PUBLISHED VERSION

Swann, Christine Anne; Hope, Rory Moulden; Breed, William Godfrey. cDNA nucleotide sequence encoding the ZPC protein of Australian hydromyine rodents: a novel sequence of the putative sperm-combining site within the family Muridae, *Zygote*, 2002; 10 (4):291-299.

Copyright © 2002 Cambridge University Press

PERMISSIONS

http://journals.cambridge.org/action/stream?pageId=4088&level=2#4408

The right to post the definitive version of the contribution as published at Cambridge Journals Online (in PDF or HTML form) in the Institutional Repository of the institution in which they worked at the time the paper was first submitted, or (for appropriate journals) in PubMed Central or UK PubMed Central, no sooner than one year after first publication of the paper in the journal, subject to file availability and provided the posting includes a prominent statement of the full bibliographical details, a copyright notice in the name of the copyright holder (Cambridge University Press or the sponsoring Society, as appropriate), and a link to the online edition of the journal at Cambridge Journals Online. Inclusion of this definitive version after one year in Institutional Repositories outside of the institution in which the contributor worked at the time the paper was first submitted will be subject to the additional permission of Cambridge University Press (not to be unreasonably withheld).

10th December 2010

http://hdl.handle.net/2440/28223

cDNA nucleotide sequence encoding the ZPC protein of Australian hydromyine rodents: a novel sequence of the putative spermcombining site within the family Muridae

Christine A. Swann, Rory M. Hope¹ and William G. Breed²* Departments of Molecular Biosciences and Anatomical Sciences, University of Adelaide, South Australia

Date submitted: 13.2.02. Date accepted: 3.4.02

Summary

This comparative study of the cDNA sequence of the zona pellucida C (ZPC) glycoprotein in murid rodents focuses on the nucleotide and amino acid sequence of the putative sperm-combining site. We ask the question: Has divergence evolved in the nucleotide sequence of ZPC in the murid rodents of Australia? Using RT-PCR and (RACE) PCR, the complete cDNA coding region of ZPC in the Australian hydromyine rodents *Notomys alexis* and *Pseudomys australis*, and a partial cDNA sequence from a third hydromyine rodent, *Hydromys chrysogaster*, has been determined. Comparison between the cDNA sequences of the hydromyine rodents reveals that the level of amino acid sequence identity between *N. alexis* and *P. australis* is 96%, whereas that between the two species of hydromyine rodents and *M. musculus* and *R. norvegicus* is 88% and 87% respectively. Despite being reproductively isolated from each other, the three species of hydromyine rodents have a 100% level of amino acid sequence identity at the putative sperm-combining site. This finding does not support the view that this site is under positive selective pressure. The sequence data obtained in this study may have important conservation implications for the dissemination of immunocontraception directed against *M. musculus* using ZPC antibodies.

Keywords: Immunocontraception, Murid rodents, Species specificity, Zona pellucida

Introduction

An extracellular glycoprotein matrix, the zona pellucida, surrounds mammalian oocytes. This matrix plays a crucial role in both fertilisation and protection of the early conceptus. In the laboratory mouse (*Mus musculus*) a considerable amount of data on the zona pellucida and sperm–zona interactions have been accumulated (for review see Brewis & Wong, 1999; Prasad *et al.*, 2000; Rankin & Dean, 2000; Rankin *et al.*, 2000; Wassarman & Litscher, 2001). These data have provided a theoretical and experimental framework

around which much of our present knowledge of how spermatozoa interact with the zona pellucida has been built.

In the laboratory mouse, the zona pellucida (ZP) consists of three sulfated and glycosylated proteins – ZPA, ZPB and ZPC – that are secreted by the growing oocyte. These three glycoproteins share a common domain, the 'ZP domain', a region of conserved cysteine residues, hydrophobicity and turn-forming residues (Bork & Sander, 1992). It has been proposed that the three glycoproteins assemble into an inter-connecting fibrous protein complex, comprised of repeat units of ZPA and ZPC cross-linked by ZPB (Wassarman, 1988), and that the ZP domain plays an important role in the formation and maintenance of this structural arrangement (Wassarman, 1999).

During the process of fertilisation, in order for a spermatozoon to undergo sperm–egg fusion, it must first bind to, and penetrate, the ZP before it can enter the perivitelline space (Yanagimachi, 1994). In the laboratory mouse, ZPC has been identified as the

All correspondence to: Dr W.G. Breed, Department of Anatomical Sciences, University of Adelaide, South Australia 5005. Tel: +61 8 83035743. Fax: +61 8 83034398. e-mail: bill.breed@adelaide.edu.au

¹Department of Molecular Biosciences, University of Adelaide, South Australia.

²Department of Anatomical Sciences, University of Adelaide, South Australia.

^{*}Present address: Department of Anatomical Sciences, University of Adelaide, South Australia.

glycoprotein to which primary binding of spermatozoon occurs (Bleil & Wassarman, 1983). In the laboratory mouse, the process of sperm-zona pellucida (sperm-ZP) binding is mediated by oligosaccharides attached to specific O-linked (serine/threonine) residues on the glycoprotein surface of ZPC (for review see Wassarman, 1990; Shalgi & Raz, 1997). Exon swapping and site-directed mutagenesis experiments have identified a region of ZPC (Cys-328 to Gln-343) which contains the serine residues involved in primary sperm-ZP binding, named the 'sperm-combining site' (Kinloch et al., 1995; Chen et al., 1998). In particular, serine residues 332 and 334 have been found to be the critical O-linked oligosaccharide sites for primary sperm binding (Wassarman, 1999; Wassarman & Litscher, 2001).

Among different orders of mammals the region of the putative sperm-combining site has undergone considerable sequence divergence compared with the rest of ZPC (Wassarman & Litscher, 1995). Consideration the synonymous/non-synonymous ratio of of nucleotide acid substitutions suggests that this region is under positive selective pressure (Swanson et al., 2001). While it is the oligosaccharides on the ZPC polypeptide backbone that bind to the receptors on the sperm head surface, changes in the polypeptide primary structure in and around the sperm-combining site may influence the location and nature of the oligosaccharides added to the nascent ZPC (Nehrke et al., 1996).

