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Abstract—We apply a Minimum Description Length–based
clustering technique to the problem of partitioning a set of
learning curves. The goal is to partition experimental data
collected from different sources into groups of sources that are
statistically the same. We solve this problem by defining statistical
models for the data generating processes, then partitioning them
using the Normalized Maximum Likelihood criterion. Unlike
many alternative model selection methods, this approach which
is optimal (in a minimax coding sense) for data of any sample
size. We present an application of the method to the cognitive
modeling problem of partitioning of human learning curves for
different categorization tasks.

I. I NTRODUCTION

Clustering is one of the most basic and useful methods of
data analysis. It involves treating groups of objects as if they
were the same, and describing how the groups relate to one
another. Clustering summarizes and organizes data, provides a
framework for understanding and interpreting the relationships
between objects, and proposes a simple description of these
relationships that has the potential to generalize to new or dif-
ferent situations. For these reasons, many different clustering
models have been developed and used in fields ranging from
computer science and statistics to marketing and psychology.
In the current paper, we consider a specific applied clustering
problem from an information theoretic perspective.

Imagine an experiment in which we collect data from
T different sources, but we suspect that these sources fall
naturally into K ≤ T groups. To verify this suspicion, we
need a tool to partition the data in a principled way. Since
each of theT sources is a sample of data, we refer to this
as a “sample partitioning” problem. As with any partitioning,
the goal is to extract a set of equivalence relations (which
form a class or cluster), while remaining agnostic about
the relationships between the classes. The sample-partitioning
problem arises in a number of applied situations. Throughout
this paper, we use a common problem in cognitive modeling
as a concrete example. The cognitive modeling problem arises
when comparing the way people’s performance improves over
the course of many learning experiments. The nature of the
different experimental tasks can lead to similar performance or
very different learning performance. The inference problem is
determining which tasks give rise to curves that are essentially
the same and which give rise to curves that are inherently
different.

The partitioning problem can be decomposed into two
elements: searching for partitions and choosing between them.
In this paper we concentrate on the latter, while applying
standard methods [6] for the former. Broadly speaking, there
are two approaches to choosing between clustering solutions.
In “distance-based” clustering, one defines a proximity mea-
sure between items, and then seeks to minimize within-group
distances and/or maximize between-group distances [4]. In
contrast, the “model-based” approach treats a partition as a
statistical model that assigns some likelihood to the observed
data. ¿From this vantage point, we can choose a partition using
information theoretic techniques such as Minimum Descrip-
tion Length (MDL; [5], [19], [21]). An innovative approach
for doing this is developed in [10]. In this paper we apply this
technique to the problem of partitioning learning curves, and
discuss the statistical question of model complexity in data
clustering.

II. M INIMUM DESCRIPTIONLENGTH CLUSTERING

The MDL principle states that the goal in statistical mod-
elling is to use the regularities present in a data set to
compress it the greatest possible extent, describing the data in
the most economical manner possible [5]. From a clustering
perspective, we choose the clustering solution that allows the
greatest possible compression of the data. In what follows, we
adopt a model-based clustering procedure closely related to
the one used in [10], which seeks to maximize the Normalized
Maximum Likelihood criterion (NML; [21]),

NML(X) =
p(X | θ̂X)∑
X p(X | θ̂X)

.

wherep(· | θ) is the model class associated with a partition.
In this expression,̂θX is the maximum likelihood estimate
(MLE) for data setX, and the sum is taken over all possible
data sets. The denominator term is theregret for the model,
denotedR =

∑
X p(X | θ̂X). The NML criterion is optimal

in the sense that the stochastic complexity of the data SC=
− ln(NML) gives the length of an idealized prefix code that
minimizes the expected codelength for data generated by the
“worst possible” source [21],

q∗ = min
q

max
g

Eg

[
ln

p(X | θ̂X)
q(X)

]
.



Thus, from a coding perspective the Shannon-Fano code corre-
sponding to the NML distributionq∗ represents the minimax
optimal method of encoding the data with the help of the
model classp(· | θ). By choosing the partition that maximizes
NML, we find the most economical expression of the structure
in the data, which is precisely our goal in clustering.

