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“- How long is forever?
- Sometimes, just one second.”1

1 Lewis Carroll, "Alice in Wonderland".
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Introduction

Aims and reasons

The aim of this PhD thesis is to provide an advanced mathematical model
for the analysis and the design of sustainable bituminous mixtures as railway
sub-ballast. This mathematical tool is based on the Fractional Calculus, since
this powerful branch of mathematics is used to model viscoelastic materials
from the second part of the last century.

Fractional calculus is nothing else than a generalisation of the integer or-
der derivatives and integrals. Fractional derivatives and integrals play an
essential role in many branches of the physics and engineering problems (vis-
coelasticity, dynamical systems, control theory, electrical circuits,...). In the
last years, theories of tridimensional viscoelastic constitutive laws based on
fractional calculus (3D fractional viscoelasticity) have been proposed. That is
the reason why the Fractional calculus is the first pillar of this thesis.

Sustainability is the second pillar of this thesis. Wasted materials and the
shortage of some raw materials are becoming a real problem in our society.
That is the reason why the Sustainable Pavements & Railways Initial Training
Network (SUP&R ITN) project was created, where the aim of this PhD thesis
was born. For this reason, this PhD thesis has been focused on the application
of a wasted material (as used tyres). In particular, the application is to use
a bituminous mixture that contains wasted tyres as railway sub-ballast. The
sub-ballast is responsible for protecting the ground from the loads, reducing
the vibrations, making the superstructure more resistant and increasing the
comfort of the passengers inside the train.

Therefore, the challenge of the present PhD thesis is to combine Fractional
Calculus and Sustainability. In particular, a methodology to design sustain-
able rubberised asphalt and a sophisticated mathematical model that allows
to predict its mechanical response are proposed.

xiii



xiv Introduction

SUP&R ITN

Sustainable Pavements & Railways Initial Training Network (SUP&R ITN) is
part of the Marie Curie Initial Training Network (ITN) action, FP7-PEOPLE-
2013-ITN and is funded from the European Union under grant agreement
number 607524. SUP&R ITN is a four years project that started at the begin-
ning of October 2013 and has offered training-through-research for 15 young
researchers with a consortium of universities, research centres and compa-
nies/industries from five EU countries (UK, Italy, France, Ireland and Spain).

The aim of the SUP&R ITN is: “To setup a multidisciplinary and multi-
sectorial network in order to form a new generation of engineers versed in
sustainable technologies and to provide, to both academia and industry, de-
sign procedures and sustainability assessment methodologies to certify the
sustainability of the studied technologies to the benefit of the European com-
munity”.

The developed research by the fellows of the SUP&R ITN has been focused
on planning and executing sustainable road and railway infrastructures, and
deliver longterm benefits in terms of:

• Eco-designed road and rail infrastructure that maximises the recycling
of waste materials and ensures best performance characteristics to suit
the diverse set of European environments;

• Reduced installation, maintenance and operating costs as well as long
term sustainable solutions;

• A bespoke sustainability assessment tool, tailored to the needs of prod-
uct development in the road pavement and rail infrastructure sector.

Fractional Calculus

Fractional calculus is the generalisation of the ordinary differential and inte-
gral calculus to the non-integer derivatives and integrals. This may be easily
evidenced since all the properties of the classic integro-differential operators
still hold for the so-called fractional operators.

The theory of non-integer order derivation goes back to seventeenth cen-
tury, when in 1695 Leibniz, in his letter, asked about the meaning of half
derivative to l’Hôpital. With this event the study of derivatives and integrals
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with arbitrary order began, and this study has been continued at the end of
nineteenth century by Liouville, Grünwald, Letnikov and Riemann.

Despite the fractional calculus exists from more than two hundred years,
in the engineering and physics fields its application has been relatively lim-
ited. Probably, the main reason of this limitation is due to the fact that this
kind of operators have no geometrical meaning. This implies that in some
physical application there is no mechanical interpretation of the analytical law
which involves fractional operators. In the presented work this powerful tool
is used to describe the tridimensional viscoelastic behaviour of bituminous
mixtures.

Crumb rubber asphalt as Railway sub-ballast

Sub-ballast is the layer of the railway track-bed structure, interposed between
the ballast and the blanket. The blanket is a layer, or several layers, of gran-
ular material laid over the subgrade to conform to the formation and create
its desired properties. Frequently, unbound granular materials are replaced
by bituminous sub-ballast, which may provide additional benefits to the sub-
grade protection and track performance. For instance, the bituminous sub-
ballast, being almost completely water-resistant, protects the subgrade from
the seasonal variations of moisture and atmospheric actions. This has an im-
portant effect in slowing down the deterioration process over the track’s ser-
vice life. Moreover, the bituminous sub-ballast plays an important role in
distributing the load and reducing the solicitations on the subgrade. It dissi-
pates the stress transmitted by passing trains, ensuring a higher protection of
the formation compared to a granular sub-ballast. Overall, the use of bitumi-
nous sub-ballasts has the potential to improve the track quality and durability,
leading to a reduction of maintenance interventions.

The re-use of crumb rubber in asphalt mixtures can lead not only to the
reduction of the natural resources employed in the construction and mainte-
nance/rehabilitation of railway track-bed, but also to mitigate the need for the
disposal of a solid waste. Rubber grains can be incorporated into the prepa-
ration of bituminous mixtures by the so-called "wet" and "dry" production
processes. The wet process envisages the dissolution of the crumb rubber in
the bitumen as a modifying agent. The dry process envisages the replacement
of a small portion of aggregates with the same fractions of rubber grains. Re-
cent studies on the life cycle assessment of bituminous mixtures incorporating
crumb rubber produced by both processes showed the benefits of using such
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technologies in reducing the Gross Energy Requirement and the emissions of
greenhouse gasses. Moreover, incorporating crumb rubber as aggregate could
enhance damping properties, due to the capability of the rubber to absorb vi-
brations.

3D Fractional viscoelasticity

Fractional viscoelasticity has been widely studied from two different theoreti-
cal points of view: mathematicians and engineers. Many experimental results
of monodimensional tests are available in literature and they confirm that
in 1D conditions fractional viscoelasticity is the best approach to model the
mechanical behaviour of viscoelastic materials. However, 1D models are not
enough when there is the need is to study real engineering components. The
fitting of tridimensional experimental tests needs the definition of a proper 3D
constitutive law as well as the structural analysis of complex engineering com-
ponents. In the last years some 3D fractional viscoelastic models have been
proposed, but the behaviour has never been experimentally investigated in
simple 3D conditions and in real applications. For these reasons, in this thesis
a theory of 3D linear isotropic fractional viscoelasticity, based on the general-
isation of Hooke’s law, is presented. This theory may be used to model the
mechanical behaviour of bituminous mixtures as the experimental tests are
properly performed. In this thesis, it is shown how to obtain the model coeffi-
cients from tridimensional experimental tests, and the theory of 3D fractional
viscoelasticity is validated for bituminous mixtures.

Temperature effect on viscoelastic materials

It is well known, from the experimental and theoretical point of view, that
the properties of viscoelastic materials are strongly dependent on the tem-
perature. In the decade of 1950’s the so called Time-Temperature Superpo-
sition Principle was experimentally observed in a study of the viscoelastic
behaviour of polymers. This principle defines the relationship between time
or frequency and temperature in the mechanical properties of viscoelastic ma-
terials under constant or dynamic stress conditions.

The application of this principle is based on modifying the time scale by
multiplying by the so-called shift factor. Different techniques, based on ex-
perimental observations, to calculate the shift factor have been proposed for
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the classical mechanical models. Unfortunately, when fractional operators are
involved in the material constitutive laws, it has been observed that the classi-
cal shifting technique has some inconsistencies. For this reason, in this thesis
it is studied how to deal with the Time-Temperature Superposition Principle
when the material is modelled by means of fractional constitutive laws.

Organisation of the thesis

This PhD thesis is organised in five chapters. Each chapter includes orig-
inal work developed during the three years of the PhD programme at the
Università degli Studi di Palermo (Italy) and during the six month secondment
at IFSTTAR (Institut français des sciences et technologies des transports, de
l’aménagement et des réseaux) in Nantes (France).

Chapter 1 presents the so called Fractional Calculus, a branch of mathe-
matical analysis that extends the classical integro-differential calculus to non-
integer order operators. In particular, the derivatives and integrals of frac-
tional order, their fundamental properties are introduced in this chapter. More-
over, a step by step integration technique for the fractional operators is pre-
sented in order to expand the capabilities of this operators in discrete form.

Chapter 2 introduces the linear fractional viscoelasticity. It starts with the
theory of linear viscoelasticity, founded on the Boltzmann superposition prin-
ciple that includes the constitutive laws of linear viscoelasticity. Then, the
theory of linear fractional viscoelasticity is introduced. Moreover, a review of
the classical and fractional mechanical models is reported. Furthermore an
approach to separate the elastic and the viscous phase in the fractional stress-
strain is provided in order to calculate the fractional characteristic times.

Chapter 3 presents the use of recycled rubber on asphalt mixtures. The
main problem on crumb rubber asphalt, using rubber of a certain size, is the
compaction. It has been demonstrated experimentally that the void content
increases after the compaction. In this chapter an analytical approach is pro-
posed to the mix design optimisation of bituminous mixtures containing crumb
rubber using a gyratory compactor. The method takes into account the defor-
mation release of the rubber after compaction for the calculation of the ex-
pected void content. The analytical approach is validated by the results of
experimental tests.

Chapter 4 introduces the theory of the 3D fractional viscoelasticity. The ex-
perimental set up used to perform the triaxial test for the asphalt mixtures is
presented. Then the mechanical behaviour of the reference asphalt and the
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rubber asphalt designed in the Chapter 3 is compared by the experimental
creep and cyclic test performed. Finally, both asphalts are modelled as 3D
fractional viscoelastic materials. The novelty in this Chapter arises on the
validation of the 3D fractional viscoelasticity theory by means experimental
triaxial test.

Chapter 5 deals with the temperature effect on viscoelastic materials. The
chapter starts with the introduction of the Time-Temperature Superposition
Principle, which deals with the strong relationship that time and tempera-
ture have in viscoelastic materials. Once the Time-Temperature Superposition
Principle is introduced, its mathematical inconsistency is demonstrated when
fractional elements appear in the mechanical model . Furthermore, the me-
chanical response of the bituminous mixtures presented and characterised in
the previous Chapters 3 and 4 is evaluated taking into account the tempera-
ture effect. To conclude, the response of the two bituminous mixtures (refer-
ence and crumb rubber) used as railway sub-ballast it is compared based on
the discrete fractional operators presented in Chapter 1.



Chapter 1

Fractional calculus

This Chapter presents the Fractional Calculus, a branch of mathematical anal-
ysis that extends the classical integro-differential calculus to non-integer or-
der operators. In particular, the derivatives and integrals of fractional order,
their fundamental properties are introduced in this chapter. The fractional
operators introduced in this Chapter are those required to understand the
concepts of fractional viscoelasticity. Further details can be found in [Old-
ham and Spainer, 1974, Miller and Ross, 1993, Samko et al., 1993, Podlubny,
1998, Kilbas et al., 2006]. Moreover, a step by step integration technique for
the fractional operators is presented in order to expand the capabilities of this
operators in discrete form [Colinas-Armijo and Di Paola, 2017].

1.1 History about fractional calculus and its applications

The Fractional Calculus was born after a postal conversation between Got-
tfried Wilhelm von Leibniz and his French colleague Guillaume de L’Hôpital. The
conversation was started by Leibniz asking to L’Hôpital “Can the meaning of
derivatives with integer order be generalised to derivatives with non-integer orders?”.
L’Hôpital was somewhat curious with the question and replied with another
question “What if the order be 1/2?”. Leibniz on a letter dated on the 30th
September 1695 answer “Thus it follows that d1/2x will be equal to x

p
dx : x,

an apparent paradox, from which one day useful consequences will be drawn.”, and
that has been the date set for the origin of fractional calculus. Only half cen-
tury later, the first systematic studies were made and they involved several
mathematicians such as Fourier, Laplace, Lacroix and Euler.

1



2 1. Fractional calculus

Probably, the first one who used fractional calculus in a mathematical
problem was N. H. Abel. He studied in 1823 the tautochrone curve by the
integral Z t

a
(t � t)�

1
2 f (t) dt, (1.1)

which is similar to the fractional integral that will be introduced by Riemann
later. But the main breakthrough has been made by the French mathematician
Joseph Liouville, who in 1832 formulates the first definition of fractional deriva-
tive. He defined a non-integer order derivative using exponential series ex-
pansion of the function. In particular, Liouville considered the derivative of
exponential function:

dn

dtn eat = aneat n 2 N, (1.2)

and he extended the derivation considering an order n = a with a being a
non-integer number, and obtaining

da

dta

eat = aaeat, a 2 R+. (1.3)

Subsequently, around 1835, he expressed the generic function f (t) as a
summation of exponential functions with infinity terms, and he defined the
derivative of fractional order as series

(Da f ) (t) =
•

Â
j=0

cjaa

j eajt, (1.4)

where f (t) = Â•
j=0 aa

j eajt.
An important contribution was provided in 1847 by the 22-years-old George

Friedrich Bernhard Riemann, who introduced a definition of fractional integra-
tion by generalizing the Taylor series. That is,

(Ia

a+ f ) (t) =
d�a

dt�a

f (t) =
1

G(a)

Z t

a
(t � t)a�1 f (t) dt. (1.5)

The definitions of Liouville and Riemann have been unified with the aid of
Cauchy integration formula in the manuscript of 1869 by N. Ya. Sonin entitled
“On Differentiation with Arbitrary Index”. This is probably the first document
in which the two definitions appear unified. Other contributions to this unifi-
cation were provided by A. Krug, and Aleksey Vasilievic Letnikov, the latter one
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in 1872 extended the work of Sonin in his paper “An Explanation of the Theory
of Differentiation of Arbitrary Index”.

Next, during the collaboration with Letnikov, in 1867 Anton Karl Grünwald
overcame the limits of Liouville definition, obtaining a more complete def-
inition. Indeed, the Grünwald-Letnikov derivative has been obtained with
the aid of the difference quotient. In 1930 the mathematician Emil Leon Post
extended the definition of Grünwald and Letnikov.

Recently, around 1967, Michele Caputo provided a new mathematical for-
mulation that represents a good tool to solve physical and engineering prob-
lems.

1.2 Fractional derivatives and integrals

In this section, the Riemann-Liouville fractional operators, the Caputo frac-
tional derivative and the Grünwald-Letnikov fractional operators are pre-
sented. This operators are well known and extended information of them
may be found for example in [Samko et al., 1993, Podlubny, 1998].

1.2.1 Riemann-Liouville fractional operators

The definition of the integral by Cauchy (Augustin-Louis, French mathemati-
cian and engineering, 1789-1857) is

(In
a+ f ) (t) =

d�n f (t)
d(t � a)�n =

Z t

a

Z
tn�1

a
· · ·

Z
t1

a
f (t) dt dt1 . . . dtn�1

=
1

(n � 1)!

Z t

a
(t � t)n�1 f (t) dt.

(1.6)

In this way the multiple integral is represented as a convolution integral in
which the kernel is (t � t)n�1. By using the property of the Euler gamma
function the Cauchy multiple integral formula can be generalised to the non-
integer order case, obtaining the Riemann-Liouville (R-L) definition. In this
regard, by replacing the factorial (n � 1)! with the gamma function, and the
integer order n with generic order a (real or complex), the following relation
holds:

(Ia

a+ f ) (t) =
d�a f (t)

d(t � a)�a

=
1

G(a)

Z t

a
(t � t)a�1 f (t) dt. (1.7)

Eq. (1.7) is known as Riemann-Liouville fractional integral, since R(a) > 0, and
it holds true for a 2 C. According the Davis notation, the integral is also
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denoted as aIa

t f (t). In particular, this integral represents the left-sided integral,
since the lower bound is the parameter a, and then t > a. The right-sided
integral can be obtained chosen as lower bound the integration variable t. That
is,

(Ia

b� f ) (t) =
1

G(a)

Z b

t
(t � t)a�1 f (t) dt, (1.8)

in this case the parameter b is such that b > t. For the Davis notation the
right-sided integral is also denoted as tIa

b f (t).
Provided that ḟ (t) exists Eq. (1.7) may be written as

(Ia

a+ f ) (t) =
1

G(1 + a)

Z t

a
(t � t)a ḟ (t) dt. (1.9)

The Riemann-Liouville fractional derivative can be readily obtained from the
definition of the R-L fractional integral. In particular, by considering that the
derivative of order n can be represented as the derivative of order n+m of the
m-order primitive function, the non-integer order the definition is obtained:

(Da

a+ f ) (t) =
1

G(n � a)

✓
d
dt

◆n Z t

a

f (t)
(t � t)a�n+1 dt, (1.10)

where (n � 1) < R(a) < n.
Eq. (1.10) represents the left-sided derivative, since t > a. Instead, chosen an

upper bound t < b, the right-sided derivative is defined as

(Da

b� f ) (t) =
1

G(n � a)

✓
� d

dt

◆n Z b

t

f (t)
(t � t)a�n+1 dt. (1.11)

For the Davis notation the right-sided and left-sided derivative are denoted
as aDa

t f (t) and tDa

b f (t) respectively.
In the previous definitions the backward difference (t � t) appear in the

convolution integral. If the forward difference (t + t) is chosen, then another
definition, known as Weil differintegral operator, is obtained.

Observe that the R-L derivative of a constant is not zero, indeed:

Da

0+c =
c t�a

G(1 � a)
. (1.12)



1.2 Fractional derivatives and integrals 5

1.2.2 Caputo fractional derivative

Another definition has been provided by Michele Caputo, and it is applied to
solve several physical problems.

The Riemann-Liouville definition represents an accurate mathematical tool,
but often it is unsuitable to solve and/or to model real physical problems. In
particular, the solution of fractional differential equations with R-L deriva-
tives can be found if the initial conditions are expressed as the involved frac-
tional operators. Such derivatives, having no physical meaning, are unknown
in physical problems, and they do not permit to represent the initial condition
of those problems.

The Caputo’s approach [Caputo, 1967, Caputo, 1969] overcomes the limi-
tations of the R-L definition, since it permits to define the fractional derivative
and/or integral of the function f (t) by using initial conditions expressed as
integer-order derivative. In this manner, when there is a fractional differential
equation with Caputo’s fractional operators, the solution can be evaluated by
the knowledge of a certain number of initial conditions expressed as in the
classical way. To model the mechanical behaviour of real materials, the frac-
tional derivation is commonly used in rheology. In this physical field there are
some problems in which the initial conditions are known in terms of integer-
order derivatives (e.g. the deformation rate is the first-order derivative in time
of the strain history). The Caputo’s formulation permits to solve this kind of
problems, providing an accurate modelling of the phenomena.

M. Caputo, around 1967, provided the a new definition of the fractional
operator

⇣
CDa

a+ f
⌘
(t) =

1
G(n � a)

Z t

a

f (n)(t)
(t � t)a+1�n dt, (1.13)

which is known as Caputo’s differintegral and it is valid for n � 1 < a < n.
Eq. (1.13) is obtained as a kind of interpolation of the integer-order derivative.
Indeed, if a ! n, Eq. (1.13) leads to n-order derivative of the function f (t). In
this case, the Caputo’s derivative of a constant is zero.

In certain cases, in which the function f (t) has particular properties when
t ! �•, and under specific initial conditions, the R-L derivative and the
Caputo’s one coincide.
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1.2.3 Grünwald-Letnikov fractional operators

The Grünwald-Letnikov (G-L) definition of fractional operators consists of a
discretisation of the time axis into small steps of equal length Dt. The approx-
imation of the derivatives of integer order at the time step tj = jDt is given
as

ḟ (tj) ⇠= (tj � tj�1)Dt�1; f̈ (tj) ⇠= (tj � 2tj�1 + tj�2)Dt�2;

dn f (tj)

dtn =

 
j�1

Â
r=0

(�1)r
✓

n
r

◆
f (tj � rDt)

!
Dt�n; n = 1, 2, ...

(1.14)

and the n-th integral is approximated as

d�n f (tj)

dt�n =

 
j�1

Â
r=0

✓
r + n � 1

r

◆
f (tj � rDt)

!
Dtn; n = 1, 2, ... (1.15)

The G-L fractional derivatives and integrals are obtained by a proper sub-
stitution of the order n 2 N with a 2 R+ (or also a 2 C with Re(a) 2 R+),
thus obtaining the fractional derivatives and integrals in the form

(ra f ) (tj) = Dt�a

j�1

Â
r=0

G(r � a)
G(r + 1)G(�a)

f (tj � rD)t; Re(a) > 0 (1.16)

and

�
r�a f

�
(tj) = Dta

j�1

Â
r=0

G(r + a)
G(r + 1)G(a)

f (tj � rDt); Re(a) > 0 (1.17)

where the symbols ra f and r�a f denote the G-L fractional derivative and
integral, respectively.

The G-L approach is very attractive since Dt ! 0 Eqs. (1.16) and (1.17) tend
toward Eq. (1.10) and Eq. (1.7), respectively. For this reason the G-L derivative
and integral are considered as a discretisation of the Riemann-Liouville frac-
tional operators. Moreover, the various coefficients in Eqs. (1.16) and (1.17)
may be constructed in recursive form. By denoting wr(a) = G(r � a)/(G(r +
1)G(�a)) and wr(�a) = G(r + a)/(G(r + 1)G(a)) it is obtained

w0(a) = 1, w1(a) = �a, w2(a) = w1(a)
(1 � a)

2
, ... ,

wj�1(a) = wj�2(a)
(j � 2 � a)
(j � 1)

, ... a > 0
(1.18)
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and wr(�a) is obtained simply by substituting �a in the Eq. (1.18). Eqs. (1.16)
and (1.17) may be rewritten in the following form (see [Podlubny, 1998])

ra

f

N

= Dt�a

A

N

(a) f

N

, (1.19a)

r�a

f

N

= Dta

B

N

(a) f

N

. (1.19b)

By denoting f (tr) = fr, inserting fr into a vector f

N

f

N

T = [ f1 f2 ... fN ] (1.20)

and writing Eq. (1.19a) at each temporal step, it is recognised that A

N

is a
lower triangular strip matrix defined as

A

N

(a) =

2

66666664

1 0 0 . . . 0 0
w1(a) 1 0 . . . 0 0
w2(a) w1(a) 1 . . . 0 0

...
...

