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Abstract—A growing area of technical importance is that of 
distributed virtual environments for work and play. For the 
audio component of such environments to be useful, great 
emphasis must be placed on the delivery of high quality audio 
scenes in which participants may change their relative positions. 
In this paper we describe and analyze an algorithm focused on 
maintaining relative synchronization between multiple users of 
such an environment and examine the subjective quality of 
service achieved. 
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I.  INTRODUCTION 
The use of the Internet as a means of enabling group 

working and multi-party communications is ever increasing. A 
key factor in the acceptance of such applications is the ability 
of the Internet to deliver high quality, real-time, audio 
services, that is, the ability to enable users to carry out 
effective conversations.  

Most literature regarding audio quality on the Internet 
focuses on important issues such as jitter handling and 
maintaining acceptable end-to-end delays (see, for example 
[3] and references therein), or the synchronization of audio 
and video streams in multimedia environments (see, for 
example, [5], [6], [7]). 

In a multi-party audio environment, as might be found in a 
conference call or multi-player game with audio support, those 
factors are still important, but are supplemented by issues 
related to the multi-user nature of the application. For 
example, from the point of view of a specific user it may be 
important to maintain relative synchronization between all of 
the audio streams arriving to the user. By maintaining 
synchronization the user is ensured a more stable audio 
environment, which will assist in maximizing the usability of 
the application especially when the application characteristics 
are highly dynamic. 

In this paper we develop an algorithm that maintains the 
relative synchronization between audio streams being mixed 
for playback to an individual in such environments. A key 
element of the algorithm is that it is able to adapt quickly to 
gross changes in the underlying delays of each stream 
traversing the network while not being overly sensitive to 
short term variations in delay resulting from audio stream 

packets being queued at routers. 
This is an area that has not undergone significant research 

in the literature. Most of the available literature regarding 
synchronization in multimedia relates to synchronizing audio 
with video playout (e.g. [5], [6], [7]) and / or requires a global 
synchronization clock such as GPS (e.g. [6]). We consider the 
use of GPS timing to be unnecessary and somewhat excessive 
for the application considered herein. Zarros, Lee and Saadawi 
[8] examine the question of interparticipant synchronization 
without the use of a global timing mechanism. The analysis 
presented there focuses on synchronization of streams at the 
playout point and is measurement intensive in that it requires 
measurements of the maximum and minimum jitter for each 
source as well as determination of a so-called reference time. 
The algorithm presented herein does not require global clock 
synchronization, relying only on simple to maintain counters, 
and can be either employed at a central audio server or at the 
point of user playout at the client.  

In order to determine the effectiveness of the proposed 
scheme we require a measure of audio quality in a group 
environment. At this time there does not appear to be any 
directly relevant literature to this question. A significant body 
of research exists concerning measuring the quality of service, 
in terms of packet delay, jitter and loss, required to support 
one to one conversation in packet audio environments (see, for 
example, [1], [2], [3], [4] and references therein). 
Consequently, we have extended the notion of Audio Rating 
Factors, as defined in [1], to group environments in order to 
gain a handle on overall quality across users of a multi-person 
audio application environment. 

This paper is structured with system architecture outlined in 
Section 2 and the stream processing mechanisms in Section 3. 
Section 4 briefly discusses sound quality measurement. The 
simulation environment is described in Section 5 and Section 
6 contains results of the simulation and discussion. 

II. SYSTEM ARCHITECTURE 
In this paper we analyze a pure peer-to-peer model, that is, 

an environment in which each client sends an audio stream to 
every other client. In this paper we are not concerned with the 
efficiency of the audio delivery mechanism but focus rather on 
the issue of mixing multiple audio streams for playout to a 
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single user.   
Each client utilizes an Audio Stream Processor. This 

processor consists of a buffer for each of the incoming audio 
streams and a CPU that performs tasks on the streams, 
including relatively synchronizing and mixing. Once mixed, 
the single output stream is then sent to the client playback 
buffer. The architecture is shown in Fig 1. 

III. STREAM PROCESSING MECHANISMS  
Each client sends its audio stream to several other clients in 

a series of sequentially numbered packets. Each client uses the 
same audio encoding scheme and sends packets with the same 
(deterministic) interpacket times. 

