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Name Agreement in Picture Naming: An ERP study 

 

 

Abstract 

Name agreement is the extent to which different people agree on a name for a 

particular picture. Previous studies have found that it takes longer to name low name 

agreement pictures than high name agreement pictures. To examine the effect of name 

agreement in the online process of picture naming, we compared event-related 

potentials (ERPs) recorded whilst 19 healthy, native English speakers silently named 

pictures which had either high or low name agreement. A series of ERP components 

was examined: P1 approximately 120ms from picture onset, N1 around 170ms, P2 

around 220ms, N2 around 290ms, and P3 around 400ms. Additionally, a late time 

window from 800 to 900ms was considered. Name agreement had an early effect, 

starting at P1 and possibly resulting from uncertainty of picture identity, and 

continuing into N2, possibly resulting from alternative names for pictures. These 

results support the idea that name agreement affects two consecutive processes: first, 

object recognition, and second, lexical selection and/or phonological encoding. 

 



 

 

Name Agreement in Picture Naming: An ERP study 

Introduction 

A picture of an object may be a good (i.e., faithful) depiction of that object, or it may 

not. The extent to which different people agree that a given picture depicts an object 

with a particular name is termed that picture‘s name agreement. Name agreement has 

robust behavioral effects in cognitive tasks. Naming a picture that has only one name is 

faster and more accurate than naming a picture that has multiple names. As 

summarized by Alario et al. (Alario, Ferrand, Laganaro, New, Frauenfelder, & Segui, 

2004), name agreement is a significant predictor of picture naming latency for: 

American English (Snodgrass & Yuditsky, 1996), Welsh (Barry, Morrison, & Ellis, 

1997), British English (Ellis & Morrison, 1998), French (Bonin, Chalard, Meot, & 

Fayol, 2002; Bonin, Peereman, Malardier, Meot, & Chalard, 2003), Spanish (Cuetos, 

Ellis, & Alvarez, 1999) and Italian (Dell'Acqua, Lotto, & Job, 2000).  

Name agreement appears to have its effect on naming latency independent from 

frequency or age of acquisition (AoA) effects (Lachman, Shaffer, & Hennrikus, 1974; 

Vitkovitch & Tyrell, 1995). Alario et al. (2004) reported that name agreement was a 

stronger predictor of picture naming latency than eight other image attributes, namely: 

visual complexity, image agreement, imageability, AoA, word frequency, concept 

familiarity, number of syllables and number of phonemes. 

The present study is a preliminary investigation of event-related potential 

(‗ERP‘) phenomena associated with naming of pictures with different levels of name 

agreement. In future, such studies may elucidate processes involved in lexical access. 

Our present and more limited goal is to describe ERP effects of name agreement, in the 



 

 

context of neural models of word production.  

Vitkovitch and Tyrell (1995) identified three different types of ―name 

disagreement‖: 

(1) The use of multiple names, for example, in Figure 1a, the object depicted is 

a jumper and also called ‗sweater‘, ‗pullover‘, ‗jersey‘, ‗sweatshirt‘. 

(2) The use of appropriate abbreviations (or elaborations), for example, in 

Figure 1b, an acceptable abbreviation for telephone is ‗phone‘. 

(3) Incorrect names. In Figure 1c, the picture is celery, but some people 

misidentify it, giving incorrect names such as ‗rhubarb‘, ‗Chinese leaves‘, 

‗cabbage‘, or ‗marrow‘.  

INSERT FIGURE 1 AROUND HERE 

In their first experiment, Vitkovitch and Tyrrell (1995) compared the naming 

latencies for the three kinds of low name agreement images with corresponding high 

name agreement images (matched for frequency of the object‘s name in print, word 

length, complexity, familiarity, image agreement, and AoA). Low name agreement due 

to multiple or incorrect names (Figure 1a and 1c) increased naming latency, while 

correct abbreviations or elaborations did not (Figure 1b). An object decision task was 

conducted to see if the two kinds of disagreement which had been found to delay 

object naming took effect at the same stage of processing. Participants had to decide 

whether a picture represented a real object or not. In such a task, it is not necessary to 

retrieve the lexical representation of the name of a picture, so semantic
1
 processing or 

name selection are not required, and presumably therefore any increase in latency 

suggests an effect of name agreement occurring before semantic processing. Object 

decision times for pictures with low name agreement due to multiple names did not 



 

 

significantly differ from those for control pictures, whereas object decision times for 

pictures with low name agreement due to incorrect names were longer than those for 

control pictures. Vitkovitch and Tyrrell concluded that the naming delay due to 

incorrect names (picture uncertainty) had its locus at the stage of object recognition. 

Further, they argued that the increased latency to name pictures with multiple names 

happens only at the name retrieval stage. They identified two possible representational 

structures which might lead to such a delay: (1) a single conceptual representation 

linked to multiple downstream semantic pathways, or (2) distinct conceptual 

representations underlying each alternative name.  

Studies of predictors of picture naming have generally been conducted within 

the framework of stage models (e.g., Bonin et al., 2002; Glaser, 1992; Humphreys, 

Riddoch, & Quinlan, 1988; Levelt, 1989, 1991; Levelt, Roelofs, & Meyer, 1999). One 

influential stage model is the LRM model, named after Levelt, Roelofs and Meyer 

(1999). In this model, the process of picture naming involves four sequential stages: (1) 

object recognition (to access the stored structural representation from the visual 

representation of an object); (2) concept activation (to activate concepts related to the 

object); (3) lexicalization (to retrieve the name of the object); (4) articulation. 

