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Perturbative QCD uses the Faddeev-Popov gauge-fixing procedure, which leads
to ghosts and the local BRST invariance of the gauge-fixed perturbative QCD
action. In the asymptotic regime, where perturbative QCD is relevant, Gribov
copies can be neglected. In the nonperturbative regime, one must adopt either a
nonlocal Gribov-copy free gauge (e.g., Laplacian gauge) or attempt to maintain
local BRST invariance at the expense of admitting Gribov copies. These issues
are explored and discussed. In addition, the relationship between recent Dyson-
Schwinger based calculations of the infrared behavior of QCD Green’s functions
and the lattice calculation of these quantities is examined.

1. Introduction

Perturbative quantum chromodynamics (QCD) is formulated using the

Faddeev-Popov gauge-fixing procedure, which introduces ghost fields and

leads to the local BRST invariance of the gauge-fixed perturbative QCD

action. These perturbative gauge fixing schemes include, e.g., the standard

choices of covariant, Coulomb and axial gauge fixing. These are entirely

adequate for the purpose of studying perturbative QCD, however, they fail

in the nonperturbative regime due to the presence of Gribov copies. Per-

turbative QCD works because in doing a weak-field expansion around the

Aµ = 0 configuration these Gribov copies are not encountered 1.

One could define nonperturbative QCD by imposing a non-local Gribov-

copy free gauge fixing (such as Laplacian gauge) or, alternatively, one could

attempt to maintain local BRST invariance at the cost of admitting Gribov

copies. One of the well-known difficulties for the latter option is the prob-

lem of pairs of Gribov copies with opposite sign giving a vanishing path

integral2,3,4,5. Whether or not a local BRST invariance for QCD can be

maintained in the nonperturbative regime remains an open problem.

The standard lattice definition of QCD is equivalent to the choice of a
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Gribov copy free gauge-fixing. There is a negligible chance of selecting two

gauge-equivalent configurations (strictly zero except for numerical round-

off error). Calculations of physical observables are unaffected by arbitrary

gauge transformations on the configurations in the ideal gauge-fixed en-

semble. A lattice QCD calculation using an ideal gauge-fixed ensemble will

give a result for a gauge-invariant (i.e., physical) quantity which is identi-

cal to doing no gauge fixing at all, i.e., equivalent to the standard lattice

calculation of physical quantities.

We begin by reviewing the standard arguments for constructing QCD

perturbation theory, which use the Faddeev-Popov gauge fixing procedure

to construct the perturbative QCD gauge-fixed Lagrangian density. The

naive Lagrangian density of QCD is LQCD = − 1
4FµνFµν +

∑

f q̄f (iD/ −

mf )qf , where the index f corresponds to the quark flavours. The naive

Lagrangian is neither gauge-fixed nor renormalized, however it is invariant

under local SU(3)c gauge transformations g(x). For arbitrary, small ωa(x)

we have g(x) ≡ exp {−igs (λa/2)ωa(x)} ∈ SU(3), where the λa/2 ≡ ta are

the generators of the gauge group SU(3) and the index a runs over the

eight generator labels a = 1, 2, ..., 8.

Consider some gauge-invariant Green’s function (for the time be-

ing we shall concern ourselves only with gluons) 〈Ω| T (Ô[A]) |Ω〉 =
∫

DA O[A] eiS[A]/
∫

DA eiS[A] , where O[A] is some gauge-independent

quantity depending on the gauge field, Aµ(x). We see that the gauge-

independence of O[A] and S[A] gives rise to an infinite quantity in both the

numerator and denominator, which must be eliminated by gauge-fixing.

The Minkowski-space Green’s functions are defined as the Wick-rotated

versions of the Euclidean ones.

The gauge orbit for some configuration Aµ is defined to be the set of all

of its gauge-equivalent configurations. Each point Ag
µ on the gauge orbit is

obtained by acting upon Aµ with the gauge transformation g. By definition

the action, S[A], is gauge invariant and so all configurations on the gauge

orbit have the same action, e.g., see the illustration in Fig. 1.

2. Gribov Copies and the Faddeev-Popov Determinant

Any gauge-fixing procedure defines a surface in gauge-field configuration

space. Fig. 2 is a depiction of these surfaces represented as dashed lines

intersecting the gauge orbits within this configuration space. Of course, in

general, the gauge orbits are hypersurfaces as are the gauge-fixing surfaces.

