

The following paper posted here is not the official IEEE
published version. The final published version of this paper can be

found in the Proceedings of the IEEE International Conference on
Communication, Volume 3:pp.1490-1494

Copyright © 2004 IEEE.

Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other works

must be obtained from the IEEE.

Investigation and modeling of traffic issues in
immersive audio environments

Jeremy McMahon, Michael Rumsewicz
TRC Mathematical Modelling

University of Adelaide
South Australia 5005, AUSTRALIA

jmcmahon, mrumsewicz@trc.adelaide.edu.au

Paul Boustead, Farzad Safaei
Telecommunications and Information Technology Research

Institute
University of Wollongong

New South Wales 2522, AUSTRALIA
paul@snrc.uow.edu.au, farzad@uow.edu.au

Abstract—A growing area of technical importance is that of
distributed virtual environments for work and play. For the
audio component of such environments to be useful, great
emphasis must be placed on the delivery of high quality audio
scenes in which participants may change their relative positions.
In this paper we describe and analyze an algorithm focused on
maintaining relative synchronization between multiple users of
such an environment and examine the subjective quality of
service achieved.

Keywords– audio synchronization; traffic modeling.

I. INTRODUCTION
The use of the Internet as a means of enabling group

working and multi-party communications is ever increasing. A
key factor in the acceptance of such applications is the ability
of the Internet to deliver high quality, real-time, audio
services, that is, the ability to enable users to carry out
effective conversations.

Most literature regarding audio quality on the Internet
focuses on important issues such as jitter handling and
maintaining acceptable end-to-end delays (see, for example
[3] and references therein), or the synchronization of audio
and video streams in multimedia environments (see, for
example, [5], [6], [7]).

In a multi-party audio environment, as might be found in a
conference call or multi-player game with audio support, those
factors are still important, but are supplemented by issues
related to the multi-user nature of the application. For
example, from the point of view of a specific user it may be
important to maintain relative synchronization between all of
the audio streams arriving to the user. By maintaining
synchronization the user is ensured a more stable audio
environment, which will assist in maximizing the usability of
the application especially when the application characteristics
are highly dynamic.

In this paper we develop an algorithm that maintains the
relative synchronization between audio streams being mixed
for playback to an individual in such environments. A key
element of the algorithm is that it is able to adapt quickly to
gross changes in the underlying delays of each stream
traversing the network while not being overly sensitive to
short term variations in delay resulting from audio stream

packets being queued at routers.
This is an area that has not undergone significant research

in the literature. Most of the available literature regarding
synchronization in multimedia relates to synchronizing audio
with video playout (e.g. [5], [6], [7]) and / or requires a global
synchronization clock such as GPS (e.g. [6]). We consider the
use of GPS timing to be unnecessary and somewhat excessive
for the application considered herein. Zarros, Lee and Saadawi
[8] examine the question of interparticipant synchronization
without the use of a global timing mechanism. The analysis
presented there focuses on synchronization of streams at the
playout point and is measurement intensive in that it requires
measurements of the maximum and minimum jitter for each
source as well as determination of a so-called reference time.
The algorithm presented herein does not require global clock
synchronization, relying only on simple to maintain counters,
and can be either employed at a central audio server or at the
point of user playout at the client.

In order to determine the effectiveness of the proposed
scheme we require a measure of audio quality in a group
environment. At this time there does not appear to be any
directly relevant literature to this question. A significant body
of research exists concerning measuring the quality of service,
in terms of packet delay, jitter and loss, required to support
one to one conversation in packet audio environments (see, for
example, [1], [2], [3], [4] and references therein).
Consequently, we have extended the notion of Audio Rating
Factors, as defined in [1], to group environments in order to
gain a handle on overall quality across users of a multi-person
audio application environment.

This paper is structured with system architecture outlined in
Section 2 and the stream processing mechanisms in Section 3.
Section 4 briefly discusses sound quality measurement. The
simulation environment is described in Section 5 and Section
6 contains results of the simulation and discussion.

II. SYSTEM ARCHITECTURE
In this paper we analyze a pure peer-to-peer model, that is,

an environment in which each client sends an audio stream to
every other client. In this paper we are not concerned with the
efficiency of the audio delivery mechanism but focus rather on
the issue of mixing multiple audio streams for playout to a

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society

single user.
Each client utilizes an Audio Stream Processor. This

processor consists of a buffer for each of the incoming audio
streams and a CPU that performs tasks on the streams,
including relatively synchronizing and mixing. Once mixed,
the single output stream is then sent to the client playback
buffer. The architecture is shown in Fig 1.

