
Coverage Measurement for Software Application Level Verification using
Symbolic Trajectory Evaluation Techniques

Adriel Cheng†* Atanas Parashkevov* Cheng-Chew Lim†

Abstract
Design verification of a systems-on-a-chip is a

bottleneck for hardware design projects. A new
solution is a design verification methodology that
applies coverage driven verification at the embedded
software application level. This methodology currently
lacks an appropriate coverage measurement technique.
This paper proposes a new coverage model for the
software application level. Using this coverage model,
a novel technique to represent and measure coverage
is described. This technique uses ideas such as control
graph structures and checking algorithms to estimate
the completeness of software application verification.

1. Introduction

Verifying the correctness of systems-on-a-chip
(SoC) designs has become increasingly difficult and is
a significant bottleneck in modern design flows. This
difficulty is due to faster and highly complex SoCs.
The increased complexity and functionality means
design bugs are now even harder to find and detect.
Therefore, given that exhaustive verification of a SoC
design is not practical, design verification requires a
structured and efficient technique.

Design verification involves functionally verifying
the behaviour of a SoC to ensure it operates according
to the design specifications. Currently, design
verification is mainly undertaken at the assembly
language or pin level, using assembler instructions test
programs or input stimulus vectors as test cases [1,9].

A new design verification methodology is to apply
coverage driven verification (CDV) at the embedded
software application level. This methodology is at a
higher level of abstraction from current methods, and is
an ongoing development at Motorola, Australia.

The underlying aim of CDV is to gain maximum
coverage (hence maximise the probability of detecting

errors) using minimal test resources. CDV involves
measuring the coverage of a test suite. The coverage
measured is analysed and provides useful information
that guides further test generation [2,4]. Coverage
information helps generate new tests that target
previously unverified or critical portions of the design.
Coverage also indicates the quality and completeness
of verification - this helps design managers decide
when to stop verifying and approve tape-out.

One important aspect in this new software
application level verification methodology (SALVEM)
[5] is coverage. Coverage is essential for driving CDV,
but no suitable or effective method has been proposed.

The main contributions of the paper are twofold: (1)
a method to apply functional attribute based coverage
that is suitable for SALVEM, and (2) a novel technique
to represent and measure functional attribute coverage
using ideas from symbolic trajectory evaluation (STE).
An extended version of this paper is available in [3].

The remainder of the paper is organized as follows.
Section 2 introduces SALVEM and STE. Section 3
proposes the attribute coverage model and defines the
coverage metric. Section 4 examines the use of STE
control graphs to represent the coverage model.
Section 5 introduces the checking algorithm that
checks and measures attribute coverage. Section 6
presents a simple example of the proposed coverage
representation. Section 7 concludes the paper.

2. Background

SALVEM uses software application test cases to
verify functionality exercised by typical applications of
the SoC when it is used in customers’ end products.
The test cases mimic the different types of uses of the
SoC under its intended operating environment. Once
these real-life functionalities are verified, more focused
and directed verification may be performed to target
any remaining corner cases.

†School of Electrical and Electronic Engineering
The University of Adelaide

Adelaide, SA, Australia 5005
{acheng,cclim}@eleceng.adelaide.edu.au

*Motorola EDA/IC
2 Second Avenue, Mawson Lakes

Adelaide, SA, Australia 5095
{Adriel.Cheng,Atanas.Parashkevov}@motorola.com

Proceedings of the Second IEEE International Workshop on Electronic Design, Test and Applications (DELTA’04)
0-7695-2081-2/04 $ 20.00 © 2004 IEEE

There are two essential elements in SALVEM: (1)
the test generation process that creates the software
application tests, and (2) coverage measurement.
Currently, one of the test generation methods is to use
a snippet based technique developed at Motorola.

Snippets are small, modular pieces of software
fragments that perform a specific task using the
peripherals and processor units on a SoC. Snippets
contain software code statements such as peripheral
driver application programming interface (API)
function calls, operating system (OS) routines, and
other simple code statements. Test generation
algorithms automatically compose these snippets into
application tests. Various combinations of snippets can
be used to create different software application tests.
The composition of snippets, API libraries and OS are
compiled, linked and loaded as a test image in the SoC
for simulation.