Any gauge-fixing surface must, by definition, only intersect the gauge orbits
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A 
orbit

µ

A µ
g

g

gauge

Figure 1. Illustration of the gauge orbit containing Aµ and indicating the effect of
acting on Aµ with the gauge transformation g. The action S[A] is constant around the
orbit.

at distinct isolated points in field configuration space. For this reason, it

is sufficient to use lines for the simple illustration of the concepts here. An

ideal (or complete) gauge-fixing condition, F [A] = 0, defines a surface called

the Fundamental Modular Region (FMR) that intersects each gauge orbit

once and only once and typically where possible contains the trivial config-

uration Aµ = 0. A non-ideal gauge-fixing condition, F ′[A] = 0, defines a

surface or surfaces which intersect the gauge orbit more than once. These

multiple intersections of the non-ideal gauge fixing surface(s) with the gauge

orbit are referred to as Gribov copies 2,3,4,5 Lorentz gauge (∂µAµ(x) = 0)

for example, has many Gribov copies per gauge orbit. By definition an

ideal gauge fixing is free from Gribov copies. The ideal gauge-fixing surface

F [A] = 0 specifies the FMR for that gauge choice. Typically the gauge

fixing condition depends on a space-time coordinate, (e.g., Lorentz gauge,

axial gauge, etc.), and so we write the gauge fixing condition more generally

as F ([A]; x) = 0.

=0

F[A]=0

F’[A]=0
Aµ

Figure 2. Ideal, F [A], and non-ideal, F ′[A], gauge-fixing.

Let us denote one arbitrary gauge configuration per gauge orbit, A0
µ, as

the origin for that gauge orbit, i.e., corresponding to g = 0 on that orbit.

Then each gauge orbit can be labelled by A0
µ and the set of all such A0

µ is

equivalent to one particular, complete specification of the gauge. Under a

gauge transformation, g, we move from the origin of the gauge orbit to the

configuration, Ag
µ, where by definition A0

µ

g
−→ Ag

µ = gA0
µg†−(i/gs)(∂µg)g†.
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Let us denote for each gauge orbit the gauge transformation, g̃ ≡ g̃[A0],

as the transformation which takes us from the origin of that orbit, A0
µ,

to the corresponding configuration on the FMR, AFMR
µ ≡ Ag̃

µ, which is

specified by the ideal gauge fixing condition F ([Ag]; x) = 0. In other words,

an ideal gauge fixing has a unique g̃ which satisfies F ([Ag]; x)|g̃ = 0 and

hence specifies the FMR as Ag̃ ≡ AFMR
µ ∈ FMR. Note then that we have

∫

DA =
∫

DA0
∫

Dg =
∫

DAFMR
∫

D(g − g̃) .

The inverse Faddeev-Popov determinant is defined as the integral over

the gauge group of the gauge-fixing condition, i.e.,

∆−1
F [AFMR] ≡

∫

Dg δ[F [A]] =

∫

Dg δ(g − g̃)

∣

∣

∣

∣

det

(

δF ([A]; x)

δg(y)

)∣

∣

∣

∣

−1

(1)

Let us define the matrix MF [A] as MF ([A]; x, y)ab ≡ δF a([A]; x)/δgb(y) .

Then the Faddeev-Popov determinant for an arbitrary configuration Aµ

can be defined as ∆F [A] ≡ |det MF [A]|. (The reason for the name is now

clear). Note that we have consistency, since ∆−1
F [AFMR] ≡ ∆−1

F [Ag̃] =
∫

Dg δ(g − g̃)∆−1
F [A].

