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Abstract

We introduce a Bayesian framework for modeling indi-
vidual differences, in which subjects are assumed to be-
long to one of a potentially infinite number of groups. In
this model, the groups observed in any particular data
set are not viewed as a fixed set that fully explain the
variation between individuals, but rather as representa-
tives of a latent, arbitrarily rich structure. As more peo-
ple are seen, the number of observed groups is allowed
to grow, as more details about the individual differences
are revealed. We use the Dirichlet process – a distri-
bution widely used in nonparametric Bayesian statistics
– to define a prior for the model, allowing us to learn
flexible parameter distributions without overfitting the
data, or requiring the complex computations typically
required for determining the dimensionality of a model.
As an initial demonstration of the approach, we present
an application of the method to categorization data.

Much of cognitive science involves the development
and evaluation of models. Models formalize theoret-
ical predictions and have been successfully applied to
a range of phenomena. A recurrent problem, however,
is that individual differences between people are often
overlooked. This occurs because, most often, models
are evaluated against data that have been averaged or
aggregated across subjects, and so assume that there
are no individual differences between them. In this pa-
per we introduce a new framework for modeling individ-
ual differences. Informed by recent insights in statistics
and machine learning (e.g., Escobar & West, 1995; Neal,
2000), our infinite groups model makes it possible to di-
vide subjects who behave similarly into groups, without
assuming an upper bound on the number of groups. This
model is sufficiently flexible to capture the heterogeneous
structure produced by different subjects pursuing differ-
ent strategies, allows the number of groups to grow nat-
urally as we observe more data, and avoids the complex
computations often required for determining the dimen-
sionality of an individual differences model.

Modeling Individual Differences
In those cases of cognitive modeling that recognize indi-
vidual differences, it is usually assumed that each subject
behaves in accordance with a different parameterization,
θ, of a single model, and that model is evaluated against
the data from each subject separately (e.g., Ashby, Mad-
dox & Lee, 1994; Nosofsky, 1986). Although this avoids
the problem of corrupting the underlying pattern of the

data, it also foregoes the potential benefits of averag-
ing, and guarantees that models are fit to all of the
noise in the data. Clearly, individual subject analysis
increases the risk of overfitting, and hence reduces the
ability to make accurate predictions or to generalize to
new contexts. As a result, a number of authors have
considered more economical ways of expressing individ-
ual differences, which seek to describe the ways in which
people are the same as well as the ways in which they
are different (e.g., Peruggia, Van Zandt & Chen, 2002;
Rouder, Sun, Speckman, Lu & Zhou, in press; Steyvers,
Tenenbaum, Wagenmakers & Blum, 2003; Webb & Lee,
2004).

Two dominant approaches have emerged in the litera-
ture on modeling individual differences. In the stochas-
tic parameters model (e.g., Peruggia et al., 2002; Rouder
et al., in press), every participant is assumed to have a
unique parameter value θ that is randomly sampled from
a parametric distribution, as illustrated in Figure 1a. In
contrast, the groups model assumes that people fall into
one of a number of different clusters. Within a group,
people are assumed to behave in essentially the same
way, but each group is qualitatively different. Under
this approach to individual differences modeling (e.g.,
Lee & Webb, in press; Steyvers et al., 2003; Webb &
Lee, 2004), the goal is to partition subjects into a num-
ber of groups and associate each group with a parameter
set θ, as illustrated by the parameter distribution shown
in Figure 1b.

Hierarchical Bayesian Models
The assumptions underlying these two approaches to
modeling individual differences can be understood by
viewing both as hierarchical Bayesian models (e.g., Lind-
ley & Smith, 1972). If data arise from a parametric dis-
tribution x ∼ F (· | θ) described by some cognitive model,
then there is assumed to exist a higher-order process
G(· |φ) that generates the values of θ. A two level hier-
archical model with parameters φ is written,

θ |φ ∼ G(· |φ)
x | θ ∼ F (· | θ).

To apply Bayesian inference to such a model, we also
need to define a prior on φ. We will assume that φ ∼ π(·)
for an appropriate distribution π(·).