STE [7] is a formal verification technique using
symbolic simulation to verify assertions that express
properties of circuit behaviours.

Assertions are in the form of [‘antecedents’ leads-to
‘consequents’]. The assertion implies for every
sequence of circuit states that satisfy the antecedents,
the consequent should be satisfied too. For more
complex assertions, Jain [8] uses control graphs, and
applies checking algorithms whilst traversing the graph
to verify the assertion.

Ideas from STE are adapted for use in two areas, (1)
coverage model representation, and (2) coverage
combinations realization check and measurement.

3. Coverage model and metric

Current coverage methods [10,11] are not suitable
for SALVEM because they were developed for low
level conventional simulation technique. Instead, a
coverage measure that is more related to the
functionality and application domain of the SoC is
desired.

Our coverage model is based on the functional
coverage methods from IBM Haifa Labs [4,6]. Our
coverage model relies on the identification of coverage
attributes and coverage elements. Attributes are
variables in the design that influence how the SoC
operates. Coverage elements decompose the entire
coverage space into manageable subsets. Each
coverage element is associated with a set of attributes,
and each attribute has a defined domain set of
allowable values. A particular combination of attribute
values exercises an instance of the coverage element
(and SoC) in a particular manner. To attain high
coverability, all legal combinations of attribute values
must be exercised for each coverage element.

In SALVEM, coverage elements are peripherals
(and processor units) of the SoC. For each peripheral,
coverage attributes are extracted from configurable
registers. For example, a communications SoC uses the
Ethernet or Direct Memory Access (DMA) controller
as its coverage elements. The attributes are either entire
configurable registers or sub-divided fields of a register
that control and react to peripheral operations (eg.
DMA transmit destination address register, or data size
sub-field of a control register). During testing,
configurable register values indicate how a peripheral
was initialised, and the results or status of various
functions carried out. The range and combinations of
register (attribute) values is measured to estimate what
functionalities were invoked and how widespread the
application domain was tested.

The coverage metric of a peripheral, is defined as
the number of exercised attribute combinations over
the total number of realisable combinations. Formally,
the quantitative coverage metric is defined as

%100×
− ill

ex

CMBCMB

CMB

where |CMBex|, |CMBill|, and |CMB| are the number of
exercised combinations, illegal combinations, and total
combinations, respectively.

Each attribute ai is associated with a domain set Vi

of possible concrete values the attribute may hold, with
Vi ∈ {0,…,vmax} where vmax = (2(number bits of ai) – 1).
Therefore, the number of concrete values ai can

hold is |Vi|, and the total number of combinations is

∏
=

=
n

i

iVCMB
1

where n is the number of attributes.

Initially, a coverage metric figure is calculated for
each peripheral and its set of attributes. The aim is to
maximise the coverage of each peripheral first, before
considering the cross-product combinations of multiple
peripherals, and eventually the entire SoC. Given the
potential size of some coverage models, this enables
the coverage to be strategically enhanced in a
structured, bottom up, divide and conquer approach.

A coverage combination specifies the set of values
currently assigned to coverage attributes at a particular
time step. A coverage combination is defined as a tuple
of n elements, 〈a1 , … , an-1 , an〉.

Attributes in a coverage combination are
represented using the ternary {0,1,X} set, where X is
the unknown value. The domain of attribute values is

Di = Vi ∪ {Xb} where Xb assign X to each bit of
an attribute and b is the number of bits in the attribute
(i.e. the attribute value is irrelevant and may hold any
allowable concrete value regardless). The set of all
coverage combinations is defined as,

CMB = {〈 a1 , … , an-1 , an〉 : ai ∈ Di and i = 1...n}.

Proceedings of the Second IEEE International Workshop on Electronic Design, Test and Applications (DELTA’04)
0-7695-2081-2/04 $ 20.00 © 2004 IEEE

4. Coverage model representation

To represent our coverage model, a new technique
using modified STE control graphs is proposed.
Control graphs are used to describe all possible
attribute combinations realizable during testing. The
allowable combinations defined by the coverage model
are encapsulated in a compact and abstract form using
these graphs. During verification, control graph
coverage information assists in coverage measurement.