III. STREAM PROCESSING MECHANISMS
Each client sends its audio stream to several other clients in

a series of sequentially numbered packets. Each client uses the
same audio encoding scheme and sends packets with the same
(deterministic) interpacket times.

We now discuss the issues in delivering a coherent mixed
audio stream to a client.

A. Audio Stream Processor Timeout
In order to meet the near real-time delay constraint for

audio mixing of streams (typically, of the order of 150ms), it
is necessary for the audio stream processor to “give up” on
packets that have been delayed excessively or dropped by the
network. To do this the audio processor utilizes a timer and
any packets from the incoming audio streams that do not
arrive before the timer expires are assumed lost and the audio
processor mixes the packets within the group that have
arrived.

The structure of the timeout is based on when the processor
deems it should have produced a mixed audio packet. Once
the first mixed packet is produced, a packet ideally should be
produced at deterministic intervals matching the interpacket
generation time at the sources. From these “ideal” times, the
audio processor will wait a maximum of To ms before
producing a mixed packet regardless of how many sources’
packets are present.

B. Relative Synchronization
Different minimum propagation delays from sources to the

client, and even the different random elements of the
transmission delay, create issues with maintaining relative
synchronization of streams at the audio processor. Consider a
case where source 1 has a minimum propagation delay of
105ms while the minimum propagation delay for the other
sources is 5ms. If all sources begin recording and sending data
at the same time with the same interpacket generation time of
10ms, the 1st packet from source 1 is expected to arrive at the
audio processor around the same time as the 11th packet from
each of the other sources. The processor only mixes packets
from sources of which it is aware. Until the first arrival from

source 1, the processor has been mixing packets from all other
sources and as such, is preparing to mix it’s 11th packet,
containing the 11th packet from the other sources. For this
reason, a sequence number offset is used by the Audio Server
to map the source assigned sequence number of each incoming
packet to sequence numbers related to the mixing process.
Each audio stream, and hence source, consequently has its
own offset value. This value is added to the sequence number
of every subsequent packet that arrives from the source,
effectively assigning a new sequence number to the packet. It
is these “virtual” sequence numbers by which the audio
processor determines which packets are to be mixed into a
single packet. The audio processor attempts to mix all packets
with the same virtual sequence number n, say, into the nth
mixed packet it produces.

C. Adjusting Relative Synchronization
If a packet experiences a large unexpected delay, the

following packets from the same source can also be expected
to experience a similar delay, for example, due to a change in
path because of link failure. In this case, if adjustment to the
offset is not implemented to bring the virtual sequence
numbers back into line with the mixed packet sequence
numbers, every packet from that source may be subsequently
omitted from the mixing process at the client.

We now describe the Adaptive Synchronisation algorithm.

Adaptive Synchronization Algorithm:

Definitions:
sn

(i) Source assigned sequence number of packet n from
source i.

o(i) The sequence number offset value for source i.
vsn

(i) Virtual sequence number of packet n from source i.
m Sequence number of the next mixed packet to be

produced.
T+1

(i) Number of times the missed packet trigger, as defined
below, has been activated for source i in between
packet arrivals.

T-1
(i) Number of times the buffer limit trigger, as defined

below, has been activated for source i in between
packet arrivals.

S(i) Boolean indicating whether sequencing certainty is
satisfied for arrivals from source i.

Initialization: m = 1
 T+1

(i) = 0 for all sources
 T-1

(i) = 0 for all sources

Algorithm: Packet arrival from source i with

sequence number sn
(i) occurs.

If (n = 1) {
 o(i) = m – s1

(i) }

If (T+1

(i) = 0 AND T-1
(i) = 0) {

 vsn
(i) = sn

(i) + o(i)
 If (vsn

(i) >= m) {
 Place packet in buffer. }}

C
PU

Buffers

Audio Processor Incoming
audio

streams

Processed / merged
audio stream

Figure 1. System architecture of Audio Stream Processor

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society

Else If (T+1

(i) > 0) {
 o(i) = o(i) + T+1

(i)

 T+1
(i) = 0

 vsn
(i) = sn

(i) + o(i)
 If (vsn

(i) >= m) {
 Place packet in buffer. }}

Else If (T-1

(i) > 0) {
 If (S(i)) {
 o(i) = o(i) - T-1

(i)

 T-1
(i) = 0 }

 vsn
(i) = sn

(i) + o(i)
 If a packet already exists in the buffer from

source i with the same virtually assigned
sequence number {

 Remove packet already in buffer. }
 If (vsn

(i) >= m) {
 Place packet in buffer. }}

Once a mixed packet has been produced, it is then sent on to
the appropriate client playback buffer.