... . . . ...
...

wN�2(a) wN�3(a) wN�4(a) . . . 1 0
wN�1(a) wN�2(a) wN�3(a) . . . w1(a) 1

3

77777775

, (1.21)

and the matrix B

N

is obtained as B

N

(a) = A

N

(�a).
Semigroup properties for R-L and G-L operators are preserved, that is

A

N

(�a) = B

N

(a) = B

N

�1(a); B

N

(�a) = A

N

�1(a)

A

N

2(a) = A

N

(2a); B

N

2(a) = B

N

(2a); ...
(1.22)

With all these informations it seems that the G-L operators may be used
without any care. However, in some circumstances the use of G-L opera-
tors may lead to errors in the approximate solutions of practical problems in
physics and engineering. The problem arises because in the approximation of
Eq. (1.15) implicitly is assumed that f (t) is continuous with the all the deriva-
tives up to the order dnt/dtn, 8t including the value at t = 0. It follows that
Eq. (1.19) remains valid provided that the derivative of order n exists in all
the real axis for Re(a) 6 n including the value in zero. Such an example,
let f (t) = exp(�t) this function belong to the class C•8t > 0, excluding the
point t = 0 in which the function exhibits a jump, then in the proximity of
t = 0 Eq. (1.19a) fails.
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1.3 Properties of fractional operators

The properties of classical derivation and integration can be extended to the
fractional operators. This shows that the integer-order differential/integral
calculus is nothing else than a subset of the fractional calculus. The proper-
ties of fractional operators presented in this section are well known, see for
example in [Samko et al., 1993, Podlubny, 1998].

1.3.1 Properties

This subsection introduces just three fundamental properties of the fractional
operators, that are, the linearity that concerns the summation of two operators,
the Leibniz rule that affects the product, and the semigroup property, which is
useful for multiple integration and derivation.

The linearity

The fractional derivative is a linear operator. Considering two function f (t)
and g(t), and two parameters l, µ 2 C, the relation

Da (l f + µg) (t) = l (Da f ) (t) + µ (Dag) (t) (1.23)

holds. This property of fractional derivative is a consequence of its definition.
In order to show this property, considering the Grünwald-Letnikov defi-

nition, for which

Da

a+ (l f + µg) (t) = lim
h!0

nh=t�a

h�a

n

Â
r=0

(�1)r
✓

a

r

◆
[l f (t � rh) + µg(t � rh)]

= l lim
h!0

nh=t�a

h�a

n

Â
r=0

(�1)r
✓

a

r

◆
f (t � rh) + µ lim

h!0
nh=t�a

h�a

n

Â
r=0

(�1)r
✓

a

r

◆
g(t � rh),

(1.24)

that leads to

(Da

a+l f + µg) (t) = l (Da

a+ f ) (t) + µ (Da

a+g) (t). (1.25)

The property can be proved considering the other definitions.
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The Leibniz rule

Take two function f (t) and j(t), the Leibniz rule permits to evaluate the n-
derivative of their product:

dn

dtn [j(t) f (t)] =
n

Â
r=0

✓
n
r

◆
j

(r)(t) f (n�r)(t), (1.26)

where (n
r) represents the binomial coefficient, and j

(r)(t) is the r-order deriva-
tive.

In order to demonstrate that the Leibniz rule is still available for fractional
operators, consider the Grünwald-Letnikov derivative of order a 2 R:

(Da

a+ j f ) (t) =
n

Â
r=0

✓
a

r

◆
j

(r)(t)
�
Da�r

a+ f
�
(t)� Ra

n(t), (1.27)

which is obtained under the assumptions that n � a + 1, that the function
f (t) is continuous in the range [a, t], and that j(t) admits n + 1 continuous
derivatives in the domain [a, t]. The second term of Eq. (1.27) is

Ra

n(t) =
1

n!G(�a)

Z t

a
(t � t)�a�1 f (t) dt

Z t

t

j

(n+1)(x)(t � x)n dx, (1.28)

and represents a sort of remainder, which is due to the fact that the summation
in Eq. (1.27) does not have infinite terms, but it is truncated at finite number
n. By using infinite terms in the summation, the Leibniz rule for fractional
derivatives becomes:

(Da

a+ j f ) (t) =
•

Â
r=0

✓
a

r

◆
j

(r)(t)
�
Da�r

a+ f
�
(t)(t). (1.29)

Also in this case, the shown property can be proved by other definitions of
fractional derivative.

The semigroup rule

Considering a function f (t), which is integrable for both order a1 and a2, with
R(a1) > 0 and R(a2) > 0, then the relation

�
Ia1
a+Ia2

a+ f
�
(t) =

�
Ia2
a+Ia1

a+ f
�
(t) =

⇣
Ia1+a2
a+ f

⌘
(t), (1.30)
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holds. This property is still available for right-sided integration, then:

�
Ia1
b�Ia2

b� f
�
(t) =

�
Ia2
b�Ia1

b� f
�
(t) =

⇣
Ia1+a2
b� f

⌘
(t). (1.31)

Eq. (1.30) is known as semigroup property. Observe that the integration is also
commutative.

Take an R(a) > 0, then:

(Da

a+Ia

a+ f ) (t) = f (t),
(Da

b�Ia

b� f ) (t) = f (t).
(1.32)

The Eqs. (1.32) can be proved by the R-L definition. Indeed, by using this
definition from the first of Eqs. (1.32), the equality

(Da

a+Ia

a+ f ) (t) =
dn

dtn

��
D�n+a

a+ Ia

a+ f
�
(t)

 
= f (t), with n = R(a) + 1 (1.33)

holds true. The latter operation, between derivative and integral, is not com-
mutative. Therefore,

(Ia

a+Da

a+ f ) (t) 6= f (t),
(Ia

b�Da

b� f ) (t) 6= f (t).
(1.34)

Another particular case can be obtained if R(a) > R(g) > 0:

�
Dg

a+Ia

a+ f
�
(t) =

⇣
Ia�g

a+ f
⌘
(t),

�
Dg

b�Ia

b� f
�
(t) =

⇣
Ia�g

b� f
⌘
(t)

(1.35)

Moreover, considering an R(a) > 0 and an n 2 N, then,

dn

dtn (Da

a+ f ) (t) =
�

Da+n
a+ f

�
(t),

dn

dtn (Da

b� f ) (t) = (�1)n �Da+n
b� f

�
(t).

(1.36)

1.3.2 Laplace transform of fractional operators

In this subsection the concepts about the Laplace transform are extended to
the fractional operators.
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Laplace transform of Riemann-Liouville fractional derivative

The Laplace transform of the Riemann-Liouville fractional derivative of order
R(a) > 0 with lower bound a = 0 is

L {(Da

0+ f ) (t); s} = sa F̂(s)�
n�1

Â
r=0

sr
h⇣

Da�r�1
0+ f

⌘
(t)

i

t=0
, (1.37)

where n � 1  a < n and F̂(s) is the Laplace transform of f (t).
In this mathematical transformation the values of the R-L fractional deriva-

tives appear at the origin. In physical problems described by fractional dif-
ferential equations, the R-L formulation cannot be used, since this fractional
derivative at the origin has no physical meaning.

Laplace transform of Caputo’s fractional derivative

The Laplace transform of the Caputo’s fractional derivative leads to

L {(CDa

0+ f ) (t); s} = sa F̂(s)�
n�1

Â
r=0

sa�r�1 f (r)(0), (1.38)

where n � 1  a < n.
Observe that in this case the integer derivatives appear at the origin. This

is an important characteristic of this kind of fractional derivatives, since Eq. (1.38)
can be applied to solve physical problems in which the Caputo’s fractional
derivatives appear, and when the initial conditions are given in terms of in-
teger derivative. In a physical point of view, the difference of Eq. (1.37) and
Eq. (1.38) is crucial, since the integer-order derivative at the origin has a phys-
ical meaning (e.g.: if x(t) is the displacement function, ẋ(0) is the initial ve-
locity, ẍ(0) is the initial acceleration).

1.3.3 Fourier transform of fractional operators

In some physical problems, expressed by fractional differential equations, it
is useful to apply the Fourier transform. In this section the previous concepts
about this mathematical transformation are extended to fractional derivatives
and integrals.
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Fourier transform of fractional integral

Considering the R-L fractional integrals on the whole real axis, that is with
lower bound a = �•, and order 0 < a < 1, the previous definition leads to

(Ia

+ f ) (t) =
�

D�a

+ f
�
(t) =

1
G(a)

Z t

�•
(t � t)a�1 f (t)dt, (1.39)

by performing the Fourier transform of (1.39), the relation

F
��

D�a

+ f
�
(t); w

 
= (iw)�a F̃(w) (1.40)

holds, where a 2 R and F̃ is the Fourier transform of f (t).
By using the Eq. (1.40) to left and right-sided fractional integrals (Ia

+ f ) (t),
the Fourier transform becomes

F {(Ia

± f ) (t); w} = (⌥iw)�a F̃(w), (1.41)

where
(⌥iw)�a =

h
cos

⇣
ap

2

⌘
± i sgn (w) sin

⇣
ap

2

⌘i
|w|�a . (1.42)

Eq. (1.41), obtained from the R-L definition, is still available for the Grünwald-
Letnikov

�
D�a

+ f
�
(t) and the Caputo’s definition

�CD�a

+ f
�
(t).

Fourier transform of fractional derivative

Similarly to the previous case, consider the fractional derivative with lower
bound a = �•. That is,

(Da

+ f ) (t) =
1

G(n � a)

Z t

�•

f (n)(t)
(t � t)a+1�n dt =

⇣
Da�n

+ f (n)
⌘
(t), (1.43)

under the assumption that the function f (t) is derivable n-times, and where
n � 1 < a < n.

Taking into account Eq. (1.40) the Fourier transform of Eq. (1.43) is

F {(Da

+ f ) (t); w} = (�iw)a F̃(w). (1.44)

That expression is commonly used to solve several physical problems.
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1.4 Step by step integration for fractional operators

In this section, an approach based on the definition of the Riemann-Liouville
fractional operators is proposed in order to provide a different discretisation
technique as alternative to the Grünwald-Letnikov operator (see [Colinas-
Armijo and Di Paola, 2017]). The proposed R-L discretisation consists of a
step-by-step integration schema based upon the discretisation of the function
f (t) as step-wise or piece-wise function. Applications to unit step function
and exponential function are presented to show the accuracy and capabilities
of the R-L discretisation proposed and the G-L discrete operators.

1.4.1 Step-wise approximation

The step-by-step approximation is evaluated for Riemann-Liouville fractional
integral and derivative discretising of the function f (t) as step-wise function.

Riemann-Liouville integral for the step-wise approximation

The R-L integral defined in Eq. (1.8) may be easily evaluated by a proper dis-
cretisation of the time axis into small intervals of equal length Dt. In each step
the function f (t) is assumed to be constant as depicted in Figure 1.1.

The step-wise approximation of f (t) may be written in the form

f (tN) '
N

Â
j=1

( f j � f j�1)U(t � tj�1); tN�1 6 t 6 tN (1.45)

where f j = f (jDt) and U(·) is the unit step function. By inserting Eq. (1.45)
in Eq. (1.8) the exact solution of the R-L fractional integral for the step-wise
approximation is obtained in the form

D�a f (t) =
1

G(1 + a)
[ f1ta + ... + ( fN � fN�1)(t � (N � 1)Dt)a] (1.46)

By particularising t as jDt and by collecting f j into f

N

T = [ f1 f2... f3] the R-L
fractional integral may be represented in matrix form as follows

D�a

f

N

= Dta

P

N

(a)A

N

(1) f

N

= Dta

V

N

(a) f

N

(1.47)
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where A

N

(1) is the G-L operator particularised for a = 1 and P

N

(a) is the
lower triangular strip matrix defined as

P

N

(a) =
1

G(1 + a)

2

66666664

1 0 0 . . . 0 0
2a 1 0 . . . 0 0
3a 2a 1 . . . 0 0
...

...
... . . . ...

...
(N � 1)a (N � 2)a (N � 3)a . . . 1 0

Na (N � 1)a (N � 2)a . . . 2a 1

3

77777775

, (1.48)

and in Eq. (1.47) V

N

(a) = P

N

(a)A

N

(1).

f1
f2

f4f3

0 t1 t2 t3 t4 t

f(t)

(a) Dashed line f (t), continuous line
step-wise approximation

f1

f1 U (t )

0 t1 t2 t3 t4 t

f(t)

(f2- f1) U (t - t�)
f2- f1

0 t1 t2 t3 t4 t

f(t)

(b) Mathematical representation of the step-wise approximation

Figure 1.1: Step-wise approximation of f (t).
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Eq. (1.47) provides an exact R-L fractional integral in tj for a step-wise
function f (t), moreover from Eq. (1.46) the values in the intermediate points
may be evaluated for the step-wise approximation.

It may be observed that D�a f (t) for the step-wise approximation of f (t)
is continuous for every a > 0, and for 0 < a < 1 the slope in t+j , that is
the derivative in tj + # as # ! 0, is •. On the contrary, for a > 1 the R-
L fractional integral is continuous with all the derivatives up to the order
int(a) � 1, being int(a) the integer part of a. These two situations are de-
picted in Figures 1.2(a) and 1.2(b), respectively. Furthermore, for 1 < a < 2
the R-L fractional integral is continuous 8t and the first derivatives in tj are
discontinuous, that is d(D�a f (t))/dt|tj�e

6= d(D�a f (t))/dt|tj+e

with e arbi-
trarily small. For 2 < a < 3 the term D�a f (t) is continuous with first order
derivatives in all the time axis, and so on.

0 t1 t2 t3 t4 t

D-αf(t)

(a) 0 < a < 1

0 t1 t2 t3 t4 t

D-αf(t)

(b) 1 < a < 2

0 t1 t2 t3 t4 t

D-αf(t)

(c) a > 2

Figure 1.2: Fractional integrals for the step-wise approximation of f (t).
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It may be easily seen that the semigroup properties for the operator V

N

(a)
is not fulfilled, such an example is

D�2a

f

N

6= Dt2a

V

N

2(a) f

N

(1.49)

and then D�2a

f

N

has to be evaluated in the form

D�2a

f

N

= Dt2a

V

N

(2a) f

N

. (1.50)

The lack of the semigroup properties is due to the fact that the term D�a f (t)
for the step-wise function is, in each step, a power law (see Eq. (1.46)). It fol-
lows that D�a f (t) may not be considered constant especially for a small and
then D�aD�a

f

N

= Dta+a

V

N

(a + a) f

N

6= Dta+a

V

N

(a)V
N

(a) f

N

.
A direct comparison between the G-L operator B

N

(a) and the R-L oper-
ator V

N

(a) for the step-wise approximation reveals that both are lower tri-
angular strip matrices but the corresponding elements wj(a) and the corre-
sponding elements of the matrix V

N

(a) are quite different each another as in
fact

wj(a) = wj�1(a)
j � 1 + a

j � 1
6= 1

G(a + a)
[(j + 1)a � ja]. (1.51)

Moreover looking at the diagonal elements of the matrix B

N

(a) and those of
V

N

(a) the difference is immediately evident since the diagonal elements of
B

N

(a) are 1 while the diagonal elements of V

N

(a) are 1/G(1 + a). It may be
easily shown that B

N

(a) = V

N

(a) for a = 1.
A very instructive case that highlights the difference between the G-L op-

erator A

N

(a) and the R-L operator V

N

(a) is the integration of the unit step
function. In this case, following the R-L step-by-step integration scheme (see
Eq. (1.47)) the response at every time step coalesces with the exact one no mat-
ter the time Dt selected, while the G-L integration scheme is an approximation
for the first few time instants.

Riemann-Liouville derivative for the step-wise approximation

As f (t) = 0, 8t < 0 the R-L fractional derivative (Eq. (1.10)) and the Caputo’s
fractional derivative coalesce each another, then for the step-wise approxima-
tion of f (t) it may be used both Eq. (1.10) or Eq. (1.13). In order to show this,
lets suppose 0 6 Re(a) 6 1. Then Eq. (1.13), particularised for n = 1, is
written as

⇣
CDa f

⌘
(t) =

1
G(1 � a)

Z t

0
(t � t)�a ḟ (t)dt; 0 6 a 6 1. (1.52)
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The step-wise approximation reads

ḟ (t) '
N

Â
j=1

( fj � f j�1)d(t � tj�1); tN 6 t 6 tN+1 (1.53)

where d(·) is the Dirac’s delta function. By inserting Eq. (1.53) in Eq. (1.52) in
the various time steps it is obtained

⇣
CDa f

⌘
(t) =

f1

G(1 � a)
t�a; 0 6 t 6 Dt

⇣
CDa f

⌘
(t) =

f1t�a

G(1 � a)
+

( f2 � f1)
G(1 � a)

(t � t1)
�a; Dt 6 t 6 2Dt

...
⇣

CDa f
⌘
(t) =

1
G(1 � a)

N

Â
j=1

( f j � f j�1)(t � tj�1)
�a; (N � 1)Dt 6 t 6 NDt

(1.54)

Particularisation of Eq. (1.54) in tj = jDt, the Caputo’s fractional derivative
at jDt is obtained in the form

CDa

f

N

= Dt�a

P

N

(�a)A

N

(1) f

N

= Dt�a

U

N

(a) f

N

; 0 6 a 6 1, (1.55)

where P

N

(�a) is derived by a simple substitution of �a in the matrix in
Eq. (1.48). It follows that the identity

U

N

(a) = V

N

(�a) (1.56)

holds true. For a = 1, G(1 � a) = • that represents the fact that the first
derivative is a series of impulses.

Exactly the same result are achieved following the R-L definition of the
derivative for 0 6 a 6 1. In this case, according to Eq. (1.10), the R-L fractional
derivative is given as

(Da f ) (t) =
1

G(1 � a)
d
dt

Z t

0
(t � t)�a f (t)dt; 0 6 a 6 1, (1.57)
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and by using Eq. (1.45) leads to

(Da f ) (t) =
1

G(1 � a)
d
dt
[

f1t�a

G(1 � a)
+ ... +

( fN � fN�1)
G(1 � a)

(t � tN�1)
�a] =

=
f1t�a

G(1 � a)

N

Â
j=1

( f j � fj�1)

G(1 � a)
(t � tj�1)

�a; (N � 1)Dt 6 t 6 NDt.

(1.58)

Then, Eq. (1.55) is exactly obtained by particularising Eq. (1.58) for t = jDt.
In Figures 1.3 the R-L (or the Caputo) fractional derivative for the step-

wise approximation is plotted for 0 6 a < 1 and for a > 1.

0 t1 t2 t3 t4 t

Dαf(t)

(a) 0 < a < 1

t1 t2 t3 t4 t

Dαf(t)

(b) a > 1

Figure 1.3: Fractional derivatives for the step-wise approximation of f (t).

Also in this case the semigroup properties for U

N

(a) are not preserved.
The motivation is the same already exploited for the fractional integral. In
this case it is more evident that the step-wise approximation for the fractional
derivative exhibits hyper-singularities at the beginning of each step. Subse-
quently, assuming that (Da f ) may be represented as a step-wise function is
a mistake. As a consequence Db (Da f ) in which (Da f ) is supposed to be
constant at each step may not be represented as the product of A

N

(b)B

N

(a).
Nevertheless also in this case the equality

Da+b

f

N

= Dt�(a+b)
U

N

(a + b) f

N

; a > 0, b > 0, (a + b) 6 1. (1.59)

remains still valid. The rules for the derivative of the integral are as follows

Da

⇣
D�b

f

N

⌘
= Dt(a�b)

U

N

(a � b) f

N

. (1.60)



1.4 Step by step integration for fractional operators 19

Because of the singularities in the fractional operator for a > �1 another
possibility to get the step-by-step integration schemes of the fractional opera-
tors in the Riemann-Liouville sense yields a more accurate description of f (t)
such as a piece-wise approximation. This issue will be developed in the next
section.

1.4.2 Piece-wise approximation

The step-by-step approximation is evaluated for the Riemann-Liouville frac-
tional integral and derivative discretising the function f (t) as a piece-wise
function. For simplicity sake’s it is supposed that f (0) = f0 = 0, and the hy-
pothesis of quiescent system in t = 0 will be removed later on once the main
results are achieved.

Riemann-Liouville integral for the piece-wise approximation

This approximation mainly assumes that ḟ (t) remains constant during each
step as shown in Figure 1.4.

f1
f2

f3 f4

0 t1 t2 t3 t4 t

f(t)

(a) f (t) represented as piece-wise.

f�� f��
f��

f��t1 t2 t3 t4 t

f� (t)

(b) ḟ (t) of the piece-wise.

Figure 1.4: Piece-wise approximation of f (t).

f (tj) is indicated as fj, j = 1, 2, ...N and ḟ j is the rate of f (t) in the interval
tj�1 < t < tj. By means of Eq. (1.9), taking into account that for the piece-wise
approximation

ḟ (t) '
N

Â
j=1

( ḟ j � ḟ j�1)U(t � tj�1); tN�1 6 t 6 tN , (1.61)
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and inserting Eq. (1.61) into Eq. (1.47) yields

G(2 + a)
�

D�a f
�
(t) = ḟ1ta+1 + ( ḟ2 � ḟ1)(t � Dt)a+1 + ...

