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Abstract—We apply a Minimum Description Length-based The partitioning problem can be decomposed into two
clustering technique to the problem of partitioning a set of elements: searching for partitions and choosing between them.
learning curves. The goal is to partiton experimental data |, thig paper we concentrate on the latter, while applying

collected from different sources into groups of sources that are .
statistically the same. We solve this problem by defining statistical standard methods [6] for the former. Broadly speaking, there

models for the data generating processes, then partitioning them are two approaches to choosing between clustering solutions.
using the Normalized Maximum Likelihood criterion. Unlike In “distance-based” clustering, one defines a proximity mea-
many alternative model selection methods, this approach which gyre between items, and then seeks to minimize within-group
is optimal (in a minimax coding sense) for data of any sample qistances and/or maximize between-group distances [4]. In
size. We present an application of the method to the cognitive “ " -
modeling problem of partitioning of human learning curves for conFra_st, the model-bas_ed approaph 'Freats a partition as a
different categorization tasks. statistical model that assigns some likelihood to the observed
data. ¢ From this vantage point, we can choose a partition using
information theoretic techniques such as Minimum Descrip-
Clustering is one of the most basic and useful methods tbn Length (MDL; [5], [19], [21]). An innovative approach
data analysis. It involves treating groups of objects as if thégr doing this is developed in [10]. In this paper we apply this
were the same, and describing how the groups relate to deehnique to the problem of partitioning learning curves, and
another. Clustering summarizes and organizes data, providaetiszuss the statistical question of model complexity in data
framework for understanding and interpreting the relationshigtustering.
between objects, and proposes a simple description of these
relationships that has the potential to generalize to new or dif- IIl. MINIMUM DESCRIPTIONLENGTH CLUSTERING
ferent situations. For these reasons, many different clusteringthe MDL principle states that the goal in statistical mod-
models have been developed and used in fields ranging fréfing is to use the regularities present in a data set to
computer science and statistics to marketing and psychologgmpress it the greatest possible extent, describing the data in
In the current paper, we consider a specific applied clusterititp most economical manner possible [5]. From a clustering
problem from an information theoretic perspective. perspective, we choose the clustering solution that allows the
Imagine an experiment in which we collect data frongreatest possible compression of the data. In what follows, we
T different sources, but we suspect that these sources Rflopt a model-based clustering procedure closely related to
naturally into X < T groups. To verify this suspicion, wethe one used in [10], which seeks to maximize the Normalized

need a tool to partition the data in a principled way. Sinddaximum Likelihood criterion (NML; [21]),

I. INTRODUCTION

each of theT' sources is a sample of data, we refer to this X160

. LIES S ) S __p(X|6x)
as a “sample partitioning” problem. As with any partitioning, NML(X) = ——————.
the goal is to extract a set of equivalence relations (which 2 x p(X |0x)

form a class or cluste)), while remaining agnostic aboutwherep(-|6) is the model class associated with a partition.
the relationships between the classes. The sample-partitioninghis expressionéx is the maximum likelihood estimate
problem arises in a number of applied situations. ThroughoILE) for data setX, and the sum is taken over all possible
this paper, we use a common problem in cognitive modelingata sets. The denominator term is tiegret for the model,

as a concrete example. The cognitive modeling problem arisgsnotedR = >, p(X | 6x). The NML criterion is optimal
when comparing the way people’s performance improves ov@rthe sense that the stochastic complexity of the data=SC
the course of many learning experiments. The nature of theln(NML) gives the length of an idealized prefix code that
different experimental tasks can lead to similar performance @iinimizes the expected codelength for data generated by the
very different learning performance. The inference problem igorst possible” source [21],
determining which tasks give rise to curves that are essentially

the same and which give rise to curves that are inherently ¢* = minmax E,
different. a 9

In

q(X)




Thus, from a coding perspective the Shannon-Fano code coidete the y}™ values are sufficient statistics for the data,
sponding to the NML distributiorg* represents the minimax assuming that the model'.

optimal method of encoding the data with the help of the Besides the stipulation that observations come partially pre-
model clas(- | 8). By choosing the partition that maximizesclustered in samples, the main difference between this model
NML, we find the most economical expression of the structudass and that in [10] is they employ a finite mixture model,

in the data, which is precisely our goal in clustering. in which the assignment of items to clusters is assumed to
be the result of a latent probabilistic process. Motivated by
A. Fixed Partitions as Model Classes the learning curves problem, we assume that a cluster is a

géed grouping of samples. Since the category structures that
eIAC|t the samples are derived from the fixed representational
structure of the stimuli [23], it makes little sense in this context

clustering solution is thus treated asreodelfor the data, and del ol hich obiect ¢
the adequacy of that solution can be assessed using statlstﬁ%aPrOpose a model class in which object assignments are
ssumed to result from a probabilistic process.

model selection tools. In this section we outline a clusterln%
model for discrete data that is appropriate to the appligd calculating NML
problem of partitioning learning curves.