We have 1 =
∫

Dg ∆F [A] δ[F [A]] =
∫

D(g − g̃) ∆F [A] δ[F [A]] by defi-

nition and hence
∫

DAFMR≡

∫

DAFMR

∫

D(g − g̃) ∆F [A]δ[F [A]]=

∫

DA ∆F [A]δ[F [A]] (2)

Since for an ideal gauge-fixing there is one and only one g̃ per gauge orbit,

such that F ([A]; x)|g̃ = 0, then |detMF [A]| is non-zero on the FMR. It

follows that since there is at least one smooth path between any two con-

figurations in the FMR and since the determinant cannot be zero on the

FMR, then it cannot change sign on the FMR. The first Gribov horizon is

defined to be those configurations with detMF [A] = 0 which lie closest to

the FMR. By definition the determinant can change sign on or outside this

horizon. Clearly, the FMR is contained within the first Gribov horizon and

for an ideal gauge fixing, since the sign of the determinant cannot change,

we can replace | detMF | with det MF , [i.e., the overall sign of the functional

integral is normalized away in the ratio of functional integrals].

These results are generalizations of results from ordinary calculus, where

|det (∂fi/∂xj)|
−1
~f=0

=
∫

dx1 · · · dxn δ(n)(~f(~x)) and if there is one and only

one ~x which is a solution of ~f(~x) = 0 then the matrix Mij ≡ ∂fi/∂xj

is invertible (i.e., non-singular) on the hypersurface ~f(~x) = 0 and hence

detM 6= 0.
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3. Generalized Faddeev-Popov Technique

Let us now assume that we have a family of ideal gauge fixings F ([A]; x) =

f([A]; x) − c(x) for any Lorentz scalar c(x) and for f([A]; x) being some

Lorentz scalar function, (e.g., ∂µAµ(x) or nµAµ(x) or similar or any non-

local generalizations of these). Therefore, using the fact that we remain

in the FMR and can drop the modulus on the determinant, we have
∫

DAFMR =
∫

DA detMF [A] δ[f [A] − c] . Since c(x) is an arbitrary func-

tion, we can define a new “gauge” as the Gaussian weighted average over

c(x), i.e.,

∫

DAFMR ∝

∫

Dc exp

{

−
i

2ξ

∫

d4xc(x)2
}

∫

DA detMF [A] δ[f [A] − c]

∝

∫

DA detMF [A]exp

{

−
i

2ξ

∫

d4xf([A]; x)2
}

∝

∫

DADχDχ̄ exp

{

−i

∫

d4xd4y χ̄(x)MF ([A]; x, y)χ(y)

}

×exp

{

−
i

2ξ

∫

d4xf([A]; x)2
}

, (3)

where we have introduced the anti-commuting ghost fields χ and χ̄. Note

that this kind of ideal gauge fixing does not choose just one gauge config-

uration on the gauge orbit, but rather is some Gaussian weighted average

over gauge fields on the gauge orbit. We then obtain

〈Ω| T (Ô[...]) |Ω〉 =

∫

DqDq̄DADχDχ̄ O[...] eiSξ[...]

∫

DqDq̄DADχDχ̄ eiSξ[...]
, (4)

where

Sξ[q, q̄, A, χ, χ̄]=

∫

d4x



−
1

4
F aµνF a

µν −
1

2ξ
(f([A]; x))

2
+

∑

f

q̄f (iD/ − mf )qf





+

∫

d4xd4y χ̄(x)MF ([A]; x, y)χ(y) . (5)

4. Standard Gauge Fixing

We can now recover standard gauge fixing schemes as special cases of this

generalized form. First consider standard covariant gauge, which we obtain

by taking f([A]; x) = ∂µAµ(x) and by neglecting the fact that this leads

to Gribov copies. We need to evaluate MF [A] in the vicinity of the gauge-
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fixing surface (specified by g̃):

MF ([A]; x, y)ab =
δF a([A]; x)

δgb(y)
=

δ[∂µAaµ(x) − c(x)]

δgb(y)
= ∂x

µ

δAaµ(x)

δgb(y)]
. (6)

Under an infinitesimal gauge transformation about the FMR, δg ≡ g − g̃,

we have (Ag̃)µ → (Ag̃+δg)µ, where

(Ag̃+δg)a
µ(x) = (Ag̃)a

µ(x) + gsf
abcωb(x)Ac

µ(x) − ∂µωa(x) + O(ω2) (7)

and hence in the neighbourhood of the gauge fixing surface (i.e., for small

fluctations along the gauge orbit around AFMR
µ ), we have

MF ([A]; x, y)ab=∂x
µ

δAaµ(x)

δ(δωb(y)]

∣

∣

∣

∣

ω=0

(8)

= ∂x
µ

(

[−∂xµδab + gsf
abcAcµ(x)]δ(4)(x − y)

)

.