Control graphs are extracted for each snippet from a
snippets database. These snippet control graphs
compose the overall application test case control graph.
Each test case control graph node encapsulates a lower
level snippet control graph, resulting in a hierarchical
graph structure (Figure 3).

Throughout test execution, certain configurable
registers are read or written at different times,
corresponding to operations performed by snippets. For
example, during DMA data transfers, some status
registers may be repeatedly read to check for
successful transactions. The control graph only need to
specify the attributes accessed when describing the
realisable sequence of combinations.

Coverage attribute information is coupled to each
snippet control graph node in terms of antecedent or
consequent node formulas, called attribute
specification formulas (ASF). ASFs describe the
minimal sequence of coverage attribute values that
must be realised, and identify the range of
combinations coverable at each node.

The use of control graphs was motivated by
similarities between STE circuit states and coverage
attribute combinations. An attribute combination
realized by a peripheral is like a circuit state exercised
by the circuit. As tests are executed, the coverage
attributes advances from one combination to the next.

In STE, antecedents set up desired circuit states that
correspond to some function of the circuit.
Subsequently, at the next node, consequents specify the
expected circuit response to this function. This set up -
check response pattern is made possible by specifying
inputs and storage elements in antecedents, and outputs
and storage elements in consequents.

In the coverage domain, a snippet set up – check
response pattern is also set up (Figure 3). This enables
modified STE algorithms to check for realisation of
desired and expected coverage combinations.
Antecedents specify write and read-write registers,
whilst the consequent denote read and read-write
registers. Configurable registers containing write-only,
read-only or read-write sub-fields are sub-divided into
separate attributes in the coverage combinations.

4.1 Formal definition

The control graph gs of a snippet s is formally
defined as a tuple of the form,

gs = [Ns, Es, sts, eds, αant, αcon], where
• Ns is the set of nodes in the control graph;
• Es is the set of unidirectional and unlabelled edges;

(Es = {(nsrc, ndest) : nsrc ∈ Ns and ndest ∈ Ns });
• sts is the start node and eds is the end node;

(sts ∈ Ns, eds ∈ Ns, sts has no incoming edges and
eds has no outgoing edges.);

• αant, αcon are formulation functions that associates
attribute data with a node, defined αant|con:Ns→ASF.

The start and end nodes specify where graph traversal
for coverage measurement begins and terminates.
Except sts and eds, all other nodes may have any
number of incoming and outgoing edges, allowing
divergent and cyclic graph behaviours to describe
various snippet operations. The formulation functions
analyses the snippets to label each node with its
required ASFs.

A snippet control graph node (Figure 1) is defined
as a tuple

Ns = [id, ts, IN, OUT, ant, con, covset], where
• id is an unique identifier for the snippet node;
• ts is the time step associated with the node;

(It specifies when ant, con, and covset applies.);
• IN, OUT is the set of incoming and outgoing edges

of the node, respectively; (IN ⊆ Es and OUT ⊆ Es);
• ant, con are the ASFs of the antecedent and

consequent node formulas, respectively;
(ant and con specify the desired write, expected
read, and read-write registers values.);

• covset is a coverage set defined later in this section.

Figure 1. Snippet graph node

ASFs describe attribute information required at each
snippet graph node, and are defined recursively as,
• simple predicate: ASF = (ai is vi)

(An attribute ai is required to hold the value vi.)
• conjunction: ASF = f1 ∧ f2

(f1 and f2 are ASFs that hold at the current node.)
The ASF constructs ensure only the desired and

expected attributes that need to be checked are
specified (i.e. the minimal set of attributes that must be
realised to ensure consistency with snippet behaviour).

ASFs can be solved by many coverage
combinations. A function δ, which determine the set of

ts

Antecedent Node Formula
Consequent Node Formula

coverage set: 〈…XbXbviX
bXbvi+3X

b…〉

in ∈ IN out ∈ OUT
id

Proceedings of the Second IEEE International Workshop on Electronic Design, Test and Applications (DELTA’04)
0-7695-2081-2/04 $ 20.00 © 2004 IEEE

satisfying coverage combinations, is defined as
follows.