+ ( ḟN � ḟN�1)(t � (N � 1)Dt)a+1.
(1.62)

It follows that

D�a

f

N

= Dta+1
P

N

(a + 1)A

N

(1) ḟ

N

= Dta

P

N

(a + 1)A

N

(2) f

N

(1.63)

where P

N

(a + 1) is the strip matrix already defined in Eq. (1.48) in which a is
substituted by a + 1 and A

N

(2) is the G-L operator particularised for a = 2.
In Eq. (1.63) the piece-wise approximation ḟ j = Dt�1( fj � f j�1) has been

used. From Eq. (1.62) it is seen that in t+j the slope is not infinity for 0 <
a < 1 as it happens in the step-wise approximation. It follows that it may
be asserted that for 0 < a < 1 the fractional R-L integral is continuous with
bounded discontinuity in the slope at time instants t1, t2, ..., tN . For a > 1
the R-L fractional integral is continuous with the derivatives up to the order
int(a). If f (0) = f0 is different from zero, that is f (t) exhibits a jump in t = 0
(as for example cos(t)), Eq. (1.63) has to be modified in the form

D�a

f

N

= Dta

h
P

N

(a + 1)A

N

(2) f̃

(1)
N

+ f0P

N

(a)A

N

(1)e
N

i
(1.64)

where f̃

(1)
N

is a vector with the components f̃ (1)j = fj � f0, j = 1, 2, ..., N, and
e

N

is a N vector where all components are 1.

Riemann-Liouville derivative for the piece-wise approximation

For the R-L fractional derivative both the R-L and Caputo’s fractional def-
inition lead to the same result. Following the Caputo’s definition given in
Eq. (1.13) yields for 0 < a < 1

(Da f ) (t) =
1

G(2 � a)
[ ḟ1t1�a + ( ḟ2 � ḟ1)(t � Dt)1�a + ...

+ ( ḟN � ḟN�1)(t � (N � 1)Dt)1�a].
(1.65)

By evaluating Eq. (1.64) in tj = jD leads to

Da

f

N

= Dt1�a

P

N

(1 � a)A

N

(1) ḟ

N

= Dt�a

P

N

(1 � a)A

N

(2) f

N

(1.66)
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From Eq. (1.64) it is observed that for 0 < a < 1 the R-L fractional deriva-
tive of the piece-wise approximation is continuous 8t while the slope in t+j is
•. It may be easily demonstrated that Eq. (1.64) and Eq. (1.66) remain still
valid for a > 1, and the R-L fractional derivative exhibits unbounded vari-
ation in t+j , namely at the beginning of each new interval. This situation is
depicted in Figure 1.5.

t1 t2 t3 t4 t

Dαf(t)

(a) 0 < a < 1

t1 t2 t3 t4 t

Dαf(t)

(b) a > 1

Figure 1.5: Fractional derivatives for the piece-wise approximation of f (t).

If f0 6= 0, Eq. (1.66) may be rewritten as

Da

f

N

= Dt�a

h
P

N

(1 � a)A

N

(2) f̃

(1)
N

+ f0P

N

(�a)A

N

(1)e
N

i
(1.67)

Since Eq. (1.67) is exact if the function f (t) is actually a piece-wise lin-
ear function, and for 0 6 a 6 1 the fractional derivative is continuous, then
Eq. (1.67) does not require any care. For a > 1 Eq. (1.67) remains still valid but
since in t+j the fractional derivative exhibits an unbounded jump, Eq. (1.67)
predicts the value in t�j , and in t+j the response may be ±• depending on the
value sgn( ḟ j � ḟ j�1).

1.4.3 Numerical example

In this subsection, a direct comparison between the G-L fractional operators
and the step by step R-L (step-wise and piece-wise approximation) is evalu-
ated.



22 1. Fractional calculus

Unit step function

The first example is very simple and illuminating, f (t) = U(t) where U(t)
stands for unit step function. In this case, the fractional integral of U(t) in
exact form may be calculated by means of Eq. (1.7) and yields

D�aU(t) = ta/G(1 + a). (1.68)

For U(t) function, the R-L step-wise approximation integral in Eq. (1.47) gives
the exact solution and coalesces with the R-L piece-wise approximation in
Eq. (1.63). In this case the solution is exact, no matter the temporal step Dt
and on the a selected. The G-L fractional integral approximation is performed
by using Eq. (1.19b), notice that the G-L approach does not give the exact
solution.
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Figure 1.6: Fractional integral of U(t).
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In Figure 1.6 it is compared the exact form of the fractional integral of
the unit step function calculated in Eq. (1.68) (continuous black line), the R-L
step-wise and piece wise approximation for Dt = 0.1 (dotted dashed black
line) that coalesce with the exact solution and the G-L fractional integral ap-
proximation of the unit step function for Dt = 0.1 and Dt = 0.5 (squared red
and triangular blue dashed lines respectively). The comparison is shown for
two different values of a, namely a = 0.5 and a = 1.5.

From Figure 1.6 it appears that the present R-L integral evaluated for each
approximation, f (t) = const into the step, ḟ (t) = const into the step and so
on. The G-L operator gives approximate solutions and the smaller Dt, higher
the accuracy is. Moreover, as t increases the G-L approximation tends asymp-
totically to the exact solution. Furthermore higher accuracy is achieved when
a increases for the G-L integration scheme.

The relative error #%(t), at each time instant, evaluated with the expres-
sion

#%(t) =
����
Da f (t)� D̃a f (t)

Da f (t)

���� .100 (a < 0 & a > 0), (1.69)

where D̃a f (t) stands for the the approximation (G-L or R-L step-by-step).
From Figures 1.6(b) and 1.6(d), it has to be remarked that the error of the

R-L approximation (step-wise and piece-wise) is zero no matter the time step
selected as previously stated. In the case of the G-L fractional integral ap-
proach, this relative error is very sensible to both the time step selected and
the order of integration a.

The fractional derivative of the unit step function, obtaining by solving
Eq. (1.10) yields

DaU(t) = DaU(t) = t�a/G(1 � a). (1.70)

As in the case of the fractional integral, the R-L step-wise and the piece-wise
derivative approximations, in Eq. (1.55) and Eq. (1.66) respectively, provide
the exact solution of the fractional derivative of U(t). Also, the G-L fractional
derivative approximation, performed by using Eq. (1.19a) does not provide
the exact solution.

In order to evaluate the difference between the exact solution and the R-L
and G-L approaches, in Figure 1.7 the fractional derivative of U(t) is evalu-
ated for two different values of a, that are a = 0.5 and a = 1.5. Figure 1.7
compares the exact form of the fractional derivative of the U(t) calculated in
Eq. (1.70) (continuous black line), the R-L step-wise and piece wise approx-
imation for Dt = 0.1 (dotted dashed black line) that coalesce with the exact
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solution and the G-L fractional derivative approximation of the unit step func-
tion for Dt = 0.1 and Dt = 0.5 (squared red and triangular blue dashed lines
respectively).
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Figure 1.7: Fractional derivative of U(t).

From Figure 1.7 it is evident that, by using G-L derivative, the DaU(t)
depends on the temporal step selected, and as a increases the accuracy de-
creases and as Dt decreases the accuracy of the G-L approximation increases.
From Figures 1.7(b) and 1.7(d), it has to be remarked that the relative error
of the R-L is zero, no matter the time step selected, since the R-L derivative
approximations (step-wise and piece-wise) are equal to the exact solution.
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Exponential function

As second example the function f (t) = g + e�bt with b > 0 and g > 0 is
examined.

In Figure 1.8 the comparison between the G-L fractional integral and the
step by step R-L fractional integral discretised as step-wise and piece-wise for
a = 0.5 and a = 1.5 for Dt = 0.1 and a = 1 is reported.
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Figure 1.8: Fractional integral of g + e�bt, exact solution versus R-L and G-L ap-
proaches.

In Figure 1.8 the comparison between the G-L fractional integral and the
step by step R-L fractional integral discretised as step-wise and piece-wise
for a = 0.5 and a = 1.5 with Dt = 0.1, b = 1 and g = 20 is reported.
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In Figure Figure 1.8 the exact solution of the fractional integral f (t) = g +
e�bt calculated by means of Eq. (1.7) (continuous black line), the G-L integral
approximation (dotted dashed black line) obtained using Eq. (1.19b), R-L step-
wise integral approximation in Eq. (1.47) (triangular red dashed line) and R-L
piece-wise integral approximation in Eq. (1.63) (squared blue dashed line).

From Figure 1.8, it is clear that by using the R-L piece-wise integral ap-
proximation in Eq. (1.63) the relative error is the smallest one in comparison.
Moreover, it may be observed that the relative error of the three approaches
decreases as t increases.
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Figure 1.9: Fractional derivative of g + e�bt, exact solution versus R-L and G-L ap-
proaches.
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In Figure 1.9 the comparison between the G-L fractional derivative and the
step by step R-L fractional derivative discretised as step-wise and piece-wise
for a = 0.5 and a = 1.5 with Dt = 0.1, b = 1 and g = 20 is reported. In Figure
1.9 the exact solution of the fractional derivative of f (t) = g + e�bt calculated
by means of Eq. (1.10) (continuous black line), the G-L integral approxima-
tion (dotted dashed black line) obtained using Eq. (1.19b), the R-L step-wise
derivative approximation in Eq. (1.55) (triangular red dashed line) and the
R-L piece-wise derivative approximation in Eq. (1.66) (squared blue dashed
line).

From Figure Figure 1.9, it may be observed that the accuracy of the piece-
wise approximation of the R-L derivative is higher than the accuracy the of
G-L and step-wise approximation. The relative error of the three approaches
is shown in Figures 1.9(c) and 1.9(d), it may be concluded that the relative
error for the R-L piece-wise is the smallest one, as in the case of the integral.
By the other hand the R-L step wise and the G-L approach tend to the same
relative error when t increases, but the G-L approach still has worst results at
the first time steps.
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1.5 Conclusions

In this chapter, some well known concepts of fractional calculus have been
presented. Riemann-Liouville operators have been defined showing that for
such operators all the rules of classical derivatives and integrals remain valid.
In this sense it may be asserted that fractional operators may be considered as
the extension of derivatives and integrals of integer order to derivatives and
integrals of arbitrary order (real or complex).

Furhtermore, an approach based on the definition of the Riemann-Liouville
fractional operators is proposed in order to provide a different discretisation
technique as alternative to the Grünwald-Letnikov operator. The proposed
R-L discretisation consists in making a step-by-step integration based upon
the discretisation of the function f (t). It has been shown that as f (t) is dis-
cretised as step-wise or piece-wise function the R-L fractional integral and the
R-L fractional derivative are ruled by operators very similar to that present
in the G-L approach. The aforementioned R-L discrete operators are lower
band strip matrices like the the operator in the G-L one, but the various en-
tries are quite different each another giving the exact solution as the temporal
step decreases.

It has been demonstrated that, for a truly step-wise or truly piece-wise
function, the provided results by the R-L step-wise and piece-wise approxi-
mations, proposed in Section 1.4, are exact. That is, the only limitation on the
accuracy of the fractional integral or derivative, by means of the R-L step-wise
or piece-wise approximation proposed in the manuscript, for a generic func-
tion f (t) is in the approximation done on the function f (t) as step-wise or
piece-wise. Moreover it has been evidenced that if the given function f (t) is
discontinuous in some points the G-L approach fails. It has been also proved
that the R-L operators presented in this paper coalesce with the G-L and the
classical operators for integer order derivatives and integrals.

Applications to unit step function and exponential function have been pre-
sented in order to show the accuracy and capabilities of the R-L step-by-step
approaches (step-wise and piece-wise).



Chapter 2

Linear fractional viscoelasticity

This chapter deals with the theory of linear fractional viscoelasticity. It starts
with the theory of linear viscoelasticity, founded on the Boltzmann super-
position principle that includes the constitutive laws of linear viscoelasticity.
Then, the theory of linear fractional viscoelasticity is introduced in time and
frequency domain. Moreover, a review of the classical and fractional mechan-
ical models is reported.

The novelty in this Chapter is to provide an approach to separate the elas-
tic and the viscous phase in the fractional stress-strain relation with the aid of
an equivalent classical model, [Colinas-Armijo et al., 2016]. For such equiv-
alent model the parameters are selected by an optimisation procedure. Once
the parameters of the equivalent model are defined, characteristic times of
fractional viscoelasticity may be easily calculated.

2.1 Linear viscoelasticity

Viscoelastic materials are those materials that exhibit a mechanical behaviour
intermediate between those of elastic solids and viscous fluids. Solids are
characterised by the fact that they have their own shape; in particular elastic
solids are those solids that experience deformations proportional to external
applied loads through a material parameter, the modulus of elasticity, and
that return to their initial configuration once the loads are removed. Fluids,
instead, do not possess an own shape and are characterised by the fact that
the internal stress is proportional to the deformation gradient through the so-
called viscosity, a parameter of the liquid itself; in particular for Newtonian

29



30 2. Linear fractional viscoelasticity

fluids the viscosity is a constant that does not depend on the gradient of de-
formation. Because of the presence of the viscous part in their behaviour,
mechanical behaviour of viscoelastic materials is time dependent. Many ma-
terials exhibit viscoelastic behaviour: polymers, biological tissues, bones, as-
phalt mixtures, concrete, soils and also some kind of rocks. For this reason in
civil and industrial construction the characterisation of viscoelastic properties
of materials is very important because it allows to predict long term effects of
loads which if neglected can lead to erroneous design of engineering compo-
nents and structures.

The time dependent nature of the mechanical behaviour of viscoelastic
material imposes to take into account the time variable for viscoelastic mod-
els. For this reason in viscoelasticity the terms stress history and strain history
are used, and relaxation and creep functions are necessary, instead of the sim-
ple elastic moduli used in linear elasticity.

Linear viscoelasticity is based on the knowledge of two fundamental func-
tions: creep function and relaxation function. The relaxation function, de-
noted as R(t), is the stress response under an unitary stress excitation. The
creep function, denoted as C(t), represents the time response in terms of de-
formation due to a constant imposed stress-history. The creep and the re-
laxation functions are able to completely describe the time dependent linear
behaviour of viscoelastic materials since they are involved in the viscoelastic
constitutive laws.

Theory of viscoelasticity is well known, the concepts presented in this sec-
tion may be found in books like for example [Flügge, 1967, Christensen, 1971].

2.1.1 Boltzmann superposition principle

Consider an ideal test in which a tensile stress is applied to a linear viscoelastic
material. At time t = t1 > 0 a stress of magnitude Ds1 is applied. At time
t = t2 > t1 the stress is instantaneously increased to the value Ds1 + Ds2. The
stress history may be written as follows:

s(t) = Ds1U(t � t1) + Ds2U(t � t2) (2.1)

The presence of the unitstep function U(t) in Eq. (2.1) suggests that in t1
and in t2 the history of the applied stress has two jumps, thus it is discontin-
uous, as shown in Figure 2.1(a). In the range 0 6 t 6 t1 the applied stress is
zero and nothing happens. In the range t1 6 t 6 t2, the applied stress is Ds1,
then the response in terms of strain history can be evaluated.
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0 t1 t2 t

Δσ1

Δσ1+Δσ2

σ(t)

(a) Applied stress history
0 t1 t2 t

ε(t)

(b) Strain response

Figure 2.1: Boltzmann Superposition Principle.

Finally, for t 6 t2 the applied stress is Ds1 + Ds2 and since the material is
linear, it is possible to superimpose the responses due to the two stresses Ds1
and Ds2 separately taken, that is:

#(t) = Ds1C(t � t1) + Ds2C(t � t2) (2.2)

Since C(t � t1) = 0 for t < t1, in Eq. (2.2) #(t) = 0 for t < t1 and in the range
t1 < t 6 t2 only the stress Ds1 contributes to the strain as it is shown in Figure
2.1(b), while for t > t2 the new term Ds2(t � t2) appears and so on. The same
approach described above can be used with n jumps in the stress history. In
this case the response in terms of strain history can be written as

#(t) =
n

Â
k=1

DskC(t � tk) (2.3)

Eq. (2.3) expresses the superposition principle that is valid in linear vis-
coelasticity. If the applied stress history is continuous, it can be discretised as
a series of steps of duration Dt in which the stress is constant. If Dt ! 0 then
Ds ! ds and the sum in Eq. (2.3) is rewritten in the following integral form

#(t) =
Z t

0
C(t � t)ds(t) =

Z t

0
C(t � t)ṡ(t)dt. (2.4)

Eq. (2.4) is a convolution integral that gives the response in terms of stain his-
tory to a certain applied stress history and represents the integral formulation
of viscoelasticity. It is evident that at every time instant the strain depends on
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all the past stress history. Moreover if s(0) 6= 0 it is necessary to add another
term in 2.4 as follows

#(t) =
Z t

0
C(t � t)ṡ(t)dt + s(0)C(t). (2.5)

It is possible to define a dual formulation of the integral formulation of vis-
coelasticity. Then for an assigned strain history #(t), using the same approach
as above, the stress history s(t) results

s(t) =
Z t

0
R(t � t)#̇(t)dt + #(0)R(t). (2.6)

Boltzmann superposition formulation in Eqs. (2.5) and (2.6) is a corner-
stone of the linear viscoelasticity and it immediately shows the time-dependance
of the stress-strain relation.

By virtue of the linear formulation in Eqs. (2.5) and (2.6) the Laplace trans-
form of the two kernels are related each other. That is,

R̂(s)Ĉ(s) = s�2, (2.7)

where R̂(s) and Ĉ(s) are the Laplace transforms of R(t) and C(t), respectively.

2.2 Linear fractional viscoelasticity

In order to obtain a correct modelling of the viscoelastic phenomenon with the
aid of the integral formulation in Eqs. (2.5) and (2.6), at least one of the two
kernel functions must be determined by experimental investigations. In this
context, Nutting [Nutting, 1921], on the basis of experimental investigations,
stated that the creep function for any material is well fitted by a power-law.
An appropriate creep function according to Nutting’s experience is

C(t) =
ta

E
a

G(1 + a)
, (2.8)

where E
a

and a 2 R+ : 0 6 a 6 1 are coefficients obtained from the best fit-
ting of experimental data, and G(·) denotes the Euler gamma function. Once
the creep function in Eq. (2.8) is defined, the relaxation function can be imme-
diately obtained by the relationship in Eq. (2.7). That is,

R(t) =
E

a

t�a

G(1 � a)
. (2.9)
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By using the power-law functions in Eqs. (2.8) and (2.9) as kernels of the
two convolution integrals in Eqs. (2.5) and (2.6), the stress history s(t) and the
strain history #(t) are

s(t) =
E

a

G(1 � a)

Z t

0
(t � t)�a

#̇(t)dt, (2.10a)

#(t) =
1

E
a

G(a + 1)

Z t

0
(t � t)a

ṡ(t)dt. (2.10b)

Eq. (2.10a) contains a particular convolution integral that is known as Caputo’s
fractional derivative of the strain history. Usually, such derivation operator is
denoted as

�CDa

0+#

�
(t), and it is defined as

⇣
CDa

0+#

⌘
(t) =

1
G(n � a)

Z t

0
(t � t)n�a�1 dn

#(t)
dt

dt, (2.11)

where 0+ denotes the right handed derivative with lower bound 0, and the
order a 2 R+ : n � 1 6 a 6 n. In linear viscoelasticity, the order a is such that
0 6 a 6 1, then the Caputo’s definition yields

⇣
CDa

0+#

⌘
(t) =

1
G(1 � a)

Z t

0
(t � t)�a

#̇(t)dt. (2.12)

From Eq. (2.10b) an integration by parts leads to

#(t) =
1

E
a

G(a)

Z t

0
(t � t)a�1

s(t)dt, (2.13)

where E
a

#(t) represents the Riemann-Liouville fractional integral of the stress
history, denoted as

�
Ia

0+s

�
(t). With the aid of the fractional operators defini-

tions, Eqs. (2.10) may be rewritten as

s(t) = E
a

⇣
CDa

0+#

⌘
(t), (2.14a)

#(t) =
1

E
a

(Ia

0+s) (t). (2.14b)

Eqs. (2.14) represent the constitutive laws of linear fractional viscoelasticity.
Observe that for the two limit values of a (a = 0 and a = 1), since

�CD0
0+#

�
(t) =

#(t) and
�CD1

0+#

�
(t) = #̇(t) the purely elastic and the purely viscous be-

haviours are recovered, respectively. Thus, when 0 < a < 1 both elastic
and viscous phase are present simultaneously, and the viscoelastic behaviour
is captured. Such fractional stress-strain relations contain a coefficient E

a

with
anomalous dimensions, [E

a

] = [FTaL�2].
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2.3 Review of mechanical models

This section provides a review of the mechanical models representing vis-
coelasticity. The first part introduces the classical models, composed of com-
binations of springs and dashpots. The second subsection presents more so-
phisticated models that include the fractional element presented in Section
2.2, focusing on the mechanical models used for asphalt mixtures.

2.3.1 Classical models

Traditionally, linear viscoelasticity has been modelled by different arrange-
ments of springs (that represent the purely elastic behaviour) and dashpots
(that behave like pure Newtonian fluids).

The linear elastic model is characterised by the so called Hooke’s law in
which the stress is linearly proportional to the strain, that is

s(t) = E#(t) (2.15)

where E is Young modulus which measures the attitude of a material to be
strained under the application of some stress. The higher the Young modu-
lus the greater has to be the stress to induce a given strain, or the smaller is
the strain to induce a given stress. The elastic behaviour is graphically repre-
sented as a spring (see Figure 2.2).

E

Figure 2.2: Linear spring.

For the viscous model, the Newton-Petroff model is used. The constitutive
law of this model is

s(t) = µ#̇(t), (2.16)

where µ is the viscosity of the fluid. The viscosity parameter µ plays a role in
analogy to Young modulus. If it is higher a smaller strain rate #̇(t) is needed to
obtain a given stress. Differently from Young modulus, the dimension of µ is
a stress multiplied by time and the dimension of the strain rate is the inverse
of time. The Newton-Petroff model is represented as a dashpot as depicted in
Figure 2.3.



