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Field-programmable gate array-controlled sweep velocity-locked 

laser pulse generator 
 
Zhen Chen,a Gerald Hefferman,a,b Tao Weia,* 
a University of Rhode Island, Department of Electrical, Computer and Biomedical Engineering, Kingston, RI 02881, 

USA  

b Brown University, Warren Alpert Medical School, Providence, RI 02903, USA 

Abstract. This manuscript reports a FPGA-controlled sweep velocity-locked laser pulse generator (SV-LLPG) design 

based on an all-digital phase-locked loop (ADPLL). A distributed feedback (DFB) laser with modulated injection 

current was used as a swept-frequency laser source. An open loop pre-distortion modulation waveform was calibrated 

using a feedback iteration method to initially improve frequency sweep linearity. An ADPLL control system was then 

implemented using a field programmed gate array (FPGA) to lock the output of a Mach–Zehnder interferometer that 

was directly proportional to laser sweep velocity to an on-board system clock. Using this system, linearly chirped laser 

pulses with a sweep bandwidth of 111.16 GHz were demonstrated. Further testing evaluating the sensing utility of the 

system was conducted. In this test, the SV-LLPG served as the swept laser source of an optical frequency domain 

reflectometry (OFDR) system was used to interrogate a sub-terahertz range fiber structure (sub-THz-FS) array. A 

static strain test was then conducted and linear sensor results were observed.  

 
Keywords: interferometry, fiber optics, laser applications. 

 
* Address all correspondence to: Tao Wei, E-mail: tao_wei@uri.edu  

 

1 Introduction 

Frequency modulated continuous wave (FMCW) reflectometry or optical frequency domain 

reflectometry (OFDR) (1-3), is a well-established frequency domain measurement method for 

optical component characterization and optical fiber distributed sensing. This technique allows 

distance domain information to be obtained from frequency domain intensity data via a Fourier 

transform. A key component of this FMCW reflectometry system is a swept-frequency laser 

source.  A variety of laser sources have been investigated for this purpose, including temperature 

and piezo-electrically tuned Nd: YAG ring lasers (4, 5), external cavity lasers (ECLs) (6-10), 

piezo-electrically tuned fiber grating lasers (11), and chirped distributed feedback (DFB) lasers 

(12). 

mailto:tao_wei@uri.edu
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Among these sources, the chirped DFB laser represents a particularly promising candidate for 

narrow-bandwidth interrogation applications. The output frequency of DFB lasers can be 

controlled using injection current modulation without the need for any moving mechanical 

components, resulting in a fast repetition rate over a sweeping bandwidth of ~100 GHz. Other 

beneficial features of chirped DFB lasers include single longitudinal mode output, good laser 

coherence length (~km), and low cost. However, there are several drawbacks limiting chirped DFB 

lasers as elements of FMCW/OFDR systems. Chief among these is a non-linear relationship 

between input current and output frequency, leading to non-linear optical sweep speeds. To 

compensate this non-linearity, a pre-distortion waveform can be generated based on a feedback 

iteration method (13). However, this method only fractionally enhances the linearity of the 

resulting optical sweep speed. An auxiliary clock or ‘k-clock’ with a fixed optical delay can also 

be applied to resample the data and correct for non-linear sweep speeds (13). However, this 

sampling clock method increases both system sampling and signal processing complexity. 

A closed loop control system based on an optical phase-locked loop (OPLL) that modifies laser 

output frequency in real-time offers an alternative approach to precisely controlling optical sweep 

speed (14, 15). Recently, a digital-controlled chirped pulse laser based on a digital phase-locked 

loop (DPLL) design was reported based on modular electronic design (16). A digital phase 

comparator (XOR gate) was utilized to extract phase errors between the output of a Mach-Zehnder 

interferometer, which converted laser sweep speed to a radio-frequency signal, and a reference 

oscillator. The system generated a highly linear frequency sweep, and its utility as a source for 

high spatial resolution fiber sensing applications was demonstrated. However, while this system 

successfully demonstrated the concept, there remain engineering challenges, stemming from the 

fact that analog systems are susceptible to noise and DC drifts in comparison to similar digital 
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systems (17, 18). More importantly, modular design results in relatively high power consumption, 

large size and weight of the final product. 