δ:ASF→COVSET
• simple predicate: δ(ai is vi) = 〈… XbXb,vi,X

bXb…〉

• conjunction: δ(f1 ∧ f2) = δ(f1) lub δ(f2)
(where lub is the least upper bound operator)

δ constrains only the attributes specified in the
simple predicates, the remaining attributes are denoted
Xb. A coverage combination containing X’s is abstract
and deemed a coverage set. A coverage set
encapsulates all other possible exact coverage
combinations if these X’s were replaced with any
combinations of their concrete values in Vi. AFSs are
translated to equivalent coverage sets so checking
algorithms can check for and measure coverage
combinations. A coverage set is formally defined as,

covset = 〈a1 , … , an-1 , an〉

where ai ∈ Di and ∃ai such that ai = Xb

The coverage set at each graph node, n is obtained
by evaluating, covset = δ(αant(n)) lub δ(αcon(n))

The coverage set associated with each node
restricts and narrows down the realizable attribute
combinations. Each coverage set defines a searchable
space of exact combinations that directs where the
verification effort should focus on. Hence, the test
generator can target combinations that have a greater
likelihood of coverability (i.e. realisable and not
illegal). Any wasted effort or resources from randomly
targeting combinations that turn out to be illegal is
prevented.

The aim is to exercise as many coverage set
combinations by making full use of the existing
snippets database before creating further snippets and
test cases. Many different test variants generated, will
adhere to the ASFs but exercise different combinations
from the coverage set space each time (i.e. different
combinations of values for X’s). This increases
coverage, exercises previously unverified scenarios,
and enables more robust testing.

5. Coverage check and measure algorithm

The coverage algorithm performs two main
functions, (1) it determines whether the control graph
coverage sets are realisable, and (2) it measures the
exercised combinations to calculate the quantitative
coverage metric.

In the first stage, the algorithm uses modified STE
checking techniques to check coverage. If a coverage
set is deemed realisable according to the exercised
combination, coverage measurement of the
combination proceeds. If a coverage set is unrealisable,
this implies uncovered attribute combinations.
Efficient and accurate comparison is achieved by

examining only the required concrete attributes (non-
X’s) in the coverage set.

The checking algorithm traverses the graph in a
depth first manner. The attributes specified by
antecedent and consequent node formulas are checked
using compatibility (~) and reduced partial ordered (⊆)
operators, respectively. If neither the antecedent nor
consequent is satisfied, the combinations are added to
the unrealisable set for further investigation.

The coverage measurement stage increments the
coverage metric if the exercised coverage combination
was not previously covered. Once a combination is
exercised, it is stored in a database for comparison with
future combinations to prevent duplicate coverage
measurement. Efficient storage (using coverage sets)
and comparison (⊆) is achieved as a single exercised
combination is checked against many combinations in
the database simultaneously.

The coverage checking approach uncovers
unrealised combinations within the coverage space
covered by the test cases. These combinations are
analysed so existing or new test cases can be modified
to realise these combinations.

6. Simple example

Consider a simple SoC containing a main processor
and two peripherals – a DMA controller and a memory
module. An application of this SoC is data transfers
between any of the three SoC modules. For example,
data transfers between memory and an external IO
device via the DMA, or data block copies from the
processor on-chip cache to memory (and vice versa).
These common data transfer applications exercise a
range of functionalities such as DMA device set up,
DMA transfers in burst mode, or memory reads/writes.

The coverage model (Table 1) covers these
application functionalities by selectively choosing
suitable configurable registers and registers sub-fields
to be coverage attributes. These attributes are separated
into read, write, or read-write categories so they may
be specified in antecedent or consequent nodes.

