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Abstract 13 

In the aquatic environment, the behavior of hydrophobic organic contaminants (HOCs), such as 14 

polybrominated diphenyl ethers (PBDEs), depends on the congeners’ physicochemical properties, 15 

environmental conditions and the presence of competing natural sorbents, including particulate 16 

and dissolved organic carbon (DOC) and black carbon (BC). Although BC is known as an 17 

important sedimentary sorbent for HOCs, its affinity for PBDEs has been poorly constrained. To 18 

better understand the biogeochemical controls on PBDEs, 12 PBDE congeners were measured in 19 

air, water, sediment and porewater of the lower Passaic River.  BDE-47 and BDE-99 dominated 20 

in all media. In sediments and water, the dual OC + BC approach better predicted PBDE 21 

partitioning compared to the simple OC isotherm. Field-derived KBC for PBDEs were inversely 22 

correlated with aqueous solubility [log KBC sediments (water) = -log Cw
sat * 0.95 (1.2) + 0.36 (-0.69)]; 23 

they reflected near background to highly contamination regions across the Passaic River. In the 24 

water column, PBDEs appeared at equilibrium partitioning between particles and colloids: OC + 25 

BC were responsible for the sorption of 65 % of the concentrations of PBDE, followed by colloids 26 

mailto:mohammed_khairy77@yahoo.com
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(30 %); only 5 % of PDBEs were truly dissolved. Calculated sediment-water diffusive fluxes 27 

greatly overwhelmed the atmospheric depositional flux to the river. 28 

 29 

Introduction 30 

Polybrominated diphenyl ethers (PBDEs) are a class of hydrophobic brominated organic 31 

contaminants (HOCs) that were produced in three (penta-, octa- and deca-) technical 32 

formulations.1,2 They were widely used in electronic equipment, textile paint and plastics to 33 

improve fire safety3. PBDEs have been detected in abiotic4–6 and biotic environmental 34 

compartments 7–10 including remote areas11, and humans12. In North America, the production of 35 

the penta- and octa-BDE technical mixtures has been largely phased out13. However, PBDEs still 36 

exist in consumer products and continue to leach into the environment14. Once in the environment, 37 

they can persist and bioaccumulate leading to adverse health effects4. The penta-technical 38 

formulation has attracted the attention in recent years, due to its global consumption and higher 39 

ecotoxicities compared to the higher brominated formulations6. Tetra- through hepta-brominated 40 

congeners were listed as persistent organic pollutants (POPs) under the Stockholm Convention15.  41 

 42 

In the aquatic environment, the transport, fate, effect and bioaccumulation of HOCs depends on 43 

their physicochemical properties, environmental conditions and sorption to solid phases. For 44 

instance, the uptake of HOCs by biota, their fate and transport are greatly influenced by the truly 45 

dissolved/colloidal/particulate phase distribution pattern. The truly dissolved fraction is highly 46 

bioavailable and can undergo diffusive exchange with the overlying air, underlying sediments, and 47 

the colloidal phase.  48 

Passive sampling techniques were developed as an inexpensive/effective alternate for monitoring 49 

the truly dissolved HOCs in the atmosphere and water. Among the widely available passive 50 



3 
 

sampling matrices, low density polyethylene (LDPE) has been widely used for measuring HOCs 51 

in the atmosphere16–18, water16,18, porewater19–21, studying their diffusive fluxes16,18 and 52 

investigating the bioaccumulation potential of POPs22,23.  53 

In sediments, HOCs are typically strongly absorbed into organic matter.24 Pyrogenic carbon 54 

particles such as black carbon (BC) may also play an important role in the sorption of HOCs (via 55 

adsorption) despite of its low contributions in sediments (1.0 – 20 % of the total organic 56 

carbon).25,26 Black carbon has hence been referred to as a super sorbent for HOCs27,28 including 57 

PBDEs4,27. As a result, BC is widely considered in studying the geochemistry of HOCs in 58 

sediments and soil21,27,29; including BC as a separate sorbent phase has greatly improved the 59 

prediction of the truly dissolved concentrations in sediments (porewater) when applying  60 

geochemical models5. HOCs are associated with BC and/or organic carbon during the transport 61 

and deposition away from their emission source if common for both.  62 

Despite  increasing concern over PBDEs in the environment, few studies have investigated the 63 

partitioning of PBDEs in the water column5,30 and in sediments6,29. Additionally, no study has 64 

addressed the geochemistry of PBDEs in an aquatic environment comprehensively. In the current 65 

study, we used LDPE to investigate the temporal and spatial transport and fate of PBDEs in water, 66 

air, sediment and porewater samples in the lower tidal portion of the Passaic River, NJ which is 67 

greatly affected by the industrial activities31 in the region. This region was selected because the 68 

presence of legacy and ongoing contaminants is well documented20,31–33 in its environmental 69 

compartments, whereas none of the studies focused on PBDEs despite of the highly urbanized 70 

nature of the region.  71 

Gaseous atmospheric and truly dissolved aqueous concentrations of PBDEs were determined by 72 