2.3 Review of mechanical models 35

μ

Figure 2.3: Dashpot.

Even if the constitutive laws of the spring and the dashpot are similar,
they describe very different behaviours. In fact, Hooke’s law does not depend
on time. Any stress/strain applied to the solid immediately causes a corre-
spondent strain/stress and when the cause is removed also the consequence
immediately disappears. This also means that the Hooke material is able to
store the work done by external load and to give it back when the loads are re-
moved, without any loss of energy. The Newton-Petroff model, instead, is not
able to store energy and all the work done by the external load is transformed
into heat. As a consequence, the viscous fluid flows and does not return to the
initial configuration when the loads are removed. For this reason this model
is usually used to represent the damping or dissipation of materials.

The Hooke and the Newton-Petroff models are mathematical models that
represent ideal solids respectively ideal fluids. Although some materials can
be very satisfactory approximated with one of these ideal models, as for ex-
ample many metals in their linear elastic range, in the real world neither of the
limiting behaviours above described exist. Indeed, all real materials combine
properties of those limit cases and for this reason in classical viscoelasticity
they are modelled as combinations of springs and dashpots.

The most simple classical viscoelastic models are the Maxwell model and
the Kelvin-Voigt model. The first is constituted by a spring and a dashpot in
series while the second is a spring connected in parallel with a dashpot, as
depicted in Figure 2.4.

E μ

(a) Maxwell

E

μ

(b) KelvinVoigt

Figure 2.4: Maxwell and KelvinVoigt models.
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The Maxwell model (Figure 2.4(a)) is characterised by the fact the both
the spring and the dashpot experience the same stress, while the strain is the
sum of the strains of the spring and of the dashpot. Although the relaxation
function, depicted in Figure 2.5(b), function is acceptable to fit experimental
data (but it is not the best fitting possible for many viscoelastic material), the
creep function is in contrast to experimental evidence, because the strain in-
creases linearly indefinitely, as it may be observed in Figure 2.5(a). For this
reason this model is not suitable to reproduce the mechanical behaviour of
real viscoelastic material.

0 t0 t1 t

σ0
E

(t1-t0)
μ

σ0
E + (t1-t0)

μ

ε(t)

(a) Creep
0 t0 t1 t

E

E e- E
μ (t1-t0)

σ(t)

(b) Relaxation

Figure 2.5: Creep and relaxation of the Maxwell model.

The Kelvin Voigt model (see (Figure 2.4(b)) is the dual of the Maxwell one,
since the elements are connected in parallel. Differently from the Maxwell
model, in this case the creep function (depicted in Figure 2.6(a)) can be con-
sidered acceptable to fit experimental data, although it is not the best choice
for correct fitting. The relaxation function, instead, is totally in disagreement
with experiments, because it is constant, see Figure 2.6(b).
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(a) Creep
0 t0 t1 t

E

σ(t)

(b) Relaxation

Figure 2.6: Creep and relaxation of the Kelvin Voigt model.

The Maxwell and the Kelvin Voigt are not able to reproduce both the creep
and relaxation behaviours. Indeed, the Maxwell model is acceptable only to
simulate relaxation while the Kelvin Voigt model is acceptable only to repro-
duce creep behaviour. For this reason other viscoelastic models composed of
more elements have been developed.

Using more then two simple elements it is possible to define viscoelastic
mechanical models that are able to reproduce both the creep and the relax-
ation behaviour. Changing the way the springs and the dashpots are linked,
different viscoelastic behaviours may be represented. The most simple of
these models are the Standard Linear Solid (SLS) and Zener model, shown
in Figure 2.7.

E

μE

1

2

(a) Zener

μ

E2

E1

(b) Standard Solid

Figure 2.7: Zener and Standard Solid models.
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All the response of these models are governed by exponential functions
that ensure acceptable approximation of the creep and relaxations functions,
especially when short term responses have to be simulated. Furthermore,
these models have only three parameters each, and then the best fitting of
experimental results is still easy to perform.

However, when simulation of long term behaviour is needed these models
are not sufficiently accurate. For this reason viscoelastic models with more
than three elements exist. The generic constitutive equation of these models
is

n

Â
k=0

ak
dk

dtk s(t) =
m

Â
k=0

bk
dk

dtk #(t). (2.17)

In Eq. (2.17) ak and bk are coefficients that depend on the mechanical pa-
rameters of the springs and dashpots. When n and m increase, the accuracy
of the model improves both in the short and in long term behaviour. This is
due to the fact that real viscoelastic materials exhibit power law type creep
and relaxation functions. Since the models of Eq. (2.17) have exponential type
creep and relaxation functions, a good fitting of experimental data can be per-
formed only with the superposition of many exponential functions, and then
using models with many elements. However, many elements in the model
means many coefficients to be defined with the best fitting of the experimental
results. This can lead to practical difficulties in performing the best fitting and
sometimes also to unexpected results. Despite all the disadvantages classical
viscoelastic models are still used for some engineering applications, for the
simplicity of mathematical manipulation and also for simple implementation
in finite element software. However, many researchers in the field switched
in the last decades their attention to something more rigorous and consistent
with experimental results, that is fractional viscoelasticity.
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Table 2.1 summarises the creep and the relaxation functions of the models
presented in this subsection.

Element Creep C(t) Relaxation R(t)

E
1
E E

μ
1
µ

t 0

E μ
1
E + 1

µ

t Ee�t E
µ

E

μ
1
E

⇣
1 � e�t E

µ

⌘
E

E

μE

1

2

1
E1

 
1 � E2 e

�t
E1E2

(E1+E2)µ

E1+E2

!

E1 + E2 e�t E2
µ

μ

E2

E1 1
E

✓
E1+E2

E1
� e�t E2

µ

◆
E1

E1+E2

✓
E2 + E1 e�t E1+E2

µ

◆

Table 2.1: Creep and Relaxation response of different classical mechanical models.
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2.3.2 Fractional models

Fractional models have the advantage of having a small number of parame-
ters associated to some physical properties of the material. Apart from this,
the main advantage associated with the fractional concept is due to the fact
that it allows for the establishment of a new component named "Springpot"
(or fractional dashpot or parabolic element or fractional Newton element).
This element is depicted in Figure 2.8. The springpot was introduced by
Scott Blair and Caffyn in 1949 [Scott Blair and Caffyn, 1949, Scott Blair, 1966,
Scott Blair, 1974]. The constitutive laws of this element have been presented
in Section 2.2 and they are characterised by the two parameters a and E

a

.

Eα α 

Figure 2.8: Springpot element.

The Springpot interpolates between the pure elastic behaviour (represented
by the spring) and the viscous behaviour (represented by the dashpot). Unlike
the conventional differential equations that use integer order differentiation,
the fractional dashpot is achieved by using non-integer order of differentia-
tion, as shown in the constitutive laws of Eq. (2.14).

E Eα α 

(a) Fractional Maxwell model.

E

Eα α 

(b) Fractional Kelvin
Voigt model.

Figure 2.9: Fractional Maxwell and Kelvin Voigt models.
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Even the Springpot element models well the viscoelastic behaviour of some
materials for both the creep and the relaxation, it has been experimentally ob-
served for other materials that the Springpot element is not enough. For this
reason, it have been proposed model that combine the Springpot with springs
and dashpots. The more simple ones are the fractional Maxwell and Kelvin
Voigt models represented in Figure 2.9.

For bituminous materials and mixtures, the first fractional model devel-
oped was the Huet model (Figure 2.10(a)), published in 1963 [Huet, 1963].
In 1965 Sayegh presented the Huet-Sayegh (Figure 2.10(b)) model [Sayegh,
1965]. The Huet and the Huet-Sayegh models are Figure 2.10.

E Eα α Eβ β 

(a) Huet

Eα α Eβ β E1

E0

(b) Huet-Sayegh

Eα α Eβ β E μ

(c) 1S2P1D

Eα α Eβ β E1

E0

μ

(d) 2S2P1D

Figure 2.10: Fractional viscoelastic models for bituminous materials.

Recent developments have been introduced by Olard and Di Benedetto
[Olard and Di Benedetto, 2003]. This models are the 1S2P1D (Figure 2.10(c))
and the 2S2P1D (Figure 2.10(d)) model, which overcomes some problems en-
countered with Huet and the Huet-Sayegh models. In the publication [Oeser
and Pellinien, 2012], an wider review of the mechanical models for bitumi-
nous materials and mixtures is presented.
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2.4 Fractional characteristic times

This section introduces the so-called fractional characteristic times and evalu-
ates the equivalent elastic and viscous contribution of the fractional element,
as proposed in [Colinas-Armijo et al., 2016].

Eqs. (2.14) represent the constitutive laws of linear fractional viscoelastic-
ity. It has to be observed that for the two limit values of a (a = 0 and a = 1),
the purely elastic and the purely viscous behaviours are recovered, respec-
tively, since

�CD0
0+#

�
(t) = #(t) and

�CD1
0+#

�
(t) = #̇(t). Thus, when 0 < a < 1

both elastic and viscous phase are present simultaneously, and the viscoelastic
behaviour is captured. Such fractional stress-strain relations contain a coeffi-
cient E

a

with anomalous dimension. In fact, this parameter is not a stiffness
nor a viscosity quantity, and its dimension is

[E
a

] = [FTaL�2], (2.18)

that means that as a changes, the dimensions of E
a

will change. This fact leads
to some problems when a comparison is needed or a classification of differ-
ent mechanical behaviour of materials is necessary. In fact, different materials
with different values of a will have proportional parameters E

a

depending on
a (see Eq. (2.18)), and their comparison would be meaningless. An approach
to solve this problem may be obtained by modifying temporal scale remov-
ing the presence of the dimension [Ta] on the coefficient E

a

and obtaining a
classical parameter from E

a

.
In order to clarify this issue it is convenient to consider the classical mod-

els of viscoelasticity in which only two kinds of parameters appear (stiffnesses
and viscosities). Classical viscoelastic models are obtained by different ar-
rangements of springs and dashpots. Springs are characterised by stiffness
parameter E and dashpots by a viscosity coefficient µ. The most well-known
mechanical models are the Maxwell model and Kelvin-Voigt one.

The relaxation function of the Maxwell model is

R(t) = E exp
✓
� t

t

s

◆
, (2.19)

where t

s

= µ/E is the so-called the relaxation time, that is, the time such that
R(t

s

) = E/e. The Maxwell model is commonly used to perform the best
fitting of the relaxation tests by Eq. (2.19). Unfortunately, the corresponding
creep function does not follow the experimental evidence of the creep test.
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Another classical model that is able to characterise the creep behaviour
is the Kelvin-Voigt model. For the Kelvin-Voigt model commonly the creep
function is

C(t) = [1 � exp(�t/t

#

)]/E (2.20)

where t

#

= µ/E is known as retardation time, and it may be defined as the
time such that C(t

#

) = (eE)�1/(e � 1). Relaxation t

s

and retardation t

#

times
are defined as characteristic times, and they are given by the same ratio µ/E.
These two temporal parameters of classical viscoelasticity are important since
they define at what instant it is possible to reach a purely elastic behaviour.

Now, it is useful to define two characteristic times for fractional models,
that are the fractional relaxation time t

s

defined as the time for which the relax-
ation function is equal to the stiffness R(t

s

) = E, and the fractional creep time
t

#

, that is defined as the time such that the creep function becomes a compli-
ance, C(t

#

) = 1/E. Unfortunately, for the case in which the creep function and
the relaxation function are power laws, these two times may not be defined
uniquely. In order to show this issue it is necessary to define a time parameter
h as the ratio of the viscous and the elastic contribution,

h =
µ

E
[sec]. (2.21)

Clearly, both µ and E are unknown since the fractional model is characterised
by the coefficients E

a

and a. Formerly introduced h, fractional creep and re-
laxation times are

t

#

= h

a

q
G(1 + a), (2.22a)

t

s

=
h

a

p
G(1 � a)

. (2.22b)

For the aforementioned definitions, and from the fractional stress-strain
relations in Eqs. (2.14), the stress s(t) and the deformation #(t), due to a con-
stant deformation #0 and a constant stress s0 at the time t = 0, are

s(t) = #0E
✓

t
t

s

◆�a

, (2.23a)

#(t) = s0
1
E

✓
t
t

#

◆
a

. (2.23b)

Setting #0 = 1 and s0 = 1, Eqs. (2.23) yields

R(t) = E
✓

t
t

s

◆�a

, (2.24a)
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C(t) =
1
E

✓
t
t

#

◆
a

. (2.24b)

Observe that the two fractional characteristic times in Eq. (2.22) are such that
R(t

s

) = E and R(t
#

) = 1/E, as it has been previously established.
By introducing the fractional characteristic times in the fractional consti-

tutive laws, the coefficient E
a

with anomalous dimensions disappears and the
issue of comparing mechanical properties at different conditions is not am-
biguous. Figure 2.11 shows the ratios t

#

/h and t

s

/h versus a.

τσ/η

τε/η

0 0.5 1 α

ⅇ-γ

1

Figure 2.11: Fractional characteristic times versus a

From Figure 2.11, observe that t

#

> t

s

, the two curves share a common
point at a = 0, and this value is equal to e�g (being g = 0.577215... the Euler-
Mascheroni constant).

From the fractional characteristic times, two remarkable relations can be
derived. The first one is that the two curves are almost linear, then the sub-
traction of t

#

and t

s

yields

t

#

� t

s

= h[ a

q
G(1 + a)� 1

a

p
G(1 � a)

] ⇡ ha. (2.25)

The second relation is given by the product of R(t)C(t), that is,

R(t)C(t) =
✓

t

s

t

#

◆
a

= [G(1 + a)G(1 � a)]�1 =
sin(ap)

ap

. (2.26)
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It is observed that the fundamental relationship in the Laplace domain in
Eq. (2.7) may be rewritten in the time domain as Eq. (2.26). Unfortunately,
taking into account the relationships (2.25) and (2.26), there is not enough in-
formation to define clearly t

s

, t

#

and h since there are two equations and three
unknown variables.

At this point, the necessity to distinguish the elastic and the viscous contri-
bution inside the fractional model arises. In some previous papers [Di Paola
and Zingales, 2012, Di Paola et al., 2013a, Di Paola et al., 2013b], some efforts
to clarify the lack of an unambiguous separation of the elastic and the viscous
contribution in the fractional model have been performed by introduction of
a mechanical model of the fractional stress-strain relation. Such mechanical
model is composed by a proper arrangements of perfect elastic springs and
purely viscous dashpots. However, also the mechanical model of the frac-
tional viscoelasticity still contains the same lack of uniqueness in the determi-
nation of the involved parameters. In other words, there is one arrangement
of the fractional viscoelasticity but more than one model to describe the same
fractional stress-strain relation [Di Paola et al., 2013b]. This fact implies that
the time parameters t

#

and t

s

cannot be unequivocally defined. Moreover, in
a previous work [Deseri et al., 2014], it was shown that with energetic consid-
erations about the dissipated energy of the fractional mechanical model, the
separation of the elastic and viscous contribution is impossible. For these rea-
sons, in the next section a new approach to obtain the elastic and the viscous
contribution on the fractional model is presented.

2.4.1 Estimation of fractional characteristic times

As it has been shown, in fractional viscoelasticity the coefficients µ and E may
not be defined unambiguously, and as a consequence t

s

and t

#

may not be
determined. In order to overcome this difficulty, a new method to calculate
equivalent elastic and viscous contributions is developed with the aid of an
equivalent classical viscoelastic model. The proposed method is based on the
definition of an equivalent Kelvin-Voigt model of fractional viscoelasticity. In
this way only classical parameters appear in the stress-strain relation, that is,
the stiffness coefficient of the equivalent spring Ee, and the viscous coefficient
of the dashpot µe (where the subscript e stands for equivalent). Similarly to
the method of linearisation, the equivalent classical model is obtained by the
definition of a proper functional and by a minimisation of the error due to
the difference between the response of the given fractional model and the re-
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sponse of the equivalent classical one. In this way the equivalent stress-strain
relation becomes a classical integer order differential equation, and the elas-
tic and viscous contribution can be readily obtained. The procedure may be
developed as soon as the external input in terms of deformation history is de-
fined. In particular, three classes of excitations are considered below, namely,
purely harmonic, periodic and pseudo-stochastic deformation history.

Hereinafter, since the strain history #(t) is assigned and the corresponding
stress history is determined by the fractional stress-strain relation in Eq. (2.14a),
then the equivalent classical model that is able to describe such relation is the
Kelvin-Voigt one. On the contrary, if the stress history s(t) is assigned and
the corresponding strain history is obtained by Eq. (2.14b), then the equiva-
lent model is of Maxwell type.

Harmonic excitation

Suppose an harmonic excitation in terms of deformation history,

#(t) = #0 sin(wt). (2.27)

The steady state solution in terms of stress history s(t) can be found by using
Eq. (2.10a) and by putting �• as lower bound. For the imposed strain input in
Eq. (2.27), such solution can be found in closed form [Samko et al., 1993, Miller
and Ross, 1993, Podlubny, 1998], that is,

s(t) = E
a

⇣
CDa

+#

⌘
(t) = E

a

#0w

a sin
⇣

pa

2
+ wt

⌘
, w > 0. (2.28)

where the subscript + denotes the left-handed derivative with lower bound
�• (according to the notation in [Samko et al., 1993]). The response of the
fractional stress-strain relation in Eq. (2.28) can be obtained as the solution of
an equivalent model, that is ruled by an integer-order differential equation in
the form

µe #̇(t) + Ee#(t) = s(t), (2.29)

where µe and Ee are equivalent coefficients. These coefficients have to be cho-
sen in such a way that the difference between Eq. (2.28) and Eq. (2.29) is min-
imum in some sense. It is noted that Eq. (2.29) represents the stress-strain
relationship of the Kelvin-Voigt model.

As in the classical linearisation technique it is necessary to define a func-
tional F(µe, Ee) that is related to the difference between the original and the
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equivalent system. In particular, taking into account Eqs. (2.28) and (2.29),
such functional is

F (µe, Ee) =
Z 2p/w

0

h
E

a

⇣
CDa

+#

⌘
(t)� µe #̇(t)� Ee#(t)

i2
dt. (2.30)

Now, in order to find the coefficients of the equivalent systems, the squared
error due to the two response must be the minimum with respect to the equiv-
alent parameters µe and Ee. This fact implies that coefficients are given by the
following two partial differential equations,

∂F(µe, Ee)/∂µe = 0, (2.31a)

∂F(µe, Ee)/∂Ee = 0. (2.31b)

In particular, by performing the variations, the equivalent coefficients µe and
Ee are

µe = w

a�1E
a

sin
⇣

pa

2

⌘
, (2.32a)

Ee = w

aE
a

cos
⇣

pa

2

⌘
. (2.32b)

From Eq. (2.21) the equivalent ratio he is

he =
µe

Ee
=

w

a�1E
a

sin
�

pa

2
�

w

aE
a

cos
�

pa

2
� =

1
w

tan
⇣

pa

2

⌘
. (2.33)

Eqs. (2.32) and (2.33) show that µe, Ee and he depend on the frequency of the
strain history w, and on the parameters of the fractional law E

a

and a. Once
he is obtained then the fractional creep and relaxation times (t

#

and t

s

) may
be calculated by the definition in Eq. (2.22), that is,

t

#

=
1
w

tan
⇣

pa

2

⌘
a

q
G(1 + a), (2.34a)

t

s

=
1
w

tan
⇣

pa

2

⌘ 1
a

p
G(1 � a)

. (2.34b)
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Figure 2.12: Plot of dimensionless parameters µe and Ee versus a.

Figure 2.12 shows the dimensionless coefficients µe and Ee versus a. In
other words, in such figures the trends of µe/(E

a

w

a�1) and Ee/(E
a

w

a) are
represented for different values of the order a. Thus, in that graphical rep-
resentation the influence of a on the viscoelastic behaviour appears. Specifi-
cally, for 0 < a < 1/2 the ratio Ee/(E

a

w

a) is greater than µe/(E
a

w

a�1), and
the elastic behaviour prevails with respect to the viscous one, when a = 0 the
viscous term disappears and only the purely elastic contribution is present.
For 1/2 < a < 1 the viscous behaviour prevails and for a = 1 the elastic com-
ponent disappears and only the purely viscous phase remains. For a = 1/2
the two curves share a common point and the two contributions, elastic and
viscous, are equal.

By inserting µe and Ee in Eq. (2.29) and solving with respect to the excita-
tion of Eq. (2.27), the solution gives exactly the same response, at steady-state,
as the one evaluated with Eq. (2.28). It follows that the response of the two
models, the fractional and the equivalent, under harmonic excitation is equal
at steady-state. This fact is shown in Figure 2.13.
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Figure 2.13: Harmonic excitation (dashed line), response of fractional model
(continuous line), equivalent Kelvin-Voigt model (dotted line).

w = 1 rad/s, #0 = 1 and E
a

= 1.

From Figure 2.13, it can be observed that in the transient state (in the first
few seconds) the responses of the fractional and the equivalent models are
different, but, as soon as both models reach the steady-state, the responses
tend to overlap each other and, for t ! • the two responses exactly coincide.