Figure 2. Example snippet

DMA set up snippet:
1. Enable DMA. Set(ct_dma_enable is 1)
2. Set up the source and target address, and

request a channel. Set(sr is 300),
Set(tg is B00), Set(ct_ch_req is 1)

3. Set the number of bytes to transfer, and
ensure the channel is activated.
Set(dc_count is F), Check(st_ch_act is 1)

4. Make sure the DMA is ready to perform
transfers. Check(st_dma_ready is 1)

set up
DMA

check
DMA

is ready

Proceedings of the Second IEEE International Workshop on Electronic Design, Test and Applications (DELTA’04)
0-7695-2081-2/04 $ 20.00 © 2004 IEEE

Table 1. Example coverage model

Element
Configurable

Registers
Attributes

(Regs or Reg Sub-fields) Domain Values Coverage Combination

Source (sr) RW sr0-31 0-(232-1) - any valid source address
Target (tg) RW tg0-31 0-(232-1) - any valid target address

ct_dma_enable0 0- disable, 1-enable
ct_ch_req1 1- request channel
ct_bw2-5 (bandwidth) 0- 64byte bw, 1-128b bw, etc
ct_burst6 0- normal, 1-burst mode
ct_channel7-10 0- ch. 0, 1- ch. 1, etc

Control (ct) R

etc
W dc_packet_size0-3 0- 1byte, 1- 2byte, 2- 4byte, etc

dc_count4-19 0-(216-1) - count of data transfer
Data Control

(dc) RW
etc

st_transfer_status0-1 0- success, 1-error, etc
st_error_type2-3 0- no error, 1- erroneous data,

2- incomplete transaction, etc
R

st_ch_act4-5 0- channel deactivated, 1- activated
st_dma_ready6 1- ready for transmit, etc

DMA

Status (st)

RW
etc

〈sr, tg, ct_dma_enable,
ct_ch_req, ct_bw, ct_burst,

ct_channel,
dc_packet_size, dc_count,

st_transfer_status,
st_error_type, st_ch_act,

st_dma_ready〉

st_sup_usr0 0- user mode, 1- supervisor
st_ext_int1 0- enable, 1- disable (ext interrupts)
st_reset2 1- soft reset

Status (st) RW

etc
ca_en0 0- cache disable, 1- enable
ca_write1-2 0- write-back, 1- write-thru, etc

Processor

Cache (ca) R
etc

〈st_sup_usr, st_ext_int,
st_reset,…, ca_en,

ca_write,…etc〉

Source (sr) RW sr0-31 0-(232-1)- any valid source address
Target (tg) RW tg0-31 0-(232-1)- any valid target address

ct_size0-3 0- 1byte, 1- 2b, 3- 4b, 4- 8b, etc
ct_read_write4 0- read, 1- write

Memory
Control (ct) W

etc

〈st, tg, ct_size,
ct_read_write,…etc〉

Figure 3. Test case and snippet control graphs

(ct_dma_enable is 1)

〈XbXb,1,XbXbXbXbXbXbXbXbXbXb〉

(sr is 300) ∧ (tg is B00)

∧ (ct_ch_req is 1)

〈300,B00,Xb,1,XbXbXbXbXbXbXbXbXb 〉

(dc_count is F)

(st_ch_act is 1)

〈XbXbXbXbXbXbXbXb,F,XbXb,1,Xb〉

(st_dma_ready is 1)

〈XbXbXbXbXbXbXbXbXbXbXbXb,1〉

DMA set up control graph

Test case control graph

1
s1

2
s2

3
s3

4
s4 edst

st
Processor

initialisation
snippet

DMA
set up

snippet

DMA
transfer
snippet

Memory
set up

snippet

Memory
read

snippet
ed

Proceedings of the Second IEEE International Workshop on Electronic Design, Test and Applications (DELTA’04)
0-7695-2081-2/04 $ 20.00 © 2004 IEEE

Snippets perform small, simple tasks. Some
examples are,
• Processor initialisation snippet – carry out the SoC

software initialisation sequence after reset;
• DMA set up snippet – enable and set up the DMA

to perform data transactions;
• DMA transfer snippet – execute different modes of

transactions between source and target devices.
Snippets are defined in terms of software code [5],

and may be analysed to describe their sequence of
configurable register accesses (Figure 2). These
register accesses enable control graphs to be extracted.