Lexicalization in this model is further assumed to proceed in two steps: selection of the 

lemma (word meaning and relation to any other words in a potential utterance) and 

phonological encoding (e.g., Dell, 1986; Kempen & Huijberts, 1983; Levelt, 1989, 

1991). To parameterize the stages of word production, Indefrey and Levelt (2004) 

conducted a meta-analysis of 82 studies of word production and concluded that, in 

picture naming, conceptually driven lexical selection takes place between 175ms and 

250ms post stimulus-onset; lexical phonological code retrieval between 250ms and 

330ms post stimulus-onset; and syllabification between 330ms and 455ms post 



 

 

stimulus-onset. 

However, it is by no means clear that cognitive processes in picture naming 

take place sequentially. There is debate about the extent to which one process must be 

complete before the next can begin. Although serial computation is possible (see e.g., 

Alario et al., 2004, Figure 1), processes might alternatively be conducted in a cascade, 

with partially-computed output from one step forming the input to the next 

(Humphreys et al., 1988). In principle, name agreement effects provide a way to study 

these issues in detail, because in low name agreement words, a single concept may 

activate multiple words. An important first step then is to establish whether, and at 

what point(s) in time, the brain responds differently to high and low name agreement 

images. In the experimental work described in this paper we use event-related potential 

(‗ERP‘) methods to investigate the time point(s) at which name agreement has its 

effect(s). 

Consistent with Vitkovitch and Tyrell‘s (1995) study, other researchers have 

differentiated between effects of name agreement during object recognition and lexical 

processing stages. Alario et al. (2004) distinguished between ‗image agreement‘ and 

‗name agreement‘ effects. Image agreement is the extent to which a picture matches 

images generated by participants in response to that picture‘s name (i.e., the extent to 

which a picture matches people‘s stored canonical representations of that item). Alario 

et al. proposed that image agreement has its effect in the visual recognition system, 

while true name agreement effects occur between the conceptual stage and the lexical 

stage: Low name agreement pictures evoke more candidates for the name of the 

depicted object than do high name agreement pictures; and therefore, compared with 

high name agreement pictures, it takes longer to eliminate competitors and select one 



 

 

specific name for such low name agreement pictures. Such reasoning is in line with 

Johnson‘s (1992) proposition that name agreement effects arise after object 

identification, again on the basis that low name agreement increases naming time, but 

leaves object-decision response times unaffected. Johnson, Paivio, and Clark suggested 

that name agreement effects occur ―[during] name retrieval, response generation, or 

both‖ (Johnson, Paivio, & Clark, 1996, p119). Bonin et al. (2002) also agreed with 

Vitkovitch and Tyrell (1995) that there are two main sources of name disagreement, 

namely uncertainty of pictures and alternative names of depicted objects, and propose 

that in the case of picture uncertainty, name agreement effects occur while accessing 

stored structural knowledge, whereas if a picture has more than one alternative name, 

name agreement effects occur after conceptual access. 

ERP and MEG methods have been used with success in recent years to uncover 

cognitive processes involved in picture naming (e.g., Abdel Rahman, Sommer, & 

Schweinberger, 2002; Eulitz, Hauk, & Cohen, 2000; Greenham, Stelmack, & Campbell, 

2000; Koester & Schiller, 2008; Laganaro, Morand, & Schnider, 2009; Maess, 

Friederici, Damian, Meyer, & Levelt, 2002; Strijkers, Costa, & Thierry, 2009). The 

sequence of cognitive processes in picture naming have been addressed in some ERP 

studies using lateralized readiness potential (‗LRP‘) methods in two-choice go/no-go 

tasks (Rodriguez-Fornells, Schmitt, Kutas, & Munte, 2002; Schmitt, Schiltz, Zaake, 

Kutas, & Munte, 2001; van Turennout, Hagoort, & Brown, 1997). The LRP is a slow, 

negative-going potential developing in advance of the execution of a voluntary 

movement (see Jescheniak, Schriefers, Garrett, & Friederici, 2002, pp. 591-2, for a 

brief description and evaluation of the LRP technique in this context). By manipulation 

of go/no-go tasks requiring semantic or phonological processing, it has been reported 

that semantic processing occurs about 120 ms earlier than phonological processing 



 

 

(van Turennout et al., 1997) and syntactic processing about 40 ms earlier than 

phonological processing (van Turennout, Hagoort, & Brown, 1998). Schmitt et al.‘s 

(2001) findings are also consistent with this estimate of semantic processing beginning 

approximately 80 ms before syntactic processing.  

However, ERP paradigms using the lateralized readiness response measure are 

potentially problematic because the cognitive processes required to perform the task 

(explicit monitoring of phonemes, and explicit categorization judgments) may be very 

different from the (fast, implicit) processes invoked in ‗pure‘ picture naming, or in 

word production more generally. To address this issue, more recent ERP studies have 

employed a range of techniques. One such involved auditorily presented target words 

in a delayed picture naming paradigm (for example, Jescheniak, Hahne, & Schriefers, 

2003; Jescheniak et al., 2002) to investigate the relative order of activation of semantic 

and phonological information during speech planning. Jescheniak et al. (2002)  

recorded ERPs to auditorily-presented words which were either semantically or 

phonologically related to the name of priming images presented immediately 

beforehand. Participants performed a linguistic task (delayed naming). Jescheniak et al. 

found an early (250-400ms) effect of phonological relatedness, but not semantic 

relatedness, and a late (400-800ms) effect for both kinds of relatedness. In contrast, 

when participants were performing a nonlinguistic task (size judgment), there were no 

early effects, and only a late effect of semantic relatedness. It therefore appears that 

both phonological and semantic codes are activated by a linguistic task, but only 

semantic codes by a nonlinguistic one, suggesting that in word production tasks evoked 

by picture naming, phonological codes are activated downstream of—or at least, later 

than—semantic ones. 



