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Modeling and Migration of 2-D Georadar Data:
A Stationary Phase Approach

Stewart A. Greenhalgh and Laurent Marescot

Abstract—This paper presents the basic kinematic and dynamic
imaging and migration equations for zero-offset two-dimensional
georadar profiling. The kinematic equations are derived from sim-
ple considerations of spatial impulse responses and a generating
function. The dynamic equations follow from a multidimensional
stationary phase approximation to the infinite spectral integrals.
They show how the radar signal (amplitude and phase) depends
on the shape and curvature of the reflector. The imaging equations
are evaluated for the special cases of a point scatterer, a continuous
reflector, and a terminating reflector. A general formula is devel-
oped by which to migrate an arbitrary shaped event of variable
amplitude on the georadar section.

Index Terms—Georadar, migration, modeling, stationary phase
approximation.

I. INTRODUCTION

G ROUND penetrating radar (GPR) or georadar surveys
are now commonplace in environmental and engineering

geophysics for investigating the shallow subsurface [1], [2].
The primary aim is to map the architecture of sedimentary
sequences and to delineate geological structures [3], [4]. Most
surveys are conducted as two-dimensional (2-D) profiles along
straight lines because, unlike seismic surveying, data acquisi-
tion is largely undertaken using a single pair of transmitter (Tx)
and receiver (Rx) antennas. Multichannel data acquisition is
rare; thus, arrays must be synthesized by continually moving
the georadar Tx and Rx along the ground surface. The data
acquisition is normally coincident Tx–Rx, at least when pro-
filing. This is referred to as zero-offset. Walkaway or common
depth point (CDP) surveys are sometimes run over a range
of Tx–Rx offsets to get information on the velocity distribu-
tion of the subsurface, but mostly, the velocity is assumed to
be constant.

Three-dimensional (3-D) surveys entail an areal distribution
of Tx–Rx points on the ground surface. The data are still col-
lected as a series of closely spaced, parallel 2-D lines, to form
the grid. This generally involves recording on a single channel
at a time and building up each line in turn [5]–[7]. Such field
practice is quite distinct from 3-D seismic, in which hundreds
or even thousands of recording channels simultaneously record
the signals from each source point on multiple Rx lines. Three-
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dimensional georadar data are processed as a full volume to
enable the correct positioning of reflections from out of the
plane of each 2-D line. Because of the field-time-intensive
nature of 3-D georadar surveys, reconnaissance 2-D profiling
is still an essential part of any GPR investigations.

In addition to surface profiling, borehole radar experiments
are also routinely carried out in support of civil and mining
engineering projects [8]. Crosshole surveys, in which the radar
Tx is placed in one borehole and the Rx in another, seek to
scan the interwell medium in a tomographic sense to image
changes in the electromagnetic (EM) wavespeed or attenuation
[9]. Borehole profiling utilizes a single (bistatic) radar probe
in which Tx and Rx modules are separated to interrogate the
space surrounding the well. It relies on backscatter or reflection
to detect and echolocate geological targets like ore bodies and
faults/fractures. Often, several wells are profiled in turn.

In either surface radar profiling or borehole GPR reflection
profiling, the data comprise a series of radargrams assembled
into what is called a georadar section. The horizontal axis x
represents position along the ground surface or distance along
the borehole where the Tx–Rx was placed, and the vertical axis
is the two-way time. The latter can be converted to a depth or
range z by multiplying by half the average wavespeed V of
the medium. Without directional antennas, there is a rotational
ambiguity with respect to the direction from which the echo
has come. Except in 3-D areal surveying or multiple borehole
profiling, it is generally assumed that the reflection lies in the
sagittal plane formed by the radar profile and its normal. In the
case of a surface survey, this will be the vertical X–Z plane.