LDPE passive samplers concurrently at several locations. Adjacent samplers were used to calculate 73 
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the diffusive gaseous fluxes of PBDEs. Moreover, active water samples were collected to 74 

determine the particulate phase concentrations of PBDEs, compare the concentrations obtained 75 

from the passive and active samplers, and to determine the colloidal phase concentrations of 76 

PBDEs after measuring the dissolved organic carbon (DOC) in the water column. We were thus 77 

able to study the partitioning of PBDEs in the water column.  78 

In the sediment, we used LDPE to measure porewater concentrations. By measuring the fractions 79 

of BC and OC, and PBDE concentrations in sediments, we were able to calculate the solid-water 80 

partitioning coefficients (Kds) and study the role played by the active sorbents in determining the 81 

fate of PBDEs in the river. Finally, we used particulate-phase PBDE concentrations, truly 82 

dissolved PBDE concentrations in the water column and the porewater to quantify the diffusive 83 

fluxes to or from the sediments. To our knowledge, this is the first comprehensive study that 84 

utilizes passive samplers to assess the partitioning of PBDEs between DOC, OC and BC in water 85 

and porewater and their transport between air, water and sediment an urban river. 86 

 87 

 Materials and Methods 88 

Detailed description of the sampling procedures, extraction, analysis, quality assurance, statistical 89 

analysis and the selected physicochemical properties are provided in the Supplementary 90 

information (SI). In addition, details on fluxes of PBDEs across air-water, water-sediment, 91 

suspended particulate matter (SPM)-sediment, and partitioning models of PBDEs between 92 

suspended particle-water, porewater - BC and OC in sediments, and uncertainty calculations are 93 

provided in the SI, Figures S1 and S2, Tables S1 – S6 and in Khairy et al.20,34 and are briefly 94 

summarized below.  95 
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LDPE was pre-cleaned and spiked with performance reference compounds including deuterated 96 

polycyclic aromatic hydrocarbons (PAHs; naphthalene-d8, pyrene-d10, and benzo(a)pyrene-d12), 97 

brominated biphenyls (PBB 9, PBB 52, and PBB 103) and octachloronaphthalene according to the 98 

method outlined in Booij et al.35 These samplers were deployed in the atmosphere (in two inverted 99 

bowls ~ 2 m above the ground as a shelter for protection against sunlight and precipitation) and 100 

the water (suspended ∼1−2 m below the surface) along the lower portion of the Passaic River 101 

(Figure S1) during 6 deployments for 2 months each from September, 2011 to November, 2012.  102 

Active water samples (100 L each passing on a glass fiber filter and three polyurethane foams at a 103 

flow rate of 2 l/min) were collected at three different locations (Figure S1) during November, 2011, 104 

March and July, 2012 using a water pump. Dissolved organic carbon (DOC) was measured in the 105 

water samples according to the EPA method 415.336. 106 

Sediment samples were collected from mudflats at low tide at 18 different locations (Figure S2) 107 

along the river and 4 locations from Newark Bay during September to November 2011.  Detailed 108 

description of the sampling methodology and sampling locations can be found in Khairy et al.34. 109 

Total organic carbon (TOC) and black carbon (BC) content in the sediments were determined as 110 

detailed in Gustafsson et al.26. Truly dissolved porewater concentrations of PBDEs were 111 

determined using a LDPE tumbling procedure as detailed in Lambert et al.21  112 

Prior to extraction, all samples were spiked with 10 µL of a surrogate standard composed of 113 

labelled PBDE congeners (13C12 BDE-28, 47, 99, 153 and 183; 4.0 ng/µl in nonane). After 114 

extraction and cleanup (see SI), purified extracts from all the samples were analyzed for 12 PBDE 115 

congeners (BDE-2, 8, 15, 28, 30, 47, 49, 99, 100, 153, 154, 183) using an Agilent GC 6890N 116 

equipped with a Quattro micro GC tandem MS (Waters) according to the method detailed in 117 

Khairy et al37.  118 



6 
 

Procedural blanks, field blanks (LDPE), matrix spikes, and duplicate samples (20% of the total 119 

sediment samples) were included with each sample batch. BDE-47 was the only congener detected 120 

in the blanks and samples were corrected for blanks. Limits of detection (LOD) were determined 121 

in the different matrices based on a signal/noise ratio of 3.0 (Table S3). Recoveries of the surrogate 122 

standards generally ranged from 83 - 96%, 80 – 104 %, 72 – 85 %, 87 – 98 % and 78 – 83 % for 123 

the LDPE, sediments, filters and PUFs respectively. Matrix spikes recoveries were always >90% 124 

and < 110 % with a relative standard deviation < 20% (Table S4). Results of the replicate analysis 125 

of LDPE and the sediment samples indicated that the reproducibility of the analysis ranged from 126 

12.5 % – 21.3 %.  127 

 128 

Results and Discussion 129 

We first discuss PBDE concentrations in sediment, porewater and sediment-water sorption, then 130 

present results for PBDEs in the water column and discuss the influence of DOC on partitioning. 131 