In the stochastic parameters model G(· |φ) is usually
a tractable distribution such as a Gaussian, with φ corre-
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Figure 1: Parameter distributions associated with stochastic
parameters approach to individual differences (panel a), the
original groups approach (panel b), and the infinite groups
approach (panel c).

sponding to the parameters of that distribution. In the
groups model G(· |φ) is a weighted collection of k point
masses, as depicted in Figure 1b. That is,

G(· |w, ξ) =
k∑

j=1

wjδ(ξj), (1)

where δ(ξj) denotes a point mass located at θ = ξj and
where

∑k
j=1 wj = 1. In the groups model, φ corresponds

to the parameters (w, ξ).
This perspective reveals some of the strengths and

weaknesses of these two models. Assuming that θ fol-
lows a parametric distribution, as in the stochastic pa-
rameters model, simplifies the problem of fitting indi-
vidual differences models to data, but places strong con-
straints on the kind of variation that can manifest across
subjects. A particularly severe problem arises when we
specify a unimodal distribution to capture individual dif-
ferences that are inherently multimodal. In this case the
model cannot capture the most important aspect of the
variation between people.

Unlike the stochastic parameters approach, the pa-
rameter distributions postulated by group models natu-
rally account for multimodality in individual differences.
By postulating two groups, for instance, we arrive at a
bimodal distribution. However, there is a lack of flexi-
bility in parameter distributions consisting only of a few
point masses. Moreover, a computational problem faced
by the groups model is the difficulty in choosing the num-
ber of groups. This is typically treated as a model selec-
tion problem, addressed by evaluating a series of models
which assume different numbers of groups. Such a strat-
egy is time-consuming, and makes the false assumption
that there really is a fixed number of groups, with fu-
ture subjects belonging to the same set of groups. In
the remainder of the paper we will explore a model that
combines the strengths of these two approaches, having
the flexibility of the groups model, but a simple inference
algorithm.

The Infinite Groups Model
In the infinite groups model, we adopt a distribution on
θ that is more flexible than the parametric distribution

assumed by the stochastic parameters model, but still
allows efficient inference. We assume that subjects are
drawn from an infinite number of groups, taking G(· |φ)
to be a weighted combination of an infinite number of
point masses, as in Figure 1c. That is,

G(· |w, ξ) =
∞∑

j=1

wjδ(ξj). (2)

While we assume that the number of groups is un-
bounded, any finite set of subjects will contain represen-
tatives from a finite subset of these groups. By avoiding
setting an upper bound on the number of groups, we no
longer need to perform explicit model selection to iden-
tify the number of groups. This model has an inherent
psychological plausibility: people can vary in any num-
ber of ways, only some of which will be observed in a fi-
nite sample. With infinitely many groups, there is always
the possibility that a new subject can display a pattern of
behavior that has never been seen before. Moreover, the
approach requires us to make our assumptions explicit,
in the form of a well-defined prior distribution over the
number of observed groups. In contrast, in most finite-
order model selection scenarios these assumptions are
usually swept up in an implicit and often inappropriate
uniform prior over model order (for a notable exception,
see Courville, Daw, Gordon & Touretzky, 2004).

In order to apply Bayesian inference in the hierarchical
model defined by Equation 2, we need to define a prior
π(·) on the parameters of G, in this case w and ξ. In a
finite groups model with k groups (i.e., Equation 1), a
standard prior is

ξ ∼ G0(·)
w |α, k ∼ Dirichlet(α/k, . . . , α/k). (3)

In this prior, the locations of the k point masses ξj are
sampled from the base distribution denoted G0(·). The
Dirichlet distribution over w gives us a prior over the
different ways in which k groups could be weighted, in
which p(w |α, k) ∝

∏k
j=1 w

(α/k)−1
j . Specifying the base

distribution, G0 and the dispersion parameter of the
Dirichlet distribution, α, defines a prior over distribu-
tions G(·) for any finite groups model.

If we take the limit of the prior π(·) defined by Equa-
tion 3 as k → ∞, we obtain the distribution known as
the Dirichlet process (Ferguson, 1973). This distribution
takes its name from the fact that is very much like an in-
finite dimensional Dirichlet distribution (see Schervish,
1995, pp. 52-60; Ghosh & Ramamoorthi, 2003). The
Dirichlet process provides a prior for infinite models,
and inference in models using this prior is generally
straightforward. If the distribution G(·) is sampled from
a Dirichlet process, we write G |G0, α ∼ DP (· |G0, α),
so the infinite groups model can be written

G |G0, α ∼ DP (· |G0, α)
θ |G ∼ G(·)
x | θ ∼ F (· | θ),

where α is the dispersion parameter (setting the prior
on w) and G0(·) is the base distribution on ξ. In this



model, the base distribution G0(·) represents our prior
beliefs about the kinds of parameter values θ that are
likely to capture human performance in a particular task,
while the dispersion parameter α represents the amount
of variation that we expect to see in a finite sample. If
α is low, then most people will be expected to behave
similarly to one another, and the distribution G(·) will
concentrate most of its mass on a few points. However,
if α is large, then people will be expected to be very
different to one another, and G(·) will spread its mass
over a large number of points.