The radar section bears a deceptive similarity to a geological
section. If the geology (object space, X–Z) is complex, the
radar section (image space, x–z) will be even more complex.
There are artifacts of a structural nature (geometry, diffraction
hyperbolas, bow ties), well known to seismic interpreters. This
is illustrated in Fig. 1 for the case of a tight syncline having
its center of curvature beneath the Earth’s surface. There are
reflections from both sides as well as the base of the syncline,
resulting in ray path crossings and a complicated triple image or
bow tie pattern. The main branch of the triplication is actually
anticlinal. There are also artifacts of a dynamic nature (ampli-
tude changes, phase changes, caustics). To properly interpret
the data, it is essential to elucidate the nature of the signal.
The technique of migration, adapted from seismic processing
[10], [11], is used to unravel some of the artifacts (e.g., collapse
diffraction hyperbolas) and to position reflectors properly in
their true spatial position. Most radar migration algorithms
operate directly on the data in a summation sense (some sort
of focused lag-sum operator) and can be carried out using
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Fig. 1. Object space (geology G) and image space (radar section R) and the
transformations going from one to the other. I stands for modeling or imaging,
or going from G to R. The inverse process of moving from R to G is called
migration M .

finite difference or boundary integral techniques such as the
Huygens–Kirchhoff diffraction stack [12]–[14]. Although some
vector GPR processing techniques have been developed [15],
most georadar migration (and modeling) schemes have their
basis in the scalar wave equation, i.e.,

∇2u =
1

V 2(X,Y,Z)
∂2u

∂t2
(1)

where u is the wavefield (e.g., electric field) and V = 1/
√

εµ
is the EM wavespeed, which depends on the permittivity ε and
the permeability µ of the medium.

The migration technique can itself amplify noise and cause
distortions. When the signal-to-noise ratio is low, it is often
preferable not to migrate in an automatic full-wavefield sense,
but rather to perform only a section-style migration to get the
correct geometry of reflectors [16].

In this paper, we develop a simple spectral theory of 2-D
radar modeling and migration, which is applicable to constant
velocity media. If the velocity actually varies, then one must
use the average velocity above the reflector in question. We
apply the method of stationary phase to evaluate the infinite
spectral integrals, which is equivalent to a Fresnel approxi-
mation. From the simple spectral theory, the basic imaging
equations for an arbitrary shaped reflector emerge; they give
the transformations from image space to object space, and vice
versa. The dynamic equations include amplitude and phase
information and show how it depends on reflector curvature.
In Section II, we look at spatial impulse responses and imag-
ing kinematics and derive the basic transformation equations
from elementary considerations of generating functions. The
independent kinematic treatment yields the same equations for
image space to object space conversion but is lacking in terms
of the actual pulse shape covered in the more elaborate dynamic
treatment. The analysis given provides considerable insight into
the radar imaging problem and a possible scheme for noisy
data migration. It would be a fairly simple matter to extend the
analysis to 3-D, but handling inhomogeneous media presents
considerable difficulty.

Fig. 2. Coordinates in the two domains. The radar Tx at point (x, 0) sends
down a pulse along the normally incident ray path of length z as shown and
produces a reflection from the point (X, Z) on the reflector in object space. The
echo returns along the same path where it is recorded on the Earth’s surface by
the radar Rx, also at (x, 0).

II. SPATIAL IMPULSE RESPONSES

Consider the situation depicted in Fig. 2. The radar Tx–Rx
is located on the Earth’s surface at position coordinate (x, 0).
The reflection from the point (X,Z) on the interface follows
the curved ray path as shown. The path is curved because of
Snell refraction associated with an increase of velocity with
depth. The ray strikes the interface at normal incidence at the
point P and is of a length z, where z = V t/2. Here, V is the
average velocity of the radar wave above the interface, and t is
the two-way time of the reflection (strictly speaking, z should
be expressed as a line integral). The reflected event is plotted
at position coordinate (x, z) in the image space. The “image
space,” which is the radar section, will be denoted R. It is
quite distinct from the “object space” (viz., the geology), which
will be denoted by G. The reflection originates from the point
(X,Z) in object space. We are interested in the transformation
between image space R and object space G (see Fig. 1).

We can think of a generating function W , which accom-
plishes this transformation. It is given by

W (X,Z, x, z) = 0. (2)

In homogeneous media, the velocity is constant and the ray
path is a straight line; thus, from simple geometry, we obtain

W = (X − x)2 + Z2 − z2 = 0. (3)

Let us first consider the spatial impulse response for radar
modeling. This is the process of going from the object space G
to the image space R. We are interested in what happens to the
point scatterer (X0, Z0) as shown in Fig. 3(a). Substituting into
(3), we obtain for the Cartesian equation of the image, i.e.,

z2 − (x − X0)2 = Z2
0 . (4)

This is the equation of a hyperbola having apex (X0, Z0), as
shown in Fig. 3(a). Thus, the point in object space has become
a curve in image space. This is the well-known diffraction
hyperbola. In other words, a single point (impulse function) in
the object space becomes a hyperbola in the image space. This
is the impulse response for radar modeling.
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Fig. 3. Spatial impulse responses for (a) modeling (the diffraction hyperbola)
and (b) migration (the semicircular wavefront).