We now discuss the issues in delivering a coherent mixed 
audio stream to a client.  

A. Audio Stream Processor Timeout 
In order to meet the near real-time delay constraint for 

audio mixing of streams (typically, of the order of 150ms), it 
is necessary for the audio stream processor to “give up” on 
packets that have been delayed excessively or dropped by the 
network. To do this the audio processor utilizes a timer and 
any packets from the incoming audio streams that do not 
arrive before the timer expires are assumed lost and the audio 
processor mixes the packets within the group that have 
arrived.  

The structure of the timeout is based on when the processor 
deems it should have produced a mixed audio packet. Once 
the first mixed packet is produced, a packet ideally should be 
produced at deterministic intervals matching the interpacket 
generation time at the sources. From these “ideal” times, the 
audio processor will wait a maximum of To ms before 
producing a mixed packet regardless of how many sources’ 
packets are present.  

B. Relative Synchronization 
Different minimum propagation delays from sources to the 

client, and even the different random elements of the 
transmission delay, create issues with maintaining relative 
synchronization of streams at the audio processor.  Consider a 
case where source 1 has a minimum propagation delay of 
105ms while the minimum propagation delay for the other 
sources is 5ms. If all sources begin recording and sending data 
at the same time with the same interpacket generation time of 
10ms, the 1st packet from source 1 is expected to arrive at the 
audio processor around the same time as the 11th packet from 
each of the other sources. The processor only mixes packets 
from sources of which it is aware. Until the first arrival from 

source 1, the processor has been mixing packets from all other 
sources and as such, is preparing to mix it’s 11th packet, 
containing the 11th packet from the other sources. For this 
reason, a sequence number offset is used by the Audio Server 
to map the source assigned sequence number of each incoming 
packet to sequence numbers related to the mixing process. 
Each audio stream, and hence source, consequently has its 
own offset value. This value is added to the sequence number 
of every subsequent packet that arrives from the source, 
effectively assigning a new sequence number to the packet. It 
is these “virtual” sequence numbers by which the audio 
processor determines which packets are to be mixed into a 
single packet. The audio processor attempts to mix all packets 
with the same virtual sequence number n, say, into the nth 
mixed packet it produces. 

C. Adjusting Relative Synchronization  
If a packet experiences a large unexpected delay, the 

following packets from the same source can also be expected 
to experience a similar delay, for example, due to a change in 
path because of link failure. In this case, if adjustment to the 
offset is not implemented to bring the virtual sequence 
numbers back into line with the mixed packet sequence 
numbers, every packet from that source may be subsequently 
omitted from the mixing process at the client.  

We now describe the Adaptive Synchronisation algorithm. 
 

Adaptive Synchronization Algorithm: 
 

Definitions:  
sn

(i)  Source assigned sequence number of packet n from 
source i. 

o(i)  The sequence number offset value for source i. 
vsn

(i)  Virtual sequence number of  packet n from source i. 
m  Sequence number of the next mixed packet to be 

produced. 
T+1

(i)  Number of times the missed packet trigger, as defined 
below, has been activated for source i in between 
packet arrivals. 

T-1
(i)  Number of times the buffer limit trigger, as defined 

below, has been activated for source i in between 
packet arrivals. 

S(i)  Boolean indicating whether sequencing certainty is 
satisfied for arrivals from source i.  

 
Initialization: m = 1 
  T+1

(i) =  0 for all sources 
  T-1

(i) = 0 for all sources 
 
Algorithm: Packet arrival from source i with 

sequence number sn
(i) occurs. 