Suppose that we have a discrete data set made up of
samples, each of which is al/-variate discrete probability
over H response options. For instance, we might h&ve
participants who solvel/ different kinds of problems, and S yEm
each problem haé¢/ possible answers. Note that since each 0" = wkm”
class of problem may have a different nhumber of potenti
responsesH should technically be denoted,,,. However,
this subscript will be dropped, since it will be clear from
context. A particular partitioning of thes& samples might Hh L (ykmyun
be expressed in the following way. If we assume that there p(X0) 0 H H W :
are K clusters, we might letD;, indicate how many of the m=tk=1
original samples fall into théth cluster. SaD;, represents the The regret for a clustering modél is given by,
size of the cluster, and thds), D, = T'. As before, we will B
generally drop the subscrift when discussingD. Ro = Z T Z

Under a model-based clustering procedure, the data
assumed to be the outcome of some random process.

We briefly discuss how the NML computations are per-
formed, and show that the results in [10] apply to the current
model. For this clustering model, the MLE is given by,

§ubstituting the MLE values into the likelihood function gives
the maximized likelihood,

We represent the dataX in terms of the statistics vite “’11:7‘”11 yKM+ *yKALwKM
zit. .. 2BM wherez%™ counts the number of observations Hh L(yrm yun™
that fall into thehth response category on theth dimension H H k) H H (whm) wkm ’
m=1 k= 1Hh 19 ] Lm=1k=1

for the dth sample that belongs to thkth cluster. In the

example given earlier;%™ would denote the number of timeswhere the first square-bracketed term counts the number of

that participant/ of clusterk gave the respondeto a problem data sets that have the sufficient statisgis. . .y, and the

of type m. It will be convenient to defing}™ andw*™ as, second square-bracketed term gives the maximized likelihood
to any such data set. After rearranging:

D H
m km km km
:Zxdhaw :th . Rc = E E
d=1 h=1

yi1+ +y11:w11 KZ\/I+ +yKZ\/I:wKZ\/I

someone in théth cluster gave the answérto a problem in

m, while wy,, is the total number of times that a problem of

type m was presented to group Notice that any particular inner term depends on only a single
A partitioning model forX consists of the set ok clusters Value ofm andk. Thus terms wheren = 1 andk = 1 may

C = (c1...ck). In this expressiong, denotes the set of be moved forward. Now, notice that aII of the nested terms

(indices of) samples that belong to thth cluster. The model do not depend on the values of' ...y}, so they can be

parameter® = (61", ...62 ) correspond to the probabilitiesremoved as a factor. Repeating this forsalland/ allows the

with which each of the responses are chosen. Accordingiggret to be factorized, yielding

g7 gives the probability with which respondeis predicted

to occur in trials belonging to cluster and dimensionm. Re — w

Thus the likelihoodp(X | 8) is, © 1_:[ 1;[ Z (whm yw*r

In the example discusseg;™ is the number of times that (yrm yh
H H km w"m H k !
h=1

mlkl

km)

yh

pecto) = T TTITT 08 = T1IT Lo 7 v

m=1k=1d=1 h=1 m=1 k=1 h=1 h=1



Since individual clusters and dimensions are assumed to be
independent, it is not surprising to see the regret factorize.
The inner term corresponds to the regRtH, w) for a one-
dimensional multinomial withH options and a sample size
of w. That is,Rc = [],, [, R(Hm,w™"). The problem

of calculating multinomial regret is addressed in [10], so it
suffices simply to restate their result:

ro = X (i) ()

r1+ro=w

R(J1,7m1) R(J2,72),
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Fig. 1. The six possible category learning tasks for eight stimuli (the spheres)
where J, and J, are any two integers between 1 andCrec.n 1ems of tvee b usued feaes (ranged s s ufe) Cach
H — 1 such thatJ; + J, = H. They use this result to

calculate R(H,w) efficiently using a recursive algorithm.