We now consider the reverse situation of inverse modeling or
“migration,” i.e., moving from image space R to object space
G [see Fig. 3(b)]. The single point coordinate (x0, z0) in image
space can be substituted into (3) to obtain the corresponding
equation in object space, i.e.,

(X − x0)2 + Z2 = z2
0 . (5)

This is the equation of a circle of center (x0, 0) and radius
z0; it represents the “wavefront” migration impulse response.
Noise spikes in the image space get dispersed into semicircular
“smiles” in the migrated section (i.e., object space).

III. IMAGING KINEMATICS

A. Modeling a Continuous Reflector

Having established the basic impulse responses for modeling
and migration, we now wish to examine the kinematic modeling
equations for an arbitrary shaped continuous reflector. We will
later examine the dynamic modeling response. In Cartesian
form, the reflector is given by

Z = F (X). (6)

It has parametric equations X = X(p), Z = Z(p). The gener-
ating function can be written as

W (X,F (X), x, z) = (X − x)2 + F (X)2 − z2 = 0. (7)

Referring to Fig. 4, we have a one-parameter family of
diffraction hyperbolas. Each point making up the continuous
reflector transforms to a hyperbola, the envelope of all such
hyperbolas can be found by setting

W = 0 ∂W/∂X = 0.

Fig. 4. Modeling a continuous reflector. The image is the superposition (or
envelope) of all diffraction hyperbolas from each point in object space. In other
words, the reflector is modeled as a continuum of point diffractors.

This yields the parametric equations of the radar image, i.e.,

x =X + F (X) · F ′(X)

z =F (X)
√

1 + F ′(X)2 (8)

where F ′(X) = dF/dX is the local geological dip.
The local dip of the radar section is given by

dz

dx
=

dz/dX

dx/dX
=

F ′(X)√
1 + F ′(X)2

. (9)

A “caustic point,” such as points A and B in Fig. 1, occurs
at (x0, z0) if dx/dX = dz/dX = 0 at (x0, z0). Taking the
derivative of (8), this yields the condition

ρ =
(
1 + F ′(X)2

)3/2
/F ′′(X) = −z (10)

where F ′′ is the second derivative and ρ is the radius of
curvature of the interface at this point. In other words, a
caustic occurs whenever the center of curvature lies beneath the
Earth’s surface.

B. Migrating a Continuous Horizon

Consider an arbitrary shaped radar reflector event in image
space, which is given by the Cartesian equation

z = h(x). (11)

The generating function is

W (X,Z;x, h(x)) = (X − x)2 + Z2 − h(x)2 = 0. (12)

This defines a one-parameter family of semicircular wavefronts
(see Fig. 5) whose envelope is given by

W = 0 ∂W/∂x = 0. (13)

Substituting into (12), we obtain the following parametric equa-
tions for the object space or migrated image:

X =x − h(x) · h′(x)

Z =h(x)
√

1 − h′(x)2 (14)
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Fig. 5. Migrating a continuous horizon. The final image is the envelope of all
semicircular wavefronts. Each point in image space forming the continuous line
is dispersed along its corresponding circular wavefront in object space.

Fig. 6. Object space (geology) representation of a fault structure and a mound
structure as well as their image space representation. Note how diffractions in
the image space heal discontinuities in the object space.

where h′(x) = dh(x)/dx = tan δ is the local dip of the radar
image. The true geologic dip ∆ is given by

dZ

dX
= tan ∆ =

dZ/dx

dX/dx
=

h′(x)√
1 − h′(x)2

. (15)

It follows from simple trigonometry that

tan δ = sin∆ (16)

which is the well-known Migrator’s equation. Note that the
radar dip δ is always less steep than the true dip ∆. Whereas
∆ can cover the full range from −π/2 to +π/2, the radar dip is
limited (|δ| ≤ π/4).