The missed packet trigger is triggered initially when a given
number of packets from a particular source have been
sequentially missed in the mixing process. It is then triggered
once for every subsequent missed packet. When a packet
eventually arrives, that source’s offset value is increased by
the number of times the missed packet trigger has been
triggered, T+1(i). Increasing the offset reduces the number of
packets missed from a particular source, at the expense of end-
to-end delay of the packets.

The buffer limit trigger is triggered when a packet arrival
causes the buffer for a particular source to contain a
predetermined limit of packets and sequencing certainty
(discussed below) is satisfied. The buffer limit trigger can at
most be triggered once in between arrivals as it is triggered
just after an arrival. Having a high number of packets in the
buffer means that packets are waiting in the buffer longer than
possibly necessary. When the offset is decremented, a packet
will be discarded, having the same effective sequence number
as the previous packet that arrived, but from this point the end-
to-end delay for packets being mixed has been reduced.

Sequencing certainty is a measure of whether or not a
specified number of packets arriving from a particular source
have consecutive sequence numbers.
Using the algorithm enables the audio processor to
dynamically correct relative synchronization without the need
for a centralized time source.

IV. METHODS FOR MEASURING SOUND QUALITY
The subjective quality of sound playout to the client is

affected by network performance through end-to-end packet
delays and losses. Sound quality is further affected by the
codec employed and setup parameters related to the codec, for
example, the size of playout buffers.

The ITU-T has developed a model that predicts customer
perception from objective measurements of attributes such as
delay, loss and the codec employed. This model, the so-called
E-model, is described in ITU-T recommendation G.107 and
the related recommendation G.113 [1], [2]. The E-model
operates by converting a number of objective network

measurements into a rating factor, R, on a scale of 0 to 100.
Rating factor values greater than approximately 70 correspond
to acceptable service quality.

ITU-T Recommendation P.800 [4] states that speech
samples in the order of 2.5-5 seconds be used to assess speech
quality. Consequently, measurements obtained over
conversation periods of time should not be used to determine a
single R factor for a call. In the analysis section, 3 second time
periods are used to calculate R-values for a particular audio
stream.

V. DESCRIPTION OF SIMULATION ENVIRONMENT
The simulation environment consists of N clients sending

audio and one client receiving audio. At each of the N clients
there is a user, whose speech is recorded, encoded, packetized,
and sent into the data network. Packets sent into the network
contain 10ms of audio samples, consistent with the PCM
codec information found in G.113 [2].

 Once in the network, the packet experiences a transmission
delay comprising two components, dp

(i) and dq
(i)(n). The first,

dp
(i), is defined as the minimum propagation delay from client i

to the destination client. The latter, dq
(i) (n), is the random

element of the network delay for the nth transmitted packet
resulting from queuing at routers and switches.

Under normal circumstances, all packets from source i to
the destination client follow the same path. As a result, the
random element of network delay is correlated for consecutive
packets within a stream.

We generate the correlated interpacket delays using the
following relation:

dq

(i)(n) = dq
(i)(n-1) + f(dq

(i)(n-1))

where f(·) has the property that f(x) > -min(y, x) for packets
containing y milliseconds of audio.

The simulation also allows for occurrences of network
failure. In such instances, packets from a particular source are
forcibly rerouted along a different path. This results in a
potentially large change of the minimum propagation delay
dp

(i) for that source. When this change occurs, packets from a
particular source may arrive out of sequence at the destination
client.

Once the packet has arrived at the Audio Stream Processor,
it is assigned a virtual sequence number using the
synchronization algorithm, and enters the corresponding
stream buffer.

Packets from different sources with the same virtually
assigned sequence number are mixed into a single packet and
placed into the client’s playback buffer.

VI. NUMERICAL RESULTS
The simulation environment consists of 5 sources sending

PCM encoded audio in packet sizes containing 10ms of audio
samples. We assume a 3ms encoding/decoding delay for this
codec and a minimum propagation delay of 25ms from all
sources to the destination client. A 40ms timeout is used at the
processor and once produced, the mixed packets are passed

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society

into an 80ms playback buffer. As parameters to the
synchronization algorithm, a missed packet trigger of 1
packet, a buffer limit trigger of 7 packets and a sequencing
certainty value of 3 packets are used.