Frequently, this process of primary sperm–ZP binding in the laboratory mouse is referred to as a speciesspecific phenomenon (Bleil & Wassarman, 1988; Wassarman, 1990, 1999; Cheng *et al.*, 1994; Kinloch *et al.*, 1995; Wassarman & Litscher, 1995, 2001; Liu *et al.*, 1996; Snell & White, 1996; Shalgi & Raz, 1997; Wassarman *et al.*, 1999), implying that the inability of sperm from one species to bind to the ZP of another species has the potential for being a reproductive isolating mechanism. However, the experimental evidence for species specificity of sperm–ZP binding is inconclusive (for review see Yanagimachi, 1994), and recently this assertion in relation to mammalian reproduction has been questioned (Jansen *et al.*, 2001; Focarelli *et al.*, 2001).

If primary sperm–ZP binding in the laboratory mouse is a species-specific phenomenon, and the site of primary sperm binding is the sperm-combining site, then it can be predicted that species specificity might be reflected in the amino acid sequence of this site, with closely related species exhibiting sequence divergence in order to facilitate a reproductive isolating mechanism.

To investigate the hypothesis of species specificity of sperm–ZP binding, this study compared the ZPC cDNA sequence, and in particular the region of the putative sperm-combining site, in five species of murid rodents. To that end, the complete cDNA coding sequence of the ZPC glycoprotein in two species of Australian hydromyine rodents, Notomys alexis and Pseudomys australis, and the putative sperm-combining site in a third, Hydromys chrysogaster (a species that diverged at the base of the hydromyine radiation; Watts & Baverstock, 1995), has been determined. These hydromyine rodents belong to a separate subfamily (the Hydromyinae) within the family Muridae, whereas the laboratory mouse (the model for sperm-ZP binding) and the laboratory rat, Rattus norvegicus, are members of the subfamily Murinae, whose wild ancestors evolved in Asia. The time of divergence of the hydromyine lineage from the murid in Asia is approximately 4 to 6 million years ago (Watts & Baverstock, 1995).

The aim of this comparative study was to determine the cDNA sequence of ZPC of these species of murid rodents with particular emphasis on the putative sperm-combining site; these findings may relate to the species specificity of sperm–ZP binding if this occurs.

Materials and methods

Nomenclature

The recommendations of Harris *et al.* (1994) for nomenclature of ZP genes and proteins are followed in this paper.

Animals

Notomys alexis (spinifex hopping mouse) females were supplied from a colony established at the University of Adelaide, whose wild ancestors were collected on Curtin Springs Station, in the south of the Northern Territory. Pseudomys australis (plains rat) females were supplied from a colony established by Dr C. Watts in 1968 and 1969, whose ancestors were collected from Marla Bore, northern South Australia and near Charlotte Waters in the south of the Northern Territory. All animals were originally housed in the Division of Animal Services, University of Adelaide and latterly in a private collection in the Adelaide Hills. The Hydromys chrysogaster (water rat) female was captured on the River Torrens in Adelaide, with permission from National Parks and Wildlife South Australia.

Total RNA

Animals used in this study were killed by asphyxiation with CO_2 and cervical dislocation. The ovaries were immediately removed, snap-frozen in liquid nitrogen,

and stored at -70 °C. Total RNA was extracted from frozen ovarian tissue (approximately 50 mg per animal) using TriZOL (Invitrogen, Auckland), following the manufacturer's instructions.

cDNA synthesis

cDNA was synthesised from total RNA with either oligo(dT) primers or primer ZP3T17AP (Table 1) using Superscript II (Invitrogen, Auckland), following the manufacturer's instructions.

RT PCR

Regions of the *ZPC* gene were amplified by polymerase chain reaction (PCR) using either primers based on regions of conserved *ZPC* sequence in *M. musculus* and *R. norvegicus*, or primers designed from *N. alexis* and *P. australis* sequence as it became known (Table 1). All primers were purchased from GeneWorks (Adelaide)

PCR amplification was performed in a volume of 25 µl containing $1 \times Taq$ reaction buffer (10 mM Tris pH 8.3, 50 mM KCl and 0.1 mM dNTPs), 1.5 mM MgCl₂, 100 ng each of forward and reverse primer, 1 µg of cDNA and 0.5 U of *Taq* polymerase (BTQ-1 from GeneWorks, Adelaide). Reactions were cycled at 94 °C for 30 s, 60 °C for 45 s, and 72 °C for 1 min using a PTC-2000 Peltier Thermal Cycler. Sequencing was performing using Big Dye Terminator chemistry and analysed on an ABI Prism 3700 DNA Automated sequencer. Forward and reverse sequences were assembled using BioEdit Sequence Alignment Editor (Hall, 1999).

PCR fragments not sequenced directly from the amplification products were cloned into pGEM-T _{easy}

(Promega, Sydney) and transformed into *E. coli* (strain DH5 α) and subjected to blue/white colour selection. PCR fragments were radioactively labelled with ³²P using a Bresatec Gigaprime DNA labelling kit (GeneWorks, Adelaide) and used as probes in cloning experiments.

(RACE) PCR

To obtain full-length cDNAs, 5'-rapid amplification of cDNA ends (RACE) was performed using First Choice RLM-RACE (Ambion, Austin, TX) and following the manufacturer's instructions. Prior to (RACE) PCR, total RNA was treated with DNase I using DNA-free (Ambion, Austin, TX) following the manufacturer's instructions.

To obtain the 3' end of the full-length transcript, cDNA was synthesised using the primer ZP3T17AP, and two-round PCR was performed using ZP3T17AP and then ZP3AP (a nested primer specific for the ZP3T17AP sequence) and a gene-specific primer. (Table 1)

Sequence comparison

ZPC cDNA and protein sequences were extracted from GenBank. Species names and accession numbers are: Cat (*Felis catus*) U05778; Cow (*Bos taurus*) U05775; Dog (*Canis familiaris*) U05780; Golden hamster (*Mesocricetus auratus*) M63629; Human (*Homo sapiens*) M60504; Bonnet monkey (*Macaque radiata*) X82639; Marmoset monkey (*Callithrix jacchus*) S71825; Laboratory mouse (*Mus musculus*) M20026; Laboratory rat (*Rattus norvegicus*) D78482; and Brandt's vole (*Microtus brandti*) AF304487.