This is followed by the gaseous atmospheric levels of PBDE.  Lastly, we derive air-water exchange 132 

fluxes and a mass balance for PBDEs in this tidal river. The site of our study, the lower 24 km of 133 

the Passaic River, is a heavily industrialized and contaminated region, which is known for its 134 

contamination by PCDD/Fs21,34, but also contains other HOCs20, including PBDEs at elevated 135 

concentrations. 136 

PBDE Concentrations in Sediments 137 

Concentrations of ∑12 PBDEs ranged from 1.0 - 16 ng/g dw and 3.0 - 9.0 ng/g dw in Passaic River 138 

and Newark Bay (Table S7) respectively. Concentrations generally increased downriver from river 139 

km 24 (2.5 ng/g dw) to river km 11 (11 ng/g dw). In Newark Bay, PBDE concentrations increased 140 

compared to the last portion of the lower Passaic River (Figure S3) indicating either different 141 
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PBDE sources, difference in the emission levels from a given source, loadings from the Passaic 142 

River itself and/or the influence of sediment geochemistry (see below). Samples were dominated 143 

by BDE-47 and BDE-99 comprising on average 29 % and 28% respectively of the total 144 

concentrations (Figure S3). Higher brominated congeners (BDE-100, 154, 153 and 183) showed 145 

also considerable contributions, which could be attributed their enhanced sorption to sediments as 146 

a result of increasing partition to solids. The median sediment concentration of PBDEs (4.6 ng/g 147 

dw) in the Passaic River was much higher than those in the Niagara River (0.11 ng/g dw)38 and 148 

Dialiao River Estuary, China (0.05 ng/g dw)39 , and close to that of Beijiang River, China (6.1 ng/g 149 

dw)40. The mean concentration in the current study (5.5 ng/g dw) was also much higher than the 150 

mean concentration for sediments of Saginaw River, USA (0.50 ng/g dw)41. In contrast, average 151 

concentration in the current study was much lower than the average sediment concentration of 152 

Guiyu River China (3,212 ng/g dw)42. BDE-209 was excluded from all the comparison studies. 153 

Porewater concentrations of PBDEs 154 

Porewater concentrations ranged from 12 pg/L (km 29.9) to 40 pg/L (km 1.8) in the river and from 155 

22 - 42 pg/L in Newark Bay (Table S8), which showed a significant increase (R2 = 0.31; p = 0.007) 156 

with the increase in sediment concentrations. BDE-47 was the dominant congener comprising 13 157 

– 50 % of the total concentrations followed by BDE-28 (6.0 – 30 %), BDE-49 (4.0 – 25 %), BDE-158 

99 (1.0 – 23 %) and BDE-15 (2.0 – 20 %) (Figure S4). Overall relative uncertainty (equation S17) 159 

associated with the analytical errors and the estimation of the truly dissolved concentrations from 160 

LDPE deployments ranged from 64 – 66 %.  There are very few other known porewater 161 

concentrations reported in the literature22,43. Our detected concentrations were much higher than 162 

the freely dissolved porewater concentrations of Narragansett Bay, RI (< 3.0 pg/L)22 but much 163 
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lower than the apparent porewater concentrations detected in marine sediments from China (170 164 

– 6,430 pg/L)43. 165 

Sediment Partitioning of PBDEs 166 

Overall sediment-water distribution coefficients, Kds, were predicted using considering either just 167 

OC (equation 1), or both OC and BC (equation 2), and compared with observed Kd values: 168 

Kd = KOC fOC     (1) 169 

where  fOC is the OC fraction in sediment (g/g sed), and  170 

KOC is the OC-water partitioning coefficient (L/kg).  171 

Kd = KOC fOC+ fBC KBC CPW
n-1

    (2) 172 

where  fBC is the BC fraction in sediment (g/g sed),   173 

KBC is the BC-water partitioning coefficient (L/kg),  174 

CPW is porewater concentrations (g/L), and  175 

n is the Freundlich coefficient (0.7). 176 

Predicted Kds based on OC (RU: 8.0 – 42 %) were 2.0-106 folds lower (under-predicted) than 177 

observed Kds in 81 % of the cases (Figure 1a). A similar trend was observed for PAHs and 178 

PCDD/Fs at the superfund site as part of the Passaic River21. The use of OC + BC (site specific 179 

values) dual model (Figure 1b) greatly improved the prediction, where predicted values over-180 

estimated Kd values in 91 % of the data points by a factor of 1.0 – 2.0, and 2.0 – 5.5 in only 9.0 % 181 

of the data points. In both models, slopes of the regression lines were significantly different from 182 

zero (p < 0.05) and ranged from 0.62-1.63. A slope of +1 is typically interpreted as being in 183 
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equilibrium, with the model capturing the key variable (i.e., interactions) of the observations44. 184 

Additionally, significant positive log-linear regression relationships (p < 0.05) were observed 185 

between observed and predicted Kds (Figure 1a, b). According to equation (2), BC accounted for 186 