This manuscript reports an alternative design for a sweep velocity-locked laser pulse generator 

(SV-LLPG) using an all-digital phase-lock loop (ADPLL), which has the potential to surmount 

several of the previous engineering challenges facing modular DPLL design. The ADPLL is 

constructed such that all components, including the phase comparator, loop controller, and 

reference frequency synthesizer, are digitally generated using logic gates and integrated in an IC 

chip. This design was then implemented using a field-programmable gate array (FPGA) in which 

all digital components were synchronized using the same on-chip clock to minimize phase noise. 

The FPGA chip used in this design is from Xilinx Zyqn 7000 series, and the DAC is a Texas 

Instruments DAC121S101 with 12-bit resolution and a sampling rate of 1 MSa/s. Using this 

approach, a sweeping bandwidth of 111.16 GHz over 9 ms has been demonstrated. A highly 

consistent sweep velocity of 12.35 GHz/ms is maintained within each chirped pulse. The standard 

deviation of the starting frequency was measured to be 106.7 MHz, corresponding to a strain 

sensing instability of 0.79 µɛ. In order to evaluate the potential of the ADPLL-based SV-LLPG as 

an element of an OFDR system, the system was used to interrogate a sub-THz-FS array. Highly 

linear results and a sensitivity of -0.1346 GHz/µɛ were observed, which agrees well with 

previously reported sensing results obtained using an ECL (6, 7). 
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2 Operational Mechanism 

 

A schematic of the described interrogation system is shown in Fig. 1. In the SV-LLPG module, a 

DFB laser is employed as the frequency sweep source, which is injection current-modulated using 

a time-varying voltage via a laser control circuit. An isolator is placed at the laser output to 

eliminate reflection. Using a 90/10 coupler, 10% of the output power is directed in to the MZI and 

90% of the power into the sensing module to interrogate the sub-THz-FS array. The MZI is 

constructed with two 3-dB couplers with a constant delay, 𝜏𝑑, of 11.334 ns. Under the assumption 

that the DFB laser is operated at a constant sweep velocity, the AC-coupled current output i(t) at 

the photo diode after the MZI as a function of time can be expressed as: 

𝑖(𝑡) =
𝐴(𝑡)2

8
𝜂 cos[2𝜋(𝑓0 + 𝜈𝑡)𝜏𝑑]                  (1) 

where A(t) is the electrical-field amplitude directed into the MZI as a function of time, η is the 

responsivity of the photo diode, 𝑓0 is the initial frequency of the DFB laser during sweeping, ν is 

the optical sweep velocity, and t is the time. A beat frequency in the radio frequency (RF) range 

less than 250 kHz, which is linearly proportional to laser sweep velocity, is generated through this 

fixed delay MZI. Due to the current injection modulation, the intensity of the DFB laser output 

Fig.1 Schematic of proposed all-digital OPLL system with sensing modulate and control module (MZI: Mach-Zehnder interferometer; FPGA: 

field-programmable logic array; DAC: digital-to-analog converter; ADD: adder; PRE: pre-distortion curve; LC: loop controller; REF: reference 
frequency clock; PD: type-II phase detector; ADC: analog-to-digital converter; DSP: digital signal processing unit). 
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varies as a function of time. To account for this effect, an automatic gain control (AGC) 

transimpedance amplifier is used to adjust the amplitude of AC-coupled photodiode output signal. 

This photodiode has a bandwidth of 1MHz. A high-speed voltage comparator with a bandwidth of 

50 MHz is used to convert the analog beat signals into digital signals, which is sent into a digital 

input port of a FPGA evaluation board with a 100 MHz system clock. In order to improve the 

initial laser sweep linearity before phase locking, a pre-distortion voltage waveform is pre-

calibrated using a feedback iteration method (13), resulting in an output frequency sweep velocity 

at about 12.5 GHz/ms. This open loop pre-distortion voltage waveform is then stored within the 

FPGA memory. A type-II phase comparator, constructed with two D flip-flops and an AND gate 