The Dirichlet process defines a distribution over the
assignment of subjects to groups. Since wj gives the
probability that the ith observation belongs to the jth
group, it is convenient to introduce the group member-
ship variable gi, such that p(gi = j) = wj. Given the
group assignments of i − 1 subjects, it is straightfor-
ward to compute the probability distribution over gi

given g−i = {g1, . . . , gi−1}. In a finite groups model
with the prior given in Equation 3, we can integrate over
w1, . . . , wk, and obtain

p(gi = j | g−i, α, k) = (nj + α/k)/(i − 1 + α),

where nj denotes the number of elements in g−i that are
equal to j. If we let k → ∞, the limiting probabilities
are

p(gi = j | g−i, α) ∝
{ nj

i−1+α if j ≤ k−i
α

i−1+α
otherwise,

where k−i denotes the number of distinct groups present
in g−i. This gives the appropriate conditional probabil-
ity under the Dirichlet process (Neal, 2000).

Through the distribution over group assignments, the
Dirichlet process induces a prior p(k |α, n) over the num-
ber of unique groups k that will manifest among n sub-
jects. Antoniak (1974) shows that p(k |α, n) ∝ znkαk,
where znk is an unsigned Stirling number of the first
kind (see Abramowitz & Stegun, 1972). He also observes
that the expected number of components sampled from
a Dirichlet process is approximately given by,

E[k |α, n] ≈ α ln
(

n + α

α

)
.

Thus, although k → ∞ with probability 1 as n → ∞,
the number of components increases approximately log-
arithmically with the number of observations.

In most contexts the dispersion α is unknown, so we
specify a prior distribution p(α), allowing us to learn α
from data. The posterior distribution over α is given by

p(α | k, n) ∝ B(α, n)αkp(α),

where B(α, n) is a standard Beta function. A com-
mon choice for p(α) is the Gamma distribution α | a, b ∼
Gamma(· | a, b) in which p(α) ∝ αa−1e−bα (Escobar &
West, 1995). If so,

p(α | k, n) ∝ αa+k−1e−bαB(α, n). (4)
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Figure 2: Posterior distributions over α given k and n. In
the top row k = 8 and n = 10, while in the bottom row
k = 79 and n = 1000. In both cases, the expected value of α
is approximately 20. On the left hand side, the Gamma priors
over α have the same scale parameter but vary in shape. On
the right hand side,the priors have the same shape parameter
but vary in scale.

In particular, Escobar and West (1995) note that if we
let a → 0 and b → 0 we obtain a so-called scale-invariant
prior in which p(α) ∝ 1/α (see Jeffreys, 1961). Posterior
distributions for α are shown in Figure 2. The influence
of the prior is shown by varying both the shape (left
hand side) and the scale (right hand side) parameters.

Modeling Discrete Data

We now turn to the derivation and application of the
infinite groups model to situations in which participants
provide discrete data. Suppose that n people perform
some task in which m possible responses can be made
on each trial, and each person experiences s trials. We
can describe the ith participant’s responses with the vec-
tor xi = (xi1, . . . , xim), where xih counts the number
of times that they made the hth response. Using the
Dirichlet process, we assume that each person belongs
to one of an infinite number of groups, and that the pa-
rameters for the jth group describe a multinomial rate
θj = (θj1, . . . , θjm) such that θjh denotes the probability
with which a member of group j makes response h on
any given trial. Since this likelihood function is multino-
mial, it is convenient to assume that the base distribution
G0(·) is a Dirichlet distribution with symmetric param-
eter β. We will assume that the dispersion parameter
α is unknown, and follows a Gamma distribution with
parameters a and b. The model is illustrated in Figure 3.