In essence, we start by calculating all the binomial regrets 05
R(2,1),...R(2,w). This is reasonably fast since there are
comparatively few ways of dividing a sample across two
responses. Once these are known, they can be used to construct
the regrets for larger multinomials. For example, if we needed
H = 14, we would setJ; = 2 and J, = 2 to arrive at the
regrets forH = 4. We could then set/; = 4, andJo, = 4

to get H = 8. ThenJ; = 8 and J; = 4 gives H = 12, and
finally J; = 12 andJ, = 2 would give the regret fofd = 14.
Obviously, at each step we need to calculate the sum over

and o, but this can be done quickly by constructing tables 0.1
of regret values. Once we have the regrets for the various
multinomials, we merely need to take the appropriate product
to get the regret for the clustering model. 0

0.3

0.2

Probability of Error

8 12 16
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IIl. PARTITIONING LEARNING CURVES
. Fig. 2. Empirical learning curves for the Shepard, Hovland and Jenkins task.
The applied problem comes from Shepard et al. [23], in® P 9 P

which human performance was examined on a category learn-

ing task involving eight stimuli divided evenly between two

categories. The stimuli were generated by varying exhaustivél§ly been done subjectively, by visual inspection of the curves
three binary dimensions such as (black, white), (small, largé) Figure 2. The empirical partition is then used as a set of
and (square, triangle). If the dimensions are interchangealiEong ordinal constraints on potential models. That is, any
there are only six fundamental category structures, illustraté@gnitive model of people’s learning must show the same
in Figure 1. Empirically, there are robust differences in thelustering of learning task performance [3], [11], [16], [23].
way in which each of the six fundamental category structurégven this important role in understanding human category
is learned. In particular, Type 1 is learned more easily tha@@rning , it would clearly be preferable to extract the partition
Type 2, which in turn was learned more easily than Typé§ing principled statistical methods. This becomes especially
3, 4 and 5, and that Type 6 is the most difficult to learrimportant for data sets that do not lend themselves to simple
More recently, Nosofsky et al. [16] replicated the experimenisual displays.

and reported the detailed learning curves shown in Figure 2.For clusters containing 1, 2, ..., 6 curves, the log-regrets
Nevertheless the ordinal constraiht< 2 < (3,4,5) < 6 is are approximately 57.3, 62.3, 65.3, 67.4, 69.1 and 70.5 respec-

the most theoretically important result from the experimenttively. We then applied an average-link clustering procedure to
find six candidate partitions, with* = 1,2, ..., 6. The results,

A. Clustering Models for the Shepard Curves shown in Table I, agree with the intuition that the correct
The data have the following properties: each “data pointlustering should be (1)(2)(3,4,5)(6). However, it suggests that
is a pooled set ol» = 40 x 16 = 640 binary observations (1)(2)(3,5)(4)(6), with an MDL value differing by 10, is the
(implying H = 2), assumed to be the outcome of independentosest competitor, though since this is on a logarithmic scale it
Bernoulli trials. Each “curve” consists dff = 16 data points, implies that the normalized likelihood assigned to the data by
corresponding to 16 different measurement intervals. Thettds model is actually:'? ~ 22, 000 times lower. Inspection of
are T = 6 such curves, and the task is to find a set dfigure 2 agrees with this, since the curve for Type 4 is a little
equivalence relations among tliecurves. In previous analysesdifferent from those for Types 3 and 5, but the discrepancy is
[3], [16], [23], the extraction of the partition from data hasot of the same order as those corresponding to Types 1, 2



TABLE | 1050

SIX CANDIDATE CLUSTERING SOLUTIONS FOR THESHEPARD TASK. 1000}«
950
Partition (Mis)Fit Complexity = MDL
(1,2, 3,4,56) 16,337 70 16,408 s !
(1, 2,3,4,5)(6) 15,399 126 15,525 2 ol
(1, 2)(3, 4,5)(6) 14,772 185 14,957 g ol
(1)(2)(3, 4,5)(6) 14,597 237 14,834 g 1
(1)(2)(3, 5)(4)(6) 14,553 291 14,844 S r
(1)(2)(3)(4)(5)(6) 14,518 343 14,861 © ol )
650 )
2
600 '“”"lllun..n. ..........
and 6. In short, the clustering procedure behaves appropriately ¥ s 10 15 20 2 0 3 4

Number of Clusters

for this data set.