 
If (n = 1) { 
 o(i) = m – s1

(i) } 
   
If (T+1

(i) = 0 AND T-1
(i) = 0) { 

 vsn
(i) = sn

(i) + o(i)   
 If (vsn

(i) >= m) { 
  Place packet in buffer. }} 

C
PU

Buffers 
 

Audio  Processor  Incoming 
audio 

streams 
 
 

Processed / merged 
audio stream 

 

Figure 1. System architecture of Audio Stream Processor 
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Else If (T+1

(i) > 0) { 
 o(i) = o(i) + T+1

(i) 

 T+1
(i) = 0 

 vsn
(i) = sn

(i) + o(i)   
 If (vsn

(i) >= m) { 
  Place packet in buffer. }} 
 
Else If (T-1

(i) > 0) { 
 If (S(i)) { 
  o(i)  = o(i) - T-1

(i) 

  T-1
(i) = 0 } 

 vsn
(i) = sn

(i) + o(i)   
 If a packet already exists in the buffer from 

source i with the same virtually assigned 
sequence number { 

  Remove packet already in buffer. } 
 If (vsn

(i) >= m) { 
  Place packet in buffer. }} 
 

Once a mixed packet has been produced, it is then sent on to 
the appropriate client playback buffer. 

The missed packet trigger is triggered initially when a given 
number of packets from a particular source have been 
sequentially missed in the mixing process. It is then triggered 
once for every subsequent missed packet. When a packet 
eventually arrives, that source’s offset value is increased by 
the number of times the missed packet trigger has been 
triggered, T+1(i). Increasing the offset reduces the number of 
packets missed from a particular source, at the expense of end-
to-end delay of the packets.  

The buffer limit trigger is triggered when a packet arrival 
causes the buffer for a particular source to contain a 
predetermined limit of packets and sequencing certainty 
(discussed below) is satisfied. The buffer limit trigger can at 
most be triggered once in between arrivals as it is triggered 
just after an arrival. Having a high number of packets in the 
buffer means that packets are waiting in the buffer longer than 
possibly necessary. When the offset is decremented, a packet 
will be discarded, having the same effective sequence number 
as the previous packet that arrived, but from this point the end-
to-end delay for packets being mixed has been reduced. 

Sequencing certainty is a measure of whether or not a 
specified number of packets arriving from a particular source 
have consecutive sequence numbers. 
Using the algorithm enables the audio processor to 
dynamically correct relative synchronization without the need 
for a centralized time source. 

IV. METHODS FOR MEASURING SOUND QUALITY 
The subjective quality of sound playout to the client is 

affected by network performance through end-to-end packet 
delays and losses. Sound quality is further affected by the 
codec employed and setup parameters related to the codec, for 
example, the size of playout buffers.  

The ITU-T has developed a model that predicts customer 
perception from objective measurements of attributes such as 
delay, loss and the codec employed. This model, the so-called 
E-model, is described in ITU-T recommendation G.107 and 
the related recommendation G.113 [1], [2].  The E-model 
operates by converting a number of objective network 

measurements into a rating factor, R, on a scale of 0 to 100. 
Rating factor values greater than approximately 70 correspond 
to acceptable service quality.  

ITU-T Recommendation P.800 [4] states that speech 
samples in the order of 2.5-5 seconds be used to assess speech 
quality. Consequently, measurements obtained over 
conversation periods of time should not be used to determine a 
single R factor for a call. In the analysis section, 3 second time 
periods are used to calculate R-values for a particular audio 
stream.  

V. DESCRIPTION OF SIMULATION ENVIRONMENT 
The simulation environment consists of N clients sending 

audio and one client receiving audio. At each of the N clients 
there is a user, whose speech is recorded, encoded, packetized, 
and sent into the data network. Packets sent into the network 
contain 10ms of audio samples, consistent with the PCM 
codec information found in G.113 [2].  

 Once in the network, the packet experiences a transmission 
delay comprising two components, dp

(i) and dq
(i)(n). The first, 

dp
(i), is defined as the minimum propagation delay from client i 

to the destination client. The latter, dq
(i) (n), is the random 

element of the network delay for the nth transmitted packet 
resulting from queuing at routers and switches. 

Under normal circumstances, all packets from source i to 
the destination client follow the same path. As a result, the 
random element of network delay is correlated for consecutive 
packets within a stream.  

We generate the correlated interpacket delays using the 
following relation: 

 
dq

(i)(n) = dq
(i)(n-1) + f(dq

(i)(n-1)) 
 

where f(·) has the property that f(x) > -min(y, x) for packets 
containing y milliseconds of audio.  