This model lends itself to inference by Gibbs sampling,
a Monte Carlo method for sampling from the posterior
distribution over the variables in a Bayesian model (see
Neal, 2000; Gilks, Richardson & Spiegelhalter, 1995). In



p(gi = j | g−i, α, x) ∝





Γ(mβ + q−i,j)∏m
h=1 Γ(β + q−i,j,h)

∏m
h=1 Γ(β + q·,j,h)
Γ(mβ + q·,j)

n−i,j

n − 1 + α
if j ≤ k−i

Γ(mβ)∏m
h=1 Γ(β)

∏m
h=1 Γ(β + q·,j,h)
Γ(mβ + q·,j)

α

n − 1 + α
otherwise

(5)
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Figure 3: Dependencies in the infinite groups model for dis-
crete data as it is used here. Shaded circles denote observed
variables, white circles are latent variables, rounded squares
denote known parameter values, and plates indicate a set of
independent replications of the processes shown inside them.

Gibbs sampling, we fix all assignments except one and
sample that assignment from the conditional posterior
p(gi | g−i, x), a procedure which eventually converges to
samples from the complete posterior p(g |x). Since the
Dirichlet is conjugate to the multinomial, it is straight-
forward to show that the conditional posterior distribu-
tion over the ith group assignment is given by Equation
5. In this expression, q−i,j,h denotes the number of times
that a participant (not including the ith) currently as-
signed to group j made response h, and q−i,j denotes
the total number of responses made by these partici-
pants. The terms q·,j,h and q·,j are defined similarly,
except that the ith participant’s data are not excluded.

For the dispersion parameter, we treat the prior over
α as a Gamma(· | a, b) distribution. Using Antoniak’s
(1974) results, the conditional posterior over α depends
only on the number of observed groups k, not the spe-
cific assignments. Thus, by expanding the Beta function
B(α, n) in Equation 4 we observe that

p(α | g, x) ∝ αa+k−1e−bα

∫ 1

0

ηα−1(1 − η)n−1dη.

Since this conditional distribution is difficult to directly
sample from, it is convenient to employ a “data augmen-
tation”, in which we view p(α | g, x) as the marginaliza-
tion over η of the joint distribution,

p(α, η | k, n) ∝ αa+k−1e−bαηα−1(1 − η)n−1.

Using this joint distribution, we can find p(α | η, k, n) and
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Figure 4: Simulations in which people provide s = 50 obser-
vations each, and m = 20 response options are possible on
every trial. In the upper panels there are n = 20 people and
k = 5 groups. In the lower panels there are n = 200 people
and k = 50 groups.

p(η |α, k, n). These distributions are simply,

α | η, k, n ∼ Gamma(· | a + k − 1, b− lnη)
η |α, k, n ∼ Beta(· |α, n). (6)

Equations 5 and 6 define the Gibbs sampler.
As a simple illustration, we created random data sets

with n people and s discrete observations per person,
where each observation denotes a choice of one of m re-
sponse options. The sample was divided into k groups,
and each group associated with a multinomial rate θ
sampled from a uniform distribution. People were al-
located randomly to groups using a uniform distribu-
tion, subject to the constraint that each group contained
at least one member. Note that this allocation scheme
means that the Dirichlet process model is misspecified
(which is as it should be in any worthwhile simulation).
Results are shown in Figure 4. The posterior distribu-
tions over α are shown on the left and the posterior dis-
tributions over k are shown on the right. On the whole,
the distributions converge on sensible answers, though in
both cases they reflect a fair degree of uncertainty about
the number of groups present in the sample.



Figure 5: The category densities used in McKinley and
Nosofsky’s (1995) experiment 2. Category A (dark grey) is a
mixture of four Gaussians, while category B (light grey) is a
mixture of two Gaussians.
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Figure 6: Posterior over k as a function of n. The area of
the squares is proportional to the posterior probability of k
given n.

Individual Differences in Categorization
We now present an application of the infinite groups
model. An elegant category learning experiment by
McKinley and Nosofsky (1995) investigated 10 people’s1
ability to discriminate between the two probabilistic cat-
egories shown in Figure 5. The stimuli were circles with a
radial line running through them, and so the two dimen-
sions depicted in Figure 5 correspond to the radius of the
circle, and the angle of the line. Category A (dark grey)
is a mixture of four Gaussian distributions, while cate-
gory B is a mixture of two Gaussians. On any given trial
in the experiment, a stimulus was sampled from one of
the six Gaussian distributions. Participants were asked
whether it came from category A or category B, and
provided feedback as to the accuracy of their response.
Because the categories are inherently probabilistic and
the category densities are quite complicated, this task is
very difficult, and shows evidence of differences not only
during the course of category learning, but in the final
structures learned.

