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A non-nilpotent variety of algebras is almost nilpotent if any proper subvariety is 
nilpotent. Let the base field be of characteristic zero. It has been shown that for 
associative or Lie algebras only one such variety exists. Here we present infinite 
families of such varieties. More precisely we shall prove the existence of
1) a countable family of almost nilpotent varieties of at most linear growth and
2) an uncountable family of almost nilpotent varieties of at most quadratic growth.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let F be a field of characteristic zero and F{X} the free non-associative algebra on a countable set 
X over F . If V is a variety of not necessarily associative algebras and Id(V) is the T -ideal of polyno-
mial identities of V, then F{X}/Id(V) is the relatively free algebra of countable rank of the variety V. 
It is well known that in characteristic zero every identity is equivalent to a system of multilinear ones, 
and an important invariant is provided by the sequence of dimensions cn(V) of the n-multilinear part of 
F{X}/Id(V), n = 1, 2, . . . . More precisely, for every n ≥ 1 let Pn be the space of multilinear polynomials 
in the variables x1, . . . , xn. Since char F = 0, F{X}/Id(V) is determined by the sequence of subspaces 
{Pn/(Pn ∩ Id(V))}n≥1 and the integer cn(V) = dimPn/(Pn ∩ Id(V)) is called the n-th codimension of V. 
The growth function determined by the sequence of integers {cn(V)}n≥1 is the growth of the variety V.

In general a variety V has overexponential growth, i.e., the sequence of codimensions cannot be bounded 
by any exponential function. Recall that V has exponential growth if cn(V) ≤ an, for all n ≥ 1, for some 
constant a. For instance any variety generated by a finite dimensional algebra has exponential growth. For 
such varieties the limit limn→∞

n
√

cn(V) = exp(V), is called the PI-exponent of the variety V, provided it 
exists.
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We say that a variety V has polynomial growth if there exist constants α, t ≥ 0 such that asymptotically 
cn(V) � αnt. When t = 1 we speak of linear growth and when t = 2, of quadratic growth.

Moreover V has intermediate growth if for any k > 0, a > 1 there exist constants C1, C2, such that for 
any n the inequalities

C1n
k < cn(V) < C2a

n

hold. Finally we say that a variety V has subexponential growth if for any constant B there exists n0 such 
that for all n > n0, cn(V) < Bn. Clearly varieties with polynomial growth or intermediate growth have 
subexponential growth and it can be shown that varieties realizing each growth can be constructed. For 
instance a class of varieties of intermediate growth was constructed in [5].

The purpose of this note is the study of the almost nilpotent varieties. Recall that a variety V is almost 
nilpotent if it is not nilpotent but all proper subvarieties are nilpotent.

About previous results, if we consider varieties of associative algebras, it is easily seen that the only almost 
nilpotent variety is the variety V of commutative algebras (the sequence of codimensions is cn(V) = 1, n ≥ 1). 
In the case of varieties of Lie algebras it has been shown that there is also only one almost nilpotent variety: 
the variety A2 of metabelian Lie algebras and in this case cn(A2) = n − 1. In [3] it was proved that there 
exist only two almost nilpotent varieties of Leibniz algebras and both varieties have at most linear growth. 
For general non-associative algebras, in [11] an almost nilpotent variety of exponent two was constructed. 
Later in [10] it was proved that for any integer m an almost nilpotent variety with exponent m exists. 
Recently in [8] it was proved the existence of almost nilpotent varieties with fractional exponent.

An algebra satisfying the identity x(yz) ≡ 0 will be called left nilpotent of index two. In [12] two almost 
nilpotent varieties with linear growth were constructed and it was proved that they represent a full list of 
almost nilpotent varieties with subexponential growth in the class of left nilpotent algebras of index two. 
For commutative (anticommutative) metabelian algebras similar result were obtained in [1], [9].

The purpose of this note is to prove the existence of two families of almost nilpotent varieties. The first 
one is a countable family of at most linear growth and the second one is an uncountable family of at most 
quadratic growth.