Sequence alignments were carried out using the

Forward	5'	3′	mZPC position
FAZP	TGTCTCCTGCTGTGYGGAGGC		29–49
FA1ZP	GACGTGGTCAGGYTCAACGCC		258–279
FBZP	CCTTGTGGAYGGTCTATCTGAGAGC		717–741
FB1ZP ^a	ATACGCTCTATATCACCTGC		827-847
F5ZP ^a	GCCAAGCTATCTCCTCTTCC		6–26
Reverse			
RVAZP ^a	GGAGCAGAAAGGTACTGTACACC		349–326
RCZP	TCTGGTTAGCTGGCGCGAC		876–857
RD1ZP	GCCAGGGTCAGGAATGCCACTG		1208–1186
ZP3T17AP ZP3AP	GACTCGAGTCGACATCGATTTTTTTT GACTCGAGTCGACATCG	TTTTTTTT	Poly T adapter
gZP3CR ^a	GGAAGTCCACGATGAAGTGATAGG		709–686

Table 1 The sequences of forward and reverse primers utilised in this study and their corresponding position relative to laboratory mouse *ZPC* cDNA

^{*a*}Designed from *N. alexis*/*P. australis* sequence as it became known.

CLUSTAL-W algorithm (Thompson *et al.,* 1994) and were edited and displayed using the computer program GeneDoc (Nicholas & Nicholas, 1997).

Results

Notomys alexis

Primers FAZP and RCZP, based on conserved *M. musculus* and *R. norvegicus* sequences, amplified a region of cDNA which was cloned and probed in a Southern blot analysis with a ³²P-labelled PCR fragment of size 160 bp (previously generated using the primers FBZP and RCZP). The probe hybridised to a fragment 810 base pairs in length. Primers FB1ZP and RD1ZP gave a 335 base pair fragment after PCR amplification. The terminal 3' sequence of the cDNA was obtained by using primers ZP3AP and FBZP, generating a 497 base pair fragment. The 5' end of the cDNA was obtained by (RACE) PCR using the primers supplied in the kit and RVAZP in a two-round PCR (following manufacturer's instructions). A 300 base pair fragment was obtained.

Pseudomys australis

The PCR primers FA1ZP and RCZP, designed on the basis of conserved ZPC regions in *M. musculus* and *R.norvegicus* rodents, amplified a 543 base pair cDNA fragment. Primers designed on the basis of *N. alexis* cDNA sequence, F5ZP and gZP3CR, gave a 668 bp fragment. The terminal 3' sequence was obtained by using primers ZP3AP and FBZP, generating a 531 base pair fragment. The 5' end of the cDNA was obtained by (RACE) PCR using the primers supplied in the kit in a two-round PCR, and RVAZP. A 137 base pair fragment was amplified.

Figs. 1 and 2 show the complete coding region of the ZPC cDNA for *N. alexis* and *P. australis* respectively. Both coding regions have an open reading frame of 1272 nucleotides and are identical in size to the coding region of the ZPC cDNA in the laboratory mouse (*M. musculus*) and laboratory rat (*R. norvegicus*). The amino acid sequence is predicted to be 424 residues in length in respect of both hydromyine rodents.

Hydromys chrysogaster

Primers designed on the basis of conserved *M. musculus* and *R. norvegicus* sequences, FB1ZP and RD1ZP, amplified a 270 bp cDNA fragment that corresponded to the 3' region of *ZPC* found in *N. alexis* and *P. australis* (Fig. 3).

Comparison of nucleotide and amino acid sequences

The degree of nucleotide sequence identity of the coding region of ZPC cDNA between *N. alexis* and *P. australis* is 98%. The predicted amino acid sequences are 96% identical. The two species of hydromyine rodents share 100% conserved cysteine residues with *M. musculus* and *R. norvegicus*, as well as hydrophobic regions, the furin cleavage site and the ZP domain. The two hydromyine rodents share an 88% and 87% level of amino acid sequence identity with *M. musculus* and *R. norvegicus* respectively.

The sperm-combining site

The predicted amino acid sequences corresponding to the putative sperm-combining sites are identical in the three species of hydromyine rodents. When this sequence is compared with that of various other mammalian species from different orders, it can be seen that in the murid rodents the first 7 residues of the putative sperm-combining site are fully conserved, including the five potential O-linked and the single potential Nlinked, oligosaccharide sites (Fig. 4). Species distantly related to rodents show little sequence conservation in this region, with a variety of different arrangements of serine/threonine residues. Unique to the hydromyine rodents, however, are two additional potential O-linked oligosaccharide sites, Ser-336 and Ser-341. No cDNA sequences of ZPC in other species have serine/threonine residues at these positions.

Discussion

The process of speciation is a poorly understood phenomenon. However, a cause or consequence of speciation is the development of mechanisms that lead to reproductive isolation. One such mechanism that could prevent successful hybridisation between species is the inability of the sperm to bind to, and penetrate, the extracellular coat that surrounds the egg, the ZP. Certainly, for closely related externally fertilising species, reproductive isolation is evident at this level (Vacquier et al., 1997). However, for internally fertilising species, such as mammals, selection to prevent hybridisation at that level may not occur due to the improbability of the sperm from one species reaching the site of fertilisation of another species' as a result of behavioural and/or morphological differences between species. Nevertheless, in spite of this, Wassarman *et al.*, working with the laboratory mouse, have repeatedly suggested that primary sperm-ZP binding is a species-specific event (Bleil & Wassarman, 1988; Wassarman, 1990, 1999; Moller et al., 1990; Cheng