Periodic excitation

Hereinafter, the concepts exploited for the harmonic function are generalised
for any periodic function with the shape

#(t) =
n

Â
j=1

# j sin(jwt), j = 1, 2, ...n, (2.35)

where w is the fundamental frequency and # j are the coefficients of the Fourier
series.
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The steady-state response due to the generic periodic excitation of Eq. (2.35)
is calculated by solving Eq. (2.14a) and by putting as lower integration bound
�• to t. Therefore, such response is

s(t) = E
a

n

Â
j=1

# j(jw)a sin
⇣

pa

2
+ jwt

⌘
. (2.36)

As it has been done in the previous case, in order to obtain µe and Ee the min-
imisation of the functional in Eq. (2.30) for the periodic excitation of Eq. (2.35)
has to be performed. In particular, for this case the coefficients may be readily
found in the form

µe = E
a

sin
⇣

pa

2

⌘
l

#

(a + 1)
l

#

(2)
, (2.37a)

Ee = E
a

cos
⇣

pa

2

⌘
l

#

(a)
l

#

(0)
, (2.37b)

where l

#

(r) are the spectral moments of order r of the power associated to
each harmonic component in Eq. (2.35), that is,

l

#

(r) =
n

Â
j=1

#

2
j (jw)r, r = 0, 2, a, a + 1. (2.38)

In this way the ratio he = µe/Ee is

he = tan
⇣

pa

2

⌘
q(a), (2.39)

where q(a) = l

#

(0) l

#

(a + 1)/l

#

(2) l

#

(a) accounts for the distribution of the
power due to each harmonic component.

The fractional characteristic times result as

t

#

= tan
⇣

pa

2

⌘
q(a) a

q
G(1 + a), (2.40a)

t

s

= tan
⇣

pa

2

⌘
q(a)

1
a

p
G(1 � a)

. (2.40b)

The comparison between Eqs. (2.34) and Eqs. (2.40) shows that in the case
of periodic excitation the fractional characteristic times are modified by the
factor q(a), in which the distribution of #

2
j is considered.
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Figure 2.14: Periodic excitation (dashed line), steady-state response of the fractional
model (continuous line), equivalent model (dotted line).

Figure 2.14 shows the periodic excitation and the response evaluated by
direct integration of the fractional and the equivalent models. In this example,
#(t) is a periodic square wave, approximated by fifteen terms in the Fourier
series, with unitary amplitude and period T = 2p/w (where w = 0.5 rad/s),
and # j follows the equation

# j =
Z 2p/w

0
u(t) sin(jwt)dt =

cos(jp)� 1
jp

, (2.41)

where u(t) is the periodic square wave.
From Figure 2.14 it may be seen that the responses due to a periodic exci-

tation for the fractional and for the equivalent model do not coincide, both in
the transient phase and at steady-state.
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2.4.2 Elastic and viscous contribution. Dissipated energy.

Once the fractional characteristic times have been obtained for any harmonic
or periodic function, the elastic and viscous contribution and the dissipated
energy may be calculated.

Harmonic excitation

By using the convolution theorem and the properties of fractional operators
(see [Samko et al., 1993, Miller and Ross, 1993, Podlubny, 1998]), the Fourier
transform of Eq. (2.14a) yields

ŝ(w) = E
a

(iw)a

#̂(w) = E
a

|w|a
h
cos

⇣
pa

2

⌘
+ i sign(w) sin

⇣
pa

2

⌘i
#̂(w),

(2.42)
where ŝ(w) and #̂(w) are the Fourier transform of s(t) and #(t) respectively,
and w is the frequency of the Fourier transform. The complex modulus, de-
noted E⇤(i w), is defined as the ratio between stress and strain in the Fourier
domain. That is,

E⇤(i w) =
ŝ(w)
#̂(w)

= E
a

|w|a
h
cos

⇣
pa

2

⌘
+ i sign(w) sin

⇣
pa

2

⌘i
. (2.43)

E⇤(i w) can be also written as

E⇤(i w) = E
0
(w) + i E

00
(w), (2.44)

where E0
(w) 2 R is the storage modulus, and E00

(w) 2 R is the loss modulus.
By comparing Eqs. (2.32) with Eq. (2.43), µe and Ee may be written in terms of
E0
(w) and E00

(w) as follows
Ee = E

0
(w), (2.45a)

µe =
E00

(w)
w

. (2.45b)

This is a remarkable result because it gives a different perspective of E0
(w)

and E00
(w) and links the creep and relaxation functions with the complex

modulus. As in fact, the former is the stiffness and the latter is related to
the viscosity of the equivalent model.

Clearly, the dissipated energy of the fractional model at steady-state and of
the equivalent model are equal, since s(t) and #(t) coincide for both models.
Nevertheless, it is useful to evaluate the dissipated energy in one cycle, which



2.4 Fractional characteristic times 53

is denoted by D(T). The energy balance for Eq. (2.28) is obtained by mul-
tiplying both members of such equation by #̇(t)dt, and performing the time
integration. From the obtained equation the distinction between dissipated
and stored energy may not be done. However, if the integration is performed
in one cycle the stored energy becomes zero and then the dissipated energy
coincides with the entire energy, that is,

D(T) =
Z t1+T

t1

s(t)#̇(t)dt, (2.46)

where the selected T is the period of the harmonic excitation (T = 2p/w) and
t1 is such that the transitory effects may be neglected. Substituting Eq. (2.27)
and (2.28) in Eq. (2.46) the dissipated energy in one cycle for the fractional
model becomes

D(T) = E
a

#

2
0pw

a sin
⇣

pa

2

⌘
. (2.47)

For the equivalent Kelvin-Voigt model, the stored and the dissipated en-
ergy is readily obtained by multiplying both members of Eq. (2.29) by #̇(t)dt
and integrating over one period. In this way the term Ee

R t1+T
t1

#(t)#̇(t)dt,
which represents the stored energy, becomes zero, and the dissipated energy
is

De(T) = µe

Z t1+T

t1

#̇

2(t)dt = #

2
0µepw. (2.48)

By substituting the coefficient µe, obtained by Eq. (2.32a), into Eq. (2.48)
the same fractional model calculated by Eq. (2.47) is obtained. In other words,
in the case of harmonic excitation, at steady-state, the dissipated energy of
the fractional and of the equivalent models are equivalent and the hysteresis
loops are coincident.

Figure 2.15 shows the hysteresis loops for the equivalent and for the frac-
tional models at steady-state for different values of a (both lines exactly coin-
cide and may not be distinguished). It has to be emphasised that the hysteresis
loop of the fractional model under a pure harmonic input is an ellipse.
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Figure 2.15: Hysteresis loop for harmonic excitation. Continuos line fractional
model, dotted line equivalent Kelvin-Voigt model. w = 1 rad/s, #0 = 1

and E
a

= 1.

Now, some useful considerations can be drawn by introducing some ener-
getic concepts in the fractional and the equivalent viscoelastic model. The dis-
sipation and the free energy for linear and nonlinear viscoelastic models were
evaluated in several papers, e.g. [Breuer and Onat, 1964, Gurtin and Hrusa,
1988, Fabrizio and Morro, 1988, Fabrizio et al., 1994, Fabrizio et al., 1995]. A
similar approach can be used also for the fractional viscoelastic model. In
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this regard, according to the Staverman-Schwarzl formulation of the free en-
ergy (see [Deseri et al., 2014]), the dissipation rate of the fractional viscoelastic
model is

Ḋ(t) =
aE

a

G(1 � a)

Z t

�•

Z t

�•
(2t � t1 � t2)

�1�a

#̇(t1)#̇(t2)dt1dt2. (2.49)

Such equation cannot be integrated in analytical form but can be solved nu-
merically, and its time integral gives the exact solution of the dissipation en-
ergy of the fractional viscoelastic model. Instead, as it is shown in Eq. (2.48),
the dissipated energy of the equivalent model is readily found and is given as

De(t) = µe

Z t

0
#̇

2(t)dt =
1
4

#

2
0µew

⇥
2tw + sin (2tw)

⇤
. (2.50)

For the considered case in which the imposed strain history is the harmonic
function in Eq. (2.27), at steady-state, a comparison between the two formula-
tions of dissipated energy in Eq. (2.49) and in Eq. (2.50) is reported in Figure
2.17. Such Figure shows that the two time-evolution energies are different.

2 4 6 8 10 12 t

1

2

3

4

�(t)

Figure 2.16: Staverman-Schwarzl dissipated energy of fractional viscoelastic model
(dotted line) and dissipated energy of the classical equivalent model

(continuous line).

However, the two functions coincide for t = kT/2, 8k 2 N+. This fact
implies that the dissipated energy in a cycle and a half cycle of the fractional
and the equivalent model are exactly the same.
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Periodic excitation

As it has been done for the case of a harmonic excitation, the relation between
Ee and µe with E⇤(i w), E0

(w) and E00
(w) has to be analyzed. By comparing

Eq. (2.37) with Eq. (2.44), µe and Ee written in function of storage and loss
moduli reads as

Ee =
1

l

#

(0)

n

Â
j=1

E
0
(jw), (2.51a)

µe =
1

l

#

(2)

n

Â
j=1

wjE
00
(jw). (2.51b)

As it has been demonstrated for pure harmonic excitation, for a periodic ex-
citation the storage modulus is related to the elastic contribution and the loss
modulus is linked to the viscous contribution.

By Eq. (2.46) the dissipated energy for both models is evaluated. For the
fractional model the dissipated energy in one cycle is

D(T) = E
a

n

Â
j=1

p(jw)a

#

2
j sin

⇣
pa

2

⌘
, (2.52)

while for the equivalent model the dissipated energy results in

De(T) = µe

n

Â
j=1

p jw #

2
j . (2.53)

From the substitution of the value µe obtained by Eq. (2.37a) in the dissipated
energy for the equivalent model (Eq. (2.53)), it results that the two dissipated
energies coincide, D(T) = De(T). Thus, it is demonstrated that the dissipated
energy in a cycle is exactly the same for both fractional and equivalent model.
This is a very noteworthy result because despite the stress history and the hys-
teresis loop for the equivalent and for the fractional models do not coincide,
the dissipated energy for one cycle is exactly the same.
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Figure 2.17: Hysteresis loop for Periodic excitation. Continuous line fractional
model, dotted line equivalent Kelvin-Voigt model. w = 0.5 rad/s,

n = 15 and E
a

= 1.

In Figure 2.14, the plots of the hysteresis loops, corresponding to the exci-
tation depicted in Figure 2.17, for the fractional and for the equivalent model
are displayed for different values of a.
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2.5 Conclusions

In this chapter, the concepts of linear fractional viscoelasticity have been pre-
sented. It is well-known that for viscoelastic materials the creep and the re-
laxation functions are power laws rather than exponentials. Thus, generalised
derivatives or integrals appear in the constitutive laws. In particular, the stress
history is proportional to the Caputo’s fractional time-derivative of order a of
the strain history. Vice-versa the strain history is proportional to the Riemann-
Liouville time-integral of the order a of the stress history. The order of such
operators is 0 6 a 6 1. The two limit values of the fractional order, a = 0
and a = 1, correspond to the linear elastic relation and to the Newtonian
viscous law, respectively. If the order is a non-integer value, the elastic and
the viscous contribution may not be separated in the fractional stress-strain
relation. Therefore, it cannot be distinguished between the solid and the vis-
cous behaviour. On the contrary, in the classical viscoelastic units, such as the
Kelvin-Voigt or Maxwell model, the two phases are immediately recognisable
since the spring represents the solid part and the dashpot is related to the fluid
phase.

Moreover, an equivalent classical model of the fractional stress-strain re-
lation has been introduced in order to distinguish the elastic and the viscous
contribution. In particular, if the imposed excitation is a strain history, the
response is given in terms of stress history by the Caputo’s fractional deriva-
tive, and the equivalent model is the Kelvin-Voigt unit. Vice-versa, if the
stress history is imposed, the corresponding strain history is obtained by the
Riemann-Liouville integral, and the proper equivalent model must be the
Maxwell model. The parameters of the equivalent model have been found
by an optimisation procedure once the imposed strain or stress history has
been selected. In particular, the equivalent parameters have been calculated
for two different classes of excitation, harmonic and periodic.



Chapter 3

Railway sub-ballast rubberised
asphalt

This chapter discuss the use of recycled rubber in asphalt mixtures. The main
problem on crumb rubber asphalt, using rubber of a certain size, is the com-
paction. It has been demonstrated experimentally that the void content in-
creases after compaction. Thus, in this chapter an analytical approach is pro-
posed to the mix design optimisation of bituminous mixtures containing crumb
rubber using a gyratory compactor [Bressi et al., 2017]. The method takes into
account the deformation release of the rubber after compaction for the anal-
ysis of the expected voids content. The analytical approach is validated by
results of experimental tests.

3.1 The use of recycled rubber in asphalt mixtures

The disposal of waste tyres constitutes a problem with 275 million tyres being
discarded per year in the US and 180 million in Europe [Issa and Salem, 2013].
Normally, some of the scrap tyres are reused (resold) [Heitzman, 1992] but for
the most part they are piled in landfills. The environmental issues caused by
this procedure and the lack of space have led to find other solutions. The
recycling of scrap tyres began in the 60s of the last century, when pavement
engineers started considering the use of crumb rubber as a modifier of bitu-
men for asphalt mixtures [McDonald, 1981, Scofield, 1989, Lo Presti, 2013].

The crumb rubber (CR) made by reprocessing end-of-life tyres (ELTs) finds
different types of application in the production of asphalt mixtures. The pur-
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pose is to improve the performance of asphalt mixtures. Indeed, tyres have
a wider range of performance temperatures than bituminous mixtures, be-
cause they do not melt in the heat and they do not crack of cold temperatures.
Two main different methods allow the addition of the rubber to asphalt mix-
tures: the wet and dry process. The wet process involves the dissolution of
the crumb rubber in the bitumen as a modifying agent. The dry process in-
volves the replacement of a small portion of aggregates with the same fraction
of rubber grains. The asphalt produced following the “dry process” is called
“rubberised asphalt” [Chesner et al., 1998]. Incorporating crumb rubber as
an aggregate could enhance damping properties, because the rubber absorbs
vibrations [D’Andrea et al., 2012]. For instance, D’Andrea et al. [D’Andrea
et al., 2012], using 2D and 3D FEM models, have shown that the construc-
tion of a sub-ballast layer for a railway track bed (12 cm) with rubber (dry
process) could produce a decrease in the effective levels of vibrations of ap-
proximately 4dB, for frequencies in the 50 � 125Hz range, compared to track
beds where a traditional bituminous mixture is used. Studies carried out on
the mechanical properties of the crumb rubber mixtures (CRMs) report con-
tradictory results. On one hand, the rubber increases the demand for bitumen
and this could have a negative effect on the mechanical characteristics of the
asphalt mixture. The resilient modulus of the rubberised asphalt decays and
this implies an increase in layer thickness, compared with conventional mix-
tures [Chesner et al., 1998, D’Andrea et al., 2012, Maggiore et al., 2012, Moreno
et al., 2011, Huang et al., 2007]. On the other hand, an interaction was ob-
served between bitumen and rubber, the volatile components of bitumen are
transferred to the rubber [López-Moro et al., 2013]. The absorption of lighter
components (paraffin and maltenes) is part of the maturation process known
as “maceration” [Hernández-Olivares et al., 2009, Dong et al., 2012]. It causes
swelling of the crumb rubber particles and leads to a more viscous bitumen.
As a consequence of this effect, the stiffness of the bitumen increases, thereby
leading to higher performances of mixtures containing CR compared to con-
ventional asphalt, in particular higher resistance to rutting [Dantas Neto et al.,
2005]. Besides that, recent studies [Navarro et al., 2004, Rebala and Estakhri,
1995] showed that when the dry process is used to incorporate rubber in as-
phalt mixtures it is possible to obtain higher rutting resistance compared to
mixtures based on the wet process. However, the use of the dry process can-
not inhibit cracking at low temperature. It was found that the mechanical
properties of rubberised asphalt largely depend on the dimensions of the rub-
ber grains [Losa et al., 2011, Xiao et al., 2009]
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The different mechanical properties, the crumb rubber gradation, the binder
and rubber content, the mixing and compaction energies and the temperature
are only some of the parameters that make the manufacturing process com-
plex and unstable. Moreover, mixing time and temperature should be con-
sidered as additional factors that increase the number of variables to control
during the fabrication process [Lee et al., 2008]. Moreover, some studies, us-
ing design of experiments, identified the most important parameters and the
optimal conditions for manufacturing rubberised asphalt [Tortum et al., 2005].

3.1.1 Mix design of bituminous mixtures

When crumb rubber is added to asphalt mixtures, the compactability of the
material is affected, because the rubber is an additional element involved in
the mixture that has a different behaviour from the other components (bi-
tumen, filler and aggregates). Recent studies [Pettinari and Simone, 2015]
observed that the spring-back effect of the rubber causes an increase in the
specimen volume after compaction and, this variation depends on the quan-
tity of the rubber and grains size. The spring-back effect of the rubber raises
the need to adjust the compaction method originally tailored to the traditional
mixture. Indeed, when rubber is used, the mixing and compacting tempera-
ture may vary [Lee et al., 2008, Akisetty et al., 2011]. Despite the numerous
efforts employed in improving the mix design system for bituminous mix-
tures, still certain limitations emerge when the traditional compaction tech-
nique is applied to CR mixtures. First, the rubber absorbs part of the bitumen,
increasing its need in the mixture for a satisfactory workability [Moreno et al.,
2011]. Moreover, the CR mixture needs a certain curing time to complete the
swelling and stabilise [Pettinari and Simone, 2015]. This curing time is mainly
influenced by temperature and the size of the rubber particles [Airey et al.,
2003]. The swelling is partly due to the chemical interaction between rubber
and bitumen [Dong et al., 2012] that leads to an increase in bitumen demand.
Moreover, especially in the case of the dry process, the swelling after com-
paction is mostly due to the mechanical behaviour of the rubber.

3.1.2 Problem statement and objective

Crumb rubber could be approximately considered as an elastic material, sig-
nificantly less stiff than aggregates. Therefore, when a stress is applied it is
subjected to a deformation, but once the stress is removed, it returns to its
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original configuration. Thus, crumb rubber releases the deformation accumu-
lated during the compaction process. This may turn out in a non-negligible
swelling of the asphalt mixture sample and can cause an increase in the amount
of voids in the post-compaction phase, leading to an exceedence of the range
of the admissible voids content for asphalt mixtures. Therefore, it is necessary
to quantify the recovered deformation and the energy stored by the rubber to
control this phenomenon by modifying adequately the compaction process.
The objective of this chapter is to develop a mix design approach for rub-
berised asphalt (dry process) that takes into account the behaviour of crumb
rubber during the compaction and post-compaction processes. An analytical
approach to quantifying the recovered deformation of crumb rubber in the
post-compaction phase has been developed in order to adjust the designed
number of gyrations, with the final aim of meeting the requirements for voids
content. Moreover, a mathematical relationship will be defined for comput-
ing the maximum allowable content of rubber in the mixture once the void
content has been established. Finally, based on the results obtained, a full
step-by-step protocol is proposed in order to fabricate and compact CR mix-
tures.

3.2 Mix design optimisation of bituminous mixtures with
crumb rubber

The behaviour of the CR mixtures is analysed in three main phases:

1. Preliminary phase: quantification of the increase in bitumen demand
when CR mixtures are fabricated.

2. Compaction phase: definition of a correction factor for increasing the
compaction taking into account the elastic recovery of the rubber.

3. Post-compaction phase: thermal stabilisation, confinement and curing
phase.

In the first step of the research it is necessary to understand how the de-
mand for bitumen increases when the rubber is added to the mixture to obtain
the same workability and compaction curve of the corresponding traditional
mixture without the addition of rubber. A reference mixture without rub-
ber and three with rubber were fabricated with different percentages of bi-
tumen and they were compacted at the same percentage of voids or Ndesign
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used for the traditional mixture. The compaction curves obtained have been
compared. In order to obtain the same workability in the mixtures, the aim of
this preliminary phase is to identify the bitumen content in a CR mixture that
allows its compaction curve to be similar to the one characterising the con-
ventional mixture. This bitumen content was considered for further analysis.
Having, at the end of the compaction phase, the same voids content for the
traditional and CR mixtures allows the same starting point to be used for both
mixtures when the post-compaction phase starts. This allows the contribution
of the deformation release of the crumb rubber in increasing the voids content
during the post-compaction phase to be isolated and highlighted.

This analysis leads to the definition of a coefficient (g) for multiplying the
standard number of gyrations in order to achieve, at the end of the curing
time, the same voids content as that obtained for the traditional mixture. In
other words, starting with the same voids content after compaction (tradi-
tional and CR mixtures), an analytical method is defined to calculate how the
compaction should be increased for the CR mixtures given that after com-
paction, during the thermal stabilisation and curing phase, the rubber defor-
mation release causes an increase in volume and additional voids. Figure 3.1
shows a schematic representation of the research steps.
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Figure 3.1: Schematic representation of the mix design of crumb rubber mixtures.
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3.2.1 Analytical approach - Correction factor

In order to calculate a correction factor that adjusts the number of gyrations
for CR asphalt mixtures, it is necessary to present a few considerations and
hypotheses regarding the compaction process and the recovery of the rubber
in the post-compaction phase.

Compaction is achieved by applying vertical stress (600KPa) via end plates.
A known mass of asphalt mixture is placed into a mould between the two
plates and completely confined. The plates are kept in parallel, but the lon-
gitudinal axis of the mould is rotated to a fixed angle equal to 1.25�. The
mould rotates at 30 revolutions per minute and the load is continuously ap-
plied. This configuration increases the presence of shear stress applied to the
sample. Nevertheless, the shear stress is considered negligible for the rubber
deformation recovery, therefore in the framework of this work, only compres-
sion is taken into account in the calculation process.

Three main elements within the sample are considered in terms of volume:
air voids (VV), aggregates + bitumen (VA+B) and rubber (VR), as shown in
Figure 3.2.
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Figure 3.2: Compaction sample by layers.

The aggregates and bitumen are considered unique elements that do not
recover after compaction. In fact, the bitumen is also subjected to a recovery
after compaction, but this will be the same recovery as occurs in the tradi-
tional mixture. Thus, the difference between the recovery of traditional and
CR mixtures can be attributed only to the presence of the rubber. Therefore,
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the calculations below focus only on the rubber recovery.
After having defined the compaction condition, let the index i and NCR

denote, respectively, the initial and the final configuration of the CR asphalt
sample at t = ti and at t = tCR (Figure 3.2). The surface area (A) at the base of
the mould remains constant (100 or 150mm in diameter), while under the load
applied by the gyratory compactor the height of the sample decreases. This
corresponds to a volume reduction caused by the compression of the rubber
and aggregate orientation that reduces the air voids content.