For the missed packet trigger, the higher the value, the more
slowly the algorithm will react to changes in the transmission
delay. Having a slower reaction time is not necessarily
detrimental to performance but it does increase packet loss
percentage. Smaller values mean the algorithm reacts quickly,
possibly when not needed due to a small random variation,
and can drive up the end-to-end delay while lowering loss
rates. When setting the buffer limit trigger, larger values tend
to keep the system more stable by maintaining larger end-to-
end delays for longer periods than perhaps necessary.

It is best to minimize end-to-end delays and loss percentages
at the same time, however, a compromise between the two
trends is chosen to continue with the performance analysis.

Traffic model: The specific form of f(·), used in the
calculation of the random element of propagation delay, has
the form:

f(x) drawn from Exponential(5) – 10, for x > 5ms,
f(x) drawn from Pareto(2,2) , for x <= 5ms,

where the distribution function for Pareto(α,β) is given by

F(t) = 1 – (β/t) α.

The expected value of the Pareto in this case is 4ms delay
and it has infinite variance. To avoid excessive increases in the
propagation delays for successive packets within the
simulation, f(·) is bounded above by 1000ms. It is not,
however, desirable to have these delay spikes occurring too
frequently and hence the use of 5ms as an upper bound for use
of the Pareto generated random variables. The negative
exponential part of the combined distribution has an expected
value of -5ms. This is so that after a large random element of
delay, it is more probable that the delay will reduce itself than
continue to increase. A sample of possible network delays
experienced by sequential packets in the network is shown in
Fig 2. Here, the minimum propagation delay of the network
path begins at 25ms, with a path change after 1 second
increasing the minimum propagation delay to 60ms for a
further 1 second at which time, the original network path is
restored and utilized.

Synchronisation Analysis - Deterministic Environment: To
test the synchronization algorithm, the simulation was set to
run for 9 seconds. For the first 3 seconds, the propagation
delays for all audio streams are 25ms. Once 3 seconds passes,
a change in network topology is simulated and the minimum
propagation delay for source 1 increases instantaneously to
100ms (without any loss of packets in transmission). This
delay is experienced by source 1 until a further 3 seconds
passes, at which time, the minimum propagation delay returns
to its original value of 25ms. The delays continue at this level
until the termination of the simulation.

To simplify the resulting output, this was first simulated
with no random effects of propagation delay, creating a
deterministic environment, making it easier to visualize the
effects of the algorithm.

From time 0-3 seconds, a packet is generated from each
source every 10ms. The transmission delay, including
recording, encoding and propagation delays, for each of these
packets is 38ms. Once at the client’s audio processor, the
packets are mixed immediately into a mixed packet. In this
particular example, the offset for source 1 is initialized within
the simulation to 0 and all other offsets are initialized to 1, due
to the processor’s conditions for initiating mixing processes.
The simulated network change, and hence the change in
network propagation delay, affects every subsequent packet
from source 1. Immediately following the change, 50ms
passes until the next mixed packet is produced, which does not
contain any audio information from source 1. This 50ms
consists of the 10ms that would usually have passed until the
next mix and the 40ms processor timeout. Due to the way the
timeout is structured, a mixed packet is produced every 10ms
until it is once again possible to include all sources in the
mixing process. Fig 3 shows the event times of arrivals and
mixing processes at the audio processor with corresponding
sequence numbers around the transition period, assuming
source sequence numbers begin at 1.

It is not until 4 mixed packets have been produced that the
next arrival from source 1 occurs. The first mixed packet that
is produced without information from source 1 triggers the
missed packet trigger once for source 1. For every subsequent

Events with Corresponding Sequence
Numbers at the Audio Processor

297
298
299
300
301
302
303
304
305
306
307
308

3 3.02 3.04 3.06 3.08 3.1 3.12 3.14

Time (s)

Se
qu

en
ce

 N
um

be
r

Merged Packet Production (Merged Sequence Number)
Source 1 Packet Arrival (Source Sequence Number)
Source 1 Packet Arrival (Virtual Sequence Number)

Figure 3. Processor events.

0

50

100

150

0 0.5 1 1.5 2 2.5 3

Time (s)

N
et

w
or

k
D

el
ay

 (m
s)

 Figure 2. Sample network delay experienced in the simulated
network.

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society

omission, the trigger is triggered until a packet from source 1
is included. When the arrival occurs, the offset value of source
1 increases by 4, which is sufficient such that the packet from
source 1 is assigned a virtual sequence number that
corresponds to the sequence number of the next mixed packet
to be produced.