 

 

Another ERP paradigm which uses picture naming successfully has involved 

the use of ‗covert‘, or silent, naming (e.g., Greenham et al., 2000). In the present study 

we also applied a covert naming paradigm to investigate name agreement effects in the 

time-course of picture naming. We used two groups of pictures, each having differing 

levels of name agreement (high vs. low), and matched on other picture attributes, 

namely: objective AoA, rated frequency, familiarity, visual complexity, picture-name 

agreement, number of phonemes, and number of syllables (Vitkovitch & Tyrell, 1995). 

We recorded ERPs while participants named pictures covertly and compared ERP for 

pictures with high name agreement and ERPs for pictures with low name agreement.  

Other ERP studies have used an immediate overt picture naming method, by 

analyzing artifact-free ERPs before overt naming (Koester & Schiller, 2008; Strijkers 

et al., 2009). The difference between overt (spoken) naming and covert (silent) naming 

has been directly investigated using ERP methods, by Eulitz et al. (2000). ERPs were 

recorded when participants passively viewed pictures, and were compared with ERPs 

taken when participants viewed the same pictures and either overtly or covertly named 

them. It was concluded that up to 400ms post-stimulus onset, there is little difference 

between these two methods of presentation, in terms of the ERP components observed 

during picture naming (p. 2096). 

What features might we expect to observe in our ERP? Greenham, Stelmack, 

and Campbell (2000) studied ERP responses in a picture naming paradigm in which 

participants covertly named words and pictures. Words and pictures were presented 

either individually or in superimposed word-picture pairs. When pictures were 

presented individually, the averaged distribution of ERP responses included occipito-

parietal P240 and P390 components, and a frontal N450. 



 

 

To permit some exploration of the relative effects of the source of any observed 

name agreement effects, participants in our study were asked in a post-test to judge the 

source of name disagreement for each picture in the study. Our purpose was to 

establish whether, for each individual, low name agreement of a particular picture was 

caused by ‗picture uncertainty‘ or ‗alternative names‘. This allowed low name 

agreement pictures to be divided into two subgroups, by participant.  

Method 

Participants 

Twelve females and 7 males participated in return for course credit. Their mean age 

was 20.4 years (SD=3.52, 18-33). All were right-handed (by self report) native 

speakers of English, educated to at least high-school level. Another four participants‘ 

data were discarded because over 20% trials in a given condition (10 out of 50 trials) 

were of poor quality. 

Stimuli 

Norms for name agreement, as well as for other attributes for the pictures and picture 

names were obtained from Morrison, Chappell and Ellis‘s database (1997). Images 

were selected to be of high or low name agreement whilst matched on other attributes 

(see Table 1). Stimuli were selected to yield 50 low name agreement items, 50 high 

name agreement items, eight practice trials and 30 fillers (see Appendix for a list of 

words used in the experiment). Corresponding pictures were chosen, 114 from original 

Snodgrass and Vanderwart‘s pictures (1980), eight from Snodgrass and Vanderwart 

pictures redrawn by Morrison et al. (1997) and 16 from additional drawn pictures by 

Morrison et al. (1997). Snodgrass and Vanderwart‘s original pictures (1980) were 

digitally scanned into TIF format documents and processed into clear line-drawings 



 

 

with high contrast. Morrison et al.‘s additional pictures were downloaded from 

Morrison‘s online source, http://www.cf.ac.uk/uwcc/psych/morrison/ (no longer 

available at this address). All pictures were saved as bitmaps (see Figure 1 for 

examples). On-screen size of all pictures was smaller than 3cm horizontally and 3.5cm 

vertically. The DPI (dots per inch) value for all pictures was 72 pixels/inch. 

INSERT TABLE 1 ABOUT HERE 

From the original database (Morrison et al., 1997), the 50 low name agreement 

(‗LNA‘) items had name agreement percentages between 50% and 87% (Mean=76.0%, 

SD= 10.2%). The 50 high name agreement (‗HNA‘) items all had 100% name 

agreement. Independent t tests revealed that they differed significantly in name 

agreement, but not in other attributes (see Table 1). We additionally checked whether 

the three sets of images (LNA, HNA, fillers) differed from each other in terms of low 

level picture attributes. Using data from a previous study by Laws and Gale (2002) we 

established two intrinsic measures for each image: (1) the proportion of black pixels, 

and (2) the internal complexity of each image—the latter measure Laws and Gale 

(2002) found to vary systematically for different categories of the Snodgrass pictures. 

Data were available for the majority of our pictures (LNA 42/50, HNA 37/50, fillers 

24/30). Using MANOVA to compare the two image attributes simultaneously across 

the three picture groups, we found no difference between the image sets, Wilk‘s 

Lambda F(4, 198) = 1.06, p = .378. We concluded that the low level attributes of the 

image sets did not differ systematically. 

Eight practice trials were devised, four with low name agreement images and 

four with high name agreement images. A further 30 filler (catch) trials contained 

images in which the names and pictures presented did not match.  

http://www.cf.ac.uk/uwcc/psych/morrison/


 

 

Procedure 

ERP experiment 

Stimuli were presented using the E-prime package (version 1.2, Psychology Software 

Tools, Inc., Pittsburgh, PA) on a 17‖ CRT screen. The visual angles were moderated to 

be less than 7
o
 horizontally and 8

o
 vertically (Holcomb & McPherson, 1994). 