2. The general setting

Throughout A will be a non-necessarily associative algebra over a field F of characteristic zero and F{X}
the free non-associative algebra on a countable set X = {x1, x2, . . .}. The polynomial identities satisfied 
by A form a T-ideal Id(A) of F{X} and by the standard multilinearization process, we consider only the 
multilinear polynomials lying in Id(A). To this end, for every n ≥ 1, we set Pn to be the space of multilinear 
polynomials in x1, . . . , xn, and we let the symmetric group Sn act on Pn be setting σf(x1, . . . , xn) =
f(xσ(1), . . . , xσ(n)), for σ ∈ Sn, f ∈ Pn.

The space Pn(A) = Pn/(Pn ∩ Id(A)) has an induced structure of Sn-module and we let χn(A) be its 
character, called the n-th cocharacter of A. By complete reducibility we write

χn(A) =
∑

λ�n
mλχλ

where χλ is the irreducible Sn-character corresponding to the partition λ � n and mλ ≥ 0 is the corre-
sponding multiplicity (we refer the reader to [6] for an account of this approach).

We next recall some basic properties of the representation theory of the symmetric group that we shall use 
in the sequel. Let λ � n and let Tλ be a Young tableau of shape λ � n. We denote by eTλ

the corresponding 
essential idempotent, i.e., e2

Tλ
= αeTλ

, 0 	= α ∈ F , of the group algebra FSn. Recall that eTλ
= R+

Tλ
C−

Tλ

where R+
T =

∑
σ, and C−

T =
∑

(sgnτ)τ and RTλ
, CTλ

are the groups of row and column 

λ σ∈RTλ λ τ∈CTλ
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stabilizers of Tλ, respectively. Recall that if Mλ is an irreducible Sn-submodule of Pn(A) corresponding to 
λ, there exists a polynomial f(x1, . . . , xn) ∈ Pn and a tableau Tλ such that eTλ

f(x1, . . . , xn) /∈ Id(A). Let 
e′Tλ

= C−
Tλ
R+

Tλ
C−

Tλ
. Since R+

Tλ
C−

Tλ
R+

Tλ
C−

Tλ
	= 0 then e′Tλ

is a nonzero essential idempotent that generates the 
same irreducible module and so also e′Tλ

f(x1, . . . , xn) /∈ Id(A).
In what follows we shall also denote by g(λ) the polynomial obtained from the essential idempotent 

corresponding to a tableau of shape λ by identifying the elements in each row. Recall that g(λ) is an highest 
weight vector of the general linear group GLk(F ) where k is the number of distinct part of λ (see [2])

Now, for a fixed arrangement of the parentheses T , let us denote by PT
n the subspace of Pn spanned 

by the monomials whose arrangement of the parentheses is T . Let also PT
n (A) = PT

n /(PT
n ∩ Id(A)). Then 

clearly Pn(A) =
∑

T PT
n (A).

Since the Sn-module PT
n (A) is a homomorphic image of PT

n ≡ FSn, the regular Sn-representation, it 
follows that, if χn(A)T is the Sn-character of PT

n (A), then

χn(A)T =
∑

λ�n
mT

λχλ

and mT
λ ≤ dλ = degχλ. Clearly mλ ≤

∑
T mT

λ .
Throughout we shall also use the following convention: we shall write the same symbol (e.g. ,̄ )̃ over 

two or more variables of a polynomial to indicate that the polynomial is alternating on these variables.
For instance x3x1x2 = x3x1x2 − x3x2x1.
We also need to recall some results from the theory of infinite words (see [7]). Recall that, given an 

infinite (associative) word w in the alphabet {0, 1} the complexity Compw of w is defined as the function 
Compw : N → N, where Compw(n) is the number of distinct subwords of w of length n.