A. Fixed Partitions as Model Classes

Under a model-based clustering procedure, the data are
assumed to be the outcome of some random process. A
clustering solution is thus treated as amodelfor the data, and
the adequacy of that solution can be assessed using statistical
model selection tools. In this section we outline a clustering
model for discrete data that is appropriate to the applied
problem of partitioning learning curves.

Suppose that we have a discrete data set made up ofT
samples, each of which is anM -variate discrete probability
over H response options. For instance, we might haveT
participants who solveM different kinds of problems, and
each problem hasH possible answers. Note that since each
class of problem may have a different number of potential
responses,H should technically be denotedHm. However,
this subscript will be dropped, since it will be clear from
context. A particular partitioning of theseT samples might
be expressed in the following way. If we assume that there
are K clusters, we might letDk indicate how many of the
original samples fall into thekth cluster. SoDk represents the
size of the cluster, and thus

∑
k Dk = T . As before, we will

generally drop the subscriptk when discussingD.
We represent the dataX in terms of the statistics

x11
11 . . .xKM

DH , wherexkm
dh counts the number of observations

that fall into thehth response category on themth dimension
for the dth sample that belongs to thekth cluster. In the
example given earlier,xkm

dh would denote the number of times
that participantd of clusterk gave the responseh to a problem
of type m. It will be convenient to defineykm

h andwkm as,

ykm
h =

D∑

d=1

xkm
dh , wkm =

H∑

h=1

ykm
h .

In the example discussed,ykm
h is the number of times that

someone in thekth cluster gave the answerh to a problem in
m, while wkm is the total number of times that a problem of
type m was presented to groupk.

A partitioning model forX consists of the set ofK clusters
C = (c1 . . .cK). In this expression,ck denotes the set of
(indices of) samples that belong to thekth cluster. The model
parametersθ = (θ11

1 , . . . θMK
H ) correspond to the probabilities

with which each of the responses are chosen. Accordingly,
θmk
h gives the probability with which responseh is predicted

to occur in trials belonging to clusterk and dimensionm.
Thus the likelihoodp(X | θ) is,

p(X | θ) =
M∏

m=1

K∏

k=1

D∏

d=1

H∏

h=1

(θkm
h )xkm

dh =
M∏

m=1

K∏

k=1

H∏

h=1

(θkm
h )ykm

h
.

Note the ykm
h values are sufficient statistics for the data,

assuming that the modelC.
Besides the stipulation that observations come partially pre-

clustered in samples, the main difference between this model
class and that in [10] is they employ a finite mixture model,
in which the assignment of items to clusters is assumed to
be the result of a latent probabilistic process. Motivated by
the learning curves problem, we assume that a cluster is a
fixed grouping of samples. Since the category structures that
elicit the samples are derived from the fixed representational
structure of the stimuli [23], it makes little sense in this context
to propose a model class in which object assignments are
assumed to result from a probabilistic process.

B. Calculating NML

We briefly discuss how the NML computations are per-
formed, and show that the results in [10] apply to the current
model. For this clustering model, the MLE is given by,

θ̂km
h =

ykm
h

wkm
.

Substituting the MLE values into the likelihood function gives
the maximized likelihood,

p(X | θ̂) =
M∏

m=1

K∏

k=1

(∏H
h=1(y

km
h )ykm

h

(wkm)wkm

)
.

The regret for a clustering modelC is given by,

RC =
∑

y11
1 +...+y11

H
=w11

. . .
∑

yKM
H

+...+yKM
H

=wKM

[
M∏

m=1

K∏

k=1

wkm!
∏H

h=1 ykm
h !