1	ΑΊ	'GGG	GCC.	AAG	СТА	TCT	CCT	CTT	ССТ	TTT	TCT	CCT	GCT	'GTG	SCGG	AGA	CCC	AGA	GCT	GTG	СТА	TCC	CCA	GACT	72
1	M	G	P	S *	Y	L	L	F	L	F	L	L	L	С	G	D	P	E	L	С	Y	Ρ	Q	Т *	24
73	СТ	'GTG	GCT	TTT	GCC	GGG	TGG	AAC	TCC	CAC	CCC	AGT	GGG	GTC	CTC	CTC	ACC	CGT	GGA	.GGT	GGA	GTG	TCT	GGAA	144
25	L	W	L	L	Ρ	G	G	Т *	Ρ	т *	Ρ	v	G	S *	S *	S *	Ρ	v	Е	v	Е	C	L	E	48
145	GC	TGA	GCT	AGT	AGT	GAC	TGT	CAA	TAG.	AGA	CCT	TTT	TGG	CAC	GGG	GAA	GCT	CGT	GCA	GCC	CGG	GGA	ССТ	CACC	216
49	A	E	L	V	V	т *	V	N	R	D	L	F	G	т *	G	K	L	V	Q	P	G	D	Ľ	т *	72
217 73	CT	TGG G	GTC S	AGA E	AGG G	TTG C	TCA Q	GCC(P	CCT L	CGT V	ATC S	CGT V	GGA D	TAC T	TGC A	CGT V	GGT V	CAG R	GTT F	CAA N	.CGC A	CCA Q	GTT L	GCAT H	288 96
289	GA	GTG	CAG	CAG	CGG	GGT	GCA	GGT	GAC	GGA	AGA	TGC	ССТ	GGT	ርጥል	CAG	TAC	СТТ	TCT	GCT	CCA	TGA	CCC	TCGC	360
97	È	С	\$ *	\$ *	G	V	Q	v	Т *	Е	D.,	A	L	V	Y	s *	Т *	F	L	L	Ħ	D.	P	R	120
361	CC	TGT	GGG	CGG	CCT	GTC	CAT	CCT	AAG	GAC	TAA	CCG	TGT	GGA	GGT	ACC	CAT	TGA	GTG	CCG	АТА	ccc	CAG	ACGG	432
121	P	v	G	G	L	s *	I	L	R	т *	N	R	v	Е	v	P	I.	., E .,	C	R	Y.	P	R	R	144
433	GG	CAA	TGT	GAG	CAG	CCA	CCC	TAT	CCA	GCC	CAC	CTG	GGT	TCC	CTT	CAG	AGC	CAC	TGT	GTC	CTC	GGA	GGA	GAAA	504
145	G	N #	Vur	\$ *	s *	H	P	I	Q	P.;	Т *	W	V	Р	F	R	A	т *	V	\$ *	\$ *	Е	Е	K	168
505	СТ	GGC	GTT	CTC	TCT	TCG	CCT	GAT	GGA	GGA	TAA	CTG	GAA	TAT	TGA	GAA	ATC.	ATC	TCC	CAC	CTT	CCA	CCT	GGGA	576
169	L	A	F	\$ *	L	R	L	M	E	D	N	W	N	I	E	K	\$ *	* *	P	т *	F	H	L	G	192
577	GA	GGT	AGC	CCA	CCT	CCA	GGC	AGA	AGT	CCA	GAG	CGG.	AAG	TCA	.CCC.	ACC	GCT	GCA	GCT	GTT	TGT	GGA	CCA	CTGT	648
193	Е ~~	v	A	н	با	Q	. A	E	V	Q	*	G.	*	н	P	P	L	Q	L	F	V	D	H	C	216
649	GT	GGC(-CC	PTC.	ATC	PTC	GCCA	AGA(CCA	GAA(CTC	CTC	CTC	CTA'	rca(CAT	CGT	GGA	CTT	CCA'	TGG	TTGC	720
217	V	A	*	.н.	*	ي. *	*	ħ	Ъ.	Q	ณ #	\$ *	ې ۲	*	Y.	н	÷.	1,	े V ्	Ъ.	*£'.	H	G	r.C	240
721	CT	IGT	GGAI	rGG'	rcti	ATC'	TGA	GAG	CTT	FTC	GGC	ATT'	TCA.	AGT	CCC'	FAG	ACC	CCG	GCC.	AGA	CAT	GCT	CCA	GTTC	792
241	L	V	D	G	ы.	*	R	*	F	*	A	F	Q	V.	P	R	P	R	P	D	M	L	.Q	F	264
793 265	ACC T	V	D	V	F	H	I"I"I". F	A		S	S S	R R	AAA' N		GCT(L	C'TA' Y	rati I		CIG	CCA H	TCT(L	CAA K	AGT V	CGCT A	864 288
865	CC	AGC	гаас	CA	GAT	CCC	CGA	TAAC	TCTC	AA	CAA	AGCO	ርጥር	יחיתי	ልጥጥ	~D D (~~~~	- CAC	TTC	CCA	GAG	TTG	ርጥር	GCCA	936
289	P	A	N	Q	Ι	P	D	K	L	N	K	A	C	s *	F	N #	K	T *	\$ *	Q	S *	W	W	P	312
937	GT	AGA	GGGC	'GA	rger	IGA	CATO	CTGI	rgan	rtg	CTG	CAG	CGA	TGG	CAA	CTG	TAG'	FAA '	TTC.	AAG	TTC	TTC	ATG	GTCC	1008
313	v	E	G	D	Α	D	I	С	D	С	С	S *	D	G	N #	С	S *	N #	S *	S *	S *	S *	W	S *	336
1009	CAG	GATO	CCAT	rGG	ATC	CCC	CCAG	GAG	GTCO	CAA	GCT	AAC	CTC	TCG.	AAA	CCG	CAG	GCA	CGT	GAC	CGA	IGA	AGC	TGAT	1080
337	Q	I	H	G	S *	P	Q	R	S *	ĸ	L	т *	s *	R	N	R	R	_'n	v	т *	D	Е	Α	D	360
1081	GT	CAC	FATA	AGG	GCC	rct(GAT	ATTO	CCTT	IGG.	AAA	GGC	CAG	TGA	CCA	GGC	TGT	GGA	AGG	CTG	GAT	CTC	TTC	TGCT	1152
361	V	Т *	I	G	Ρ	L .	Ι	F	L	G	K	A	S *	D	Q	Α	V	Ε	G	W	Ι	s *	s *	Α	384
1153	CA	AAC	гтсл	GT	GGC	rrṛ(CGG	GTTZ	AGG	rc tv	GGC	CAT	AAT	GGC.	ATT	CCT	GAC	CCT	GGC	TGC	TAT'	ΓĢΤ(CCT	TGGT	1224
385	Q	т *	<u>s</u> *	V	A	F	G	L	G	L	A	I	М	A	F	L	T *	L	A	<u>A</u>	I	V	L	G	408
1225	GT(CAC	CAGO	GAA	GCG	FCA	CAC	CTCI	FTC	CCA	CCT	IGT	ATC	TCT	TCC	GCA	ATA	A	127	5					
409	<u>v</u>	т *	R	ĸ	R	н	Т *	s *	s *	н	L	v	S *	L	Ρ	Q	*		425						

Figure 1 Nucleotide sequence of *Notomys alexis* ZPC cDNA and putative amino acid sequence (GenBank accession number AY078054) showing functional domains. Amino acids denoted in bold (residues 1 to 20) signify the putative peptide signal sequence. The ZP domain is shown in grey highlight. The putative sperm-combining site is boxed, and the furin cleavage sequence is shown in the dashed line box. The hydrophobic region is underlined. Potential *N*-linked oligosaccharide sites are denoted below the residue with a #, and potential *O*-linked oligosaccharide sites are denoted below the residue with an *.