Participants sat in front of the monitor and read the instructions, then pressed the space 

bar to initiate each trial. A practice session with eight trials was followed by an 

experimental session. 

Each trial commenced with the presentation of a small black fixation cross in 

the center of the monitor (duration 1500ms). Subsequently, a picture was shown on the 

screen for 1000 ms and participants were asked to name the picture covertly (i.e. 

silently, to themselves) as soon as it was presented. After picture offset, the most 

common name for the picture was presented visually, with the question ―Same name?‖ 

underneath, which, as the participants had previously been informed, prompted them to 

decide whether the name on the screen exactly matched the word in their heads. 

Participants responded ―Yes‖ with their left hand or ―No‖ with their right hand by 

keypress. Participants were asked not to blink their eyes or to move any part of their 

body during the time the pictures were on the screen.  

All trials (50 HNA items, 50 LNA items and 30 fillers) were presented once in 

random order. For high and low name agreement items, it was highly likely that the 

expected name shown on the screen would be the same as that the participants had 

named covertly, so most answers would be ―Yes‖. For this reason, filler (catch) trials 

were introduced, so that participants had to think before responding.  

Participants pressed the space bar to start each trial and they could take a break 



 

 

whenever necessary by not pressing the space bar.  The whole recording session took 

approximately 10 minutes. 

EEG recording 

Electrophysiological (EEG) signals were collected from the scalp with an Electrical 

Geodesics GSN 200 sensor net system with 128 channels (Electrical Geodesics, Inc., 

Eugene, OR), amplified by the EGI NetAmps 200 high impedance amplifier with a 

bandpass of 0.1 – 100 Hz, and digitized at a sample rate of 250 Hz. The threshold for 

impedance was set at 50 kΩ and all sites were recorded with a vertex reference. 

Electrophysiological signals were filtered with a 40 Hz low-pass filter. In order 

to correct the polar average reference effect (PARE), a PARE-corrected reference was 

used (Junghofer, Elbert, Tucker, & Braun, 1999), which was computed from the 

average of the entire surface of the scalp. Subsequently, individual trials were labeled 

as bad because of eye blinks or movements (EOG was recorded from 6 electrodes: 8, 

26, 125, 126, 127, 128. An eye-blink or eye-movement is identified when amplitude is 

over 70μV in any of the six electrodes.) or because of more than 10 bad channels 

(defined as having an average amplitude over 200μV or surpassing a differential 

threshold of over 100μV, compared to a 10-sample running average). In the final data 

analysis, 95.4% of trials were good in the HNA group and 95.2% in the LNA group 

(good trials rates ranged from 90% to 100%). Bad channels were replaced by the 

interpolation of good channels in proximity to the bad ones according to the spherical 

spline algorithm (Srinivasan, Nunez, Tucker, Silberstein, & Cadusch, 1996). After bad 

channel replacement, all segments for each condition of each participant were averaged 

individually. Finally, ERPs were baseline corrected using a 200 ms pre-stimulus 

interval. The epoch length was 1200ms. 



 

 

Post test for source of name disagreement 

The purpose of the post test, which took place immediately after ERP recording, was to 

classify images according to the source of name disagreement. Accordingly, only low 

name agreement pictures were used. Participants were instructed to press a key to 

indicate the relationship between a picture and a written name. In each trial, a low 

name agreement picture was presented with its name (according to Morrison et al., 

1997), and two choices were given: (1) ―This is ONE OF the names of the object‖ (i.e., 

the disagreement source is alternative names for the object depicted (AN subgroup); or 

(2) ―The picture COULD BE <the object>, or the picture COULD show something 

else‖ (i.e., the disagreement source is the uncertainty of the picture, the PU subgroup). 

Participants were given four practice trials, followed by the experimental session. 

Identification of ERP Components 

Previous studies have shown that cognitive processes which might be affected by name 

agreement can be localized to several brain regions (e.g., Levelt, Praamstra, Meyer, 

Helenius, & Salmelin, 1998). However, we chose not select a small and spatially 

specific number of electrodes for analysis because EEG has a relatively low spatial 

resolution. Instead, we chose to focus on the temporal dimension and settled for 

grouping sets of electrodes into six broad clusters, distributed across the scalp. The 

bilateral clusters were labeled ―frontal‖, ―parietal‖, and ―occipital‖, corresponding to 

their approximate location on the scalp (see Figure 2). Note that we do not mean to 

claim that activity observed in a particular cluster necessarily reflects a generator 

source directly beneath, or even in the brain region with the same name (e.g., parietal 

cortex). 

ERPs to high and low name agreement pictures, averaged over each cluster, are 

shown in Figure 3. As can be seen in Figure 3, in parietal and occipital clusters, 



 

 

following picture onset ERP waveforms reached a positive peak around 120ms (P1), 

followed by a negative peak around 170ms (N1). After N1, ERP waveforms quickly 

went positive, peaking around 220ms (P2), followed by a second small negative peak 

around 290ms (N2). After N2, ERPs in occipital clusters showed a P3 peaking at 

around 400ms. This P3 was also discernable in parietal clusters, but the duration was 

longer and the peak was less distinct than that in occipital cluster, although mean 

amplitude across the time window was higher in the former. In frontal clusters, ERP 

waveforms were reversed from those seen in parietal and occipital clusters, with peaks 

with opposite polarity occurring at approximately the same time points as those in 

parietal and occipital clusters. These components seem compatible with those observed 

by Greenham et al (2000): Peaks corresponding to our P1, P2 and N2 are also present 

in the Greenham data, with very similar latencies to those observed in the present study. 