In order to learn about the variation between partici-
pants, we applied the infinite groups model to the data

1McKinley and Nosofsky (1995) actually report data for
11 participants. However, the data currently available to us
include only 10 of these.
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Figure 7: Posterior distributions over α and k when the
infinite groups model is applied to McKinley and Nosofsky’s
(1995) experiment 2.

Table 1: Percentage of occasions on which participants in
McKinley and Nosofsky’s (1995) experiment 2 appear in the
same group.

2 3 4 5 6 7 8 9 10
1 37 0 73 0 58 68 36 43 55
2 22 34 1 68 56 3 5 67
3 1 57 1 0 0 0 2
4 0 44 52 53 60 43
5 0 0 0 0 0
6 86 4 7 93
7 11 16 86
8 91 4
9 7

from this experiment. Since each trial is labeled by the
Gaussian distribution (i.e., A1, A2, A3, A4, B1, or B2)
from which it was sampled, a natural way of viewing each
participant’s data is in terms of the probability of mak-
ing the correct response to stimuli sampled from each of
the six components. For each of the 10 participants we
used only the last 300 trials of the experiment, in order
to look for differences in the learned category structure,
rather than differences in the learning process itself. In
order to conduct a Bayesian analysis, we set principled
a priori parameter values rather than fitting the model
to the data. Since we know that both responses (i.e.,
“A” and “B”) are possible but are otherwise “ignorant”,
the natural choice for the base distribution is the uni-
form distribution β = 1 (see Jaynes, 2003, pp. 382–386),
and since we have no strong beliefs about α we set the
scale-invariant prior (see Jeffreys, 1961) in which a → 0,
b → 0.

To illustrate the manner in which the model grows
with the data, imagine that the 10 participants entered
the lab in order of participant ID. Figure 6 shows how
the posterior distribution over k changes as more partic-
ipants are observed. Initially there is evidence for only a
single group, but once the 10th participant is observed,
there is strong evidence for about 3 or 4 groups, as il-
lustrated in Figure 7. A more detailed description of
the relationships between participants is presented in Ta-
ble 1, which shows the (marginal) probability that any
two participants belong to the same group, and reveals
a rich pattern of similarities and differences. A subset
of this interaction is illustrated in Figure 8, which plots
the last 300 stimuli observed by participants 5, 7, 8 and



participant 5 participant 7

participant 8 participant 9

Figure 8: Last 300 trials for participants 5, 7, 8 and 9 in
McKinley and Nosofsky’s (1995) experiment 2. Black dots
denote “A” responses, and grey dots denote “B” responses.

9, and the decisions that they made. Broadly speaking,
participant 5 is sensitive only to variation along the x-
axis, participant 7 is sensitive only to variation on the
y-axis, while participants 8 and 9 do a good job of learn-
ing the category structures on both dimensions. As a
result, participants 5 and 7 rarely appear in the same
group as one another or with participants 8 or 9 (with
probabilities ranging from 0% to 7%), while participants
8 and 9 almost always (91%) co-occur.

General Discussion

The individual differences framework outlined in this pa-
per provides a natural method of representing the sim-
ilarities and differences between people. Moreover the
groups that are seen in any particular sample are not
viewed as a fixed structure that fully explains the vari-
ation between individuals, but rather as representatives
of a latent, arbitrarily rich structure. This means that,
had we subsequently observed another 100 participants
in the McKinley and Nososky (1995) experiment, the
number and variety of observed groups would grow as
more detail about individual differences are revealed.

The approach can be extended in a number of ways.
Firstly, in many situations we may want continuous mul-
timodal parameter distributions. An “infinite stoch-
astic groups” model would convolve each of the point
masses in the Dirichlet process with a continous distri-
bution, giving an infinite model that subsumes both the
groups model and the stochastic parameters model. A
second direction in which the framework could be ex-
tended would be to allow structured relationships be-
tween groups. Finally, we may wish to consider an “id-
iosyncratic strategies model”, in which it is assumed that
all participants draw on a common set of strategies but

combine them in an unique way.
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