Equations (8) and (14) constitute the kinematic imaging
equations, which give the connection between the shape of
an event in the radar and geologic domains. For example,
horizontal interfaces remain horizontal in both image space and
object space. Dipping beds are partially flattened on the radar
section (16). Anticlines are always broader on the radar section
than in reality (although the apex occurs at the same position in
both domains), whereas synclines always appear narrower (see
Section V-B). Discontinuities in object space are “healed” by
diffractions and appear as continuous structures on the radar
image. The diffraction effect is illustrated schematically for
both a vertical step (fault) and a mound structure in Fig. 6.

IV. SPECTRAL REPRESENTATION OF

DYNAMICAL IMAGING

Our starting point for coincident Tx–Rx georadar modeling
is the exploding reflector model in which all points on each
interface are assumed to “fire” in synchronism at zero time. The
wavefield then evolves upward toward the surface. We convert
from two-way time t to pseudo depth z by multiplying by half
the velocity V/2. This exploding reflector model has proven
particularly useful in CDP seismic imaging [11].

Let u(X,Z, 0) be the wavefield (or representation of the
geological reflectors) at zero time. This wavefield is the con-
volution of the source waveform g(z) with the object space
v(x,Z, z). The wavefield u(x,Z, z) at subsequent times and
positions can be obtained as the solution of an initial value
problem (IVP), i.e.,

∂2u

∂z2
=

∂2u

∂x2
+

∂2u

∂Z2
. (17)

The radar image is obtained by setting Z = 0 to yield
u(x, 0, z), which is the wavefield at the ground surface.

The solution of (17) is best accomplished in the spectral
domain. We first take the 2-D Fourier transform of the geology
or object space v(X,Z, 0), i.e.,

V (k, ω, 0) =

∞∫
−∞

∞∫
−∞

v(X,Z, 0) · exp (−i(kX − ωZ)) dX dZ

(18)

with

U(k, ω, 0) = V (k, ω, 0)G(ω)

where G(ω) is the source spectrum.
The 2-D spectrum at depth z is easily obtained by taking the

2-D Fourier transform of (17) and solving the resulting simple
ordinary differential equation, i.e.,

U(k, ω, z) = U(k, ω, 0) · exp(−i
√

ω2 + k2z). (19)

The full wavefield is then obtained by taking the 2-D inverse
Fourier transform of U(k, ω, z), i.e.,

u(x,Z, z) =
1

4π2

∞∫
−∞

∞∫
−∞

U(k, ω, 0)

· exp
(
i(kx − ωZ −

√
ω2 + k2z)

)
dω dk. (20)

Finally, the image is given by setting Z = 0, i.e.,

u(x, 0, z) =
1

4π2

∞∫
−∞

∞∫
−∞

U(k, ω, 0)

· exp
(
i(kx −

√
ω2 + k2z)

)
dω dk. (21)
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This equation allows us to model the radar response for
arbitrary geology, expressed in terms of the 2-D spatial Fourier
transform of the object.

A. Stationary Phase Image of a Continuous Reflector

We will now apply (21) to compute the image of a continuous
reflector Z = F (X) for which the reflectivity S(X) varies
along its length. We write the geology in the form

v(X,Z, 0) = S(X)δ (Z − F (X)) (22)

where δ is the Dirac delta function. The 2-D transform re-
duces to

V (k, ω, 0) =

∞∫
−∞

S(X) · exp (−i (kX − ωF (X))) dX. (23)

Changing variables from k to p through the relationship

k = pω (24)

we obtain by substituting into (21)

u(x, 0, z) = g(z) ∗ 1
4π2

∞∫
−∞

|ω|dω

·
∞∫

−∞

∞∫
−∞

S(X) exp (−iωφ(p,X)) dp dX (25)

where ∗ denotes convolution with the source signal g(z), and
the phase factor φ is given by

φ(p,X) = −p(x − X) +
√

1 + p2z − F (X). (26)

To proceed, we have to evaluate the infinite integrals. We
will use the method of multidimensional stationary phase to do
so [17]–[19]. This is an asymptotic solution, which recognizes
that the integrand of (25) is highly oscillatory; thus, most of
the contribution to the integral (constructive summation) comes
from positions of stationary phase. These are points at which
the derivative of φ is zero.

