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ABSTRACT

GPS receivers convert the measured pseudoranges
from the visible GPS satellites into an estimate of the
position and clock offset of the receiver. For various
reasons receivers might only track and process a subset
of the visible satellites. It would be desired, of course,
to use the best subset.

In general selecting the best subset is a combinatorics
problem; selecting m objects from a choice of n allows
for
(
n
m

)
potential subsets. And since the GDOP perfor-

mance criterion is nonlinear and non-separable, find-
ing the best subset is a brute force procedure; hence,
a number of authors have described sub-optimal algo-
rithms for choosing satellites.

This paper revisits this problem, especially in the con-
text of multiple GNSS constellations, for the GDOP
and PDOP criteria. Included are a discussion of op-
timum constellations (based upon parallel work of
these authors on achievable lower bounds to GDOP
and PDOP), musings on how the non-separableness of

DOP makes it impossible to rank order the satellites,
and a review/discussion of subset selection algorithms.
Our long term goal is the development of better selec-
tion algorithms for multi-constellation GNSS.

INTRODUCTION

GNSS receivers convert the measured pseudoranges
into an estimate of the position and the clock offset
of the receiver.

The typical implementation of the solution algorithm
is an iterative, linearized least squares method [1]. As-
suming that pseudoranges from m satellites are mea-
sured the “direction cosines” matrix G is formed. Us-
ing an East, North, and Up coordinate frame this ma-
trix is of the form

G =


e1 n1 u1 1
e2 n2 u2 1
...

...
em nm um 1

 (1)

in which (ek, nk, uk) is the unit vector toward the kth

satellite from the assumed receiver position. This ma-
trix is then used to form the pseudoinverse to solve
the overdetermined equations. Since the pseudoranges
themselves are noisy, the resulting solution is random.
To describe the accuracy of the solution it is common
to describe it statistically via the error covariance ma-
trix, equal to the inverse of GTG. Rather than consid-
ering the individual elements of the covariance matrix
it is common to reduce it to a scalar parameter. The
most used reduction is the GDOP (Geometric Dilu-
tion of Precision), the square root of the trace of this
covariance matrix

GDOP =

√
trace

{
(GTG)

−1
}

equivalently, the square root of the sum of the vari-
ances of these four estimates. Other popular measures
of performance are HDOP (Horizontal DOP), PDOP
(Position DOP), and TDOP (Time DOP).

For multiple constellations that are not synchronized
these definitions are extended by appending additional



columns to Eq. (1) to account for different clock bi-
ases. For L constellations G is of the form

G =



e1,1 n1,1 u1,1 1 0 0 . . . 0
...

...
...

e1,m1
n1,m1

u1,m1
1 0 0 . . . 0

e2,1 n2,1 u2,+1 0 1 0 . . . 0
e2,2 n2,2 u2,2 0 1 0 . . . 0

...
...

...
eL,mL

nL,mL
uL,mL

0 0 0 . . . 1


(the first of the two subscripts is the constellation
number, 1 to L; the second is the satellite number
within the kth constellation, 1 to mk) and the GDOP
is still

GDOP =

√
trace

{
(GTG)

−1
}

but now includes the variances of L+3 variables, three
for the receiver’s position and those of the L clock bi-
ases. The inclusion of the variances of the L clock
biases makes GDOP a poor choice when comparing
subsets of satellites; for example, the best subset for
GDOP might limit itself to a poorer geometric choice
of satellite locations just to eliminate the estimation of
an extra clock bias. A similar performance metric that
resolves this problem is Position DOP (PDOP), depen-
dent only on the position variances. Defining

H =
(
GTG

)−1

then PDOP is a function of the first three diagonal
terms

PDOP ≡
√

trace
{
H[1,1] + H[2,2] + H[3,3]

}
the variances of the three position variables of the es-
timate.

In some instances a receiver cannot process all of
the visible satellites. For example, the issue might
be

• that the receiver physically cannot track all of the
potential signals – this might be a hardware lim-
itation (a fixed number of channels) or the desire
to minimize power usage. We note that modern,
and expensive, GNSS receivers can track in excess
of 100 signals.

• that the receiver is using corrections from some
augmentation system and that the bandwidth of
the correction channel is insufficient to provide
information for all of the visible satellites (see, for
example, [2]).

In such a case the question arises: “If only m of the
n visible satellites can be processed, which m should

they be?” This problem has been considered in the lit-
erature, primarily for one constellation. If the receiver
limits its attention to the 15 or so visible GPS satel-
lites a brute force comparison of all subsets is possible
(for n = 15,

(
15
m

)
< 6, 500 for all 3 < m < 15, well

within modern computational range).