The new offset value of 4 remains, in this deterministic
environment, until the change back to the original network
propagation delays. During this period, the end-to-end delay
for source 1 is increased by 40ms (10ms for each packet
omitted). Due to the relatively high buffer limit trigger, there
is not a sufficient jump in network propagation, using these
inputs, for the other 4 streams to be affected. Instead, for
nearly all of this period, the packets from the other 4 sources
arrive to see 4 other packets already in their respective buffers.
As such, their offsets remain at 1 and hence their end-to-end
delays remain as they were initialized.

When the original network topology is restored, the only
changes that eventuate are the number of packets that arriving
packets see in the buffer. For source 1, this number increases
to 3 packets for every packet arrival. All other sources’
packets arrive to empty queues. End-to-end delays are not
affected in any way, as the buffers never contain the trigger
capacity of 7 packets.

Synchronisation Analysis – Random Environment: The
same inputs were used to perform a simulation of network
failure as above, but also with the inclusion of random
elements of delay. Now, it is not only the change in network
topology that can cause packets to be omitted from the mixing
process.

The R-values calculated from the simulation are shown in
Table I. It is worth noting that the maximum R-value that can
be obtained using this particular codec is 93.1928. Sources 2 –
5 can be seen to be near the best audio quality attainable for
the entirety of this particular simulation. The higher loss
percentage and average end-to-end values both contribute to
the lower rating factor value for source 1 in the 2nd 3 second
block.

TABLE I. RATING FACTOR VALUES FOR A SIMULATION OF NETWORK
CHANGE USING PCM ENCODING

Nevertheless, ITU-T G.107 states that at an R-value lower

limit of 70, user satisfaction is still rated as acceptable. This
means that using the relative synchronization algorithm, given

the current system parameters, all users listening to the mixed
output at the destination client would have been satisfied to
very satisfied with the quality of audio received from each
source.

VII. CONCLUSION
This paper provides an efficient algorithm that can achieve

and maintain relative synchronization between audio streams
in a real time audio mixing environment. The algorithm does
not attempt to maintain absolute synchronization between
audio streams, as this would require the use of global timing.
Rather, the algorithm attempts to maintain consistency within
the mixing process such that the alignment of audio samples
from each stream remains as constant as possible given the
random elements of network delay. The algorithm is able to
adapt quickly to gross changes in the underlying delays of
each stream, as might result from network link failures. At the
same time, the proposed algorithm is robust to short term
variations in delay resulting from audio stream packets being
queued at routers.

ACKNOWLEDGMENT
The support of the Cooperative Research Centre for Smart
Internet Technology (CRC-SIT, www.smartinternet.com.au)
for this work and permission to publish this paper is hereby
acknowledged.

REFERENCES

[1] ITU-T Recommendation G.107 (07/2002), The E-model, a
computational model for use in transmission planning.

[2] ITU-T Recommendation G.113 Appendix 1 (05/2002), Provisional
planning values for the equipment impairment factor Ie and packet-loss
robustness factor Bpl.

[3] A.P. Markopolou, F.A. Tobagi and M.J. Karam, Assessing the quality of
voice communications over Internet backbones, IEEE/ACM
Transactions on Networking, vol. 11, no. 5, October 2003.

[4] ITU-T Recommendation P.800 (08/96), Methods for subjective
determination of transmission quality.

[5] C-M Huang, H-Y Kung, J-L Yang, Synchronization and flow adaptation
schemes for reliable multiple stream transmission in multimedia
presentations, The Journal of Systems and Software 56 (2001) 133-151.

[6] P V Rangan, S Ramanathan, T Kaeppner, Performance of inter-media
synchronization in distributed and heterogeneous multimedia systems,
Computer Networks and ISDN Systems 27 (1995) 549-565.

[7] L Bertoglio, R Leonardi, P Migliorati, Inter-media synchronization for
videoconference over IP, Signal Processing: Image Communication 15
(1999) 149-164.

[8] P N Zarros, M J Lee, T N Saadawi, Interparticipant synchronization in
real-time multimedia conference using feedback, IEEE/ACM
Transactions on Networking, vol. 4, no. 2, April 1996.

Time source 1 source 2 source 3 source 4 source 5
0 – 3 91.5023 91.7203 90.2211 91.5023 91.5023
3 – 6 82.24 91.5023 91.3867 91.5023 91.5023
6 – 9 91.3851 90.1695 92.7474 92.7474 92.7474

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society

	28992
	hdl_28992
	Select a link below
	Return to Main Menu
	Return to Previous View