The solution is [20]

u(x, 0, z) = g(z) ∗ |ξ|−1/2S(X)δ̂ (φ(p,X)) (27)

where

δ̂(z) = δ(z), if ξ > 0

= δH(z), if ξ < 0

and the subscript H denotes Hilbert transformation. The ampli-
tude factor ξ is related to the radius of curvature ρ through the
relations

ξ =
[
1 +

z

ρ

]
(28)

ρ =

(
1 + F ′(X)2

)3/2

F ′′(X)
. (29)

Now (p,X) is a stationary point of φ(p,X) if

∂φ

∂p
= −(x − X) +

pz√
1 + p2

= 0

∂φ

∂X
= p − F ′(X) = 0. (30)

At φ = 0, we have

x =X + F (X)F ′(X)

z =F (X)
√

1 + F ′(X)2 (31)

or in Cartesian form, z = h(x). This is the same result as we
obtained previously from simple kinematic considerations (8).
Instead of the parametric form, we can write (31) in Cartesian
form as z = h(x). Thus, φ = 0 along z = h(x) and

δ(φ) = φ−1
z δ (z − h(x))

with

φz =
dφ

dz
=

√
1 + F ′(X)2. (32)

Thus, the stationary phase image of a continuous reflector is
given by

u(x, 0, z) =
S(X)√

1 + F ′(X)2
|ξ|−1/2ĝ (z − h(x)) . (33)

Consider the special case of a planar dipping reflector, viz.,
Z = F (X) = AX + B, having constant reflectivity S(X)=1.
It follows that F ′(X) = A (a constant), F ′′(X) = 0, and
ρ = ∞, giving ξ = 1; thus, the radar image (31), (33) is also
a plane dipping event z = ax + b where

a = A/(1 + A2)1/2 b = B/(1 + A2)1/2

of uniform amplitude 1/(1 + A2)1/2 and uniform pulse
shape g(z).

A semicircular basinal reflector, Z2 + (X − R)2 = R2, is
also of interest. It leads to the parametric equation (31) for
the image of x = R, z = R, which is a single point in space.
Reflections from all points on the scattering surface come to a
focus in the radargram. The amplitude factor in (33) reduces to

1√
2
· S(X) · R
(R2 − (X − R)2)1/2

.

B. Stationary Phase Image of a Point Scatterer

We now consider a single point scatterer at position
(X0, Z0). The geology is given by

v(X,Z, 0) = S0δ(X − X0)δ(Z − Z0) (34)

with corresponding 2-D Fourier transform

V (k, ω, 0) = S0 exp (−i(kX0 − ωZ0)) .
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Substituting into (21), we obtain for the radar image

u(x, 0, z) = g(z) ∗
∞∫

−∞
S0|ω|dω

∞∫
−∞

exp (iωφ(p)) dp. (35)

The one-dimensional (1-D) stationary phase solution of this
integral is

u(x, 0, z) =
1√
2πz

f (z − H(x)) (36)

where

H(x) =
[
(x − X0)2 + Z2

0

]1/2
(37)

f(z) =D1/2(z) ∗ g(z). (38)

The half-differentiating filter D1/2(z), which is convolved
with the source pulse g(z), has a Fourier transform (iω)1/2.
Therefore, the received scattered radar pulse is out of phase by
π/4 at all frequencies with respect to the incident transmitted
pulse and has its spectral amplitudes boosted as the square
root of the frequency. The amplitude also falls off as the
inverse square root of distance, in accordance with cylindrical
spreading in the 2-D situation.

C. Stationary Phase Image of a Terminating Reflector

We next consider a terminating reflector of finite length,
which extends from X = X0 to X = X1. The reflector has the
functional form Z = F (X) and reflectivity S(X), which varies
along its length. The spectral integral (25) now becomes

u(x, 0, z) = g(z) ∗ 1
4π2

∞∫
−∞

|ω|dω

·
∞∫

−∞

X1∫
X0

S(X) exp (−iωφ(p,X)) dX dp. (39)

We have already dealt with the reflection part of the response
between the two endpoints. In addition, there are diffractions to
consider.

The stationary phase image from the endpoint X = X0 is

u(x, 0, z) = +
√

z

π

1
K

f (z − h(x)) (40)

where

h(x) =
[
(x − X0)2 + Z2

0

]1/2
(41)

K =x − X0 − Z0Z
′
0 (42)

f(z) =D−1/2(z) ∗ g(z). (43)

Here, Z0 and Z ′
0 are the depth and gradient of the interface,

respectively, at point X0. Equation (41) shows that the moveout
pattern of the edge diffraction in x−z space is hyperbolic with
the apex at the point (X0, Z0). The transmitted pulse g(z) gets
convolved with a negative half-differentiating filter D1/2(z)

TABLE I
FORM OF THE PULSE FOR GEORADAR MODELING

having Fourier transform (iω)1/2. Thus, there is a −π/4 phase
shift and high-frequency enhancement of the diffracted signal.