12 – 99 % of total sorption of PBDEs to sediment. In conclusion, our results indicate the key role 187 

played by the BC in the sorption of PBDEs in sediment, in-line with previous results for PAHs, 188 

PCBs and PCDD/Fs20,21.  189 

PBDE Concentrations in the River Water 190 

PBDE concentrations obtained from the active samples are given in Table S9. Detected 191 

concentrations from the PUFs (truly dissolved + colloidal phase) ranged from 69 - 218 pg/L. 192 

Concentrations increased when moving downriver from river km 19 (average: 92 pg/L) to river 193 

km 9.6 (156 pg/L). Detected concentrations were greater than those previously reported for the 194 

Pearl River Estuary, China (2.15 – 127 pg/L)5 and San Francisco Bay, USA (0.20 – 78.7 pg/L)45 195 

Concentrations of particulate matter in the river water ranged from 72 – 90 mg/L with minor 196 

variations between the sampling locations and within each sampling location at the different 197 

sampling periods. Particulate phase PBDE concentrations ranged from 62 - 886 pg/L (Figure S5).  198 

Concentrations of PBDEs in the particulate phase during the summer were 2.0 – 13-fold higher 199 

than concentrations reported during the autumn and spring (Figure S5); the reason for the higher 200 

summer concentrations is not known. All PUF and GFF samples were dominated by BDE-47 and 201 

BDE-99 comprising 30 - 43 % and 35 – 37 % respectively of the total PBDE concentrations in 202 

both phases. 203 

As expected, truly dissolved concentrations of ∑12 PBDEs (obtained from the LDPE passive 204 

samplers) were lower than those from active sampling, and ranged from 5.5 - 51 pg/L with an 205 

average concentration of 23 pg/L (Table S10), and an overall uncertainty (equation S17) of 41 – 206 
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50 %. Detected truly dissolved concentrations were lower than concentrations recently detected in 207 

the lower Great Lakes (0.60 – 18 pg/L).18 Comparable concentrations were generally observed at 208 

all the sampling locations (Figure S6) with slightly higher concentrations observed during the 209 

summer, autumn and spring seasons of 2012 with no significant correlation with water 210 

temperature. BDE-47 and BDE-99 dominated the samples comprising 41-49 % and 12-15 % 211 

respectively of the total PBDE concentrations (Figure S7). BDE-49 showed also considerable 212 

contributions (6.0 – 17 %).  213 

Comparison between Active and Passive Water Concentrations 214 

Concentrations obtained from active PUF sampling (Cap, in pg/L) represent both truly dissolved 215 

PBDEs and those in the colloidal phase. Accordingly, we derived the truly dissolved 216 

concentrations (Cw, in pg/L) by subtracting the colloidal-bound fraction of PBDEs (Equation 3):  217 

Cw= 
Cap

1+[DOC] KDOC
     (3) 218 

where  [DOC] is the aqueous DOC concentrations (kg/L), and  219 

 KDOC is the DOC-water partitioning coefficient (L/kg).  220 

We predicted KDOC values from KOW according to the overall equation developed by Burkhard46 221 

(KDOC = 0.08 KOW) for HOCs. 222 

Good agreement was generally observed between passive and active concentrations corrected for 223 

DOC (Figure S8) with a factor difference ranging from 0.8 – 2.9 despite the difference in the 224 

sampling periods between both sampling techniques and the uncertainties associated with the 225 

analysis and calculations [64 – 66 % for the passive samples and 20 – 46 % for the PUFs (equation 226 

S18)]. 227 
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Water column partitioning of PBDEs 228 

KDOC values calculated in the current study (Table S11) were compared with literature 229 

values21,29,47. KDOCs were plotted against KOWs, and the slope of this significant relationship 230 

(Figure S9) was 0.18 (KDOC = 0.18 x KOW). This slope was higher than that calculated for PAHs 231 

and PCBs (0.08)46, indicating stronger affinity of PBDEs for DOC with increasing size relative to 232 

PAHs and PCBs; or in other words PBDEs sorb differently. Nevertheless, great variability was 233 

observed for KDOC values reported in literature (Table S11)21,29,46–50. Our KDOC values were only 234 

0.08 – 0.37 log units higher than those predicted in reference [46] indicating good agreement, and 235 

were similar to values calculated by ter LaaK et al49 for BDE-47, 99 and 153 (Figure S10). In 236 

contrast, our calculated values for BDE-28, 47, 99, 100, 153 and 183 were an order of magnitude 237 

higher than values reported by Wei-Haas et al.50 for Arctic waters (Figure S10). 238 

Observed organic carbon-water partitioning coefficients (KOCs) were plotted against KOWs. KOCs 239 

were calculated thrice relative to PBDEs on particles - based on (i) apparent water concentrations 240 

(Cap) obtained from PUFs; (ii) truly dissolved water concentrations (Cd) obtained from the LDPEs; 241 

and (iii) predicted (Cw) obtained from PUFs after correcting for DOC (surrogate for colloidal 242 

phase). The correlation between KOC and Cap displayed significant log-linear relationships (p < 243 