The advent of other constellations such as Galileo, and
Beidou exacerbates this problem. For example, with
35 visible satellites (such as frequently occurs with
GPS, GLONASS, and Galileo) brute force comparison
is no longer viable (e.g. with n = 35,

(
35
20

)
> 3 billion,

impossible for real time usage). We note that ad-hoc
and sub-optimum algorithms for subset selection have
been developed and are reviewed below; however, these
have been developed under the assumption of a single
constellation and do not exploit any characteristics of
the multi-constellation problem.

The longer term goal of these authors is to develop
effective algorithms for choosing between many satel-
lites from multiple constellations; the current paper
describes some of our early thinking on this topic. It
begins with a review of some parallel work of these
authors on lower bounds to GDOP and PDOP per-
formance; specifically, we consider the characteristics
of optimum satellite sets for multiple constellations.
This discussion includes several examples. Next, we
revisit the concept of ranking individual satellites, ar-
guing that the such methods cannot work and that
sub-optimum methods must be explored. We then re-
view the sub-optimum selection algorithms developed
to date. Finally, we suggest possible directions for fu-
ture study.

BOUNDS ON DOP

In a parallel effort these authors have developed
tight lower bounds to GDOP and PDOP for multi-
constellation GNSS [3]. In brief:

• The bounds are valid for single or multiple con-
stellations.

• Both GDOP and PDOP are lower bounded.

• The bounds assume that all satellites are above
some selected mask angle α with α ≥ 0◦.

• The resulting PDOP bound is a function of only
the total number of satellites m and the mask
angle α; the GDOP bound adds the number of
constellations. For best GDOP performance the
numbers of satellites per constellation should be
equal (essentially this is due to the fact that each
constellation’s clock variance is included in GDOP
and equalizing the satellite counts minimizes the
sum of those variances).



• Constellations that achieve the bounds are de-
scribed.

Most relevant to the work here is this last bullet; con-
structions of optimum constellations. For a mask an-
gle of 0◦ the best constellations for both GDOP and
PDOP consists of approximately 30% of the satellites
directly overhead and the remaining 70% distributed
about the horizon in a “balanced” pattern (as the mask
angle increases above 0◦ the fraction of satellites at
zenith increases as well and the remaining satellites
move up to being balanced at the mask angle).

In [3] balance is described in terms of the components
of the unit vectors to the m satellites. For satellites
from a single constellation balance includes conditions
on the East, North, and Up components of each satel-
lites’s position

m∑
k=1

ek =

m∑
k=1

nk = 0 (2)

conditions on the squares of those components

m∑
k=1

e2k =

m∑
k=1

n2k =
m

2
(3)

and conditions on the products of those compo-
nents

m∑
k=1

eknk =

m∑
k=1

ekuk =

m∑
k=1

nkuk = 0 (4)

In [4] it was suggested that constellations resulting in
small GDOP might consist of m − p satellites evenly
spaced in azimuth at the horizon and the remaining
p directly overhead, for some integer p, 0 < p <
m

ek =

{
sin
(

2πk
m−p + φ

)
; k = 1, 2, . . .m− p

0 ; k = m− p+ 1, . . .m

nk =

{
cos
(

2πk
m−p + φ

)
; k = 1, 2, . . .m− p

0 ; k = m− p+ 1, . . .m

uk =

{
0 ; k = 1, 2, . . .m− p
1 ; k = m− p+ 1, . . .m

in which φ is an arbitrary rotation in azimuth. Such a
constellation does, in fact, meet the balance conditions
in Eqs. (2), (3), and (4) as long as m−p ≥ 3 (this can
be shown by judicious use of Lagrange’s trigonometric
identities).

As an example, let m = 10. For minimum GDOP or
PDOP the constellation should consist of 3 satellites at
zenith and 7 distributed about the horizon as shown in

Figure 1: An m = 10 constellation that achieves min-
imum GDOP and PDOP.

Figure 1 (the horizon satellites can be rotated by any
arbitrary angle without violating balance; the three at
zenith are spread out in this image for visibility). As
the mask angle increases this picture is unchanged for
GDOP (except that the horizon satellites move up in
elevation) until the mask angle goes above 21◦. At that
point the optimum constellation changes to 4 satellites
at zenith and 6 at the mask angle; for PDOP this
change occurs at a mask angle of 20◦.

Interestingly, other m = 10 constellations exist that
meet the balance conditions. While they still have ap-
proximately 30% of the satellites at zenith the place-
ment of the 7 at the horizon can also consist of two
grouping, 3 in a triangle and 4 in a square, each group
with an arbitrary angle of rotation; see Figure 2 for an
example.

For larger m additional optimum constellations result.
Consider m = 13 so that 30% is 4 satellites at zenith
and the remaining 9 at the horizon. Possible locations

Figure 2: Another m = 10 constellation that achieves
minimum GDOP and PDOP.