There is also an edge diffraction from the other end of the
reflector X = X1. To obtain its form on the radar image, we
simply replace the X0, Z0, and Z ′

0 terms in (41) and (42) with
the values for X1, Z1, and Z ′

1.

D. Changes in Pulse Shape

In the previous sections, we derived the radar images for
a continuous reflector, a point scatterer, and a terminating
reflector. We saw how the amplitude and moveout patterns
varied in each case and were dependent on the reflector shape
and curvature and the diffractor position. For a gently curv-
ing reflector, the received signal has the same shape as the
transmitted pulse g(z). However, it gets filtered or modified in
all other cases, as summarized in Table I. For strongly curved
reflectors, which result in triplications and ray path crossings,
the signal along the reverse branch is the Hilbert transform of
the original signal. In other words, there is a phase change of
π/2. At the caustic points, the original pulse gets convolved
with a one-sixth differentiating filter. For a point scatterer, the
pulse is convolved with a half-differentiating filter, whereas for
an edge diffraction, the convolution is with a negative half-
differentiating filter. The latter two result in phase changes of
+π/4 and −π/4, respectively.

V. SPECTRAL MIGRATION

The migration problem is to start with the radar image
u(x, 0, z) and compute (or reconstruct) the object space or
geology that produced it. We solve this boundary value prob-
lem (BVP) by running the clock backward or by downward
continuing the observations to find the wavefield at all points
in the medium at arbitrary time (or radar depth). We obtain this
wavefield u(X,Z, z) by solving the equation

∂2u

∂Z2
=

∂2u

∂z2
− ∂2u

∂X2
. (44)

The final solution is obtained by setting z = 0 to get u(X,Z, 0).
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Once again, (43) can be readily solved by taking Fourier
transforms. The 2-D transform of the image is simply

U(k, 0, ω) =

∞∫
−∞

∞∫
−∞

U(x, 0, z) · exp (−i(kx − ωz)) dx dz.

(45)
The solution of (44) in the transform domain is

U(k, Z, ω) = U(k, 0, ω) · exp(−i
√

ω2 − k2Z). (46)

By taking the 2-D-inverse transform of this expression and
setting z = 0, we obtain the migrated section as

u(X,Z, 0) =
1

4π2

∞∫
−∞

∞∫
−∞

U(k, 0, ω)

· exp
(
i(kX −

√
ω2 − k2Z)

)
dω dk. (47)

This solution can be contrasted with Kirchhoff migration [10]
in the spatial domain where

u(X,Z, 0) =
1

4π2

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

u(x, 0, z)

· exp
(

i

[
k(X − x)

−
√

ω2 − k2Z + ωz

])
dω dk dx dz

=

∞∫
−∞

∞∫
−∞

u(x, 0, z)
∂

∂Z

[−1
π

H(z − r)√
z2 − r2

]
dx dz (48)

where

r2 = Z2 + (X − x)2 (49)

and H is the Heaviside function. The curve z = r is the
diffraction hyperbola.

A. Stationary Phase Migration of Radar Section z = h(x)

The integral of (47) can be approximated using the method
of stationary phase, just as we did for the solving the forward
problem. Consider an event in the image space that has the
functional form z = h(x). Let the amplitude vary with the
horizontal coordinate according to T (x), and let the wavelet
be of the form g(z). We can then represent this event by the
expression

u(x, 0, z) = T (x)δ (z − h(x)) ∗ g(z). (50)

The stationary phase solution is

u(X,Z, 0) = |ξ|−1/2T (x)ĝ [φ(p, x)] (51)

where

ξ =
[
1 − Z

σ

]
σ =

[
(1 − h′2)3/2

h′′(x)

]
. (52)

The point (p, x) is a stationary point if

φ(p, x) = −p(X − x) +
√

1 − p2Z − h(x). (53)

Near φ = 0, we have

X =x − h(x)h′(x)

Z =h(x)
√

1 + h′(x)2. (54)

These parametric equations for the object space correspond to
the Cartesian equation Z = F (X).