0.05) in the majority of the samples with slopes (0.10 – 0.49, Figure 2a) much shallower than those 244 

indicating non-equilibrium situation51 or a significant sorption to colloids52. When Cd(w)s (both 245 

from LDPE and from PUFs after correction for DOC) were used, slopes were insignificantly (p < 246 

0.05) different from 1 indicating an equilibrium partitioning situation5, and that the reason for the 247 

deviation using the apparent concentrations was the sorption to colloids.  248 

In the Passaic River, the fraction of PBDEs sorbed to the colloids ranged from 3.7 % (BDE-2) to 249 

99 % (BDE-183) of the apparent concentrations, which were within the range observed for the 250 
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Hudson River53 and slightly higher than values reported for the Pearl River Estuary, China (10 – 251 

98 %)5. This implies that only a small fraction (1.0 – 33 %) of tetra- through hepta-brominated 252 

diphenyl ethers is truly dissolved and could be available for either volatilization and/or diffusive 253 

uptake. Overall, though, POC was the most important PDBE reservoir in the water. The PBDEs 254 

(4-7 bromines) sorbed to particles represented on average 65 % of the total water concentrations 255 

followed by CDOC (30 %) and Cd (5.0 %).  256 

Our results confirm that active sampling severely overestimates truly dissolved concentrations, 257 

and a DOC correction needs to be performed. The KDOC values derived here could be used for that 258 

purpose. Yet, we argue that passive samplers are preferably used to study the water column 259 

partitioning of various hydrophobic organic compounds (HOCs) to yield dissolved concentrations 260 

directly. 261 

Observed Kp (using the freely dissolved concentrations obtained from the LDPE) in the water 262 

column were compared with predicted Kp using the OC and OC + BC models. KOC values were 263 

obtained from ref [54]. Predicted Kp values using OC (Figure 1c) generally under-predicted 264 

observed Kp values (factor range: 1.5 – 101) in 80 % of the data points. In contrast, better 265 

predictions were observed when the OC + BC model (Figure 1d) was used, with a factor difference 266 

ranging from 1.0 to 5.0, indicating a slightly over-estimated Kp values, which could be attributed 267 

to partitioning in the colloidal phase. Accordingly, we conclude that the partitioning of PBDEs 268 

between particulates and the dissolved phase was in equilibrium in the lower Passaic River and 269 

that BC significantly contributed to sorption of PBDEs (18 – 99 %) in the water column. 270 

In situ vs Literature Based KBC Values 271 
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Greater variability was observed when site specific KBC values were compared with literature 272 

values (see Figure 3, Table S11 and Figure S11 for more details). In the current study, we 273 

calculated in situ KBC values using a Freundlich coefficient of 0.7. KBCs were calculated twice for 274 

sorption in the water column (see below) and in sediments (Table S11). For comparison, we used 275 

the log-linear relationship between log KBC and aqueous solubility at saturation (Cw
sat) developed 276 

by Lambert et al.21 for furans in the same study area to derive values for PBDEs.  We also derived 277 

KBC values for PBDEs based on the KBC – KOW relationship developed by Di Paolo et al29 for 278 

PBDEs. Finally, we estimated Ksoot from Barring et al.47 after correction for the influence of the 279 

non-linear adsorption onto soot (by normalizing to CPW given in the same reference and using a 280 

Freundlich coefficient of 0.7). In their study, only two BDE congeners were included (BDE-47 281 

and BDE-99). However, a highly significant log-linear relationship was observed between KBC 282 

values for the two PBDE congeners and furans on one side, and –log Cw
sat (Figure S11). For that 283 

reason, the equation developed by Lambert et al.21 for furans (not the dioxins or PAHs) was used 284 

in our study to predict values for PBDEs.   285 

When sediment Kds were predicted with KBC values specific for PBDEs29, predicted values were 286 

2.0 -85 folds lower (under-predicted) than observed values in 91 % of the data points. KBC values 287 

from Lambert et al.21 under-predicted Kd values by a factor ranging from 1.2 to 32 in 63 % of the 288 

data points, and over-estimated Kds (by a factor 1.5 – 15) in 37 % of the data points. In contrast, 289 

KBC values from Barring et al.47  over-predicted Kds (factor differences ranging from 1.8 – 54) in 290 

almost all the data points (95 %).  291 

Similar findings were observed for the partitioning of PBDEs in the water columns when literature 292 

based KBC values were used. Several reasons could be responsible for these observed differences 293 

in the predictive ability of the literature based vs our site specific KBC values, which may include 294 
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the difference in the composition of the black carbon, differences in the methods used to measure 295 

the truly dissolved concentrations (passive samplers in our study), and difference in the 296 

competitive sorption from other pollutants and from OC.  Calculated KBC values for the water 297 

column were also higher than values calculated for the sediments (Table S11) owing to the higher 298 

truly dissolved concentrations of PBDEs in the pore water (Table S8).  299 

The following linear free energy relationships (Figure 3) were established between log KBCs and 300 

the final adjusted solubility values of PBDE (-log Cw
sat; mol/L) obtained from Yue and Li55: 301 