The test case control graph (Figure 3) tests a DMA
transfer and memory read after the SoC is initialised
from reset. The hierarchical control graph is made up
of a number of snippets. The DMA set up graph
(extracted from Figure 2) shows the sequence of
attribute accesses when the DMA is initialised from
reset into a functional transfer ready state.

Exercised coverage combinations must realize both
antecedent and consequent attribute values in the
coverage sets. The DMA set up graph describes a set
up – check response pattern. To initialise the DMA, the
first three nodes set up antecedent attributes that are
written. The last two nodes specify the expected
consequent attribute values to indicate the DMA is
initialised.

The snippet graph nodes specify only required
attribute values that must be satisfied. The DMA set up
graph specifies attributes essential for initialisation
only (eg. enable DMA, initialise data source address,
etc). The remaining attributes are unrestricted.
Additional test variants may execute data transactions
using different combinations of channels, bandwidths,
burst mode, or data transaction sizes. These attributes
are Xb in the coverage sets. Hence, the generated test
variants cover more combinations and verify
functionalities under different scenarios.

7. Conclusion

The paper proposed a new coverage method for the
software application level, based on a functional
attribute coverage model. The coverage model relies on
the realisation of many coverage combinations.
Coverage combinations are combinations of
configurable register (attribute) values that indicate
different tasks performed by the SoC. Using this
coverage model, STE control graphs are adapted to
represent the attribute combinations in an efficient
manner. STE based checking algorithm is also used to
check for, and measure a range of realizable
combinations. The coverage representation and
measurement approach can direct the test generator to
make full use of existing snippets and focus on a

smaller coverage space. Further research will be
conducted to extend the current coverage method to
facilitate a feedback coverage driven test generator.

References

[1] R. Ho, C. Yang, M. Horowitz, and D. Dill,
“Architecture Validation for Processors,” International
Symposium of Computer Architecture, 1995.

[2] G. Nativ, S. Mittermaier, S. Ur, and A. Ziv, “Cost
Evaluation of Coverage Directed Generation for the
IBM Mainframe,” IBM Research Verification
Technology Publications, 2001.

[3] A. Cheng, A. Parashkevov, and C.C. Lim, “Coverage
Measurement for Software Application Level
Verification using Symbolic Trajectory Evaluation
Techniques,” Extended Version, Internal Paper,
http://www.eleceng.adelaide.edu.au/Personal/acheng/st
e/ste.html, November 2003.

[4] S. Fine and A. Ziv, “Coverage Directed Test Generation
for Functional Verification using Bayesian Networks,”
In Proceedings of the 40th Design Automation
Conference, June 2003.

[5] D. Sharman, D. Nutchey, A. Parashkevov, and M.
McGeever, “VeriSoC Requirements Book,” Motorola
EDA/IC Document, 2003.

[6] O. Lachish, E. Marcus, S. Ur, and A. Ziv, “Hole
Analysis for Functional Coverage Data,” In Proceedings
of the 39th Design Automation Conference, June 2002.

[7] C. Seger and R. Bryant, “Formal Verification by
Symbolic Evaluation of Partially-Ordered Trajectories,”
Formal Methods in System Design, Vol. 6, No. 2, pages
147-190, March 1995.

[8] A. Jain, Formal Hardware Verification by Symbolic
Trajectory Evaluation, Ph.D. thesis, School of Electrical
and Computer Engineering, Carnegie Mellon
University, July 1997.

[9] S. Ur and Y. Yadin, “Micro Architecture Coverage
Directed Generation of Test Programs,” In Proceedings
of the 36th Design Automation Conference, June 1999.

[10] F. Fallah, S. Devadas, and K. Keutzer, “OCCOM –
Efficient Computation of Observability-Based Code
Coverage Metrics for Functional Verification,” In IEEE
Transaction on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 20, No. 8, August 2001.

[11] Y. Hoskote, D. Moundanos, and J. Abraham,
“Automatic Extraction of the Control Flow Machine and
Application to Evaluating Coverage of Verification
Vectors,” International Conference on Computer
Design: VLSI in Computers and Processors, 1995.

Proceedings of the Second IEEE International Workshop on Electronic Design, Test and Applications (DELTA’04)
0-7695-2081-2/04 $ 20.00 © 2004 IEEE