The difference between the compaction of a traditional and CR mixture
is expressed using a correction factor for Ndesign denoted as g. In the frame-
work of this work, g is defined as the coefficient that multiplies the design
number of gyrations (Ndesign) necessary to compact a sample of traditional as-
phalt mixture to obtain the design number of gyrations required to compact a
sample of CR mixture (NCR)

NCR = g · Ndesign, (3.1)

where g is calculated as the ratio between the target voids expected for a sam-
ple of asphalt mixture without rubber (%voids) at Ndesign. The percentages
of the final voids achieved by the same asphalt mixture with crumb rubber
(%voidsCR) at NCR follows from

g =
%voids

%voidsCR
. (3.2)

The percentage of the target voids (%voids) is established at the beginning
of the process. It should be defined as the design voids of the corresponding
traditional asphalt mixture (without rubber), bearing in mind that the vol-
umetric properties have an influence on the mechanical performance of the
mixture (fatigue and rutting resistance).

On the other hand, the %voidsCR is the percentage of final voids obtained
after the compaction in the CR mixture at t = tCR defined as

%voidsCR =
VCR

V
VCR

V + VA+B + VCR
R

(3.3)

where VCR
V is the final volume of air voids at NCR (at the end of the com-

paction), VA+B is the volume of aggregates and bitumen that remains constant
before and after the compaction, and VCR

R is the final volume of the rubber at
NCR (at the end of compaction).
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The following calculations have the objective of identifying the unknown
values VCR

V ,VCR
R and VA+B necessary for the determination of %voidsCR and

therefore g.
The final volume of air voids is calculated by subtracting the decrease in

the rubber volume from the volume of the target voids. Thus, the final volume
of air voids (VCR

V ) can be written as

VCR
V = VV � |DVR| = VV � |VCR

R � VR| (3.4)

where VV is the volume of the target voids (%voids), DVR is the variation in
the volume of rubber between the time t = ti and t = tCR because VR is the
volume of rubber at time t = ti. Considering rubber as a pure elastic material
and assuming normal compressive stress applied to the sample, it is possible
to apply Hooke’s law

s = ER#R = ER|
hCR

R � hR

hR
| (3.5)

where ER is Young’s modulus of rubber, s is the vertical stress (600KPa), and
hR and hCR

R are respectively the initial and final height of the rubber layer (Fig-
ure 3.2). Thus, in order to obtain the final volume of the rubber it is necessary
to calculate the final height of the rubber

hCR
R =

✓
s

ER
+ 1

◆
hR. (3.6)

Recalling that A as the area of the plate of the mould, writing VCR
R asAhCR

R
and substituting Eq. (3.6) in Eq. (3.4), it is possible to obtain the volume of
voids at the end of compaction

VCR
V = VV �

✓
VR � A

✓
s

ER
+ 1

◆
hR

◆
= VV � s

ER
VR (3.7)

This expression solved for VV

%voids =
VV

VV + VA+B + VR
(3.8)

Thus, VV can be isolated

VV =
%voids ( VR + VA+B)

1 � %voids
(3.9)
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The volume of “aggregates + bitumen” and the initial volume of rubber can
be obtained respectively as VA+B = MA

rA
+ MB

rB
and VR = MR

rR
where MA, MB

and MR are the masses of aggregates, bitumen and rubber and rA, rB and rR
are the densities of those three materials.

Once all the elements of Eq. (3.3), VCR
V , VA+B and VCR

R , are known it is
possible to write %voidsCR and g as follows

%voidsCR = %voids +
s

ER

MR
rR

(%voids � 1)
MR
rR

+ MB
rB

+ MA
rA

(3.10)

g =
%voids

⇣
MR
rR

+ MB
rB

+ MA
rA

⌘

%voids
⇣

MR
rR

+ MB
rB

+ MA
rA

⌘
+ s

ER

MR
rR

(%voids � 1)
(3.11)

Once g is known NCR can be calculated as defined in Eq. (3.1).

3.3 Maximun rubber content in asphalt mixtures

An additional step in the present methodology allows the maximum amount
of rubber for a given recipe of asphalt mixture to be estimated. The limitations
of the rubber content could come from different sources, a physical/mathematical
limit or a design limit. The latter exists because the number of gyrations dur-
ing the mix design procedure should simulate the compaction of the asphalt
mixture in the field. For this reason the factor g should have an upper limit,
because NCR should represent a reasonable number of gyrations for the com-
paction phase.

3.3.1 Physical or mathematical limit

Given the physical aspects, the volume of voids must be strictly positive, thus
Eq. (3.7) can be rewritten as an algebraic inequality as follows

VV >
s

ER
VR (3.12)

The percentage of volume of the rubber before compaction (%VR) can be writ-
ten as

%VR =
VR

VV + VR + VA+B
(3.13)
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Therefore
VR = (VV + VR + VA+B) · %VR (3.14)

With Eqs. (3.8) and (3.14) substituted in Eq. (3.12) it is possible to obtain

%VR <
ER

s

%voids (3.15)

Eq. (3.15) defines the maximum upper limit of rubber content in the as-
phalt mixture. It can be seen that the maximum percentage of rubber depends
proportionally on the target voids content.

The physical/mathematical limit should be interpreted as a theoretical
threshold because the percentage of final voids cannot be equal to 0%. Never-
theless, it should be noted that the calculation above refers to the sample just
after compaction, when the release of the rubber deformation has not yet oc-
curred. Indeed, in the post-compaction phase the release of the deformation
of the rubber causes the increase of the voids content of the asphalt mixture.
Therefore, the required density should be measured once the volumetric sta-
bility of the sample is reached.

3.3.2 Design limit

The physical/mathematical limit analysed above should be combined with com-
paction limitations. NCR should have an upper limit (NCRlimit) defined by the
engineers for conducting the compaction with a reasonable number of gyra-
tions. Indeed, even if NCR does not have a physical limit, the design of an
asphalt mixture cannot envisage an infinite number of gyrations, because it
should be compatible with the field compaction.

Therefore, the maximum possible number of gyrations (NCRlimit) is intro-
duced

NCRLimit = gLimit · Ndesign (3.16)

where gLimit is the correction factor that corresponds to the selected NCRLimit.
gLimit is defined as

gLimit =
%voids

%voidsCR
; %voidsCR =

%voids
gLimit

(3.17)

From Eqs. (3.3) and (3.17) it is possible to obtain the following relationship

VCR
V =

1
gLimit

VV
VCR

V + VA+B + VCR
R

VV + VA+B + VR
(3.18)
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To simplify the calculation a variable substitution is used. Indeed, Y =
VCR

V +VA+B+VCR
R

VV+VA+B+VR
is the ratio between the volumes of all the components at the

end of the compaction and the target volume of the sample. Thus, Eq. (3.18)
becomes

1
gLimit

VV · Y = VCR
V (3.19)

Substituting VCR
V as defined in Eq. (3.19) in Eq. (3.7) leads to

VV

gLimit
· Y = VV � s

ER
VR (3.20)

Simplifying Eq. (3.20) and recalling Eq. (3.15) it is possible to obtain

%VR =
ER

s

%voids
✓

1 � 1
gLimit

· Y
◆

(3.21)

Eq. (3.21) allows the maximum amount of rubber to be obtained, which de-
pends on the gLimit combining then the physical and the design limit. Analysing
Eq. (3.21) it is observed that

%VR =
ER

s

%voids
✓

1 � 1
gLimit

· Y
◆
<

ER

s

%voids (3.22)

because ✓
1 � 1

gLimit
· Y

◆
< 1 (3.23)

Indeed, gLimit is always higher than 1 and Y =
VCR

V +VA+B+VCR
R

VV+VA+B+VR
is always

slightly lower than 1 becauseVCR
R < VR just after compaction, and VCR

V < VV
because the compaction is higher in order to take into account the release of
the rubber. Thus, as highlighted in Eq. (3.22), the maximum allowable amount
of rubber determined by the design limit is always included in the range of the
maximum allowable limit imposed by the physical/mathematical limit. More-
over, Y is slightly lower than 1 because the difference between the numerator
and the denominator is small; for this reason Y could be considered equal to
1. This allows a further simplification of Eq. (3.22) and it is possible to arrive
at the final formula for the maximum quantity of rubber allowable

%VR  ER

s

%VV

✓
1 � 1

gLimit

◆
(3.24)

At this point, the maximum rubber content in an asphalt mixture may be
calculated as a function of the desired compaction conditions.
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3.4 Rubberised asphalt for railway sub-ballast

In this section, the analytical approximation presented in Sections 3.2 and 3.3
is validated through the experimental evidence. The experiments reported in
this section have been performed in the facilities of IFSTTAR (Institut français
des sciences et technologies des transports, de l’aménagement et des réseaux).

3.4.1 Materials description

The analytical approach presented in Section 3.2 consists on modifying (sub-
stituting part of the aggregates for crumb rubber) a reference mixture already
designed for desired application (in this case as sub-ballast layer).

The bituminous sub-ballast is composed of a dense-graded bituminous
mixture with a maximum aggregate size of 14-16 mm, similarly to the base
course for road pavements [Rose et al., 2011]. In this case, discrete values of
the granulometric curve of the sub-ballast reference asphalt are listed in Table
3.1. The bitumen content of this mixture is 4.8%.

Table 3.1: Discrete values of the granulometric curve of the reference asphalt.

Sieve [mm] Target grading curve
(passing material) [%]

16 100
14 94.40

12.5 81.76
10 58.29
8 49.04

6.3 43.80
5 38.32
4 33.91

3.15 32.88
2 32.20
1 23.33

0.5 17.24
0.25 12.83
0.125 9.98
0.063 7.60

Although the composition of the sub-ballast layer is similar to a base course,
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typically the air voids content in the bituminous sub-ballast layer decreases to
1-3 % to ensure a higher impermeability of the layer [Rose et al., 2011]. For
this reason, the target voids content for the mixtures, the reference and the
crumb rubber, has been established as being equal to 3%.

The characteristics of the materials, bitumen and aggregates, used for the
fabrication of the bituminous sub-ballast are summarised in Tables 3.2 and
3.3, respectively.

Table 3.2: Characteristics of the bitumen.

Property Standard Value
Penetration at 25C (pen. grade 35-50) EN1426 ⇡ 40

Softening point [°C] EN1427 ⇡ 52.6�

Bulk gravity [g/cm3] EN15326-A1 ⇡ 1.034

Table 3.3: Characteristics of the aggregates.

Property Standard Value
Los Angeles abrasion loss [%] EN1097-2 10 to 13

Bulk specific gravity sand
coarse aggregates [g/cm3] EN1097-6

0/2 2.859
2/4 2.859
4/6 2.910

6/10 2.888
10/14 2.89

Bulk specific gravity filler [g/cm3] EN1097-7 2.671

The crumb rubber used has been provided by “Aliapur”. Aliapur is the
principal industry in charge of the valuation of used tires in France. The char-
acteristics of the crumb rubber are reported in Table 3.4.

Table 3.4: Characteristics of the crumb rubber.

Property Value
Fraction [mm] 0.8/2.4

Density [g/cm3] 1.013

Discrete values of the granulometric curve of the crumb rubber are given
in Table 3.5.
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Table 3.5: Discrete values of the granulometric curve of crumb rubber.

Sieve [mm] Target grading curve
(passing material) [%]

3.15 100
2 69.5
1 7.3

0.5 0.7

Once the materials characteristics have been described, the quantity of
crumb rubber and the compaction correction factor for the crumb rubber mix-
ture may be calculated according to Eq (3.11).

3.4.2 Correction factor calculation and sample preparation

A preliminary study was conducted to determine the additional quantity of
bitumen necessary during the compaction phase to obtain a compaction curve
similar as much as possible with the reference mixture one. The reference
mixture for bituminous sub-ballast was prepared and compacted with 4.8%
of bitumen by the weight of the mixture and 3% of final voids. The real void
content measured in the gamma bank (mean of several samples) is 3.27%.

The rubberised mixture has been obtained modifying the reference mix-
ture. This modification consists on substituting the aggregates by crumb rub-
ber of the same size fraction. The quantity of crumb rubber added to the
mixture is 1.5% in volume. Several compaction test have been performed in
order to obtain the optimum bitumen content for the rubberised mixture and
it results in 5.83% by weight of the mixture.

At this point, the correction factor may be calculated by means of Eq (3.11)
with the following material quantities MA = 7.317 kg, MB = 0.479 kg, MR =
0.240 kg, rA = 2.86 kg/m3, rB = 1.03 kg/m3, rR = 1.013 kg/m3, ER = 1.50 MPa
and %voids = 3.

The value obtained for the correction factor g is equal to 1.69. In other
words, the crumb rubber mixture has to be compacted 1.69 times more than
the reference mixture, in order to overcome the rubber recovery after the com-
paction.

Once the correction factor for the gyratory compactor has been calculated,
some considerations must be given for the sample preparation.
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Sample preparation

The preparation of the samples was conducted following these steps:

• The aggregates were washed, dried and heated at 180 °C for at least 3
hours.

• The crumb rubber was kept at room temperature.

• The aggregates and the crumb rubber were mixed for 15 seconds in or-
der to disperse the rubber homogeneously in the mixture.

• The bitumen (penetration grade 35/50) was heated at 150 °C for 1 hour.
It was added to the aggregates and the crumb rubber into the mixture,
and mixed for 1 minute.

• The mould was preheated at 150 °C, the asphalt mixture was poured
into the mould and compacted with the gyratory compactor at 150 °C.

• Once the compaction was finished, the samples were kept confined in
the mould for 24 hours. A load of approximately 5 kg was applied on
the top of the specimens to confine them completely [Rahman, 2004].
The objective was to provide enough time for the asphalt mixture to
reach thermal stability.

Probably, certain chemo-physical phenomena occur at high temperatures
(mixing and compaction temperatures). Nevertheless, the analytical calcula-
tion developed in this chapter does not take temperature into account as a pa-
rameter and the possible chemical interactions between rubber and bitumen.
For this reason the samples were kept confined until they reached room tem-
perature and the calculation above was applied to determine the relaxation
of the rubber when it achieves thermal equilibrium. Afterwards, the samples
were left at room temperature for six days unconfined to allow the rubber to
recover (curing time).
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3.4.3 Results and observations

The results obtained are as expected. The real void content of the designed
crumb rubber mixture, measured in the gamma bank (mean of several sam-
ples), is 3.52% (when for the reference mixture 3.27% was obtained). This is
an optimum result, that allows to validate the proposed analytical approach
presented in Section 3.2.

Some observations from the compaction experiments are now commented.
In Figure 3.3, there are 3 different samples with 1.5% of rubber in volume

and different bitumen content.

Figure 3.3: Samples with different bitumen content.

In the picture of Figure 3.3, one broken sample is shown. This sample con-
tains the same bitumen percentage as the reference mixture. This fact proves
that on a crumb rubber mixture more bitumen has to be added than in the
reference mixture probably due to the absorption of the lighter parts of the
bitumen by the rubber particles.

Figure 3.4 shows two samples compacted in two different conditions. The
one on the right has been compacted as based on the calculations on the an-
alytical approach and the one on the left it has been compacted more. From
Figure 3.4 it may be concluded that overcompacting may generate problems,
since it seems that the rubber ties to go into the walls of the mould during the
compaction.
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Figure 3.4: Overcompaction problem in the gyratory compactor.

Slab compaction

The proposed procedure may be adopted in the laboratory using the gyratory
compactor in a controlled environment. Certainly, the conditions may change
if the compaction process is conducted at a construction site or even with a
different laboratory sample shape (slab compaction).

It should be noticed that, in the case of the slab compaction (see Figure
3.5), it has been experimentally observed that it is not necessary to apply the
correction factor proposed in Section 3.3 for the compaction. The void content
obtained compacting under the same conditions as for the reference mixture
is approximately the same.

Figure 3.5: Slab compaction.
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3.5 Conclusions

This chapter proposes an analytical approach for the mix design optimisation
of bituminous mixtures containing crumb rubber performed using a gyratory
compactor. The method takes into account the deformation release of the rub-
ber after compaction for the calculation of the expected voids content. There-
fore, it is possible to estimate and control the final voids content by applying
a correction factor that adjusts the number of gyrations based on the target
voids to be achieved. The formula includes different input parameters such
as the characteristics of the materials, the Young’s modulus of the rubber and
the target voids to achieve.

Based on the results, the analytical approach has been considered success-
fully in adjusting the required number of gyrations (or the final void content
in the gyratory compactor) in order to compact asphalt mixtures containing
rubber. The advantage of applying this methodology is that, by relying on the-
oretical calculation of the rubber deformation release, the method provides a
base for estimating the increase of the compaction level when crumb rubber
is added to the mixtures. The method can be used for every type of asphalt
mixture, varying the content and types of aggregates and bitumen as input.
Moreover, the target voids required by standards can be established at the
beginning of the process.

Additionally, in terms of a physical/mathematical limit and/or a design
limit, due to a correspondence between the number of gyrations and the com-
paction in the field, it is possible to calculate the maximum amount of rubber
for the asphalt mixture of interest. Nevertheless, this study represents a first
step in tailoring a mix design optimisation process to crumb rubber mixtures,
and additional work is required for the findings to be accepted at the global
level.

In conclusion, this study exploits the consolidated principles of the theory
of elasticity for tailoring a rational methodology for the mix design optimisa-
tion of crumb rubber mixtures. It provides promising results for estimating
the final voids content after thermal stabilisation and curing of asphalt mix-
tures with crumb rubber. The approach developed can be applied to every
type crumb rubber mixture once the input parameters (Young’s modulus of
the rubber, mass and density of the materials involved and the target voids)
have been established.





Chapter 4

3D fractional viscoelastic model
for bituminous mixtures

The main aim and novelty in this Chapter arises on the validation of the 3D
fractional viscoelasticity theory by means of experimental triaxial test on as-
phalt mixtures. Thus, this chapter starts with a brief introduction of the theory
of the 3D fractional viscoelasticity and its relation with the fractional mechan-
ical models presented in Chapter 2.

In order to study and to model the triaxial mechanical behaviour of the bi-
tuminous mixtures (reference asphalt and rubber asphalt) designed in Chap-
ter 3, triaxial tests have been performed. Thus, the experimental set up used
to perform the triaxial test for the asphalt mixtures is presented. Moreover,
the mechanical behaviour of the reference asphalt and the rubber asphalt is
compared by means of series of triaxial creep and cyclic tests. Finally, both
asphalts are modelled as 3D fractional viscoelastic materials.

4.1 3D fractional viscoelasticity

The 3D constitutive model here introduced and proposed by [Alotta et al.,
2016], and other authors [Makris, 1997, Freed and Diethelm, 2006, Hilton,
2012, Fukunaga and Shimizu, 2015], is obtained by means of a generalisation
of Hooke’s Law. In that case only two parameters are required to define the
whole stiffness (or compliance) matrix of the material and these two parame-
ters are Young’s modulus and Poisson’s ratio, or Young and shear modulus,
or Bulk and shear modulus, or Lamé constants. Hereinafter, the relaxation

79
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matrix is written in terms of the shear and Bulk (volumetric) contributions,
for two main reasons: i) the terms of the relaxation (or creep) matrix can
be expressed as a simple summation of the relaxation (or creep) volumetric
and deviatoric functions, leading to simple and easy manageable governing
equations; ii) the volumetric and deviatoric contributions have clear physical
meanings and the relative relaxation (or creep) functions have to be measured
experimentally. The relaxation matrix can be easily obtained by substituting
in the stiffness matrix the shear modulus G = E

2(1+n) and the Bulk modulus
K = E

3(1�2n) , where E is the Young’s modulus and n is the Poisson’s ratio, with
the deviatoric relaxation function G(t) and the volumetric relaxation function
K(t), respectively. In this way the relaxation matrix can be written as follows
(see [Alotta et al., 2016])

Rijkh(t) =
✓

KR(t)�
2
3

GR(t)
◆

dijdkh + GR(t)(dikdjh + dihdjk) (4.1)

where dij is the Kronecker symbol.
The relaxation function for the deviatoric and volumetric part have a power

law shape that is analogous to the one-dimensional relaxation law of the spring-
pot presented in Chapter 2. Thus

GR(t) = G
a

t�a

G(1 � a)
(4.2a)

KR(t) = K
b

t�b

G(1 � b)
(4.2b)

where G
a

, a, K
b

and b are parameters of the deviatoric and volumetric relax-
ation functions, respectively. By assuming relaxation functions in the form of
Eq. (4.2), a four parameters mechanical model is obtained. The strain-stress
relationship can be obtained simply by applying the Boltzmann superposition
principle

s(t) =
Z t

0
R(t � t)#̇dt (4.3)

where s(t) = [s11 s22 s33 t12 t13 t23] and #(t) = [#11 #22 #33 g12 g13 g23] are the
stress and strain vectors, respectively, and R(t) is the relaxation matrix (5).
Since R(t) contains power law functions, the components of the stress vector
s(t) depends on the fractional derivatives of the components of the strain
vector #(t)
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sii(t) =
4
3

G
a


Da

✓
# ii �

# jj + #kk

2

◆�
(t)+

+ K
b

h
Db(# ii + # jj + #kk)

i
(t) i, j, k = 1, 2, 3; i 6= j 6= k

(4.4a)

tij(t) = G
a

(Da

gij)(t) i, j = 1, 2, 3; i 6= j (4.4b)

The inverse relationship of Eq. (4.3) is obtained by applying the dual form of
Boltzmann’s superposition principle, that is

#(t) =
Z t

0
C(t � t)ṡdt (4.5)

In order to use Eq. (4.5) it is necessary to obtain the creep matrix C(t) by
using Eq. (2.7) (adapted for the 3D case). C(t) is evaluated by performing a
Laplace transformation of the relaxation matrix and evaluating its inverse in
the Laplace domain

Ĉ(s)R̂(s) = s�2 (4.6)

By taking the inverse Laplace transform of Ĉ(s) in Eq. (4.6) the creep ma-
trix may be written as

Cijkh(t) =
✓

KC(t)
9

� GC(t)
6

◆
dijdkh + GC(t)

✓
dikdjh � dihdjk

2

◆
(4.7)

where KC(t) and GC(t) are creep functions of the volumetric and deviatoric
parts, that are written as follows

GC(t) =
ta

G
a

G(1 + a)
(4.8a)

KC(t) =
tb

K
b

G(1 + b)
(4.8b)

It is observed that in Eqs. (4.1) and (4.7) the shear strain is considered as the
engineering shear strain, that is gij = 2# ij.