(19), is used to extract the phase difference between the input digital signal and the on-board 

reference frequency clock 𝑓𝑅 at 140 kHz. The resulting phase error signals are then fed into a loop 

controller constructed using an integrator to further modify the pre-distortion current modulation 

waveform. The digital output of the FGPA is converted to an analog signal using a digital-to-

analog converter (DAC) module with a refresh cycle of 1 µs and sent to the laser driver circuit. 
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Spectrograms of the AGC output during a chirped laser pulse under the free-running open loop 

case (when the phase errors are not fed into the loop controller) with an unmodified ramp input 

and under the pre-calibrated modulation waveform case are shown in Fig. 2 (a) and (b). Sweep 

Fig.2 Measured frequency spectrum of AGC output within a chirped laser pulse: (a) free running with ramp input; (b) free running with 

calibrated pre-distortion input; (c) sweep velocity locked. 

(c) 

(b) 

(a) 
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linearity is substantially improved using the pre-distortion curve compared with the initial ramp 

waveform. After closing the control loop (i.e. when the phase errors are fed into the loop 

controller), the laser sweep velocity is locked during each chirped laser pulse. When locked, the 

AGC output signal is in phase with the digital reference clock and the locked optical frequency 

sweep velocity ν can be expressed as: 

𝜈 =
𝑓𝑅

𝜏𝑑
.                                   (2) 

Given the fixed MZI delay length 𝜏𝑑 and the digital reference clock frequency 𝑓𝑅, the locked sweep 

velocity is calculated to be 12.35 GHz/ms. Fig. 2 (c) shows the AGC output within a chirped pulsed 

under the locked condition. The total locking period within the chirped pulse is approximately 9 

ms, leading to an optical sweeping bandwidth of 111.16 GHz. Fig. 3 (a) shows the Fourier 

transform of the AGC output over the span of 9 ms under the locked condition; over that span, a 

signal-to-noise ratio (SNR) above 35 dB was achieved. During testing, a resting period of 10 ms 

followed each 10 ms sweep in order discharge the capacitor within the laser driver circuit, resulting 

Fig.3 (a) Fourier transform of the AGC output over the locked span of 9 ms; (b) output of the laser pulse generator with 5 complete cycles; (c) 
a Gaussian curve fit applied to measure the FWHM of the Fourier transform of a chirped pulse train over 1 second. 

(a) 

(b) 

(c) 
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in a total period of 20 ms for each complete pulse cycle and a reputation rate of 50 Hz. The output 

of the chirped laser pulse generator for 5 complete cycles at the photodetector is plotted in Fig. 3 

(b). To determine the noise of the system, 1 second of data with 50 chirped laser pulses was 

recorded. The Fourier transform of this data is plotted in Fig. 3 (c). A center frequency of 139.667 

kHz was found. A 50 Hz frequency period was observed due to the repetition rate described above. 

The full width at half maximum (FWHM) of the peak envelope using a Gaussian curve fit was 

measured to be 90 Hz.  

Along the sensing module, a homodyne interferometry structure is constructed using two 2×2 

3-dB couplers as shown in Fig. 1. The input light is split into two paths via the first coupler, with 

one serving as reference arm and the other path directed into the sensing arm, which includes a 

sub-THz-FS array. The sensing arm is terminated using an anti-reflection cut. The reflected light 

from the sub-THz-FS is then combined with light from reference arm via the second coupler. A 

photodetector and a single channel AC-coupled 8-bit analog-to-digital converter (ADC) is used to 

record the resulting data. The sampling rate of the ADC is set to 8 MSa/s with a match anti-aliasing 

filter. The digitized raw data is then fed into a DSP module.  

3 Experimental Results  

In order to investigate the sensing capability of the described SV-LLPG system, a 20-pt periodic 

weak reflection sub-THz-FS array with a 1 mm pitch length was fabricated along a single mode 

fiber (SMF-28, Corning, Inc.) using a Ti: Sapphire femtosecond laser micromachining system 

(Coherent, Inc.) (6, 7, 20, 21). During interrogation and signal processing, this sub-THz-FS array 

was considered to be 9 cascaded sub-THz- grating sensor units using a 4-mm wide moving 

Butterworth bandpass filter with a step size of 2-mm. Each sensor unit contains 4 reflection peaks. 