Also, an infinite word w = w1w2 · · · is periodic with period T if wi = wi+T for i = 1, 2, . . . . It is easy 
to see that for any such word Compw(n) ≤ T . Moreover, an infinite word w is called a Sturmian word if 
Compw(n) = n + 1 for all n ≥ 1.

For a finite word x, the height h(x) of x is the number of occurrences of the symbol 1 appearing in x. 
Also, if |x| denotes the length of the word x, the slope of x is defined as π(x) = h(x)

|x| . In some cases this 
definition can be extended to infinite words as follows. Let w be some infinite word and let w(1, n) denote 
its prefix subword of length n. If the sequence h(w(1,n))

n converges for n → ∞ and the limit

π(w) = lim
n→∞

h(w(1, n))
n

exists then π(w) it is called the slope of w. Examples of infinite words for which the slope is not defined can 
be given. Nevertheless for periodic and Sturmian words the slope is well defined. In the next proposition we 
reassume the main properties of these words that we shall use here.

Theorem 1. ([7, Section 2.2]) Let w be a Sturmian or periodic word. Then there exists a constant C such 
that

1) |h(x) − h(y)| ≤ C, for any finite subwords x, y of w with |x| = |y|;
2) the slope π(w) of w exists;
3) |π(u) − π(w)| ≤ C

|u| , for any non-empty subword u of w;
4) for any real number α ∈ (0, 1) there exists a word w with π(w) = α and w is Sturmian or periodic 

according as α is irrational or rational, respectively.

If w is Sturmian we can take C = 1, and if w is periodic of period t, then π(w) = h(w(1,t))
t .
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3. Algebras constructed from periodic or Sturmian words

Our aim in this section is to prove the existence of two families of almost nilpotent varieties. The first is 
a countable family of varieties of at most linear growth and the second is an uncountable family of at most 
quadratic growth. To do this we will make use of an algebra constructed in [4].

Throughout A will be the algebra generated by one element a such that every word in A containing two 
or more subwords equal to a2 must be zero.

Note that in particular the algebra A is metabelian, i.e., it satisfies the identity

(x1x2)(x3x4) ≡ 0.

A partial decomposition of the cocharacter of A was given in [4] and we recall it here.
Let La and Ra denote the linear transformations on A of left and right multiplication by a, respectively. 

We shall usually write bLa = La(b) = ab and bRa = Ra(b) = ba.
We have the following

Remark 1.

1) χn(A) = m(n)χ(n) + m(n−1,1)χ(n−1,1)
2) cn(A) ≥ 2n−2.

Proof. Let λ = (λ1, λ2, . . .) � n be a partition of n such that n − λ1 ≥ 2. This says that either the first 
column of λ has at least three boxes or the first two columns of λ have at least two boxes each. Hence, if 
fλ is an highest weight vector associated to λ, either f is alternating on three variables or f is alternating 
on two distinct pairs of variables. In both cases every monomial of fλ evaluated in A contains at least two 
subwords equal to a2. Hence fλ ∈ Id(A) and this implies that χλ appears with zero multiplicity in the 
decomposition of χn(A). It follows that

χn(A) = m(n)χ(n) + m(n−1,1)χ(n−1,1)

is the decomposition of χn(A) into irreducibles.
In order to prove 2) we compute the multiplicity m(n) in χn(A).
Let w(La, Ra) ∈ End(A) be a word in La and Ra of length n − 2. Clearly a2v(La, Ra) = v(La, Ra)(a2) is 

the evaluation of an highest weight vector associated to the partition (n) which is not an identity of A. Since 
there are 2n−2 distinct such words, we get 2n−2 highest weight vectors which are linearly independent mod 
Id(A). Thus since degχ(n) = 1, from χn(A) = m(n)χ(n) +m(n−1,1)χ(n−1,1), we have that cn(A) ≥ 2n−2. �

Next we shall compute the decomposition of the cocharacter χT
n (A) for a fixed arrangement T of the 

parentheses of Pn.
We have the following

Proposition 1. For any arrangement T of the parentheses in Pn we have

χn(A)T = χ(n) + 2χ(n−1,1). (1)

Proof. If PT
n (A) 	= 0 then any monomial of PT

n is of the form

xσ(1)xσ(2)T1,xσ(3) . . . Tn−2,xσ(n) (mod Id(A)),

where Tj,xi
= Lxi

or Tj,xi
= Rxi

, for any i, j.