][
M∏

m=1

K∏

k=1

∏H
h=1(y

km
h )ykm

h

(wkm)wkm

]
,

where the first square-bracketed term counts the number of
data sets that have the sufficient statisticsy11

1 . . . yKM
H , and the

second square-bracketed term gives the maximized likelihood
to any such data set. After rearranging:

RC =
∑

y11
1 +...+y11

H
=w11

. . .
∑

yKM
1 +...+yKM

H
=wKM

[
M∏

m=1

K∏

k=1

wkm!
(wkm)wkm

H∏

h=1

(ykm
h )ykm

h

ykm
h !

]
.

Notice that any particular inner term depends on only a single
value ofm andk. Thus terms wherem = 1 andk = 1 may
be moved forward. Now, notice that all of the nested terms
do not depend on the values ofy11

1 . . . y11
H , so they can be

removed as a factor. Repeating this for allm andk allows the
regret to be factorized, yielding

RC =
M∏

m=1

K∏

k=1


 ∑

ymk
1 +...+ymk

H
=wmk

wkm!
(wkm)wkm

H∏

h=1

(ykm
h )ykm

h

ykm
h !

]
.



Since individual clusters and dimensions are assumed to be
independent, it is not surprising to see the regret factorize.
The inner term corresponds to the regretR(H, w) for a one-
dimensional multinomial withH options and a sample size
of w. That is,RC =

∏
m

∏
k R(Hm, wmk). The problem

of calculating multinomial regret is addressed in [10], so it
suffices simply to restate their result:

R(H, w) =
∑

r1+r2=w

(
w!

r1!r2!

)(
r r1
1 r r2

2

ww

)

R(J1, r1)R(J2, r2),

where J1 and J2 are any two integers between 1 and
H − 1 such thatJ1 + J2 = H. They use this result to
calculate R(H, w) efficiently using a recursive algorithm.
In essence, we start by calculating all the binomial regrets
R(2, 1), . . .R(2, w). This is reasonably fast since there are
comparatively few ways of dividing a sample across two
responses. Once these are known, they can be used to construct
the regrets for larger multinomials. For example, if we needed
H = 14, we would setJ1 = 2 and J2 = 2 to arrive at the
regrets forH = 4. We could then setJ1 = 4, andJ2 = 4
to get H = 8. ThenJ1 = 8 and J2 = 4 gives H = 12, and
finally J1 = 12 andJ2 = 2 would give the regret forH = 14.
Obviously, at each step we need to calculate the sum overr1

and r2, but this can be done quickly by constructing tables
of regret values. Once we have the regrets for the various
multinomials, we merely need to take the appropriate product
to get the regret for the clustering model.

III. PARTITIONING LEARNING CURVES

The applied problem comes from Shepard et al. [23], in
which human performance was examined on a category learn-
ing task involving eight stimuli divided evenly between two
categories. The stimuli were generated by varying exhaustively
three binary dimensions such as (black, white), (small, large)
and (square, triangle). If the dimensions are interchangeable,
there are only six fundamental category structures, illustrated
in Figure 1. Empirically, there are robust differences in the
way in which each of the six fundamental category structures
is learned. In particular, Type 1 is learned more easily than
Type 2, which in turn was learned more easily than Types
3, 4 and 5, and that Type 6 is the most difficult to learn.
More recently, Nosofsky et al. [16] replicated the experiment
and reported the detailed learning curves shown in Figure 2.
Nevertheless the ordinal constraint1 < 2 < (3, 4, 5) < 6 is
the most theoretically important result from the experiment.

A. Clustering Models for the Shepard Curves

The data have the following properties: each “data point”
is a pooled set ofn = 40 × 16 = 640 binary observations
(implying H = 2), assumed to be the outcome of independent
Bernoulli trials. Each “curve” consists ofM = 16 data points,
corresponding to 16 different measurement intervals. There
are T = 6 such curves, and the task is to find a set of
equivalence relations among theT curves. In previous analyses
[3], [16], [23], the extraction of the partition from data has

Type I Type II Type III

Type IV Type V Type VI

Fig. 1. The six possible category learning tasks for eight stimuli (the spheres)
defined in terms of three binary-valued features (arranged as a cube). Each
task divides the stimuli into four dark colored and four light colored stimuli.
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Fig. 2. Empirical learning curves for the Shepard, Hovland and Jenkins task.

only been done subjectively, by visual inspection of the curves
in Figure 2. The empirical partition is then used as a set of
strong ordinal constraints on potential models. That is, any
cognitive model of people’s learning must show the same
clustering of learning task performance [3], [11], [16], [23].
Given this important role in understanding human category
learning , it would clearly be preferable to extract the partition
using principled statistical methods. This becomes especially
important for data sets that do not lend themselves to simple
visual displays.