We then recover the standard covariant gauge-fixed form of the QCD action

Sξ[q, q̄, A, χ, χ̄] =

∫

d4x



−
1

4
F aµνF a

µν −
1

2ξ
(∂µAµ)2 +

∑

f

q̄f (iD/ − mf )qf





+(∂µχ̄a)(∂µδab − gfabcA
µ
c )χb . (9)

However, this gauge fixing has not removed the Gribov copies and so the

formal manipulations which lead to this action are not valid. This Lorentz

covariant set of naive gauges corresponds to a Gaussian weighted average

over generalized Lorentz gauges, where the gauge parameter ξ is the width

of the Gaussian distribution over the configurations on the gauge orbit.

Setting ξ = 0 we see that the width vanishes and we obtain Landau gauge

(equivalent to Lorentz gauge, ∂µAµ(x) = 0). Choosing ξ = 1 is referred to

as “Feynman gauge” and so on. We can similarly derive the QCD action

for axial gauge.

5. Discussion and Conclusions

There is no known Gribov-copy-free gauge fixing which is a local function

of Aµ(x). In other words, such a gauge fixing cannot be expressed as a

function of Aµ(x) and a finite number of its derivatives, i.e., F ([A]; x) 6=

F (∂µ, Aµ(x)) for all x. Hence, the ideal gauge-fixed action, Sξ[· · ·], in

Eq. (5) becomes non-local and gives rise to a nonlocal quantum field theory.

Since this action serves as the basis for the proof of the renormalizability

of QCD, the proof of asymptotic freedom, local BRST invariance, and the
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Schwinger-Dyson equations6,7 (to name but a few) the nonlocality of the

action leaves us without a first-principles proof of these features of QCD in

the nonperturbative context.

The lattice implementation of Landau gauge finds local minima of the

gauge fixing functional, which correspond to configurations lying inside the

first Gribov horizon. The remaining Gribov copies after this partial gauge

fixing then necessarily all have the same sign (positive) for the Faddeev-

Popov determinant and hence add coherently in the functional integral.

This ensures that the ghost propagator is positive definite7,8. The deriva-

tion of the Dyson-Schwinger equations is based on the fact that the in-

tegral of a total derivative vanishes6 provided that the surface integral of

the integrand vanishes when integrated over the boundary of the region.

Since the Faddeev-Popov determinant vanishes on the first Gribov horizon,

then we can still derive the standard Dyson-Schwinger equations from the

Landau gauge fixed QCD action even if we restrict the gauge fields to lie

within the first Gribov horizon. This is equivalent to requiring that the

ghost propagator be positive definite. Thus it is valid to compare lattice

Landau-gauge calculations with Dyson-Schwinger based calculations (with

a positive definite ghost propagator), since these both consist of consider-

ing configurations within the first Gribov horizon. An extensive body of

lattice calculations exist for the Landau gauge gluon9 and quark10,12 prop-

agators and most recently for the quark-gluon vertex13. Similarly, calcula-

tions in Laplacian gauge (an ideal gauge) fixing have also recently become

available14,15.

It is well-established that QCD is asymptotically free, i.e., it is weak-

coupling at large momenta. In the weak coupling limit the functional

integral is dominated by small action configurations. As a consequence,

momentum-space Green’s functions at large momenta will receive their

dominant contributions in the path integral from configurations near the

trivial gauge orbit, i.e., the orbit containing Aµ = 0, since this orbit min-

imizes the action. If we use standard lattice gauge fixing, which neglects

the fact that Gribov copies are present, then at large momenta
∫

DA will

be dominated by configurations lying on the gauge-fixed surfaces in the

neighbourhood of each of the Gribov copies on the trivial orbit. Since for

small field fluctuations the Gribov copies cannot be aware of each other, we

merely overcount the contribution by a factor equal to the number of copies

on the trivial orbit. This overcounting is normalized away in the ratio of

functional integrals. Thus it is possible to understand why Gribov copies

can be neglected at large momenta and why it is sufficient to use standard
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gauge fixing schemes as the basis for calculations in perturbative QCD.
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