Log KBC (sediments) = -log Cw
sat * 0.95 + 0.36            (4) 302 

(R2 = 0.93; p < 0.001, SE = 0.21, n = 22) 303 

Log KBC (water column) = -log Cw
sat * 1.2 -0.69            (5) 304 

(R2 = 0.98; p < 0.001, SE = 0.13; n = 9) 305 

RUs associated with the predicted Kps and Kds (equation S20) based on the OC + literature based 306 

BC model were the highest (25 – 63 % and 68 – 89 % for water and sediments respectively) 307 

followed by OC + sample specific BC (equation S21; 32 – 52 % and 67 – 69 %), OC model 308 

(equation S19; 10 - 42 %) and observed Kps and Kds (equation S22; 30 %). 309 

Although calculated KBC values in our study varied greatly from literature values (either field 310 

calculated or predicted from Cw
sat), they represent the equilibrium distribution between BC and 311 

water in water and sediments in the field. Additionally, KBC values were calculated for a wide 312 

range of samples (n = 29:  22 sediment and 9 water samples), with sites’ contamination level 313 

ranging from near background to highly contaminated (standard deviation = 0.29 – 0.44 for 314 

sediments, 0.36 – 0.58 for water and 0.13 – 0.64 between sediments and water), which is an 315 



15 
 

advantage over laboratory driven values as these values represent the difference in the competitive 316 

sorption kinetics and the varying composition of BC between the different samples, and between 317 

sediments and water. Accordingly, we suggest that the KBC values derived here are applicable for 318 

other urban-impacted water bodies. The log-linear relationships (equations 4 and 5) can hence be 319 

used to predict KBC values from mono- through hepta-brominated BDE congeners.  320 

 321 

Atmospheric Concentrations of PBDEs 322 

Gaseous concentrations of ∑12PBDEs (pg/m3) at all the sampling locations during each 323 

deployment period are given in Table S12. Concentrations ranged from 3.0 – 6.0 pg/m3, 3.0 – 8.0 324 

pg/m3, 6.0 – 19 pg/m3, 14 – 27 pg/m3, and 2.0 – 7.0 pg/m3 in autumn, 2011, winter, spring, summer 325 

and autumn, 2012 respectively (Figure S12). Overall uncertainties associated with the estimation 326 

of gaseous concentrations (equation S17) from LDPE ranged from 48 – 50 % for the PBDE 327 

congeners. Atmospheric concentrations were slightly higher than concentrations recently reported 328 

for the lower Great Lakes (0.10 – 18 pg/m3)18, within the same range observed for Toronto, Canada 329 

(10 – 30 pg/m3)56 and Western Europe (0.22 – 37 pg/m3)56, and much lower than concentrations 330 

reported for Istanbul, Turkey (110 – 620 pg/m3)57. Partial pressures of PBDE congeners were 331 

calculated from the ideal gas law as follows:  332 

pV = nRT      (6) 333 

where  p is the partial pressure (atm),  334 

V is the volume (L),  335 

n is the number of moles,  336 

R is the gas constant (0.082 L atm K-1 mol-1) and  337 
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T is the temperature (K). 338 

The natural log of P correlated significantly (R2 = 0.34 – 0.67, p < 0.05, n = 34) with inverse 339 

T, indicating an increase in volatilization with increasing temperature. This finding was similar to 340 

atmospheric PBDEs measured at the Great Lakes58 as a part of the IADN program. Additionally, 341 

calculated enthalpy of phase values (ΔH, in J/mol, see Table S13) from Clausius -Clapeyron 342 

equation (7) for BDE-47 and BDE-99 were within the range observed for both congeners at the 343 

Great Lakes58: 344 

lnP = (-ΔH/R)*(1/T) + constant      (7) 345 

In the water, relatively high truly dissolved concentrations were also observed during the 346 

summer and spring of 2012 (Figure S13) but the highest concentrations were observed in the 347 

autumn, which was different from the atmospheric trend suggesting a possible different source. 348 

All samples were dominated by BDE-47 (Figure S14) comprising 32 – 42 % of the total PBDE 349 

concentrations followed by BDE-2 (11 – 20 %) and BDE-99 (6.0 – 18 %).  350 

 351 

Fate of PBDEs  352 

Air-Water Gaseous Diffusive Fluxes  353 

Atmospheric and truly dissolved water concentrations derived from the LDPE samplers were used 354 

to compute the gaseous diffusive fluxes. Fluxes thus represent the time weighed average 355 

concentrations that are absorbed by LDPE. Using the same approach, McDonough et al.18 356 

indicated that time-weighed fluxes obtained from the passive samplers for a given deployment 357 

time were in good agreement with the average calculated fluxes over a similar time period  for 358 
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PBDE congeners that did not approach equilibrium (tetra-hepta-brominated congeners), and 359 

comparable to average calculated fluxes obtained from running active samplers over similar time 360 

scales of the LDPE.  361 

Calculated gaseous fluxes of PBDEs are shown in Figure 4. Uncertainties associated with flux 362 

calculations (equation S23) ranged from 30 % to 430 % with 93 % of the data points ranging from 363 