Figure 3: Contenders for the optimum m = 13 con-
stellation.

for the horizon satellites include:

• 9 locations each separated by 40◦.

• 6 satellites separated by 60◦ and another 3 sepa-
rated by 120◦. The two groups can have arbitrary
rotation, including three paired locations!

• 5 satellites separated by 72◦ and the remaining 4
separated by 90◦, again with arbitrary rotation.

• Three groups of 3 satellites with 120◦ spacing.

Figure 3 shows several possibilities. All of these are
balanced, so achieve the GDOP and PDOP bounds.
In fact, for any set of 0.7m satellites at the horizon
expand the count into the sum of q integers, pk, with
each pk ≥ 3

0.7m =

q∑
k=1

pk

With this expansion, q groups, each with pk uniformly
spaced satellites, will combine to yield a balanced con-
stellation with minimum GDOP and PDOP.

Another natural question to ask is: “Do real subset se-
lections look like these optimum sets?” To assess this
GPS satellite locations were collected for a 24 hour
period and brute force computation of the best sub-
sets of size 7 were found (m = 7 was chosen as 30%
of m is 2 satellites at zenith). From these results Fig-
ures 4 and 5 show examples which yielded low GDOP.
In both figures the red circles identify the positions
of the m = 14 satellites; the blue X’s mark those in-
cluded in the best subset of size 7. Note that both
subsets include the two satellites highest in elevation.
Also, the other 5 are in, roughly, a pentagonal pat-
tern. For comparison Figure 6 shows a case in which
the resulting GDOP was poor. While the two highest
elevation satellites are included in the best subset, the

underlying set of visible satellites is not rich enough to
allow for a pentagonal pattern for the other 5.

Figure 4: An optimum m = 7 example mimicking the
optimum configuration.

Figure 5: Another example with near optimum geom-
etry.

Figure 6: An m = 7 example with poor geometry of
the visible satellites and, hence, poor perfor-
mance.



Finally, returning to the results in [3], for multiple
constellations of satellites the minimum DOP results
if similar conditions hold: approximately 30% of the
satellites from each constellation at zenith; the remain-
ing 70% at the horizon exhibiting balance including the
constraints in Eq. (2) for each constellation and the
constraints in Eqs. (3) and (4) across the combined
constellations.

LACK OF RANKING

It is natural to ask if the satellites can be definitively
“ranked” in terms of their contribution toward GDOP;
if so, this would allow an ordering of the satellites and
the selection process would become merely a trunca-
tion of the list. An equivalent way to think of this
is to ask: “Are smaller sized selections proper subsets
of the larger sized selections?” Assuming that such
an ordering would work, [5] attempted to develop the
ranking function.

While displaying tremendous symmetry, the non-
linear and non-separable nature of the expression for
GDOP (and PDOP) make an analytic exploration of
the possibility of such a ranking a difficult task. Fur-
ther, for many example constellations, a brute force
computation of the best selections for all potential
sizes does demonstrate the proper subset property,
suggesting that a ranking of the satellites might exist.
Unfortunately, counterexamples do occur; it is possi-
ble to construct a constellation of satellites such that
the optimum satellite selections of smaller sizes are not
proper subsets of the larger selections.

For example, consider the set of 7 satellites shown in
Figure 7: satellites 1-4 are located on the horizon at
the corners of the compass (East, West, North, and
South), satellites 5 and 6 are at high (80◦) elevation
in the sky along the East/West direction, and satellite
7 is directly overhead. Table 1 compares the best con-

1

2

3

4

5 6

7

Figure 7: Counterexample #1 – constructed.

Table 1: Subsets for the constructed constellation.

size optimum proper subsets GDOP

7 1,2,3,4,5,6,7 1,2,3,4,5,6,7 identical
6 1,2,3,4,5,6 1,2,3,4,5,6 identical
5 1,2,3,4,7 1,2,3,4,5 1% higher
4 1,2,4,5 1,2,4,5 identical

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 8: Full sky view of the second counterexample.

stellations of smaller sizes. The optimum selections
are computed via brute force; the proper subset se-
lections are the result of a greedy search. Red font
is used in the table to indicate satellites lost to the
next smaller level; blue indicates satellites being rein-
troduced. Specifically we note that the best 5 satellite
selection is not a proper subset of the best set of size
6; however, the “ranking” does recover by producing
the best selection of size 4. Further, the loss in GDOP
performance is only 1%. Anecdotally we note that this
loss is typically quite small.

Counterexamples to the concept of ranking also occur
naturally. To demonstrate this GPS satellite locations
were collected for a 24 hour period (once per minute
for a set of 1440 constellations) and for each measure-
ment two sets of subset selections (from 4 to the total
number of visible satellites) were computed: the opti-
mum set (done by brute force) and the proper subsets
as developed by a greedy algorithm. Of the 1440 tri-
als 783 or 54% resulted is some mismatch at one of
the constellation sizes. One such counterexample of
13 satellites is shown in Figure 8.