Peaks of these identified ERP components are also well in line with the time course of 

picture naming described by Levelt and colleagues (e.g., Indefrey & Levelt, 2004; 

Levelt et al., 1998; Levelt et al., 1999). 

INSERT FIGURES 2 and 3 ABOUT HERE 

Analysis of ERP Components 

For early ERP components (P1, N1 and P2), mean amplitudes for all electrodes in each 

cluster in a 50ms time window around each peak were extracted, that is, 100-150ms for 

P1, 150-200ms for N1 and 200-250ms for P2. For later ERP components (N2, P3 and 

the late time window), mean amplitudes in 100ms time windows were extracted, 

namely 250-350ms for N2, 350-450ms for P3. Finally, a window of 800-900ms was 

included to cover the late, sustained difference that was observed between HNA and 

LNA conditions. 



 

 

The analytic approach was as follows. In each time window, ERP mean 

amplitudes were compared using repeated measures analyses of variance with three 

variables: Name Agreement (high, low), Hemisphere (left, right) and Cluster (frontal, 

parietal and occipital). If this three-way ANOVA showed any reliable main effect or 

interaction involving Name Agreement (with alpha set to .05), further ANOVAs were 

carried out with fewer variables (i.e., Name Agreement and Hemisphere in three 

separate analyses for Cluster, or Name Agreement and Cluster in two separate analyses 

for Hemisphere). To check simple main effects of Name Agreement, paired t-tests 

comparing ERPs in the two Name Agreement conditions were carried out. All 

repeated-measures ANOVAs were subjected to Greenhouse-Geisser adjustment. Alpha 

values in all post-hoc comparisons arising from one-way ANOVA were adjusted by 

Bonferroni correction. 

Results and Discussion 

Behavioral data 

In all valid datasets, there were only two wrong responses in filler trials (one each from 

two participants). In high name agreement trials, the mean number of ―no‖ responses 

(i.e., that the name we provided did not match the internally produced name) was 2.37 

(SD=1.95, 0-5). In low name agreement trials, the mean number of ―no‖ responses was 

11.1 (SD=5.18, 0-20). ―No‖ responses were significantly less likely to high name 

agreement (‗HNA‘) pictures than to low name agreement (‗LNA‘) pictures, t(19) = -

9.18, p<.001. We calculated the actual name agreement for each picture in the current 

study according to participants‘ responses in the post-test. The average actual name 

agreement for HNA pictures was 95.4% (6.78%, 78.9%-100%) and for LNA pictures 

was 77.9% (19.3%, 31.6%-100%). Although the average actual name agreement for 



 

 

HNA pictures was not 100% as it had been from the Morrison et al. (1997) database, 

an independent t-test, adjusted for inequality of variance, confirmed that name 

agreement was significantly higher for HNA than LNA pictures, t(61.0)=6.05, p<.001, 

which was statistically consistent with the planned name agreement comparison. To 

avoid unbalanced numbers of pictures in the two groups and different items across 

participants, ERPs to all pictures were used in data analyses, irrespective of behavioral 

responses. 

ERP data 

P1 (100-150ms from picture onset) 

For the P1 component, the three-way ANOVA showed a significant main effect of 

Name Agreement, F (1, 18) = 6.47, p<.03, and a significant main effect of Cluster, F 

(1.18, 21.3 [2, 36]) = 12.5, p<.002, =.592. A two-way interaction between Name 

Agreement and Hemisphere was significant, F (1, 18) = 12.9, p<.003. The three-way 

interaction was also significant, Name Agreement X Hemisphere X Cluster, F (2, 36) = 

3.94, p<.04. No other significant main effects or interactions were found (ps>.09).  

INSERT FIGURE 4 ABOUT HERE 

In frontal clusters, main effects of Name Agreement and Hemisphere were both 

non-significant, ps>.05. The interaction between Name Agreement and Hemisphere 

was significant, F (1, 18) = 14.1, p<.004. In paired t-tests, ERPs to high name 

agreement pictures (-0.689μV) were more positive than ERPs to low name agreement 

pictures (-1.22μV) in the left frontal cluster, t (18) = 3.03, p<.03 (corrected for 4 

comparisons), while they did not differ in the right frontal cluster, p>.20 (corrected for 

4 comparisons). In addition, ERPs to LNA pictures were less positive in the left frontal 

(-1.22μV) cluster than in the right frontal cluster (-0.453μV), t (18) = -3.80, p<.005 



 

 

(corrected for 4 comparisons), while ERPs to HNA pictures in the left frontal cluster 

and in the right frontal cluster were not different from each other, p>.90 (corrected for 

4 comparisons). 

In parietal clusters, the main effect of Name Agreement was significant, F (1, 

18) = 4.77, p<.05, and the main effect of Hemisphere was non-significant, p>.09. The 

interaction between Name Agreement and Hemisphere was significant, F (1, 18) = 11.9, 

p<.004. In paired t-tests, ERPs to HNA pictures (1.61μV) were more positive than 

ERPs to LNA pictures (0.819μV) in the left parietal cluster, t (18) = 4.75, p<.005 

(corrected for 4 comparisons), while they did not differ in the right parietal cluster, 

p>.90 (corrected for 4 comparisons). In addition, ERPs to LNA pictures were less 

positive in the left parietal cluster (0.819μV) than in the right parietal cluster (1.66μV), 

t (18) = -3.21, p<.03 (corrected for 4 comparisons), while ERPs to HNA pictures in the 

left parietal cluster and in the right parietal cluster were not different from each other, 

p>.90 (corrected for 4 comparisons). 