The simulation also allows for occurrences of network 
failure. In such instances, packets from a particular source are 
forcibly rerouted along a different path. This results in a 
potentially large change of the minimum propagation delay 
dp

(i) for that source. When this change occurs, packets from a 
particular source may arrive out of sequence at the destination 
client.  

Once the packet has arrived at the Audio Stream Processor, 
it is assigned a virtual sequence number using the 
synchronization algorithm, and enters the corresponding 
stream buffer.  

Packets from different sources with the same virtually 
assigned sequence number are mixed into a single packet and 
placed into the client’s playback buffer. 

VI. NUMERICAL RESULTS 
The simulation environment consists of 5 sources sending 

PCM encoded audio in packet sizes containing 10ms of audio 
samples. We assume a 3ms encoding/decoding delay for this 
codec and a minimum propagation delay of 25ms from all 
sources to the destination client. A 40ms timeout is used at the 
processor and once produced, the mixed packets are passed 
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into an 80ms playback buffer. As parameters to the 
synchronization algorithm, a missed packet trigger of 1 
packet, a buffer limit trigger of 7 packets and a sequencing 
certainty value of 3 packets are used. 

For the missed packet trigger, the higher the value, the more 
slowly the algorithm will react to changes in the transmission 
delay. Having a slower reaction time is not necessarily 
detrimental to performance but it does increase packet loss 
percentage. Smaller values mean the algorithm reacts quickly, 
possibly when not needed due to a small random variation, 
and can drive up the end-to-end delay while lowering loss 
rates. When setting the buffer limit trigger, larger values tend 
to keep the system more stable by maintaining larger end-to-
end delays for longer periods than perhaps necessary.  

It is best to minimize end-to-end delays and loss percentages 
at the same time, however, a compromise between the two 
trends is chosen to continue with the performance analysis. 

Traffic model: The specific form of f(·), used in the 
calculation of the random element of propagation delay, has 
the form: 

 
f(x) drawn from Exponential(5) – 10, for x > 5ms, 
f(x) drawn from Pareto(2,2) , for x <= 5ms, 

 
where the distribution function for Pareto(α,β) is given by  
 

F(t) = 1 – (β/t) α. 
 

The expected value of the Pareto in this case is 4ms delay 
and it has infinite variance. To avoid excessive increases in the 
propagation delays for successive packets within the 
simulation, f(·) is bounded above by 1000ms. It is not, 
however, desirable to have these delay spikes occurring too 
frequently and hence the use of 5ms as an upper bound for use 
of the Pareto generated random variables. The negative 
exponential part of the combined distribution has an expected 
value of -5ms. This is so that after a large random element of 
delay, it is more probable that the delay will reduce itself than 
continue to increase. A sample of possible network delays 
experienced by sequential packets in the network is shown in 
Fig 2. Here, the minimum propagation delay of the network 
path begins at 25ms, with a path change after 1 second 
increasing the minimum propagation delay to 60ms for a 
further 1 second at which time, the original network path is 
restored and utilized.  

Synchronisation Analysis - Deterministic Environment: To 
test the synchronization algorithm, the simulation was set to 
run for 9 seconds. For the first 3 seconds, the propagation 
delays for all audio streams are 25ms. Once 3 seconds passes, 
a change in network topology is simulated and the minimum 
propagation delay for source 1 increases instantaneously to 
100ms (without any loss of packets in transmission). This 
delay is experienced by source 1 until a further 3 seconds 
passes, at which time, the minimum propagation delay returns 
to its original value of 25ms. The delays continue at this level 
until the termination of the simulation.  

To simplify the resulting output, this was first simulated 
with no random effects of propagation delay, creating a 
deterministic environment, making it easier to visualize the 
effects of the algorithm.  

