particular synthetic testing is to determine how accurate
our covariance-based estimation process needs to be in or-
der to improve the estimation of parameters.

Our experimental procedure was as follows. Randomly
generated “true data” were first obtained. A corresponding
covariance matrix was then generated for each of the true
data points. Next, “noisy data” were obtained by perturbing
the true data points in a way consistent with their respective
covariance matrices.

Methods for estimating parameters were:

� ALS = Algebraic least squares scheme—without
covariances.

� FNS = Fundamental numerical scheme—with full
covariances.

� FNS* = FNS—with identity covariances.

A full description of these methods can be found in [1].
ALS is employed as a simple non-iterative least squares
scheme that uses singular-value decomposition and does not
employ covariance information. FNS is used as a statis-
tically well-founded iterative method able fully to utilise
covariance information. Its accuracy has been shown em-
pirically to be almost identical with that of a Levenberg-
Marquardt implementation. Finally, FNS* is the FNS
method supplied with (default) identity covariances. It may
be regarded as a top-performing non-covariance method.
Clearly, the extent to which FNS improves upon FNS* is
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a direct indication of the usefulness of the covariances em-
ployed.

4.2. Generating true and perturbed data

For estimating the fundamental matrix, a realistic stereo
camera configuration was first selected with non co-planar
optical axes, and slightly differing left and right camera in-
trinsic parameters. Randomly chosen 3D points were then
projected onto the images so as to generate many pairs of
corresponding points �� �� ��.

Assuming a particular average level of noise, �, for
each true point �, a covariance matrix �� was generated
by drawing �, � and � randomly from the distributions
���� ���, �� �

�
� ��, ���� ��, respectively. Here, ���� �� de-

notes the uniform distribution over ��� ��. Since � 	�� 
 �

and � ��� 
 �, it follows that � �� 	�� � 
 �, giving the
statistical interpretation of the assumed level of noise.

Given a true point � and an associated covariance matrix
�� , a noisy point � consistent with �� was obtained by
adding a vector �� to �. The vector �� was generated
using the following algorithm:

1. Find a matrix � such that �� 
 �� � ; this can be
done by performing, say, Cholesky decomposition of
�� [5].

2. Generate a random two-entry vector � , with each com-
ponent drawn independently from the Gaussian distri-
bution with zero mean and unit standard deviation.

3. Set �� 
 �� .

Statistically, �� has mean � and covariance�� , since

� ���� 
 � ��� � 
 �� �� � 
 ��

�
�
���������

�

 �

�
��������

�
�


 �

�
� ���� �� �

�

 ��

�
���

�
� �


 �� � 
 �� �

Finally, each � was equipped with a covariance matrix �� ,
which was taken to be �� .

5. Experiments with synthetic data

In order to provide a point of reference, we first con-
ducted tests that estimated the fundamental matrix from
noisy data, using perfect covariances. Initially, each test
involved randomly choosing �� true points, and generat-
ing an associated covariance matrix for each point as de-
scribed in Section 4.2. These covariances were anisotropic
and inhomogeneous, and parameterised by a (common) av-
erage level of noise. For each true point, a noisy point was
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Figure 3. Error in fundamental matrix esti-
mates.

randomly chosen consistent with the corresponding covari-
ance matrix. The three methods ALS, FNS, and FNS* were
then employed to estimate the fundamental matrix given the
noisy points, and in the case of FNS the associated covari-
ance matrices as well. An error measure was computed for
each estimate. This measure was the sum of the Euclidean
distances of the underlying true points (in both images) to
the epipolar lines derived from the estimated fundamental
matrix. The mean value of the error for each of the esti-
mation methods was computed over ���� repetitions. The
entire process was performed for an average noise level �
ranging from ��
 to ���� in steps of ��
. The results pre-
sented in Figure 3 show that employing covariance infor-
mation in estimation can be advantageous. Errors obtained
by FNS are around ��% of those obtained via FNS*. ALS
lags even further behind FNS*.

5.1. Varying the spread of covariances

A further experiment was carried out in which the level
of anisotropicity and inhomogeneity was controlled. This
was done by introducing parameter � � 	 � � to capture
the ‘spread’ of the skew and scale parameters. Fixing the
level of noise, variation of skew was governed by

� � ��
�

�
��� 	��

�

�
�� � 	��

and variation of scale by

� � ������ 	�� ��� � 	���

The following tests were performed:

� Skew was selected as above, and scale was kept con-
stant. This corresponds to homogeneous anisotropic
noise.
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Figure 4. Errors in fundamental matrix estimates against increasing spread of covariances.

� Scale was selected as above, and skew was set to ���.
This corresponds to inhomogeneous isotropic noise.

� Both parameters were selected as above. This corre-
sponds in general to inhomogeneous anisotropic noise.