Figure 9 compares the GDOP for the optimum (red)
and greedy (blue) selections based on the satellite lo-
cations in Figure 8. The top subfigure is the actual
GDOP value versus the number of satellites in the se-
lection; we note that the curves are quite close. To
highlight the differences the lower subfigure shows the
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Figure 9: GDOP of the second counterexample.

percentage difference in GDOP for the two methods.
We notice that the greedy approach is fine for reduc-
ing from 14 to 8 satellites, but is suboptimum for 7 or
fewer satellites.

Figure 10 directly compares the selections for the two
methods. The columns in this tabular graphic repre-
sent each of the 13 visible satellites, the rows indicate
the number of satellites in the selection, and red cir-
cles and blue X’s indicate inclusion in the best and
greedy selection, respectively. For a ranked approach
to work, whenever a satellite is removed from the sub-
set (i.e. as loss of an X as we go down a column) it
cannot be reintroduced without violating the concept
of ranking. In this example we see that satellites 1, 6,
and 11 reappear in the optimum selection.

Finally, Figures 11 and 12 compare the sky views of
the two approaches for the selection of size 7; the red
circles show the full set of 14 visible satellites while the
blue X’s show the included satellites .

The summary is that a ranking of satellites does not
always work for GDOP; PDOP is similar.

SELECTION ALGORITHMS

Multiple authors have presented sub-optimum satel-
lite selection procedures; a number of these employ al-
ternative performance measures beyond GDOP. These
include volume of the polytope formed by the satel-
lites [6, 7] and cosines of the angles between pairs of
satellites [8–10].

The sub-optimum algorithms that employ GDOP or
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Figure 10: Satellite inclusion for the second counterex-
ample.

Figure 11: Sky views of the second counterexample:
optimum selection of 7 satellites.

Figure 12: Sky views of the second counterexample:
selection using proper subsets.



PDOP as the performance criterion tend to be greedy
algorithms (one such method was employed to com-
pute the examples of the previous section). For ex-
ample, to generate a subset of size m [11] suggests
starting with the full set of n satellites and iterating
the following steps:

1. Assuming that the current subset consists of k
satellites compute k DOPs, one for each proper
subset of k − 1 satellites.

2. Of these k values identify and remove that satel-
lite which results in the smallest increase in DOP.

3. If k − 1 > m repeat.

This algorithm is greedy in that it makes an optimum
choice at each step although the result might not be
the global optimum. Specifically, a poor (but still lo-
cally optimum) choice at one step might lead to a glob-
ally sub-optimum solution for future iterations. It is
noted in [11], and observed in the examples above, that
the loss to the global optimum for small constellations
appears to be small; however, there is no guarantee
that this is true for larger numbers of satellites. In a
similar way it is possible to grow the subset greedily
from the best set of 4 [12].

Another sub-optimum algorithm suggests starting
with a subset of size m (and one could discuss how
to select this initial set!) and then iterate in a greedy
fashion – growing the subset to m + 1 satellites by
adding the most helpful (with respect to DOP) of the
unused satellites and then shrinking back down to m
by removing the least helpful one, denoted a “revolv-
ing door” method [13] .

Simulated annealing has also been proposed as a way
to implement a DOP-based satellite selection algo-
rithm [14].

Finally, an algorithm could try to mimic the minimum
DOP constellation from the bound discussion. Recall
that this best constellation is a combination of satel-
lites at zenith (30%) plus the remainder (70%) at the
horizon. The algorithm would then choose high el-
evation satellites to match the number expected to
be at zenith and then attempt to place the remain-
ing satellites at the horizon following “balance.” This
is attempted in [4] in which the horizon satellites were
selected to be as uniformly spaced as possible. We
conjecture that our looser definition of balance might
make this an easier task. For example, instead of at-
tempting to find 6 satellites at 60◦ spacing we could
look for two sets of 3 satellites at 120◦ spacing. Fur-
ther, the results on minimum DOP also suggest how to
extend this method to multiple constellations.

CONCLUSIONS/FUTURE WORK

The sections above make several points:

• That the problem of selecting a subset of the visi-
ble GNSS satellites is still an important problem.

• That with multiple constellations and the
GDOP/PDOP performance criterion, a brute
force approach to selecting the best subset is in-
feasible from a complexity perspective.

• If the underlying set of visible satellites is rich
enough then the best subset contains a mix of
a few high elevation satellites and the remainder
portraying geometric balance at low elevation.

Our future work is to combine the understanding of
optimum constellations to improve suboptimum subset
selection algorithms for multiple constellations.
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