In occipital clusters, main effects of Name Agreement and Hemisphere were 

both non-significant, ps>.15. The interaction between Name Agreement and 

Hemisphere was significant, F (1, 18) = 5.70, p<.03. However, in paired t-tests, ERPs 

to HNA pictures did not significantly differ from ERPs to LNA pictures in either 

occipital cluster, ps>.15 (corrected for 4 comparisons), and ERPs in the left occipital 

cluster did not differ from ERPs in the right occipital cluster, p>.90 (corrected for 4 

comparisons). 

In summary, for P1, effects of Name Agreement were confined to frontal and 

parietal clusters. Over both these areas, differences between ERPs to high and to low 

name agreement pictures were confined to the left hemisphere; and differences 



 

 

between hemispheres were confined to low name agreement pictures (see Table 2). 

N1 (150-200ms from picture onset) 

For the N1 component, the three-way ANOVA did not show any significant main 

effects or interactions, ps>.05. However, the lack of a topographical specificity of this 

component might have been caused by the use of electrode cluster averages in the 

analyses. 

P2 (200-250ms from picture onset) 

For the P2 component, the three-way ANOVA showed a significant main effect of 

Cluster, F (1.22, 22.0 [2, 36]) = 16.7, p<.001, =.612. No other main effects or 

interactions were significant, ps>.06. 

N2 (250-350ms from picture onset) 

For the N2 component, the three-way ANOVA showed three significant main effects: 

Name Agreement, F (1, 18) = 6.43, p<.03, Hemisphere, F (1, 18) = 13.7, p<.003, and 

Cluster, F (1.30, 23.5 [2, 36]) = 31.4, p<.001, =.652, respectively. Most importantly, 

mean amplitude to HNA pictures (1.19μV) was less negative than that to LNA pictures 

(0.91μV). Two two-way interactions were significant, Name Agreement X Hemisphere, 

F (1, 18) = 5.37, p<.04, and Hemisphere X Cluster, F (2, 36) =9.44, p<.002. The first of 

these interactions is depicted in Figure 5. The Name Agreement X Cluster interaction 

was non-significant. 

In frontal clusters, only the main effect of Hemisphere was significant, F (1, 18) 

= 21.9, p<.001. 

In parietal clusters, the main effect of Hemisphere was significant, F (1, 18) = 

8.57, p<.01, and the interaction between Name Agreement and Hemisphere was 



 

 

significant, F (1, 18) = 4.44, p<.05. In paired t-tests, ERPs to HNA pictures (2.51μV) 

were less negative than to LNA pictures (1.96μV) in the left parietal cluster, t (18) = 

5.01, p<.004 (corrected for 4 comparisons), while they did not differ in the right 

parietal cluster, p>.90 (corrected for 4 comparisons). In addition, ERPs to LNA 

pictures were more negative in the left parietal (1.96μV) than in the right parietal 

cluster (2.76μV), t (18) = -3.29, p<.03 (corrected for 4 comparisons), while ERPs to 

HNA pictures in the left parietal cluster and in the right parietal cluster were not 

different from each other, p>.40. 

In occipital clusters, there were no significant main effects or interactions, 

ps>.07. 

In summary, for N2, effects of Name Agreement were confined to parietal 

clusters. Over this area, and similarly to P1 effects, differences between ERPs to HNA 

and to LNA pictures were confined to the left hemisphere; and differences between 

hemispheres were confined to low name agreement pictures (see Table 2).  

INSERT FIGURE 5 ABOUT HERE 

P3 (350-450ms from picture onset) 

For the P3 component, the three-way ANOVA showed a significant effect of Cluster, F 

(1.21, 21.9 [2, 36]) = 29.1, p<.001, =.607, and a significant two-way interaction 

between Hemisphere and Cluster, F (2, 36) =5.41, p<.02. No other main effects or 

interactions were significant, ps>.07. 

800-900ms after picture onset 

The three-way ANOVA showed a significant main effect of Name Agreement, F (1, 18) 

=6.94, p<.02, and a significant main effect of Cluster, F (1.50, 27.4 [2, 36]) =23.3, 

p<.001, =.760. Mean amplitude to HNA pictures (-0.32μV) was more positive than 



 

 

that to LNA pictures (-0.78μV). No other main effects or interactions were significant. 

The results of these analyses are summarized in Table 2. A topographic map 

based on ERP potentials to covert picture naming, as it unfolds following picture onset, 

is presented in Figure 6. In the topography, some positivity is shown on electrodes 

along the forehead, which can be attributed to the eyes. Importantly, this positivity was 

dissociated from our significant effects because the topography shows the positivity for 

LNA pictures was stronger than for HNA pictures, but on the electrodes included in our 

analyses the mean amplitudes of P1 and N2 for HNA pictures were more positive than 

those for LNA pictures. 