30 to 95 % and 7.0 % (n = 30) above 100%. Accordingly, all the data points with uncertainties > 364 

100 % were assumed at equilibrium. Net volatilization fluxes ranged from 12 pg/m2/day (BDE-2 365 

at river km 28 during autumn 2011) to 1,860 pg/m2/day (BDE-47 at Newark Bay during autumn 366 

2012). Volatilization fluxes were generally observed for the lower brominated congeners (BDE-2, 367 

8, 15, 30, 28), whereas absorption fluxes were observed for the higher brominated ones (BDE-47, 368 

100, 99, 154, 153, 183) with a magnitude ranging from -22 pg/m2/day (BDE-30 at river km 28 369 

during winter 2012) to -5,670 pg/m2/day (BDE-183 at Newark Bay during winter 2012) (Figure 370 

4). Temporal variations in the calculated fluxes at each site were statistically insignificant 371 

(ANOVA test). Fluxes observed at river km 6.4 during the spring of 2012, and at Newark Bay 372 

during the summer of 2012 were significantly higher than fluxes observed at all the other sampling 373 

periods at all the samples (Repeated Measures of ANOVA, p < 0.001). The magnitude of the 374 

absorption fluxes was much higher than that for the volatilization fluxes in all the samples. 375 

Absorption fluxes were dominated by BDE-47 (-146 to -3360 pg/m2/day), BDE-183 (-146 to -376 

3360 pg/m2/day) and BDE-99 (-148 to -3145pg/m2/day) (Figure 4). Absorption fluxes of PBDEs 377 

were previously observed at the Great Lakes18,59 and the Atlantic Oceans60 with BDE-47 and 99 378 

dominating those fluxes. Based on our results, the atmospheric deposition is considered an 379 

important source of PBDEs to the lower Passaic River and Newark Bay. 380 

Sediment-Water Fluxes 381 
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Except for BDE-2, 47 and 99, all the other congeners showed positive diffusive fluxes (Figure 382 

S15a) with values ranging from 0.20 ng/m2/day (BDE-183 at river km 14) to 127 ng/m2/day (BDE-383 

28 at Newark Bay) indicating that sediments are acting as a source of PBDEs to the overlying 384 

water column. In contrast, PBDEs at river km 28 (above Dundee Dam) showed negative fluxes (-385 

157 ng/m2/day for BDE-47 to -0.10 ng/m2/day for BDE-30), probably due to the lower observed 386 

sediment concentrations (Figure S3). BDE-47 and 99 were depositing from the water column to 387 

the sediments at river kms 28, 19 and 6.4 (-18 to -157 ng/m2/day and -2.0 to -51 ng/m2/day for 388 

BDE-47 and 99 respectively), whereas both were released from sediments to the overlying water 389 

column at the other investigated sites (15 to 115 ng/m2/day and 14 to 58 ng/m2/day for BDE-47 390 

and 99 respectively). When both diffusive + sedimentation fluxes were combined (Figure S15b)61, 391 

a slight change was observed in the flux’s magnitudes, whereas directional changes were only 392 

observed at river kms 14 (BDE-153, 154 and 183) and 9.6 (BDE-47, 49, 100, 99, 153, 154 and 393 

183) where net fluxes indicated that these congeners at those locations deposit from the water 394 

column to the sediments with a magnitude ranging from -0.30 to -14 ng/m2/day. This implies that 395 

sedimentation of PBDE is a significant process for the higher brominated PBDE congeners 396 

probably due to their strong absorption to OC and/or BC due to their higher hydrophobicity.  We 397 

did not quantify the PBDEs potentially relased from sediment resuspension in the current study. 398 

Sediment resuspention could be a significant source of PBDEs to the overlying water column and 399 

could balance the sedimentation process thus affecting the net flux calculated. Uncertainties 400 

(equations S24 and S25) for the calculated fluxes ranged from 82 to 84 % and 100 to 102 % for 401 

the diffusive and diffusive + sedimentation fluxes respectively.  402 

Inventory of PBDE fluxes across the Passaic River  403 
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In the current study, the magnitude of the sedimentation fluxes of PBDEs (sorbed on particles) 404 

greatly exceeded diffusive fluxes from sediments to water or water to sediments and the gaseous 405 

diffusive fluxes either volatilization or deposition (Figure S16). The study area (lower 17 miles of 406 

the river) is 3.80 km2. We computed the net annual fluxes for PBDEs in the river assuming that 407 

our collected samples are representative of the entire area of the lower Passaic River. We also 408 

assumed that particulate phase concentrations of PBDEs obtained from our sampling periods could 409 

be applied on the annual scale since only minor difference between (3 samples) and within sample 410 