This signal processing method has been systematically investigated in the previous publications 
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(7, 22). A self-mixing method and a low pass filter is applied to extract the resulting 

interferograms. Changes in strain along the optical fiber result in optical path length (OPL) changes 

between the weak reflectors, which generate a phase-shift in the interferograms that are used to 

measure strain changes along the sensor probe. 

To evaluate the strain sensing capability of the system, a series of static strain tests were 

conducted. One end of the fiber under test (FUT) was secured to an optical bench while the other 

end was left free to hang. Weights were sequentially added to the free end of the fiber at 1.33 g 

intervals; in total 10.64 g of weights were added to the free end of the FUT, resulting in a strain 

change of 125.23 µɛ. The SV-LLPG system was set using the parameters described above, 

resulting in a total sweeping bandwidth of 111.16 GHz. The resulting distance domain signals, 

calculated using a Fourier transform and in which the sensor structures can be identified between 

2047 mm and 2067 mm, are plotted in Fig.4 (a). Due to the limited interrogation bandwidth, the 

individual reflection peaks of the sub-THz-FS array elements cannot be resolved. The measured 

frequency domain interferograms of the 7th sensor unit between 2059 mm and 2063 mm are plotted 

in Fig. 4 (b). The strain test results for all 9 sensor units are plotted in Fig. 4 (c), and the results of 

the 7th sensor unit specifically are plotted in Fig. 4 (d). Linear results were observed for all sensor 

Fig. 4 Static strain test: (a) time domain reflections of DUT; (b) interferograms of the sensor unit between 1779 mm and 1783 mm with 

varied strain applied; (c) strain test results for all 9 sensor units; (d) strain test results of for 7th sensor unit. 

(a) 

(b) 

(c) 

(d) 
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units, with the least linear having a R2 value of 0.9986. The mean strain sensitivity across all 

sensing elements was calculated to be −0.1346 GHz/µɛ with a standard deviation of 0.0026 µɛ. 

The start sweep frequency was evaluated by measuring the starting frequency of the entire system 

over 1000 captures, and the standard deviation of start frequency was 106.7 MHz.   

4 Conclusions  

To conclude, this manuscript reports a FPGA-controlled sweep velocity-locked laser pulse 

generator (SV-LLPG) design. A DFB laser is employed as the sweep source and an ADPLL control 

system is used to lock the laser sweep velocity to an on-board reference clock. Highly linear 

chirped laser pulses with a bandwidth of 111.16 GHz were demonstrated. A sweep velocity of 

12.35 GHz/ms was achieved for 9 ms within each chirped pulse at a 50 Hz pulse repetition rate. 

To investigate system sensing utility, the SV-LLPG prototype was used as an element of an OFDR 

system to interrogate a sub-THz-FS array. A static strain test was conducted and highly linear 

results were observed. 

The proposed device holds the promise to deliver a low size, weight and power (SWaP) and 

affordable interrogator for distributed fiber sensing applications. In addition, the FPGA based 

design makes it easier to be integrated and adopted for various applications in the future. 
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Caption List 

 

Fig. 1 Schematic of proposed all-digital OPLL system with sensing modulate and control module 

(MZI: Mach-Zehnder interferometer; FPGA: field-programmable logic array; DAC: digital-to-

analog converter; ADD: adder; PRE: pre-distortion curve; LC: loop controller; REF: reference 

frequency clock; PD: type-II phase detector; ADC: analog-to-digital converter; DSP: digital signal 

processing unit). 

Fig. 2 Measured frequency spectrum of AGC output within a chirped laser pulse: (a) free running 

with ramp input; (b) free running with calibrated pre-distortion input; (c) sweep velocity locked. 

Fig. 3 Fourier transform of the AGC output over the locked span of 9 ms; (b) output of the laser 

pulse generator with 5 complete cycles; (c) a Gaussian curve fit applied to measure the FWHM of 

the Fourier transform of a chirped pulse train over 1 second. 

Fig. 4 Static strain test: (a) time domain reflections of DUT; (b) interferograms of the sensor unit 

between 1779 mm and 1783 mm with varied strain applied; (c) strain test results for all 9 sensor 

units; (d) strain test results of for 7th sensor unit. 
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