INSERT TABLE 2 ABOUT HERE 

It remains to consider the source of the name agreement effects identified in 

Table 2. Recall, after the ERP experiment, we asked participants to allocate low name 

agreement items to one of two subgroups: ‗Picture Uncertainty‘ (‗PU‘) and 

‗Alternative Names‘ (‗AN‘). Participants differed between each other in their responses 

in the post test for the source of name disagreement; that is, in the way they allocated 

items to the PU and AN subgroups. These subgroups therefore varied across 

participants, precluding their use in the foregoing analysis. The mean number of items 

allocated to the PU subgroup was 17 (SD=5.07, 6-24), compared with 33 for the AN 

subgroup (SD=5.07, 26-44). Although these numbers differ, and items in each 

subgroup necessarily vary between participants, the subgroups may nonetheless be 

relevant in preliminary investigation of the source of P1 and N2 name agreement 

difference observed in frontal and parietal clusters. Using planned comparisons, we 

compared mean P1 amplitude for each stimulus subgroup (Picture Uncertainty, ‗PU‘; 

Alternative Names, ‗AN‘) with P1 amplitude to the HNA pictures
2
. In the left frontal 



 

 

cluster, P1 amplitude to HNA pictures was more positive than to the PU subgroup (-

0.689μV vs. -1.41μV), F (1, 18) = 9.78, p<.02, but did not differ reliably from the AN 

subgroup (-1.15μV), F (1, 18) = 4.71, p>.05. In the left parietal cluster, P1 amplitude to 

HNA pictures was more positive than to the PU subgroup (1.61μV vs. 0.699μV), F (1, 

18) = 18.7, p<.001, and more positive than the amplitude to the AN subgroup (1.61μV 

vs. 0.868μV), F (1, 18) = 15.6, p<.002. For the N2 component, in the left parietal 

cluster, N2 amplitude to HNA pictures did not differ from the PU subgroup (2.51 μV 

vs. 2.24 μV), F (1, 18) = 1.63, p>.40, but was more positive than that to the AN 

subgroup (2.51 μV vs. 1.86μV), F (1, 18) = 11.6, p<.01.  

General Discussion 

The present study is the first electrophysiological investigation of the effect of name 

agreement during covert picture naming (in which images are seen and named silently 

‗in the head‘). We found that, following picture onset, a P1 occurs at around 120ms, 

followed by an N1 at around 170ms, a P2 at around 220ms, followed by an N2 at 

around 290ms; finally a P3 showed at around 400ms in clusters over the parietal and 

occipital areas. The peaks of the ERP waveform thus appear very similar to the average 

ERP waveform reported in Greenham et al.‘s (2000) study where a similar paradigm, 

covert picture naming, was used.  

Our prime motivation was to observe and report on differences between ERP 

waves during covert naming of pictures with low and with high name agreement. We 

were also interested in whether the apparent timing of name agreement phenomena 

might suggest where further targeted work should be done. 

We observed an early main effect of Name Agreement, and an early interaction 

between Name Agreement, Hemisphere, and Cluster in the P1 time window. In the left 



 

 

frontal and parietal clusters, P1 to HNA pictures was more positive than P1 to LNA 

pictures, while there was no such difference in the right parietal cluster. For LNA 

pictures, amplitude in the left frontal and parietal clusters was lower than for HNA 

pictures. Somewhat later, another main effect of Name Agreement and an interaction 

with Hemisphere was found in the N2 time window. In the left parietal cluster, N2 to 

HNA pictures was less negative than N2 to LNA pictures, while no such difference was 

observed in the right parietal cluster. Similarly, N2 amplitude to LNA pictures was 

lower in the left parietal cluster than in the right parietal cluster. Finally, we observed a 

main effect of Name Agreement in the late time window. We will first consider 

potential low level attentional explanations for these data, before discussion of 

mechanisms more specific to the lexical-semantic system. 

The two early ERP components, P1 and N1, have been well documented in 

previous literature on attention (e.g., reviewed in Herrmann & Knight, 2001; Hillyard 

& Anllo-Vento, 1998). In the visual attention literature, P1 typically peaks around 

120ms after stimulus presentation (Heinze, Mangun, Burchert, Hinrichs, Scholz, 

Munte, Gos, Scherg, Johannes, Hundeshagen et al., 1994). It may reflect a facilitation 

of early sensory processing for stimuli presented at an attended location (cited in 

Herrmann & Knight, 2001, p469; Luck, Heinze, Mangun, & Hillyard, 1990). In the 

present study, the task demanded that attention should invariably be located on the 

single presented picture, but such early sensory processing might conceivably have 

differed between high and low name agreement pictures, given our finding of a name 

agreement effect in P1. Hillyard and Anllo-Vento (1998) have demonstrated stronger 

P1 at posterior sites, and N1 at frontal sites, to attended stimuli as opposed to 

unattended stimuli. Similarly, in the present study, the P1/N1 results may reflect 

deployment of more attention to LNA than HNA pictures. This is plausible in light of 



 

 

our finding that for all participants, some LNA pictures were of uncertain identity, and 

hence might require immediate attentional resources for identification. Although some 

ERP studies of visual attention suggest that early effects may relate to low-level 

sensory processing, e.g. P1 and N170 modulated by luminance detectability (such as, 

Luck, Hillyard, Mouloua, Woldorff, Clark, & Hawkins, 1994) and image contrast (Itier 

& Taylor, 2004), because we found no evidence for a systematic bias in the low level 

properties of the pictures in the two groups, this low-level sensory processing account 

for our data is excluded.  

In terms of mechanisms specific to the lexical-semantic system, one potential 

mechanism for ERP differences between HNA and LNA pictures relates to how many 

concept networks are activated by a given picture. For the former, a single candidate 

object is presumably activated. In contrast, for the latter, the picture‘s ambiguity resides 

in the fact that it might depict more than one object, or may have more than one name, 

and thus the LNA images may each activate more than one conceptual representation. 

It may therefore be tentatively argued that P1 differences over frontal and parietal 

clusters in the present study arise because of differences in the number of concept 

networks activated by given images. Limited support for this idea comes from Abdel 

Rahman and Sommer (2008), who recently reported that in an overt object naming task, 

a stronger P1 was evoked when participants named pictures of which they had minimal 

knowledge, compared with pictures of objects of which they had in-depth knowledge. 