For clusters containing 1, 2, . . . , 6 curves, the log-regrets
are approximately 57.3, 62.3, 65.3, 67.4, 69.1 and 70.5 respec-
tively. We then applied an average-link clustering procedure to
find six candidate partitions, withK = 1, 2, . . ., 6. The results,
shown in Table I, agree with the intuition that the correct
clustering should be (1)(2)(3,4,5)(6). However, it suggests that
(1)(2)(3,5)(4)(6), with an MDL value differing by 10, is the
closest competitor, though since this is on a logarithmic scale it
implies that the normalized likelihood assigned to the data by
this model is actuallye10 ≈ 22, 000 times lower. Inspection of
Figure 2 agrees with this, since the curve for Type 4 is a little
different from those for Types 3 and 5, but the discrepancy is
not of the same order as those corresponding to Types 1, 2



TABLE I

SIX CANDIDATE CLUSTERING SOLUTIONS FOR THESHEPARD TASK.

Partition (Mis)Fit Complexity MDL
(1, 2, 3, 4, 5, 6) 16,337 70 16,408
(1, 2, 3, 4, 5)(6) 15,399 126 15,525
(1, 2)(3, 4, 5)(6) 14,772 185 14,957
(1)(2)(3, 4, 5)(6) 14,597 237 14,834
(1)(2)(3, 5)(4)(6) 14,553 291 14,844
(1)(2)(3)(4)(5)(6) 14,518 343 14,861

and 6. In short, the clustering procedure behaves appropriately
for this data set.

B. Human Category Learning and Stimulus Coding

Theoretical work on human classification stresses the im-
portance of data compression. It is assumed that humans
make classification decisions not only to make predictions
about the world, but to efficiently code the information in the
environment. In the last section we demonstrated that there
is strong empirical evidence that the Shepard curves should
indeed be partitioned as (1)(2)(3,4,5)(6). In [3] the correspond-
ing partial order 1<2<(3,4,5)<6 was shown to reflect the
amount of information carried by each category structure, so
it appears that the rate at which humans acquire a category
is well-predicted by the informational content of the category.
Given the obvious theoretical importance of this regularity, an
interesting test of the validity of category learning models is
the extent to which they preserve this regularity across their
parameter spaces. If different parameterizations of a model are
intended to correspond to different kinds of plausible human
performance, then they should not violate this ordering too
severely.

We tested this proposition with regard to the classic AL-
COVE model [11], which learns by backpropagating the error
made by an adaptive kernel density estimator. In order to
search ALCOVE’s parameter space, we used the Markov chain
Monte Carlo algorithm proposed in [9] to find the different
partial orders predicted by the model (see [18] for details).
In total, there are only eleven stable orderings that occupy a
substantial proportion of the parameter space, one of which
is the empirically observed order. From this, it is clear that
Types 3 and 4 are always (11 of 11) predicted to be learned
at about the same rate, and Type 5 is usually (9 of 11) also
about the same. Type 6, on the other hand, is mostly learned
slower than 3, 4 and 5 (8 of 11). Types 1 and 2 are usually
(8 of 11) slower than 3–5. So, not only is the empirically-
observed ordering among the most common predictions, but
the other high-frequency predictions generally preserve most
of the pairwise relations implied by the empirical data. The
exception to this claim regards the relationship between Types
1 and 2. In this regard, the model predictions are ambiguous.
It might be that1 < 2 (4 of 11), or 1 = 2 (4 of 11), or
even2 < 1 (3 of 11). In this case, ALCOVE does not make a
strong prediction about the relationship between informational
content and category learning.
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Fig. 3. Model complexity per cluster(1/K) lnR is not constant, either as
the number of clusters changes or within a fixed model order.