By substituting Eq. (4.8) in Eq. (4.5), the components of the strain vector
#(t) depend on the fractional integrals of the components of the stress vector
s(t), that is

# ii(t) =
1

3G
a


Ia

✓
sii �

sjj + skk

2

◆�
(t)+

+
1

9K
b

h
Ib(sii + sjj + skk)

i
(t) i, j, k = 1, 2, 3; i 6= j 6= k

(4.9a)
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gij(t) =
1

G
a

(Ia

tij)(t) i, j = 1, 2, 3; i 6= j (4.9b)

Governing equations may be also obtained simply by writing separately the
volumetric and deviatoric contribution and then summing them. It is empha-
sised that in the pure torsion case there is a perfect duality between the direct
and the inverse constitutive laws. Such a duality is preserved in the three
dimensional direct and inverse constitutive laws (see Eqs. (4.4a) and (4.9a)).

The 3D fractional viscoelastic model presented in this section may be rep-
resented as shown in Figure 4.1 and is governed by the tridimensional consti-
tutive laws written in Eqs. (4.4) and (4.5).

Gα α Kβ β 

Figure 4.1: 3D fractional viscoelastic model.

As it may be observed, this mechanical model is quite similar (excepting
from one spring) to the Huet model depicted in Figure 2.10(a).

The 3D fractional viscoelastic model presented in this section, has been
analysed only in theoretical form. Thus, it has to be emphasised that in the
next sections of this chapter it is shown how to determine the model parame-
ters, and the 3D fractional viscoelastic model for bituminous mixtures is vali-
dated.
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4.2 Triaxial tests for bituminous mixtures

The triaxial test have been performed in the facilities of IFSTTAR (Institut
français des sciences et technologies des transports, de l’aménagement et des
réseaux) with the apparatus used in [Sohm, 2011, Sohm et al., 2012].

Système de pilotage
 et d'acquisition
 des données

Presse Cellule triaxiale

Groupe de 
chauffage

Press Triaxial Cell 

Heating 
group

Control and 
acquisition 

system

Figure 4.2: Triaxial test set-up.

The triaxial apparatus is installed in an existing servo-hydraulic loading
frame. The pressure cell, the temperature control system and the instrumenta-
tion have been developed specifically for triaxial tests on bituminous mixtures
(Figure 4.2).

The apparatus is designed for specimens with a diameter of 80 mm and a
height of 160 mm. The maximum axial load is 25 kN, the maximum confining
pressure is 700 kPa and the temperature range is from 5�C to 60�C. Monotonic
and cyclic axial loading can be applied, keeping a constant confining pressure.
The maximum loading frequency is 10 Hz.

The loading frame is a SCHENCK frame with a load capacity of ±100kN
and an axial stroke of ±100mm. The loading frame is equipped with a moni-
toring control system, which allows to perform a large range of loading tests
(monotonic or cyclic) with load or displacement control.
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The triaxial cell for bituminous materials has been developed by GDS In-
struments (Figure 4.2). It is made of aluminium, has an external diameter of
300 mm and can accept 80 or 100 mm diameter specimens. The confining
fluid that is also used for temperature regulation can be water or air. The cell
is equipped with an internal load transducer of 25 kN capacity, and a 1000
kPa pressure transducer, placed outside the cell, on the confining fluid supply
circuit.

A double heating and cooling system (Figure 4.2) regulates the tempera-
ture in the triaxial cell. The first system consists of a coil, situated inside the
triaxial cell, in which the heating and cooling fluid circulates (water with anti-
freeze). This coil is connected with an external, removable heating and cooling
system. To improve the control of the temperature in the cell, a thermal hous-
ing is added around the triaxial cell. A thermocouple placed inside the cell
at mid-height of the specimen is used to control the temperature. To ensure
stabilisation of temperature before testing, specimens are stored in the triaxial
cell with thermal housing at the testing temperature for at least 4 hours prior
to testing.

4.2.1 Measurement and loading

The axial and radial strains of the specimen are measured by a specific system
of linear variable differential transformer (LVDT) sensors (Figure 4.3(a)) and
strain gauges (Figure 4.3(b)).

The strain gauges (Figure 4.3(b)) used are the “HBM 1-LY41-50/120”, which
nominal resistance is 120 Ohms and the grid 50 mm. “Vishay’s GA-2” adhe-
sive is used to bond the gauges to the bituminous mixing test sample. This ad-
hesive resists to large deformations (20% deformation after 40 hours at 24�C).
The gauges normally measure deformations up to 6%. Bituminous mixtures
are heterogeneous materials, with a deformable mastic and very rigid aggre-
gates. When the asphalt is deformed, the deformations are located in the mas-
tic and there is a displacement of the aggregates. These non-homogeneous
deformations in the material lead to a gauge folding, and do not allow to cor-
rectly measure the deformations larger than about 1%. Each gauge is mounted
in a 1/4 bridge circuit (2 resistors in the conditioners and a compensating re-
sistor in the socket of the conditioner). The deformation values measured by
the gauges are therefore independent of one another.
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(a) LVDT (b) Strain gauges

Figure 4.3: Strain measurement systems.

For the LVDT (Linear Variable Differential Transformer) measurements
(Figure 4.3(a)), the axial strains are measured in the central part of the spec-
imen using two LVDTs, placed vertically, on the opposite sides of the spec-
imen. The average of the signals of the two sensors is used to calculate the
axial strain. The homogeneity of the strain field is also checked by comparing
the values given by each sensor. The radial strains are measured by an articu-
lated ring, equipped with an LVDT, placed at mid-height of the specimen. The
radial LVDT measures the opening of the ring, and thus the variations of the
specimen diameter. The axial LVDTs and the articulated ring are attached to
the specimen by metallic clamps, glued onto the specimen. The LVDTs have
a measurement range of 5mm and a resolution of 1µm.

The tests have been developed for different loading conditions. The no-
tation for the loading conditions are depicted in Figure 4.4(a): sq denotes the
vertical stress applied of both horizontal faces of the specimen (using the axial
load of the press) and sc denotes the confinement pressure applied around the
entire specimen (using pressured air).
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σq(t)

σc(t)

(a) Triaxial load

ε  (t)L

ε  (t)T ε  (t)T

ε  (t)L

(b) Triaxial measurements

Figure 4.4: Triaxial test sample load and measurements.

The strain measurements are notated as shown in Figure 4.4(b), that is #L
denotes the longitudinal strain and #T the transversal strain.

4.3 Creep-recovery and cyclic test with triaxial measure-
ments

In order to understand the tridimensional behaviour of the asphalt mixtures
presented in Chapter 3 and to define the capabilities of the crumb rubber as-
phalt, creep-recovery and cyclic test have been performed for the two mix-
tures. In this section, the results of creep recovery test and complex modulus
are evaluated from a qualitative point of view.

4.3.1 Creep-recovery tests

The creep-recovery tests have been developed for two different load condi-
tions, the first one with only vertical stress load sq, and the second one with
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combined vertical stress load sq and confinement load sc. The sign conven-
tion applied to represent the experimental results is negative if the sample is
compressed and positive if it is extended.

The results of the first loading case, the creep-recovery test with sq =
200kPa and sc = 0kPa, are represented in Figure 4.5. Figure 4.5(a) shows
the longitudinal strain #L(t), and Figure 4.5(b) shows the transversal strain
#T(t). In black the response of the reference asphalt is shown and in red the
one of the crumb rubber asphalt.
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εL (t) %

(a) Longitudinal strain measured, #L(t).

500 1000 1500 2000 2500 3000 3500t
0.02
0.04
0.06
0.08
0.10
0.12
εT (t) %

(b) Transversal strain measured, #T(t).

Figure 4.5: Creep-recovery test sq = 200kPa and sc = 0kPa.
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As it may be observed from Figure 4.5, the response of the two mixtures is
very different. During the creep phase the deformation of the crumb rubber
mixture is approximately double of the reference mixture, and it may be seen
as a negative aspect. On the other hand in the recovery phase, even if the
deformation in the creep phase is higher for the crumb rubber mixture, the
recovery is also higher for the mixture. Thus, the mechanical behaviour of the
crumb rubber mixture shows higher deformations and huge recovery of these
deformations.
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(a) Longitudinal strain measured, #L(t).
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0.20
εT (t) %

(b) Transversal strain measured, #T(t).

Figure 4.6: Creep-recovery test sq = 400kPa and sc = 200kPa.
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The results of the second loading case, the creep-recovery test with sq =
400kPa and sc = 200kPa, are depicted in Figure 4.6. In this case two times
of the vertical load than in the first case is applied and confinement is added.
Figure 4.6(a) shows the longitudinal strain #L(t), and Figure 4.6(b) shows the
transversal strain #T(t). In black the response of the reference asphalt is shown
and in red the one of the crumb rubber asphalt.

From Figure 4.6 it may be observed that the response of the two mixtures
under this load conditions is again quite different. During the creep phase
the deformations of the crumb rubber is four times larger compared to the
reference asphalt for both longitudinal and transversal deformations. In the
recovery phase, the longitudinal deformation recovery is approximately equal
for both mixtures but in the transversal direction the recovery is higher for the
crumb rubber mixture.

Comparing the results of the two loading cases, it may be concluded that
the mechanical behaviour of the crumb rubber mixture designed allows higher
deformations than the reference one, but the advantage is that the recovery is
much higher.

4.3.2 Cyclic test

Cyclic tests have been performed for different loading conditions (as done
for the creep recovery test) subjected to various temperatures and loading
frequencies. The results of this test are represented in terms of the complex
modulus (E⇤) and loss angle (d) against the loading frequency (w). The con-
sidered temperatures are 10, 20 and 30 �C, and the frequencies are varied in
the range from 0.1 to 10 Hz. Both the longitudinal and transversal behaviour
is measured. The results of the mechanical behaviour under cyclic loading for
the reference and crumb rubber mixtures are subsequently compared.

Cyclic loading without confinement

The amplitude of the vertical cyclic load sq is equal to 200kPa and there is not
confinement stress sc. Figures 4.7 and 4.8 show the complex modulus and loss
angle in this load condition for the longitudinal and transversal direction.

The complex modulus in the longitudinal direction shows that the refer-
ence mixture is stiffer than that of the crumb rubber mixture, see Figure 4.7(a).
The difference is larger when the temperature increases.
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Figure 4.7: Longitudinal complex modulus and loss angle without confinement.

In Figure 4.7(b) the loss angle on longitudinal direction is depicted. From
this the longitudinal loss angle response it may be concluded that the crumb
rubber mixture is more viscous than the reference one.

The complex modulus on the transversal behaviour in Figure 4.8(a) shows
that in the transversal direction the reference asphalt is again stiffer than the
crumb rubber one.

On the other hand, as shown in Figure 4.8(b) the loss angle on the transver-
sal direction of the crumb rubber mixture is less viscous than that of the refer-
ence asphalt.
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Figure 4.8: Transversal complex modulus and loss angle without confinement.

Cyclic loading with confinement

The amplitude of the vertical cyclic load sq is equal to 400kPa and the con-
finement constant load sc is equal to 200kPa. Figures 4.9 and 4.10 show the
complex modulus and loss angle for this load condition in the longitudinal
and transversal direction.

As it is seen from Figure 4.9(a), for the complex modulus in the longi-
tudinal direction, the reference mixture is stiffer than that the crumb rubber
mixture. The difference becomes larger with increasing temperature.
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Figure 4.9: Longitudinal complex modulus and loss angle with confinement.

The loss angle in the longitudinal direction is very similar for both the
reference and the crumb rubber mixtures, see Figure 4.9(b).

From the complex modulus results in the transversal direction, depicted
in Figure 4.10(a), it may be observed that the transversal stiffness of the crumb
rubber asphalt is lower than that of the reference one, and this difference be-
comes smaller when the temperature increases.

Figure 4.10(b) shows the loss angle in the transversal direction for this
loading condition. It is seen that the transversal loss angle is lower for the
crumb rubber mixture. In other words, the transversal behaviour of the refer-
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ence mixtures is more viscous than that of the rubberised one.
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Figure 4.10: Transversal complex modulus and loss angle with confinement.

The mechanical behaviour of the two asphalt mixtures have been evalu-
ated through triaxial creep-recovery test and cyclic tests. From the presented
results, it may be observed that the differences between the two mixtures are
no so high. That means that the crumb rubber mixture designed is quite sim-
ilar to the reference mixture.
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4.4 3D fractional model for crumb rubber asphalt

In this section, the theory of 3D fractional viscoelasticity presented in Section
4.1 is used to model the tridimensional behaviour of the asphalt mixtures un-
der study. The cyclic triaxial test have been used to obtain the model parame-
ters. The procedure used to obtain the model parameters for the 3D fractional
viscoelastic model is defined and explained.

The first step is define the compression stress load imposed to the sample,
that is divided into two loads (the vertical axial load sq and the confinement
load sc),

sq(t) = �sq0 � sq cos(wt + f) (4.10a)

sc(t) = �scU(t) (4.10b)

In Figure 4.11 represents the compression vertical load sq(t) applied to the
sample, see Eq (4.10a).

0 20 40 60 80 t [s]0.00
0.05
0.10
0.15
0.20
0.25
0.30

σq(t) [MPa]

Figure 4.11: Imposed stress sq(t).

The experimental results obtained from the tests are the measurements of
the longitudinal and transversal strain, is respectively #L(t) and #T(t). For the
imposed load shown in Figure 4.11 the resulting strain response is represented
in Figure 4.12.
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εL
εT

20 40 60 80 t [s]

-0.04

-0.02

0.00
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ε(t) %

Figure 4.12: Longitudinal and transversal strain, #L(t) and #T(t), from triaxial mea-
surements.

In order to calculate the longitudinal and transversal strain constitutive
law it is necessary to know the correspondent creep functions (obtained from
Eq. (4.7)) that are respectively

CL(t) =
1
3

ta

G
a

G(1 + a)
+

1
9

tb

K
b

G(1 + b)
(4.11a)

CT(t) = �1
6

ta

G
a

G(1 + a)
+

1
9

tb

K
b

G(1 + b)
(4.11b)

For the load imposed in Eq. (4.10) the modelled longitudinal and the transver-
sal strain history (obtained by introducing the stress history of Eq. (4.10) in
Eq. (4.5)) are

#L(t) =�
sq0 ta

3G
a

G(1 + a)
�

(sq0 + 3sc)tb

9K
b

G(1 + b)
�

� sq

✓
w

�b

9K
b

+
w

�a

3G
a

◆
cos(pb/2 � f � tw)

(4.12a)

#T(t) =
sq0 ta

6G
a

G(1 + a)
�

(sq0 + 3sc)tb

9K
b

G(1 + b)
�

� sq

✓
w

�b

9K
b

� w

�a

6G
a

◆
cos(pb/2 � f � tw)

(4.12b)
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As it may be observed from Eq. (4.12), in both (longitudinal and transver-
sal) constitutive laws it appears four parameters, two related with the vol-
umetric contribution and two with the deviatoric. So, it becomes a difficult
issue to obtain the coefficients by best fitting from the experimental results.
To overcome this issue, the longitudinal and transversal strain may be split
into deviatoric and volumetric strain, as show in Figure 4.13.

εV
εdL
εdT

20 40 60 80 t [s]

-0.04
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-0.01

0.00
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ε(t) %

Figure 4.13: Volumetric and deviatoric decomposition of the strain.

The correspondent volumetric strain history for the 3D fractional viscoelas-
tic model and for the stress load according to Eq. (4.10) results

#v(t) = �
(sq0 + 3sc)tb

9K
b

G(1 + b)
� sq

w

�b

9K
b

cos(pb/2 � f � tw) (4.13)

And correspondent longitudinal and transversal deviatoric strain histories
for the 3D fractional viscoelastic model and for the stress load according to
Eq. (4.10) read as

#dT (t) = �
(sq0 + 3sc)ta

6K
a

G(1 + a)
� sq

w

�a

6G
a

cos(pa/2 � f � tw) (4.14a)

#dL(t) =
(sq0 + 3sc)ta

6K
a

G(1 + a)
+ sq

w

�a

6G
a

cos(pa/2 � f � tw) (4.14b)

At this point, the volumetric and deviatoric parameters are isolated and
may be easily obtained by best fitting of the experimental results.
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Figure 4.14 depicts the experimental results and the modelled longitudinal
and transversal deviatoric strain histories.

εdL Experimental
εdL Model

20 40 60 80 t [s]

-0.03
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-0.01
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(a) Longitudinal deviatoric strain, #dL(t).

εdT Experimental
εdT Model

0 20 40 60 80 t [s]0.000

0.005

0.010

0.015

εdT (t) %

(b) Transversal deviatoric strain, #dT (t).

Figure 4.14: Longitudinal and transversal deviatoric strain, #dL(t) and #dT (t).

Figures 4.15 shows the experimental results and the modelled volumetric
strain history.
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εV Model
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Figure 4.15: Volumetric strain, #V(t).

Once the model parameters have been identified, the Poisson’s ratio may
be calculated as the rate between the transversal and the longitudinal strain
history,

n(t) =
#T(t)
#L(t)

(4.15)

As it may be observed in Figure 4.16, the outcome model agree with the
experimental results.
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Figure 4.16: Poisson’s ratio, n(t).
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Figure 4.17 shows the longitudinal and transversal strain, #L(t) and #T(t).
The experimental results are plotted in black and the modelled response in
red, with the coefficients obtained from the best fitting of the volumetric and
deviatoric strains.

As it may be observed from Figure 4.17, the model suits well the experi-
mental results.
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(a) Longitudinal strain, #L(t).
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(b) Transversal strain, #T(t).

Figure 4.17: Experimental versus modelled longitudinal and transversal strain, #L(t)
and #T(t).
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4.4.1 Model parameter fitting

The model parameters obtained using the presented methodology at different
temperature levels are summarised for the reference and the crumb rubber
mixtures respectively in Tables 4.1 and 4.2.

Table 4.1: Model parameters for reference asphalt.

Temperature [C�] a G
a

[MPasa] b K
b

[MPasb]
10 0.34 38 0.23 69
20 0.37 19 0.31 47
30 0.41 5 0.39 24

Table 4.2: Model parameters for crumb rubber asphalt 1.5%.

Temperature [C�] a G
a

[MPasa] b K
b

[MPasb]
10 0.37 34 0.25 60
20 0.44 14 0.32 35
30 0.48 4 0.41 18

From the parameters obtained in Tables 4.1 and 4.2, some observations
have to be remarked. From parameters a and b it is concluded that the crumb
rubber mixture is more viscous than the reference one. On the other hand,
from parameters G

a

and K
b

it is observed that the reference asphalt is stiffer
than the crumb rubber one. Note that, the same conclusion have been ob-
tained from the cyclic test reported on Subsection 4.3.2.

This model parameters will be used in Chapter 5 to analyse the mechan-
ical response of the two bituminous mixtures (reference and crumb rubber
asphalts) as sub-ballast layer under temperature variations.



4.5 Conclusions 101

4.5 Conclusions

In this chapter, the theory of the 3D fractional viscoelasticity has been intro-
duced and its relationship with the fractional mechanical models have been
introduced.

The mechanical behaviour of the two asphalt mixtures presented in Chap-
ter 3 (reference and crumb rubber asphalt) has been analysed and modelled.
It has been observed that the creep-recovery properties of the crumb rubber
mixture allow larger deformations. It recovers more than the reference mix-
ture does. The cyclic test have shown that the crumb rubber mixture is less
stiff and more viscous than the reference one. The parameters of the 3D frac-
tional viscoelastic model for both mixtures have been obtained at various tem-
peratures.

The theory of the 3D fractional viscoelasticity has been validated by means
of experimental triaxial test performed on the two considered asphalt mix-
tures.





Chapter 5

Temperature effect on railway
sub-ballast rubberised asphalt

This chapter is focused on the temperature effect on viscoelastic materials.
The chapter starts with the introduction of the Time-Temperature Superpo-
sition Principle, this principle deals with the strong relationship that time
and temperature have in most of the viscoelastic materials. Once the Time-
Temperature Superposition Principle is introduced, its mathematical incon-
sistency when fractional elements appear in the mechanical model is demon-
strated.

Furthermore, the mechanical response of the bituminous mixtures pre-
sented and characterised in the previous Chapters 3 and 4 is evaluated tak-
ing into account the temperature effect, using a methodology inspired by the
work of [Colinas-Armijo et al., 2017b]. To conclude, the response of the two
bituminous mixtures (reference and crumb rubber) as railway sub-ballast is
compared using the discrete fractional operators presented in Chapter 1.

5.1 Time temperature superposition principle

It is well known, from the experimental and theoretical point of view, that
the properties of viscoelastic materials are strongly influenced by temperature
and time.

In the decade of the 1950’s the so called Time Temperature Superposi-
tion Principle (TTSP) [Williams et al., 1955] was experimentally observed in
a study of the viscoelastic behaviour of polymers. This principle defines the

103
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relationship between time or frequency and temperature in the mechanical
properties of the viscoelastic materials under constant or dynamic stress con-
ditions.