JID:JPAA AID:5727 /FLA [m3L; v1.221; Prn:31/08/2017; 10:37] P.5 (1-7)
S.P. Mishchenko, A. Valenti / Journal of Pure and Applied Algebra ••• (••••) •••–••• 5
It follows that, mod Id(A), the highest weight vectors corresponding to standard tableaux of shape 
(n − 1, 1) are

g0(x1, x2) = (x1x2)Tx1 . . . Tx1

and

gi(x1, x2) = (x1x1)T1,x1 . . . Ti−1,x1T i,x2Ti+1,x1 . . . Tn−2,x1 , 1 ≤ i ≤ n− 2.

Recall that the symbol ¯ over two or more variables of a polynomial means that the polynomial is 
alternating on these variables.

We claim that for any 1 ≤ i, j ≤ n − 2 the elements gi(x1, x2) and gj(x1, x2) are linearly dependent mod 
Id(A). In fact, since any word containing two subwords equal to a2 is zero in A, in a non-zero evaluation ϕ
we must set ϕ(x1) = a and ϕ(x2) = a2v(La, Ra), for some monomial v(La, Ra) ∈ End(A).

We get

ϕ(gi(x1, x2)) = ϕ(gj(x1, x2)) = −a2v(La, Ra)RaT1,a . . . Tn−2,a,

and the claim is established.
Next our aim is to prove that the polynomials g0(x1, x2) and g1(x1, x2) are linearly independent mod 

Id(A). In fact suppose that αg0(x1, x2) + βg1(x1, x2) is an identity of A, for some α, β ∈ F . If we consider 
the evaluation ϕ(x1) = a and ϕ(x2) = a2, we get

αg0(a, a2) + βg1(a, a2) = αa2LaT1,a . . . Tn−2,a − (α + β)a2RaT1,a . . . Tn−2,a,

and the right hand side is zero only if α = β = 0.
We have proved that χ(n−1,1) appears with multiplicity 2 in the decomposition of χn(A)T . Since mT

(n) = 1
we get that χn(A)T = χ(n) + 2χ(n−1,1) and the proposition is proved. �

Next for every real number between 0 and 1 we shall construct a quotient algebra of A. To this end we 
keep in mind the terminology of the previous section.

We are going to associate to every finite word in the alphabet {0, 1} a monomial in End(A) in left 
and right multiplications: if u(0, 1) is such a word we associate to u the monomial u(La, Ra) obtained by 
substituting 0 with La and 1 with Ra.

Let α be a real number, 0 < α < 1, and let wα be a Sturmian or periodic infinite word in the alphabet 
{0, 1} whose slope is π(wα) = α.

Let Iα be the ideal of the algebra A generated by the elements a2u(La, Ra) where u(0, 1) is not a subword 
of the word wα.

Let Aα = A/Iα denote the corresponding quotient algebra and let Vα be the variety generated by the 
algebra Aα.

We have

Lemma 1. For any real number α, 0 < α < 1, the variety Vα has linear or quadratic growth according as 
wα is a periodic or a Sturmian word.

Proof. We are going to find an upper and a lower bound of the codimensions of the algebra Aα. To this 
end we start from the decomposition of the cocharacter of A given in (1).