Fig. 3. Model complexity per clustefl/K)In R is not constant, either as
B. Human Category Learning and Stimulus Coding the number of clusters changes or within a fixed model order.

Theoretical work on human classification stresses the im-
portance of data compression. It is assumed that humans
make classification decisions not only to make predictions V. EXACT MEASURES OFMODEL COMPLEXITY
about the world, but to efficiently code the information in the Accounting for model complexity is an important topic
environment. In the last section we demonstrated that there statistics [7] with clustering models receiving particular
is strong empirical evidence that the Shepard curves shoaliention in applied work [13], [14]. Unfortunately, most
indeed be partitioned as (1)(2)(3,4,5)(6). In [3] the correspondpproaches to model selection rely on asymptotic criteria (e.g.,
ing partial order k2<(3,4,5x6 was shown to reflect the AIC [1], BIC [22]), or else do not provide a measure of model
amount of information carried by each category structure, somplexity (e.g., Bayes factors [8]). As a result, a great deal
it appears that the rate at which humans acquire a categofithe discussion of complexity and model selection has relied
is well-predicted by the informational content of the categorpn asymptotic measures (e.g., [17]) that can be misleading in
Given the obvious theoretical importance of this regularity, ginite samples or when regularity conditions are violated [15],
interesting test of the validity of category learning models if2]. In contrast the NML criterion is exact, and optimal (in the
the extent to which they preserve this regularity across theiinimax coding sense discussed earlier) for data of any sample
parameter spaces. If different parameterizations of a model gige. Moreover, it supplies a natural complexity measure (i.e.,
intended to correspond to different kinds of plausible humdn R). Taken together, these two properties allow us to measure
performance, then they should not violate this ordering tasmmplexity properly and discuss it accurately.
severely. It has often been argued [17], [13], [14] that model com-

We tested this proposition with regard to the classic Alplexity is not the same as model order. However, these
COVE model [11], which learns by backpropagating the err@ssertion have usually relied on asymptotic criteria: in a
made by an adaptive kernel density estimator. In order tdustering context, Lee [13] used a Laplace approximation to
search ALCOVE's parameter space, we used the Markov ch#élie Bayes factor [8], while Lee and Navarro [14] used the
Monte Carlo algorithm proposed in [9] to find the differenfrisher information approximation to MDL [20]. Using the
partial orders predicted by the model (see [18] for details)ecursive algorithm to calculate exact NML complexities for
In total, there are only eleven stable orderings that occupyckustering models, it is worth briefly revisiting the question.
substantial proportion of the parameter space, one of whiEflgure 3 plots NML complexity per clustefl/K)In R¢c
is the empirically observed order. From this, it is clear thatgainst the number of clustefs for every possible partition
Types 3 and 4 are always (11 of 11) predicted to be learnefiT = 40 samples, withH = 20 response optionsy = 100
at about the same rate, and Type 5 is usually (9 of 11) alebservations per cell, andlf = 16 dimensions. If complexity
about the same. Type 6, on the other hand, is mostly learrisdvell-captured by the number of parametefs/K)In R
slower than 3, 4 and 5 (8 of 11). Types 1 and 2 are usuakjould be constant. Figure 3 shows that complexity per cluster
(8 of 11) slower than 3-5. So, not only is the empiricallyis not constant a&’ increases, nor is it constant across models
observed ordering among the most common predictions, twith the same number of clusters. As suggested in [13], some
the other high-frequency predictions generally preserve mgsrtitions are indeed more complex than others even when the
of the pairwise relations implied by the empirical data. Thtotal number of clusters remains constant.
exception to this claim regards the relationship between TypesThe reason for this pattern becomes clearer when we
1 and 2. In this regard, the model predictions are ambiguougnsider the relationship between the size of a cluster (i.e., the
It might be thatl < 2 (4 of 11), or1 = 2 (4 of 11), or number of samples assigned to it) and its complexity. Figure 4
even2 < 1 (3 of 11). In this case, ALCOVE does not make @lots this relationship for clusters of the same data sets referred
strong prediction about the relationship between information in Figure 3 (i.e.,7 = 40, H = 20, N = 100 and
content and category learning. M = 15). The dotted line is the predicted curve if complexity
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