1	ATGG	AGC	CAAC	SCTA	ATCT	'CCT	'CTT	CCT	TTT	TCT	'CC'I	GCI	GTC	GGG	AGA	CCC	AGA	AGC 7	rGT(GCTA	ATCO	CCC.	AGA	CT	72
1	ME	P	S *	Y	L	L	F	L	F	L	L	L	С	G	D	P	E	L	C	Y	Ρ	Q	Т *		24
73	CTGT	GGC	rrri	rgcc	GGG	TGG	AAC	TCC	CAC	ccc	AGT	GGG	GTC	CTC	CTC	ACC	CGI	GAA	AGG	rggz	AGTO	GTC	rgg	AA	144
25	L W	L	L	Ρ	G	G	т *	Ρ	Т *	Ρ	v	G	s *	s *	s *	Ρ	v	К	v	Е	Ct	τ.	Ē		48
145	GCTG	AGC	FAG 1	GGI	'GAC	TGT	CAA	TAG	AGA	CCT	TTT	TGG	CAC	GGG	GAA	GCT	CGI	GCA	AGCO	CGC	GGZ	ACC'	rca	CC	216
49	A E	L	v	v,	Т *	V	N	R	D	L	F	Ģ	T *	G	K	Ľ,	v	Q	P	A	D	+L	T *		72
217	CTTG	GGT	CAGA	AGG	TTG	TCA	GCC	ССТ	CGT	атс	CGT	GGA	TAC	TGA	CGT	GGT	CAG	GTI	CAA	ACGC	CCF	\GT	rgc.	АТ	288
73	LG	\$ *	Е	G	С	Q	P	L	V	s *	V	D	т *	D	V	V	R	F	N	A	Q	L	H		96
289	GAGT	GCA	GCAG	GGG	GGT	GCA	GGT	GAC	GGA	AGA	TGC	CCT	GGI	GTA	CAG	TAC	CTI	TCT	GCI	CCA	TGF	ACCO	CTC	GC	360
97	EC	\$ *	\$ *	G	v	Q	v	Т *	E	D.	A	L	v	Y	ଁ S *	Т *	F	L	L	H	D	`P	R		120
361	CCCG	TGG	GCGG	CCI	GTC	CAT	CCT	AAG	GAC	TAA	CCG	TGT	'GGA	GGT	ACC	CAT	TGA	GTG	CCC	ATA	CCC	CAC	GAC	GG	432
121	ΡV	G	G	L	\$ *	I.	Ŀ	R	Т *	N	R	v	E	V	P	Ι	E	.,C	R	Y	P	R	R		144
433	GGCA	ATG:	rgag	CAG	CCA	CCC	TAT	CCA	GCC	CAC	CTG	GGT	'TCC	CTT	CAG	AGC	CAC	TGI	GTC	CTC	GGA	AGG2	AGA.	AA	504
145	GN #	V	\$ *	\$ *	Ħ	P	I	Q	P	Т *	W	V	Р	F	R	. A.	. T *	V	: S *	* *	E	E	K		168
505	CTGG	CGT	гстс	TCT	TCG	CCT	GAT	GGA	GGA	CAA	CTG	GAA	TAT	TGA	GAA	ATC	ATC	TCC	CAC	CTI	'CCA	ACT.	rgg	GA	576
169	LA	F	\$ *	Ľ	R	L	M	. E	D	N	W	N	I	Е	K	\$ *	* *	P	т *	F	H	L	G		192
577	GAGG'	TTG	CCCA	CCT	CCA	GGC	AGA	AGT	CCA	GAG	CGG	AAG	TCA	CCC.	ACC	GCT	GCA	GCI	GTJ	TGT	'GGA	ACCI	ACT	GT	648
193	E V	A	H	L	Q	A	E	V	Q	*	G	* *	Н	Р	P	L	Q.	L	F	V	D	H	С		216
649	ATGG	CCAC	CGCC	TTC	ATC	TTC	GCC	AGA	CCA	GAA	CTC	CTC	CCC	CTA	TCA	CTT	CAT	ĊGI	'GGA	CTT	'CCA	\TG(GTT(GC	720
217	M A	*	. P	\$ *	\$ *	*	Р.	D	Q	N. #	* *	* *	P.,	Y	H	F	I	V	D	F	Н	G	С		240
721	CTTG	IGGI	ATGG	TCT	ATC	TGA	GAG	CTT	TTC(GGC.	ATT	TCA	AGT	CCC	TAG.	ACC	CCG	GCC	AGA	CAT	GCI	CCI	\GT'	IC	792
241	LV	D	G	L	\$ *	Е	*	F	*	A.,	F	Q	Υ.	P	R	Р	R	P	D	M	Ľ	<u>`Q</u>	F		264
793	ACGG	FGG <i>I</i>	ATGT	'ATT	CCA	TTT	TGC	CAA	CAG	CTC	CAG	AAA	TAC	GCT	CTA	CAT	CAC	CTG	CCA	TCT	'CAA	AG.	rcg(CT	864
265	T V *	D	V	F	H	F	A	N #	\$ *	\$ *	R	.N.	Т *	L	Y	T	т *	C	H	L	K	, V	A		288
865	CCAG	CTAF	ACCA	GAT	CCC	CGA	TAA	GCT(CAA	CAA	AGC	CTG	TTC	GTT	CAA	CAA	GAC	TTC	CCA	GAG	TTG	GTO	GC	CA	936
289	ΡA	N	Q	L I	P	D	K	L.,	N	K	A	C	S.	. F	N	K	T	S	Q	S	W	W	Ρ		312
027	CMAC			maa	m~ 7.	~ > m	amar		ma	~~~	~~~	~~~	- 	~	#	m x ~	*	*		* ////////////////////////////////////	mmo				
313	VF	AGGO C	T T	A D	D	T	CIG.	n UGA	riG C	-1G	CAG		.1GG			TAG C		ric c	AAC.	- C	rrc c	GIC W	C 10	<u> </u>	336
1000	C A C A C							- - - -	~~ ~		*			# #		*	#	*	*	*	*	200	*		220
227	CAGA		ATGG	ATC			GAG	5100		JCT.		CIC	TCG			CAG	GCA	CGT	GAC	TGA	GGA	AGC	TG/	AT .	200
1001		п		*	P	<u>v</u>		*	к 	ц 	*	*	<u>R</u>			<u></u>	п	v	*	E	E	А	U		300
1081	GTCA		'AGG	GCC	TCT	GAT.	ATT	CCT'	rgg.		GGC	CAA	TGA	CCA	GGC	TGT	GGA	AGG	CTC	GAC	CTC	TTC:	CTG	CT I	1152
361	V T	T	G	Р	Г	T	F.	L	G	ĸ	А	N	D	Q	A	v	Е	G	W	T •	S •	S •	A		384
1153	CDDD0	ጉጥጥና	יחיביחי		ጥጥጥ	CCC	വസസ	NCC	זיריתי	200	<u> </u>	രാന	CCC	איזיינייא	ററന	C N C	~റന	~~~	-	- יידי אידיי	• ••••	• • •	יחוירי	- m-	1224
385	ОТ	 S	V	A	F	G G	L	G	1.	A	M	M	οος Α	F		UAC T		ے ک	Δ	T T	A	.ссч т.	ц. С	31 .	408
1225	× + ★	<u>ש</u> א		GTTC			<u></u>				 TCT	<u>איי</u> רי	 നഗന			* *	<u></u>	107	5						*00
409	V T	R	K K	515. 7	P	URU T	S	S	H	H	V	AIC S	T.	P	GCA O	атА. *	n.	425	5						
	<u>*</u>	-	~`	-	-	*	*	*	**		v	*	ч	-	×			-x 4 J							