IV. EXACT MEASURES OFMODEL COMPLEXITY

Accounting for model complexity is an important topic
in statistics [7] with clustering models receiving particular
attention in applied work [13], [14]. Unfortunately, most
approaches to model selection rely on asymptotic criteria (e.g.,
AIC [1], BIC [22]), or else do not provide a measure of model
complexity (e.g., Bayes factors [8]). As a result, a great deal
of the discussion of complexity and model selection has relied
on asymptotic measures (e.g., [17]) that can be misleading in
finite samples or when regularity conditions are violated [15],
[12]. In contrast the NML criterion is exact, and optimal (in the
minimax coding sense discussed earlier) for data of any sample
size. Moreover, it supplies a natural complexity measure (i.e.,
lnR). Taken together, these two properties allow us to measure
complexity properly and discuss it accurately.

It has often been argued [17], [13], [14] that model com-
plexity is not the same as model order. However, these
assertion have usually relied on asymptotic criteria: in a
clustering context, Lee [13] used a Laplace approximation to
the Bayes factor [8], while Lee and Navarro [14] used the
Fisher information approximation to MDL [20]. Using the
recursive algorithm to calculate exact NML complexities for
clustering models, it is worth briefly revisiting the question.
Figure 3 plots NML complexity per cluster(1/K) ln RC

against the number of clustersK for every possible partition
of T = 40 samples, withH = 20 response options,N = 100
observations per cell, andM = 16 dimensions. If complexity
is well-captured by the number of parameters,(1/K) ln RC

should be constant. Figure 3 shows that complexity per cluster
is not constant asK increases, nor is it constant across models
with the same number of clusters. As suggested in [13], some
partitions are indeed more complex than others even when the
total number of clusters remains constant.

The reason for this pattern becomes clearer when we
consider the relationship between the size of a cluster (i.e., the
number of samples assigned to it) and its complexity. Figure 4
plots this relationship for clusters of the same data sets referred
to in Figure 3 (i.e.,T = 40, H = 20, N = 100 and
M = 15). The dotted line is the predicted curve if complexity
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Fig. 4. Complexity associated with a particular cluster increases with size
(solid line). The dotted line (“order only”) shows the predicted curve if only
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were a constant function of model order, and the dashed line
shows the prediction if complexity were a constant function
of cluster size (in fact, if the dashed line were accurate,
then each observation would contribute equally to complexity
irrespective of how they were partitioned, and all clustering
solutions would be of equal complexity). However, the figure
shows that complexity is a concave increasing function of
cluster size. If model complexity were equivalent to model
order, this function would be constant, ensuring that all clusters
contribute the same amount of complexity irrespective of
size. Since the function is increasing, two clusters of size 1
are simpler than two clusters of size 2. Moreover, since the
function is concave, complexity is subadditive. As a result,
complexity is always decreased by transferring an observation
from a small cluster to a large one, implying that the least
complex solution is one in which all clusters except one are
of size 1, while the remaining cluster is of sizeT − K + 1.
This agrees with results based on Laplacian approximations
[13].

V. CONCLUSION

The MDL-based clustering procedure introduced in [10] and
applied here allows optimal clustering solutions to be found
without relying on asymptotic expressions. In psychology it
enables safe inferences when comparing learning curves, and
when assessing theoretical accounts of cognitive processes.
More speculatively, it is interesting to note that the MDL
analysis of the Shepard data using the NML coding produces
the same partial order as a simpler coding scheme applied
to the representations of the categories themselves [3]. This
suggests that human inference in many tasks is sensitive to
the information inherent in the task, and that this sensitivity
is strongly reflected in empirical data. If so, it is likely that
information theory will remain a useful tool in not just ana-
lyzing psychological data, but also in building psychological
theories and models (e.g., [2], [3], [14], [17]).
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