Let n ≥ 3 be any integer and let u(0, 1) be a subword of the word wα of length n − 1. We may clearly 
assume that 0 is the leftmost symbol of such word and, so, we write u(0, 1) = 0v(0, 1) for some subword 
v(0, 1) of wα.
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Since u and v are subwords of wα, a2v(La, Ra), a2Lav(La, Ra) /∈ Iα. This implies that the polynomial

g0(x1, x2) = (x1x2)v(Lx1 , Rx1)

is not an identity of the algebra Aα. In fact, recall that the evaluation ϕ(x1) = a, ϕ(x2) = a2 gives 
ϕ(g0(x1, x2)) = a2Lav(La, Ra) − a2Rav(La, Ra) /∈ Iα.

Since the word u(0, 1) is an arbitrary subword of the word wα of length n − 1, this says that, for any 
corresponding arrangement T of the parentheses in

χn(Aα)T = χn + mT
(n−1,1)χn−1,1 (2)

we must have mT
(n−1,1) > 0. Moreover compare the last equality with (1) and recall that, since Aα is a 

quotient algebra of A, the multiplicities in χT
n (Aα) are bounded by the multiplicities in χT

n (A). It follows 
that 0 < mT

(n−1,1) ≤ 2.
Now, the different arrangements of the parentheses in nonzero words of length n in Aα correspond to 

the subwords of wα of length n. Recalling that Compwα
(n) is either constant or equal to n +1 according as 

wα is periodic or Sturmian respectively, it follows that their number is bounded by a constant in case α is 
rational (i.e., wα is periodic) and by a linear function of n in case α is irrational (i.e., wα is Sturmian).

Since degχ(n) = 1 and degχ(n−1,1) = n − 1, from (2) and the above discussion we can find constants 
C1, C2 such that for any n we have

C1n ≤ cn(Aα) ≤ C2n,

if α is rational, and

C1n
2 ≤ cn(Aα) ≤ C2n

2

if α is irrational.
Recalling that the growth of Vα is the growth of the sequence cn(Aα) the proof of the lemma is com-

plete. �
Proposition 2. For 0 < α < β < 1, the variety Vα ∩ Vβ is nilpotent.

Proof. Let Kn(wγ) denote the set of different subwords of length n of a word wγ . Now, the slope of the 
words wα and wβ is equal to α and β, respectively. Since α 	= β, by Theorem 1 there exist m such that for 
any n ≥ m the intersection Kn(wα) ∩Kn(wβ) is the empty set. In particular there exist m such that any 
word u(0, 1) of length m is not a subword either of the word wα or of the word wβ.

Let for instance u(0, 1) be a word of length m which is not a subword of the word wα, and consider the 
monomial y1y2u(Lx, Rx). Construct the multilinear element y1y2u on y1, y2, x1, . . . , xm where u is obtained 
by substituting x1, . . . , xm instead of x inside u(Lx, Rx). Hence y1y2u ≡ 0 is an identity of the variety Vα. 
It follows that y1y2u ≡ 0 is also an identity of Vα ∩ Vβ , and so cm+2(Vα ∩ Vβ) = 0. From this it follows that 
PT
m+2(Vα ∩ Vβ) = 0 for any arrangement of the parentheses T and the variety Vα ∩ Vβ is nilpotent. �
We can now prove the main result of this note.

Theorem 2. Over a field of characteristic zero there are countable many almost nilpotent metabelian varieties 
of at most linear growth and uncountable many almost nilpotent metabelian varieties of at most quadratic 
growth.
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Proof. Recall that by [11, Theorem 1] every non-nilpotent variety has an almost nilpotent subvariety. Hence 
for any real number α, 0 < α < 1, the variety Vα contains an almost nilpotent subvariety. Let Uα be such 
subvariety. Since cn(Uα) ≤ cn(Vα), then cn(Uα) ≤ Cn or cn(Uα) ≤ Cn2, according as α is rational or 
irrational, respectively. Hence Uα has at most quadratic growth.

Now, by Proposition 2 for any 0 < α < β < 1 Uα 	= Uβ , and this says that there are countable many 
almost nilpotent metabelian varieties of at most linear growth and uncountable many almost nilpotent 
metabelian varieties of at most quadratic growth. �
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