Thus, finally, we obtain the stationary phase solution to the
migration problem as

u(X,Z, 0) ≈ T (x)|ξ|−1/2φZ ĝ [(Z − F (X)] (55)

where

φZ =
dφ

dZ
=

√
1 − h′(x)2 < 1 (56)

and the hat on g has the same meaning as in (27), viz., take the
Hilbert transform if ξ is negative.

B. Numerical Example

We now apply the theory to a simple numerical example. The
radar section (image) shown in Fig. 7 comprises 80 traces at
1-m spacing. It shows a curved reflector having both an an-
ticlinal segment and a synclinal segment. The pulse g(t) is a
single cycle sinusoid of frequency 150 MHz (wavelength 1 m in
a medium of dielectric constant 4), having constant amplitude
across the section, i.e., T (x) = 1. For each value of x, we can
estimate h(x) and the local gradient h′(x) numerically. Thus,
we can calculate the coordinates in object space (X,Z) of
each point (x, z). The “reflectivity” at this point is given by
the composite amplitude factor in (55). This depends on the
numerical values for T (x), ξ(x), and φz(x). The latter is solely
a function of h′(x), whereas ξ(x) depends on the function h(x)
as well as its first and second derivatives. The derivatives h′(x)
and h′′(x) can be readily obtained through the use of spline
functions or some other numerical differentiating procedure.
The resulting migrated section (geological model) is shown as
the dotted line in Fig. 7, superimposed on the radar image.
Each dot can be associated with a particular trace (wavelet) in
the image.

The numbers at spot locations indicate the deduced reflec-
tivity values of the interface, which vary smoothly across
the section. Note how reflected pulses from lower reflectivity
portions of the interface (e.g., at the syncline) have equal
amplitude to those pulses reflected from higher reflectivity
portions of the interface (at the top of the anticline). This is
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Fig. 7. Numerical example with a curved reflector having both an anticlinal segment and a synclinal segment. The radar section is composed of 80 traces
(x axis). The resulting migrated section (geological model) is shown as the dotted line (X axis). The deduced reflectivity values are shown at spot locations along
the profile.

a clear demonstration of how rays get focused or defocused
by bed curvature. Convergence (increased amplitude) occurs
at synclines, whereas divergence (reduced amplitude) occurs at
anticlines. In this synthetic example, all wavelets in the image
were assigned equal amplitude; thus, the reflectivity had to vary
to accommodate this. For clarity of presentation, we have drawn
the interface as a sharp line (series of dots) rather than a series
of migrated wavelets. In reality, the resolution is limited by
the bandwidth of the pulse g(z) and level of noise. For this
particular situation, the pulse shape does not change because
the amplitude factor ξ remains positive. Note how the anticline
is narrowed in its width and the syncline is broadened on the
migrated section, although the peak and trough remain in the
same spatial position.

The accuracy of this procedure depends on a number of
factors, principally the level of data noise and how well the
pulse onset time, amplitude, and shape can be extracted from
each trace of the radar section. Furthermore, it should be ap-
preciated that the multidimensional stationary phase technique
for evaluating the integrals is an approximate procedure. It
is strictly the high-frequency solution; thus, it is implicit in
the analysis that the GPR wavelength is small relative to the
reflector depth and lateral dimension of the structure being
imaged.

VI. CONCLUSION

Using the method of stationary phase, we have evaluated
the infinite spectral integrals to obtain explicit expressions for
the zero-offset georadar response of an arbitrary shaped 2-D
reflector of variable reflectivity, a point scatterer, and a termi-
nating reflector, as well the migration of arbitrary events on
the GPR section. The resulting equations combine the kine-
matic properties of the image (geometry of transmitters and
receivers and structure) with the dynamic (amplitude and phase)
information. The theoretical formulation, although restricted to
constant average wavespeed models, shows the influence of
reflector gradient and curvature on the radar signal. For multiple
reflectors and a model in which velocity varies with depth, one
would have to use a different average wavespeed above each
reflector. The migration equation accommodates amplitude and

phase fluctuations along the radar section, including the effects
of cusps and caustics. It is suitable as a first approximation
(section migration) to imaging noisy data to obtain the shape
and form of a reflector where standard wavefield migration
techniques may fail.
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