The results are presented in Figure 4. As � increases, the
error of the estimate generated using covariance matrices
reduces. In our circumstances, this improvement is more
marked for the scale parameter than the skew parameter.
For a given average level of noise, we see that estimates ob-
tained via FNS improve with increased diversity of covari-
ance. We note that the average error for the two methods
not using covariances remains constant, since the average
level of noise remains constant.

5.2. Partially correct covariances

In practice, it is not possible to measure exactly the co-
variances driving the noise in the data. Therefore we un-
dertook investigation of the robustness of estimators to in-
accuracies in the covariance matrices. We conducted a test
by supplying an estimator not with the true underlying co-
variance matrix, but with a version to which noise has been
added. This we may regard as meta noise.

Our experiment involved contaminating the true co-
variance matrices with noise by multiplying each of the
underlying parameters by a random factor, ��� �� �� ��
����� ���� ����� where ��� ��� �� are chosen indepen-
dently from the Gaussian distribution with unit mean and
standard deviation � . In this way, the level of noise added to
the covariances was controlled by the deviation � . It should
be noted that whenever the multiplication of the parameter
caused it to exit the range specified in Section 4.2, it was
clipped at the maximum or minimum appropriately.

The algorithm can be summarised as follows:

1. Generate synthetic true data.

2. Generate random covariance matrices as per Sec-
tion 4.2, with a fixed average noise level.
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Figure 5. Average estimation error for in-
creasing average error in covariances.

3. Perturb data in accordance with the covariance matri-
ces to obtain noisy data.

4. Create a new set of covariance matrices by adding
noise to the original matrices.

5. Compare estimates obtained by supplying identity,
true, and noisy covariance matrices.

Again, these steps were repeated ���� times to obtain an
average error for the three estimation methods. However,
in contrast with the previous tests, where this process was
repeated for different values of �, these tests were repeated
with fixed � and varying � .

Figure 5 highlights the roughly linear increase in er-
ror of FNS estimates as the supplied covariance informa-
tion becomes less accurate. In these experiments, we see
that noisy covariances offer advantage over identity defaults
when � 	 �
� pixels.
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Real corner

Detected Harris point

Gradient

Figure 6. An enlarged section of a typical im-
age, showing both the true corner and the
corner detected by the Harris detector.

6. Experiments with real images

Our final test of the usefulness of covariance informa-
tion was whether or not it can improve the accuracy of an
estimated fundamental matrix relating two real images.

The Harris method [7] is commonly used as a means of
extracting corner features from images for the purpose of
stereo matching. This approach employs an ‘interest oper-
ator’ evaluated for each pixel, using image intensity gradi-
ents. Points which are local maxima of a function defined
by the operator, and whose values are above a given thresh-
old, are reported as features. The Harris method tends to
find features “inside” of the true corner, as shown in Fig-
ure 6. The typical direction of this discrepancy is aligned
with the intensity gradient, along the bisector of the cor-
ner. If this method is to be used to locate corners, it may
therefore be seen as biased; certainly, it does not have the
property of generating measurements whose errors are dis-
tributed in bivariate normal form.

Despite the theoretical inapplicability of the Harris de-
tector, we nevertheless chose to use it in conjunction with
the covariance matrix given in (2). For all but infrequently
arising acute corners, this covariance matrix captures the
notion that perturbations tend to be most significant along
the bisector of the corner. Our experiment thus sought to
determine whether estimation of the fundamental matrix us-
ing Harris corner data was improved by the incorporation of
this covariance information.

Three example stereo image pairs were used in these
tests, shown in Figure 7. The Harris detector was used to ex-
tract features from each image. For each of these points, an
associated covariance matrix was computed using the form
given in (2). Points in the left and right images were then
matched. Between 70 and 90 points were matched for each
image pair. Using these matching points, FNS and FNS*
were used to compute respective fundamental matrices.

Figure 7. The grid, office, and library stereo
image pairs.

Next we compared the quality of each of these estimates
to see if incorporating measured covariances is advanta-
geous. Note that we could not employ the error measure
used in previous testing because the underlying true points
were not known. Instead, the reprojection error was utilised
in which the estimated fundamental matrix was used to
back-project each matching pair, yielding a world point. In
the process, the optimal triangulation method of Hartley [9]
was used. This point was then reprojected onto the images
to give camera consistent points. The error is the sum of the
Euclidean distances between the original measured points
and these reprojected points, in both the left and right im-
ages. The results of applying this to each of the estimated
fundamental matrices are shown in Figure 8.

The results show that, for each of the three stereo pairs,
the fundamental matrix estimated using �� covariances
gives errors which are less than those obtained with identity
matrices. Note that use instead of �� covariances yields
greater errors.

7. Conclusion

A series of tests was undertaken to determine the degree
of benefit obtained when using covariance information in
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estimating the fundamental matrix. Our experiments indi-
cated not only that covariance information can be valuable,
but also the extent to which this information may be inac-
curate before the advantage is lost. We presented a heuris-
tic method to measure covariances from real images, and
showed that it may be used to improve the quality of esti-
mates.
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