Figure 2 Nucleotide sequence of *Pseudomys australis* ZPC cDNA and putative amino acid sequence (GenBank accession number AY078055) showing functional domains. Amino acids denoted in bold (residues 1 to 20) signify the putative peptide signal sequence. The ZP domain is shown in grey highlight. The putative sperm-combining site is boxed, and the furin cleavage sequence is shown in the dashed line box. The hydrophobic region is underlined. Potential *N*-linked oligosaccharide sites are denoted below the residue with a #, and potential *O*-linked oligosaccharide sites are denoted below the residue with an *.

880	CCCGATAAGCTCAACAAAGCCTGTTCGTTCAACAAGACTTCCCAGAGTTGGTGGCCAGTAGAGGGCGATGCT															951									
295	Ρ	D	K	\mathbf{L}	Ν	Κ	А	С	S	F	Ν	Κ	Т	S	Q	S	W	W	Ρ	V	Е	G	D	А	318
									*				*	*		*									
952	GA	CAT	CTG	TGA	TTG	СТG	CAG	CGA	TGG	CAA	CTG	TAG	TAA	TTC	AAG	TTC	TTC	GTG	GTC	CCA	GAT	CCA	TGG	ATCC	1023
319	D	Ι	С	D	С	С	S	D	G	Ν	С	S	Ν	S	S	S	S	W	S	Q	Ι	Н	G	S	342
												ىك	ш		.4.	.4.	ىك.		ىك					<u>+</u>	
							*					~	₩	×	×	*	~		~					~	
1024	СС	CCA	GAG	GTC	CAA	.GCT	× AAC	CTC	TCG	AAA	.CCG	• CAG	# IGCA	~ CGT	A C	. TGA	° GGA	AGC	T GA	TGT	CAC	TAT	AGG	GCCT	1095
1024 343	CC P	CCA Q	gag R	GTC S	CAA K	.GCT L	AAC T	CTC S	TCG R	AAA N	.CCG R	CAG R	# IGCA H	CGT V	GAC T	TGA E	GGA E	AGC A	TGA D	TGT V	CAC T	TAT I	AGG G	GCCT P	1095 366
1024 343	CC P	CCA Q	gag]r	GTC S *	CAA K	.GCT L	AAC T	стс S *	TCG R	AAA N	.CCG R	CAG R	₩ GCA H	CGT V	GAC T	TGA E	GGA E	AGC A	TGA D	TGT. V	CAC T	TAT I	AGG G	GCCT P	1095 366
1024 343 1096	CC P CT	CCA Q GAT	gag]r att	GTC S *	CAA K TGG	.GCT L SAAA	AAC T *	CTC S * CAA	TCG R TGA	AAA N CCA	.CCG R .GGC	CAG R TGT	# GCA H 'GGA	CGT V AGG	GAC T CTG	TGA E GAC	GGA E CTC	AGC A TTC	TGA D C	.TGT V 114	CAC T 9	TAT I	AGG G	GCCT P	1095 366

367 L I F L G K A N D Q A V E G W T S S 385 **Figure 3** Partial cDNA sequence of ZPC from *Hydromys chrysogaster* (GenBank accession number AY078056). The amino acid sequence in the box is the putative sperm-combining site. Potential *O*-linked oligosaccharide sites are denoted below the residue with an *. The nucleotides and amino acid residues are numbered according to their relative position on the cDNA sequence of *N. alexis*.