TTSP only may be applied to thermorheologically simple materials [Ferry,
1980, Tschoegl, 2012]. Thermorheological simplicity requires that all char-
acteristic times depend identically on temperature. The shift factor a(T, T0)
defines the concept of thermorheologically simplicity and is defined as (see
[Tschoegl et al., 2002])

a(T, T0) =
t(T)
t(T0)

(5.1)

where t(T) and t(T0) are the characteristic times at the temperatures T and
T0, respectively. If a material is thermorheologically simple all the a(T, T0)
have to remain constant for all the different characteristic times.

Thermorheological simplicity may also be analysed through the Cole-Cole
plot or the Wicket (also called Van Grup-Palmer) plot, see [Tschoegl et al.,
2002, Van Gurp and Palmen, 1998]. The Cole-Cole plot represents the storage
magnitude versus the loss magnitude at several temperatures. If the Cole-
Cole plot is temperature independent the material is referred to as thermorhe-
ologically simple. The Wicket plot is the representation of the loss tangent
versus the complex magnitude. When the Wicket plot is temperature inde-
pendent, it also referred to as the material is thermorheologically simple.

For thermorheologically simple materials it is possible to build the so called
master curve, for a given reference temperature, a mechanical property (i. e.
creep or relaxation functions, complex modulus,...) may be predicted for any
other temperature by shifting the time scale, see [Christensen, 1971, Ferry,
1980]. The master curve is readily obtained by using the shift factor of Eq. (5.1)
and mainly consists of a acceleration or deceleration in the time (or frequency)
scale according to

t0 = a(T, T0)t; f0 = a(T, T0) f ; (5.2)

where t0/ f0 is the time/frequency scale at the reference temperature and t/ f
is the time/frequency scale at any temperature. Thus, the shift factor a(T, T0)
modifies the time (or frequency) scale of each mechanical property as shown
in Eq. (5.2).

Once the applicability of the TTSP with respect to the thermorheologically
simple behaviour has been proved, a master curve at the desired reference
temperature is modelled. This master curve is very useful to predict the long-
range effects of stress respectively strain application, and the effects of low
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respectively high frequency application of stress cycles on mechanical prop-
erties of linear viscoelastic materials. To construct this master curve it is nec-
essary to select the most suitable technique of data shifting. This master curve
can be represented in the time or frequency domain. Different shifting tech-
niques exist. These techniques are mathematical relationships that define em-
pirical relations between time and temperature effect of stress and strain on
some mechanical properties.

The shift factor a(T, T0), defined in Eq. (5.1), modifies the time/frequency
axis and usually is referred to as horizontal shift factor. In some cases it has
been demonstrated that horizontal shifting is not significant. Consequently, in
order to overcome this issue, some authors have proposed additional vertical
shift factor b(T, T0).

The next part of this section is dedicated to review the classical shifting
techniques (horizontal and vertical).

5.1.1 Classical horizontal shifting

Since the 1950s, dozens of formulas had been proposed to link the shift factors
of a master curve to its reference temperature. The most commonly used shift
factor techniques are here reported and may be found in different references
as for example [Christensen, 1971, Ferry, 1980, Tschoegl et al., 2002, Dealy and
Plazek, 2009].

The numerical technique is a non-functional method in which no equa-
tion is used to determinate the shift factors. The temperature shift factors
and the master curve model coefficients are simultaneously determined by
the method of least square optimisation.

The log-linear technique arises from the Doolittle equation [Doolittle and
Doolittle, 1957], and is defined as

log(a(T, T0)) = C
✓

1
T
� 1

T0

◆
(5.3)

where C is a constant determined by the experimental data, T0 is the reference
temperature and T is the temperature of the test. This technique

The Williams-Landel-Ferry (WLF) technique [Williams et al., 1955] is de-
fined by the following equation

log(a(T, T0)) =
�C1(T � T0)
C2 + (T � T0)

(5.4)
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where C1 and C2 are the constants that can be obtained trough analysis of the
experimental data, T0 is the reference temperature and T is the testing tem-
perature. Note that this method is based on the assumption that the fractional
free volume of polymers increases with temperature.

The modified Kaelble technique [Kaelble, 1985] is based on the WLF tech-
nique, see equation (5.4), with a modification of the denominator

log(a(T, T0)) =
�C1(T � T0)
C2 + |T � T0|

. (5.5)

The Arrhenius technique (see [Dealy and Plazek, 2009]) is formulated as
follows

log(a(T, T0)) =
DHa

R

✓
1
T
� 1

T0

◆
(5.6)

where DHa is the activation or relaxation energy associated with the com-
pliance or relaxation transition, R is the universal gas constant (R = 8,314
J/KmolK), T0 is the reference temperature and T is the test temperature.

5.1.2 Classical vertical shifting

The classically applied TTSP involves only horizontal shifting coefficients a(T, T0),
and gives an equivalence between the mechanical properties measured at a
frequency f (or a time t), a temperature T and the mechanical properties at a
reduced frequency f0 (or a reduced time t0) of a reference temperature T0.

The vertical shift factor is a translation along the vertical axes, the axis that
defines the mechanical property which is needed to built the master curve.
The vertical shift factor b(T, T0) modifies the values of the mechanical prop-
erty that it has been evaluated,

MechanicalProperty0 = b(T, T0)MechanicalProperty. (5.7)

As there are different shifting factor techniques for the horizontal shifting,
lets define those which also consider the possibility of vertical shifting. These
are WLF and Arrhenius techniques.

For the WLF vertical shifting technique, first the Bouche-Rouse theory
for linear viscoelasticity [Bueche, 1954] needs to be introduced. The Bouche-
Rouse theory says that the complex compliance or relaxation is proportional
to the density and the temperature. Since the vertical shift coefficients reflect
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the temperature dependance of the mechanical property (compliance/relaxation)
of the viscoelastic material, b can be model as

b(T, T0) =
T0r0

Tr

(5.8)

where r0 is the density of the material at the reference temperature and r is
the density at the test temperature. Assuming that the mass material remains
constant, Eq. (5.8) can be rewritten as

b(T, T0) =
T0

T
[1 + a(T � T0)]

3 (5.9)

in which a is the thermal expansion coefficient.
In the case of the Arrhenius shifting model the vertical shifting is defined

as

log(b(T, T0)) =
DHb

R

✓
1
T
� 1

T0

◆
(5.10)

where DHb is the activation or retardation energy.

5.2 Mathematical inconsistency of classical shifting in
fractional viscoelasticity

The use of Time-Temperature Superposition Principle in viscoelastic materials
is very important, it simplifies the models and reduces the number of experi-
mental test to characterise a viscoelastic material.

The starting point to reconsider the definition of shift factor for fractional
viscoelastic models has been the definition of the shift factor according to
Eq. (5.1). The main difficulty of this formula is the calculation of the char-
acteristic times. For this reason in the Chapter 2 and in [Colinas-Armijo et al.,
2016], a methodology has been proposed to calculate the fractional character-
istic times. In order to evaluate the shifting technique based on the character-
istic times, some works, studying the temperature effect on polymers, have
been proposed [Badagliacco et al., 2016, Colinas-Armijo et al., 2017a].

Even changing the formulation of the shift factor, from a mathematical
point of view some incongruences have been found, and are presented in the
next subsection.
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5.2.1 Mathematical inconsistency of classical shifting in fractional
viscoelasticity

From a mathematical point of view the shift factors presented in Section 5.1
are inconsisten when the materials are modelled by fractional constitutive
laws. This is due to the fact that this horizontal shift factors are designed
for constitutive laws that contain exponential functions instead of power law
ones.

For this reason, here a new shifting technique is proposed that uses ele-
ment shifting. So, each element has to be shifted by knowing its characteris-
tics, the element parameters, at each temperature. Below, it is explained how
each element (spring, dashpot and springpot) should be shifted, in order to
obtain a coherent result from a mathematical point of view.

Spring

The spring elements is characterised by a creep function of the type

C(t) =
1
E

(5.11)

being E the stiffness of the spring.
On the other hand, the relaxation function of the spring is equal to

R(t) = E. (5.12)

Obviously time is not involved in the creep and relaxation functions, and
also the spring is not a viscoelastic element. However, if the spring stiffness
varies with the temperature, and thus it may be written

1
Ej

= bEC(Tj, T0)
1
E0

, (5.13)

where bEC(Tj, T0) is the vertical shift factor the for the spring. Then, from
Eq. (5.13) it follows that the vertical shift is bEC(Tj, T0) = E0/Ej. In contrast,
for the relaxation function the shift factor is bER(Tj, T0) = Ej/E0.

Dashpot

The dashpot element is characterised by a creep function of the type

C(t) =
1
µ

t (5.14)
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being µ the viscosity of the dashpot.
On the other hand, the relaxation function of the dashpot reads as

R(t) = 0. (5.15)

For the dashpot element the time is involved in the creep function, but not
in the relaxation function. If the dashpot viscosity is temperature dependent,
it follows that

1
µj

tj = b
µC(Tj, T0)

1
µ0

t0, (5.16)

where b
µC(Tj, T0) is the vertical shift factor for the dashpot. Then, from Eq. (5.16)

it follows that the vertical shift factor is b
µC(Tj, T0) = µ0/µj. The shift factor of

the relaxation function in contrast is not necessary since the relaxation func-
tion is zero.

Springpot

The springpot element is characterised by a creep function of the type

C(t) =
ta

E
a

G(1 + a)
, (5.17)

and the relaxation function of the dashpot reads as

R(t) =
E

a

t�a

G(1 � a)
. (5.18)

In the case of the springpot element, both vertical and horizontal shifting
are involved, and may be written as follows

ta

j

E
aj G(1 + aj)

= b
aC(Tj, T0)

ta0 a
aC (Tj,T0)

E
a0 G(1 + a0)

, (5.19)

where b
aC(Tj, T0) is the vertical creep shift factor and a

aC(Tj, T0) is the hori-
zontal creep shift factor for the spring-pot. Then, from Eq. (5.19) that the ver-
tical creep shift is b

aC(Tj, T0) = (E
a0 G(1 + a0))/(E

aj G(1 + aj)) and the vertical
shift factor for the relaxation function the is the contrary, that is b

aR(Tj, T0) =
(E

aj G(1 � a0))/(E
aj G(1 � aj)).

By the other hand, the horizontal shift factor a
aC(Tj, T0) is equal for both

the creep and the relaxation and it is equal to a
aC(Tj, T0) = b

aR(Tj, T0) = aj/a0.
It has to be remarked that, in the case of the springpot, the time axes has to be
modified raising to the power of the horizontal shift factor.



110 5. Temperature effect on railway sub-ballast rubberised asphalt

5.3 Temperature effect on 3D fractional viscoelasticity

In this section it is studied how can be modelled the effect of the temperature
in the 3D fractional constitutive laws by means of the Riemann-Liouville and
Grünwald-Letnikov discrete fractional operators presented in Chapter 1.

The Time Temperature Superposition Principle approach, introduced in
Section 5.1, and the step material parameters variation with temperature, are
also evaluated.

5.3.1 Time Temperature Superposition Principle approach

As discussed before, the main advantage of the TTSP approach is that, by
shifting in the time axis, a mechanical property at different temperatures may
be calculated. Thus, if the shift factor it is known, knowing a mechanical prop-
erty for a reference temperature, the same mechanical property may be ob-
tained by means of the shift factor. Consequently, in this subsection the formu-
lation of the TTSP approach is evaluated, for the longitudinal and transversal
response, considering both the Riemann-Liouville and Grünwald-Letnikov
operators.

Riemann-Liouville operator

Using the Riemann-Liouville discrete operators presented in Section 1.4, see
Eq. (1.47), the longitudinal and transversal strain according to Eq. (4.5), may
be rewritten as

#
L

N

=
Dta0

3G
a0 G(1 + a0)

SaN

V

N

(a0)sq

N

+
Dtb0

9K
b0 G(1 + b0)

SbN

V

N

(b0)(sq

N

+ 3s
c

N

)
(5.20a)

#
T

N

= � Dta0

6G
a0 G(1 + a0)

SaN

V

N

(a0)sq

N

+
Dtb0

9K
b0 G(1 + b0)

SbN

V

N

(b0)(sq

N

+ 3s
c

N

)
(5.20b)

where subscript N stands for the number of discrete steps, s
q

N

and s
c

N

are
respectively the axial and confinement stress, and subscript 0 refers to the
reference temperature. The matrixes V

N

(a0) and V

N

(b0) are defined as
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V

N

(a0) =

2

66666664

1 0 . . . 0 0
�2a0 1 . . . 0 0

0 �2a0 . . . 0 0
...

... . . . . . . ...
...

0 0 . . . 1 0
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3

77777775

(5.21a)

V
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3
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(5.21b)

and the matrixes SaN

and SbN

are written as

SaN

=

2

666664

a(T1, T0)a0 0 . . . 0
0 a(T2, T0)a0 . . . 0
0 0 . . . 0
...

... . . . ...
0 0 . . . (TN , T0)a0

3

777775
(5.22a)

SbN

=

2

666664

a(T1, T0)b0 0 . . . 0
0 a(T2, T0)b0 . . . 0
0 0 . . . 0
...

... . . . ...
0 0 . . . a(TN , T0)b0

3

777775
(5.22b)

where a(Ti, T0) is the shift factor at the i-th step.

Grünwald-Letnikov operator

using the Grünwald-Letnikov discrete operators presented in Section 1.2.3,
see Eq. (1.19), the longitudinal and transversal strain according Eq. (4.5) may
be rewritten as
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#
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(5.23b)

where s
q

N

and s
c

N

are respectively the axial and confinement stress. The
matrixes B
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and matrices SaN

and SbN

are the same that in the case of the Riemann-
Liouville operator, see Eq. (5.22).

In both cases, Riemann-Liouville and Grünwald-Letnikov, the change at
each step is represented by the diagonal matrixes SaN

and SbN

, which depend
on the reference temperature selected and the actual temperature at each step.

5.3.2 Step-by-step material parameter variation with temperature

Subsequently, the temperature effect, knowing the value of the parameters
at each time step, for the longitudinal and transversal response is evaluated,
using both the Riemann-Liouville and Grünwald-Letnikov operators.
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Riemann-Liouville operator

The longitudinal and transversal strain, calculated in Eq. (4.5), and using the
Riemann-Liouville discrete operators presented in Section 1.4, see Eq. (1.47),
may be rewritten as
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where the subindex N stands for the number of discrete steps, boldsymbolsqN
and s

c

N

are respectively the axial and confinement stress and the matrixes
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and ṼbN

are defined as
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Grünwald-Letnikov operator

The longitudinal and transversal strain calculated according to Eq. (4.5) us-
ing the Grünwald-Letnikov discrete operators presented in Section 1.2.3, see
Eq. (1.19), may be rewritten as
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where s
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It may be observed that the formulation of the Riemann-Liouville and
Grünwald-Letnikov operators is quite similar, except from the matrixes Ṽ

N

and B̃

N

. It has to be emphasised that the use of the Riemann-Liouville opera-
tor is more interesting from a computational point of view, since the matrixes
ṼaN

and ṼbN

are two diagonal matrixes and the matrixes B̃aN

and B̃bN

are
triangular matrixes.
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5.4 Evaluation of the creep response and the tempera-
ture effect on railway sub-ballast rubberised asphalt

In this section, the effect of the temperature on the creep response of the rail-
way sub-ballast modelled by means of the theory of 3D fractional viscoelas-
ticity is evaluated.

5.4.1 Material parameters variations with temperature

The two bituminous mixtures presented in Chapters 3 and 4 are considered.
In Figures 5.1 and 5.2 the model parameters obtained in Section 4.4.1 are
graphically displayed as function of temperature.
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Figure 5.1: Parameter variation with temperature a(T), G
a

(T), b(T) and K
b

(T) for
the reference asphalt.

Figure 5.1 shows the model parameters a, G
a

, b and K
b

for the reference
asphalt. Linear regression of these parameters with respect to the temperature
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T lead to the following relations

a(T) = 0.004 T + 0.323 (5.29a)

G
a

(T) = �1.650 T + 53.725 (5.29b)

b(T) = 0.008 T + 0.149 (5.29c)

K
b

(T) = �2.250 T + 91.715 (5.29d)

The model parameters for the crumb rubber mixture with respect to the
temperature T is shown Figure 5.2.
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Figure 5.2: Parameter variation with temperature a(T), G
a

(T), b(T) and K
b

(T) for
the crumb rubber asphalt.

The regression equations for the crumb rubber mixture are reported are
the following

a(T) = 0.0055T + 0.32 (5.30a)

G
a

(T) = �1.5T + 47.3 (5.30b)
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b(T) = 0.008T + 0.17 (5.30c)

K
b

(T) = �2.1T + 79.7 (5.30d)

As observed from Figures 5.1 and 5.2, the parameters a and b increase
with the temperature but the parameters G

a

and K
b

decrease.

5.4.2 Creep response and temperature effect on railway sub-ballast
made of bituminous mixtures

Now the creep response of the railway sub-ballast made of bituminous mix-
tures with respect the temperature effect is evaluated. In particular, the ref-
erence asphalt and the rubberised asphalt presented in Chapters 3 and 4 are
evaluated.

The step-by-step material parameter variation presented in Subsection 5.3.2
is used to assess the creep response when the material is subjected to a time
depent temperature history.

The creep has been evaluated for load conditions of sq = 200kPa and
sc = 100kPa. This loading conditions have been selected since it has been
calculated with the software ViscoRail 2.0 that for a high speed train the ver-
tical stress that arrives to the sub-ballast layer is equal to 200kPa. ViscoRail
2.0, developed by IFSTTAR (see [Chupin et al., 2014]), is a numerical program
designed to solve the equations of motion for semi-infinite layered media ex-
cited by loads moving at constant speed.

20000 40000 60000 80000 t[s]

15

20

25

30
T [∘C]

Figure 5.3: Temperature variations with time.

Figure 5.3 represents the applied temperature history.
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Based on the temperature history T(t) of Figure 5.3, the longitudinal and
transversal strain, #L(t) and #T(t) is calculated according to Eq. (5.25). The
longitudinal and transversal strain response, #L(t) and #T(t) are depicted in
Figure 5.4.
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Figure 5.4: Longitudinal and transversal strain response under the temperature his-
tory T(t) reported in Figure 5.3.

From Figure 5.4, it is readily observed that the mechanical behaviour of
the crumb rubber mixture shows higher deformations than the reference one
but the recovery is also much higher, as discussed in Chapter 4. Furthermore,
it has been shown the importance of temperature influence on the mechanical
response of the bituminous mixtures under study.
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5.5 Conclusions

In this chapter the temperature effect on viscoelastic materials has been dis-
cussed. In particular, the Time-Temperature Superposition Principle, the prin-
ciple that deals with the relationship between time and temperature in vis-
coelastic materials, has been introduced. Then, its mathematical inconsistency
has been demonstrated when fractional elements appear in the fractional con-
stitutive laws.

Moreover, the mechanical behaviour of the 3D fractional viscoelastic model
under varying temperature conditions has been evaluated using the discrete
fractional operators presented in Chapter 1.

Finally the triaxial behaviour of the two bituminous mixtures (reference
and crumb rubber), presented and characterised in Chapters 3 and 4, as rail-
way sub-ballast are compared. Consequently, the creep behaviour has been
simulated taking into account the temperature effect.





Concluding remarks

The most important conclusions obtained from this PhD thesis are here sum-
marised.

The first chapter presents the basic concepts of fractional calculus includ-
ing its most relevant properties. The manuscript starts introducing Fractional
Calculus since fractional operators are necessary to understand and model
the fractional viscoelastic behaviour. Furthermore, an approach based on the
definition of the Riemann-Liouville fractional operators is proposed in order
to provide a different discretisation technique as alternative to the Grünwald-
Letnikov operator. This approach is used in the last chapter to model the
viscoelastic behaviour under temperature effect.

The second chapter introduces linear fractional viscoelasticity. The basic
concepts of linear viscoelasticity are presented in order to introduce the theory
of linear fractional viscoelasticity. A review of mechanical models (focusing
on mechanical models for asphalt mixtures) is done in order to better under-
stand how they are related to the theory of 3D fractional viscoelasticity. More-
over, a methodology to distinguish the elastic and the viscous contribution
and to calculate the fractional characteristic times has been proposed.

The third chapter proposes an analytical approach to the mix design op-
timisation of crumb rubber bituminous mixtures. This approach aims to de-
sign a crumb rubber mixture by modifying a reference bituminous mixture
with a certain void content. The proposed methodology takes into account
the deformation recovery of the rubber after compaction to obtain the desired
void content in the mixture. Based on the experimental results, the analytical
approach proposed is successful since it allows to design a crumb rubber mix-
ture with the desired void content. Moreover, this approach permits to esti-
mate the maximum rubber content that on a bituminous mixtures depending
on a target void content.

The fourth chapter deals with the mechanical characterisation and the 3D
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fractional viscoelastic model of the two asphalt mixtures (reference and crumb
rubber asphalt) design in the previous chapter. The chapter starts with the
theory of the 3D fractional viscoelasticity. From the creep-recovery test it has
been observed that the crumb rubber mixture allows larger deformations but
it recovers more than that of the reference asphalt. The cyclic test and the
3D fractional viscoelastic model have shown that the crumb rubber mixture is
less stiff and more viscous than the reference one.

The last chapter deals with the temperature effect on bituminous mix-
tures for railway sub-ballast. The chapter starts with the introduction of the
Time-Temperature Superposition Principle, this principle studies the relation-
ship between time and temperature in viscoelastic materials. The mechani-
cal behaviour of the 3D fractional viscoelastic model under varying temper-
ature conditions has been evaluated using the discrete fractional operators
presented in first chapter. The model parameters at different temperatures
have been obtained through the triaxial test performed in the fourth chapter.
Finally the triaxial behaviour of the two bituminous mixtures (reference and
crumb rubber), presented and characterised in the two previous chapters as
railway sub-ballast are compared.
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