(three sampling periods at each location) particle content in the water column (70 – 92 mg/L) was 411 

observed.  Passive sampler deployments covered the entire year at each location in the air and 412 

water; derived PBDE concentrations already represent time weighted averages.  413 

Accordingly, the net particle sedimentation fluxes of PBDEs from the water column ranged from 414 

-0.60 to -139 g/yr, whereas diffusion fluxes of dissolved PBDEs from sediments to the water 415 

ranged from 0.10 to 84 g/yr, and was observed for all the congeners except BDE-47 and 183 416 

(Figure S16). Compared to the net volatilization gaseous fluxes (0.007 – 0.26 g/yr), sediments 417 

acted as the main source of PBDEs to the water column in the river. Similarly, deposition of 418 

dissolved PBDEs to sediments (for BDE-47 and 183; 0.40 to 28 g/yr) greatly exceeds those 419 

depositing from the atmosphere (0.50 to 1.5 g/yr). Thus, we conclude that sediments play a key 420 

role in the fate and transport of PBDEs in the lower Passaic River, which supports the importance 421 

of sediments as a source of PBDEs to their bioaccumulation in nekton as was observed in our 422 

previous study20. Additionally, the magnitude of fluxes to and from the water column suggest that 423 

other important removal processes such as degradation, discharge from the river, uptake by 424 

organisms, partitioning to the colloidal phase and particulate phase and storm runoff should be 425 

considered.  426 
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Implications 427 

In the current study, we investigated the sorptive behavior of PBDEs in the water column and 428 

sediments, and fate in the tidal portion of the lower Passaic River using LDPE passive samplers. 429 

Derived partitioning constants indicated stronger sorption of PBDEs to DOC compared to other 430 

HOCs, in contrast to results obtained in the Arctic. Due to the low solubility of HOCs in water, 431 

measuring the truly dissolved concentrations using the conventional sampling techniques is 432 

challenging, and correcting for the influence of the DOC could be misleading. Considering the 433 

above-mentioned drawbacks and the high cost of active sampling, the use of passive samplers as 434 

a cost-effective way of measuring dissolved concentrations is greatly encouraged. In the current 435 

study, we also used LDPE for measuring the truly dissolved PBDE fraction in the porewater and 436 

the atmosphere. Thus, we demonstrated the wide applicability of passive samplers to study the 437 

partitioning, transport and fate of PBDEs at one study area, and accordingly should be considered 438 

in similar future studies. 439 

The current study highlighted the important role played by the natural sorbents and particles in 440 

affecting the behavior of PBDEs in the river as was previously observed for other HOCs. PBDEs 441 

sorbed to particles represented on average 65 % of the total water concentrations followed by 442 

sorption to DOC/colloids (30 %) and being truly dissolved (5.0 %).  Our results indicates that BC 443 

is the dominant factor in the solid-water partitioning in the river despite of its lower abundance 444 

compared to OC, and is responsible on average on 73 % and 44 % of the total PBDE concentrations 445 

in sediments and water respectively.  Accordingly, BC (in sediments and water) and DOC/colloids 446 

(in water) play a significant role in controlling the bioavailability and mobility of PBDEs; this in 447 

terns will influence the diffusive flux (reducing the freely dissolved fraction) and sedimentation 448 

(increase the concentrations of PBDEs sorbed to particulates) flux calculations. Accordingly, 449 
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quantifying BC and DOC should be included in bioaccumulation/biomagnification and fate studies 450 

of PBDEs and the other HOCs. 451 

Supporting Information  452 

Details on the sampling, chemical analysis, statistical analysis. Uncertainties, sorption models and 453 

flux calculations. This material is available free of charge via the Internet at http://pubs.acs.org.   454 
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 644 

 645 

Figure 1: Log linear relationships between observed and predicted solid-water partitioning 646 

coefficients in sediments based on OC (a) and OC + BC (b) sorption models, and 647 

in water (c, d). Site specific KBC values were used.  Predicted Kds were calculated 648 

using a Freundlich coefficient (n) of 0.729. Symbols represent calculated Kd(p) for 649 

12 PBDE congeners at each sampling site (n = 22 for sediments and 9 for water). 650 

  651 
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 652 

Figure 2: Log linear relationships between KOCs and KOWs for apparent (a) and truly 653 

dissolved concentrations (b) of PBDEs in the water column of the lower Passaic 654 

River. Symbols represent calculated KOC values for 12 PBDE congener at each 655 

sampling site (n = 3 x 3 sampling periods). Data points in panel b represent the 656 

truly dissolved values obtained from LDPE and from PUFs after DOC correction. 657 
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Figure 3: Log -linear relationship between observed KBC (L/kg) and Cw
sat (mol/L) in 659 

sediments (n = 22) and water (n = 9) of the lower Passaic River. Error bars 660 

represent the standard deviation. 661 
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Figure 4: Calculated air-water gaseous fluxes (pg/m2/day) of PBDEs at the lower Passaic 700 

River. 701 
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