:	С	S	Ν	S	S	S	S	W	S	Q	Ι	Н	G	S	Ρ	Q
:		•		•				•	•	•		•	•	٠	•	•
:					•	•		•	•		•		•	•	•	•
:				49				Е	F	Ε	T		Е	Ρ	А	
:		•	•	•	•		•	Q	F	•		•	•	Ρ	R	•
:		G	S	(er		R		R	Y		А			V	S	
:	•	•	S	•	R	Y		R	Ρ	R	А	•	А	v	А	-
:		G	L	Q	G	R	•	•	R	L	S	•	\mathbf{L}	D	R	Ρ
:		G	\mathbf{L}	Ρ	G	R	•	R	R	\mathbf{L}	S	•	L	Ε	R	G
:		G	Ι	•	G	R		М	R	\mathbf{L}	S		R	Е	G	_
:	•	G	T	Ρ	•	Н	•	R	R		Ρ	•	V	М	S	
:		G	T	Ρ	•	Н	А	R	R	•	Ρ		v	v	S	\mathbf{L}
:		G	T	Ρ	•	Н	•	R	R	•	Ρ	•	v	v	S	•
		: C : . : . : . : . : . : . : . : . : . : .	C · · · · · · · · · · · · · · · · · · ·	: C S N :	: C S N S :	: C S N S S :	: C S N S S S :	 C S N S S S S 	: C S N S S S W : : : : : : . <	: C S N S S S W S : : : : : : : .	: C S N S S S W S Q : : : : : : : .	$\begin{array}{cccccccccccccccccccccccccccccccccccc$: C S N S S S W S Q I H : : : : : : : .	: C S N S S S S Q I H G : .	: C S N S S S W S Q I H G S : : . <td>: C S N S S S W S Q I H G S P : .</td>	: C S N S S S W S Q I H G S P : .

Figure 4 Amino acid sequence comparison of the putative sperm-combining site of ZPC among different species of mammals (residues Cys-328 to Gln-343). The residues highlighted in grey are the potential *O*-linked glycosylation sites.

et al., 1994; Kinloch *et al.*, 1995; Wassarman & Litscher, 1995, 2001; Liu *et al.*, 1996; Wassarman *et al.*, 1999). If this is the case it may be predicted that the amino acid sequence of the region of ZPC, which contains the *O*-linked oligosaccharide sites necessary for primary sperm–zona binding, may differ significantly between closely related species. A comparison of the ZPC sequence of murids thus tests this hypothesis.

The Australasian hydromyine rodent diverged from a common ancestor with the Asian murids at least 4 to 6 million years ago (Watts & Baverstock, 1995). The level of amino acid sequence identity of ZPC between N. alexis and P. australis suggests that the three-dimensional structure, and function, of ZPC in these two species of hydromyine rodents is very similar despite differences in ZP thickness (McGregor et al., 1989) and sperm head morphology (Breed, 1997). Furthermore, H. chrysogaster, the third species of hydromyine rodent, which diverged at the base of the hydromyine radiation from the lineage that gave rise to *Pseudomys* and Notomys (Watts & Baverstock, 1995), shares a 100% level of amino acid sequence identity with N. alexis and P. australis between residues Cys-328 and Gln-343, the putative sperm-combining site. These three species share a unique arrangement of potential *O*-linked oligosaccharide sites within this region (Ser-336 and Ser-341) not shared with *M. musculus* and *R. norvegicus* (Phe-336 and Pro-341) nor seen in other mammalian species (Fig. 4).

While the particular regulation of glycosylation within different species is poorly understood, it may be that the arrangement of *O*-linked glycosylation sites influences the oligosaccharides present on the ZP surface. This in turn could affect the specificity of sperm–ZP binding (Wassarman, 1990). However, among the three closely related species of hydromyine rodents there are no amino acid differences in the putative sperm-combining site. It follows, therefore, that since there is no amino acid substitution in this region amongst hydromyine rodents then there is no support for the hypothesis of species specificity of sperm–ZP binding based on sequence homology of ZPC.

The high level of divergence at the putative spermcombining site between distantly related species, and the claimed positive selection acting upon this region (Swanson *et al.*, 2001), suggest that this region of ZPC may be subject to more changes than the rest of the gene. There may be other selective pressures upon ZPC that are not, as yet, known. However, this study has demonstrated that the sequence of the ZPC among closely related murids is certainly not under positive selective pressure, at least within the hydromyine murid rodents.

The determination of the complete coding sequence of the ZPC cDNA of two species of hydromyine rodents and the 3' end of the same cDNA for a third hydromyine species, could have important implications for the development and practical application of an immunocontraceptive vaccine based on antibodies to the ZPC glycoprotein for controlling populations of wild house mice (Lou *et al.*, 1995; Zhang *et al.*, 1997; Jackson *et al.*, 1998; Ylönen, 2001). Sequence identity between *M. musculus* and these hydromyine species, which are native rodent species of Australia, should be taken into account when consideration is given to dissemination of a vaccine within which *M. musculus* ZPC is incorporated to suppress fertility of populations of the introduced house mouse, *M. musculus*.

To further extend this comparative study, sperm–ZP binding experiments could be conducted whereby the sperm from one species is incubated with the oocytes of a closely related species. The present finding would predict that there would be no selectivity of sperm from one species of hydromyine rodents binding to the ZP of another. However, since in laboratory mice the *O*-linked sugar components are critical for sperm–ZP binding, a study of oligosaccharide ligands on ZPC of the hydromyine species needs to be performed to further determine the interspecific similarity in the sperm-combining site of these murid rodents.

Acknowledgements

We thank Chris Leigh, Scott Spargo, and David Wheeler for their invaluable technical assistance.

References

- Bleil, J.D. & Wassarman, P.M. (1983). Sperm–egg interactions in the mouse: sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein. *Dev. Biol.* 95, 317–24.
- Bleil, J.D. & Wassarman, P.M. (1988). Galactose at the nonreducing terminus of O-linked oligosaccharides of mouse egg zona pellucida glycoprotein ZP3 is essential for the glycoprotein's sperm receptor activity. *Proc. Natl. Acad. Sci.* USA 85, 6778–82.
- Bork, P. & Sander, C. (1992). A large domain common to sperm receptors (Zp2 and Zp3) and TGF-β type III receptor. *FEBS Lett.* **300**, 237–40.
- Breed, W.G. (1997). Evolution of the spermatozoon in Australasian rodents. *Aust. J Zool.* **45**, 459–78.
- Brewis, I.A. & Wong, C.H. (1999). Gamete recognition: sperm proteins that interact with the egg zona pellucida. *Rev. Reprod.* **4**, 135–42.