From time 0-3 seconds, a packet is generated from each 
source every 10ms. The transmission delay, including 
recording, encoding and propagation delays, for each of these 
packets is 38ms. Once at the client’s audio processor, the 
packets are mixed immediately into a mixed packet. In this 
particular example, the offset for source 1 is initialized within 
the simulation to 0 and all other offsets are initialized to 1, due 
to the processor’s conditions for initiating mixing processes. 
The simulated network change, and hence the change in 
network propagation delay, affects every subsequent packet 
from source 1.  Immediately following the change, 50ms 
passes until the next mixed packet is produced, which does not 
contain any audio information from source 1. This 50ms 
consists of the 10ms that would usually have passed until the 
next mix and the 40ms processor timeout. Due to the way the 
timeout is structured, a mixed packet is produced every 10ms 
until it is once again possible to include all sources in the 
mixing process. Fig 3 shows the event times of arrivals and 
mixing processes at the audio processor with corresponding 
sequence numbers around the transition period, assuming 
source sequence numbers begin at 1. 

It is not until 4 mixed packets have been produced that the 
next arrival from source 1 occurs. The first mixed packet that 
is produced without information from source 1 triggers the 
missed packet trigger once for source 1. For every subsequent 
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omission, the trigger is triggered until a packet from source 1 
is included. When the arrival occurs, the offset value of source 
1 increases by 4, which is sufficient such that the packet from 
source 1 is assigned a virtual sequence number that 
corresponds to the sequence number of the next mixed packet 
to be produced. 

The new offset value of 4 remains, in this deterministic 
environment, until the change back to the original network 
propagation delays. During this period, the end-to-end delay 
for source 1 is increased by 40ms (10ms for each packet 
omitted). Due to the relatively high buffer limit trigger, there 
is not a sufficient jump in network propagation, using these 
inputs, for the other 4 streams to be affected. Instead, for 
nearly all of this period, the packets from the other 4 sources 
arrive to see 4 other packets already in their respective buffers. 
As such, their offsets remain at 1 and hence their end-to-end 
delays remain as they were initialized.  

When the original network topology is restored, the only 
changes that eventuate are the number of packets that arriving 
packets see in the buffer. For source 1, this number increases 
to 3 packets for every packet arrival. All other sources’ 
packets arrive to empty queues. End-to-end delays are not 
affected in any way, as the buffers never contain the trigger 
capacity of 7 packets.  

Synchronisation Analysis – Random Environment: The 
same inputs were used to perform a simulation of network 
failure as above, but also with the inclusion of random 
elements of delay. Now, it is not only the change in network 
topology that can cause packets to be omitted from the mixing 
process. 

The R-values calculated from the simulation are shown in 
Table I. It is worth noting that the maximum R-value that can 
be obtained using this particular codec is 93.1928. Sources 2 – 
5 can be seen to be near the best audio quality attainable for 
the entirety of this particular simulation. The higher loss 
percentage and average end-to-end values both contribute to 
the lower rating factor value for source 1 in the 2nd 3 second 
block. 

TABLE I.  RATING FACTOR VALUES FOR A SIMULATION OF NETWORK 
CHANGE USING PCM ENCODING 

 
Nevertheless, ITU-T G.107 states that at an R-value lower 

limit of 70, user satisfaction is still rated as acceptable. This 
means that using the relative synchronization algorithm, given 

the current system parameters, all users listening to the mixed 
output at the destination client would have been satisfied to 
very satisfied with the quality of audio received from each 
source. 

VII. CONCLUSION 
This paper provides an efficient algorithm that can achieve 

and maintain relative synchronization between audio streams 
in a real time audio mixing environment. The algorithm does 
not attempt to maintain absolute synchronization between 
audio streams, as this would require the use of global timing. 
Rather, the algorithm attempts to maintain consistency within 
the mixing process such that the alignment of audio samples 
from each stream remains as constant as possible given the 
random elements of network delay. The algorithm is able to 
adapt quickly to gross changes in the underlying delays of 
each stream, as might result from network link failures. At the 
same time, the proposed algorithm is robust to short term 
variations in delay resulting from audio stream packets being 
queued at routers.  
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Time source 1 source 2 source 3 source 4 source 5 
0 – 3  91.5023 91.7203 90.2211 91.5023 91.5023 
3 – 6  82.24 91.5023 91.3867 91.5023 91.5023 
6 – 9  91.3851 90.1695 92.7474 92.7474 92.7474 
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