- Chen, J., Litscher, E.S. & Wassarman, P.M. (1998). Inactivation of the mouse sperm receptor, mZP3, by sidedirected mutagenesis of individual serine residues located at the combining site for sperm. *Proc. Natl. Acad. Sci. USA* 95, 6193–7.
- Chen, A., Le, T., Palacios, M., Bookbinder, L.H., Wassarman, P.M., Suzuki, F. & Bleil, J.D. (1994). Sperm–egg recognition in the mouse: characterization of sp56, a sperm protein having specific affinity for ZP3. J. Cell Biol. 125, 867–78.
- Focarelli, R., La Sala, G.B., Balasini, M. & Rosati, F. (2001). Carbohydrate-mediated sperm-egg interaction and species specificity: a clue from the *Unio elongatulus* model. *Cells Tissues Organs* **168**, 76–81.
- Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symp. Ser.* **41**, 95–8.
- Harris, J.D., Hibler, D.W., Fontenot, G.K., Hsu, K.T., Yurewicz, E.C. & Sacco, A.G. (1994). Cloning and characterization of zona pellucida genes and cDNAs from a variety of mammalian species: the ZPA, ZPB and ZPC gene families. *DNA Sequence* **4**, 361–93.
- Jackson, R.J., Maguire, D.J., Hinds, L.A. & Ramshaw, I.A. (1998). Infertility in mice induced by a recombinant ectromelia virus expressing mouse zona pellucida glycoprotein 3. *Biol. Reprod.* 58, 152–9.
- Jansen, S., Ekhlasi-Hundrieser, M. & Töpfer-Petersen, E. (2001). Sperm adhesion molecules: structure and function. *Cells Tissues Organs* **168**, 82–92.
- Kinloch, R.A., Sakai, Y. & Wassarman, P.M. (1995). Mapping the mouse ZP3 combining site for sperm by exon swapping and site-directed mutagenesis. *Proc. Natl. Acad. Sci.* USA 92, 263–7.
- Liu, C., Litscher, E.S., Mortillo, S., Sakai, Y., Kinloch, R.A., Stewart, C.L. & Wassarman, P.M. (1996). Targeted disruption of the *mZP3* gene results in production of eggs lacking a zona pellucida and infertility in female mice. *Proc. Natl. Acad. Sci. USA* **93**, 5431–6.
- Lou, Y., Ang, J., Thai, H., McElveen, F. & Tung, K.S.K. (1995). A zona pellucida 3 peptide vaccine induces antibodies and reversible infertility without ovarian pathology. *J. Immun.* 155, 2715–20.
- McGregor, L., Flaherty, S.P. & Breed, W.G. (1989). Structure of the zona pellucida and cumulus oophorus in three species of native Australian rodents. *Gamete Res.* **23**, 279–87.
- Moller, C.C., Bleil, J.D., Kinloch, R.A. & Wassarman, P.M. (1990). Structural and functional relationships between mouse and hamster zona pellucida glycoproteins. *Dev. Biol.* 137, 276–86.
- Nehrke, K., Hagen, F.K. & Tabak, L.A. (1996). Charge distribution of flanking amino acids influences O-glycan acquisition *in vivo*. J. Biol. Chem. 271, 7061–5.
- Nicholas, K. & Nicholas, H.B. Jr (1997). GeneDoc: a tool for editing and annotating multiple sequence alignments. Distributed by the authors: *EMBNEW NEWS* **4**, 14.
- Prasad, S.V., Skinner, S.M., Carino, C., Wang, N., Cartwright, J. & Dunbar, B.S. (2000). Structure and function of the proteins of the mammalian zona pellucida. *Cells Tissues Organs* **166**, 148–64.
- Rankin, T. & Dean, J. (2000). The zona pellucida: using molecular genetics to study the mammalian egg coat. *Rev. Reprod.* 5, 114–21.

- Rankin, T., Soyal, S. & Dean, J. (2000). The mouse zona pellucida: folliculogenesis, fertility and pre-implantation development. *Mol. Cell. Endocrinol.* 163, 21–5.
- Shalgi, R. & Raz, T. (1997). The role of carbohydrate residues in mammalian fertilization. *Histol. Histopathol.* 12, 813–22.
- Snell, W.J. & White, J.M. (1996). The molecules of mammalian fertilisation. *Cell* **85**, 629–37.
- Swanson, W.J., Yang, Z., Wolfner, M.F. & Aquadro, C.F. (2001). Positive Darwinian selection drives the evolution of several female reproductive proteins in mammals. *Proc. Natl. Acad. Sci.*, USA 98, 2509–14.
- Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994). CLUSTAL-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties, and weight matrix choice. *Nucleic Acids Res.* 22, 4673–80.
- Vacquier, V.D., Swanson, W.J. & Lee, Y.H. (1997). Positive Darwinian selection on two homologous fertilising proteins: what is the selection process driving their divergence? J. Mol. Evol. 44, S15–22.
- Wassarman, P.M. (1988). Zona pellucida glycoproteins. *Annu. Rev. Biochem.* **57**, 415–42.
- Wassarman, P.M. (1990). Profile of a mammalian sperm receptor. *Development* **108**, 1–17.

- Wassarman, P.M. (1999). Mammalian fertilization: molecular aspects of gamete adhesion, exocytosis and fusion. *Cell* 96, 175–83.
- Wassarman, P.M. & Litscher, E.S. (1995). Sperm-egg recognition mechanisms in mammals. Curr. Top. Dev. Biol. 30, 1–19.
- Wassarman, P.M. & Litscher, E.S. (2001). Towards the molecular basis of sperm and egg interaction during mammalian fertilization. *Cells Tissues Organs* 168, 36–45.
- Wassarman, P.M., Chen, J., Cohen, N., Litscher, E., Liu, C., Qi, H. & Williams, Z. (1999). Structure and function of the mammalian egg zona pellucida. *Mol. Dev. Evol.* 285, 251–8.
- Watts, C.H.S. & Baverstock, P.R. (1995). Evolution in the Murinae (Rodentia) assessed by microcomplement fixation of albumin. *Aust. J. Zool.* **43**, 105–18.
- Yanagimachi, R. (1994). Mammalian fertilization. In *The Physiology of Reproduction* (ed. E. Knobil & J.D.Neill), pp. 189–317. New York: Raven Press.
- Ylönen, H. (2001). Rodent plagues, immunocontraception and the mouse pox virus. *Trends Ecol. Evol.* **16**, 418–20.
- Zhang, X., Lou, Y.-H., Koopman, M., Doggett, T., Tung, K.S.K. & Curtiss, R. III (1997). Antibody responses and infertility in mice following oral immunization with attenuated *Salmonella typhimurium* expressing recombinant murine ZP3. *Biol. Rep.* 56, 33–41.