Perhaps the early P1 over frontal areas in the present study indexes early conceptual 

knowledge effects in object identification, i.e., differential top-down effects for low 

versus high name agreement images. We must acknowledge that this is unlikely to be 

the whole story, however, because (Abdel Rahman & Sommer, 2008) study showed the 

P1 effect over occipital, rather than—as in our case—frontal and parietal sites. Abdel 



 

 

Rahman and Sommer concluded that their data might be explained by either (1) top-

down effects or (2) categorization effects emerging in perception. If our finding of 

early frontal and parietal effects are taken at face value, and if they reflect anterior 

rather than posterior cerebral activation, then top-down effects are the more likely 

explanation, but more work clearly needs to be done before this conclusion can be 

drawn with certainty. 

Following the P1 and N1 was the P2 component, which is unfortunately not 

well documented in previous literature. Therefore we hesitate to link it to a specific 

cognitive process in the present study; and in any case we did not observe any 

modulation of P2 by name agreement.  

The other component reliably modulated by name agreement in the present 

study was the N2. In the present study, the N2 peaked at 290ms, that is, at the very 

beginning of the phonological encoding stage of the LRM model (Levelt et al., 1999). 

The stage that this ERP name agreement effect occurred seems later than the lexical 

selection stage, 150-275ms post picture onset suggested in behavioral studies 

(reviewed in Indefrey & Levelt, 2004) and 150-225ms post picture onset suggested in a 

MEG study (Maess et al., 2002). Maess et al.‘s (2002) MEG study investigated the 

timing of neuronal processes related to category-based lexical competition. In an overt 

picture naming task, participants named series of pictures which were either within a 

category (transport, clothing, etc.) or from different categories. In behavioral tasks, 

participants show longer naming latencies for same-category pictures than for ones 

from different-categories (Kroll & Stewart, 1994). In Maess et al.‘s study, the MEG 

difference between the two types of picture sequences peaked between 150ms and 

225ms, apparently reflecting competition amongst co-activated semantic networks. 



 

 

However, in Maess et al.‘s (2002) study, participants studies all pictures with their 

names before testing sessions and they saw each picture for 48 times during the testing 

session, while participants in the present study saw each picture once only and were 

asked to silently name pictures immediately. Therefore, the earlier effect in Maess et 

al.‘s (2002) study, compared with the effect in the present study, may reflect a strong 

repetition effect.  

Another possibility for the relatively late effects is that name agreement effects 

pose a particularly difficult problem for the lexical-semantic selection system. For 

example, the difference between ‗train‘ and ‗bicycle‘ (or their German equivalents) on 

the one hand (as in the Maess et al.‘s study), and ‗cooker‘ and ‗stove‘, or ‗mushroom‘ 

and ‗toadstool‘ on the other (as in our study), is considerable. That is, in our study, the 

conceptual networks associated with each lemma are much more similar to each other 

than those in studies such as Maess et al. (2002). Thus, lemma selection may be 

particularly delayed in the present study, which might in principle allow phonological 

processes, if they have commenced in parallel with lemma selection processes, to play 

a part in selection. In naming pictures with low name agreement, the strong similarity 

of concepts which are, ex hypothesi, in competition with one another appears to have 

utility in stressing the lexical-semantic system in interesting ways. 

In support of the idea that name agreement effects may stress the lexical-

semantic system and delay semantic information until the start of phonological 

encoding, van Turennout et al. (1997) noted that although semantic processing 

precedes phonological processing, ―there may be some overlap between the final part 

of the semantic stage and the start of phonological encoding‖ (p. 802). In a similar 

go/no-go LRP design to that employed by van Turennout et al. (1997), Abdel Rahman 



 

 

and Sommer (2003) were able to show that, if the semantic system is stressed—by 

making semantic classification relatively hard—semantic and phonological processing 

appear to overlap (see also Abdel Rahman, Van Turennout, & Levelt, 2003). 

Although the name agreement effects in the present study showed at the 

beginning of phonological encoding stage of the LRM model, the cognitive processes 

invoked by LNA and HNA pictures might be expected to be different well in advance 

of phonological encoding: This is true for both kinds of low name agreement image, 

i.e., those which have low name agreement because of picture uncertainty (‗PU‘), and 

those which have low name agreement due to alternative names (‗AN‘). To choose a 

specific name for an LNA picture from the PU subgroup, competition between a 

number of different concepts must be resolved. To choose a specific name for an LNA 

picture from the AN subgroup, competition between a number of different lemmas 

must be resolved
3
. Because N2 peaks in the phonological encoding stage of the LRM 

model, the effect of name agreement arguably persists into the phonological encoding 

stage. One account for this pattern might be that, in the lemma selection stage, several 

lemmas are activated but only during the phonological encoding stage is the system 

finally forced to select a single name from all activated lemmas. But this account is at 

odds with the mechanism suggested by the LRM model, in which lexical selection 

takes place during lemma selection, rather than phonological encoding. Analysis of 

later parts of the waveform, during the P3 and during the 800-900 ms window, did not 

provide much further insight. While a sustained effect of Name Agreement was present 

in the latter window, the P3 failed to show any effect of this kind. 

As discussed above, our experiment was carefully set up to balance attributes of 

LNA and HNA pictures, and not primarily to examine the cognitive source of the name 



 

 

agreement effect(s). However, the PU and AN subgroups may nonetheless be relevant 

to the source of the N2 difference we observed in frontal and parietal clusters. The lack 

of difference between N2 amplitude for HNA and PU pictures suggests that the 

cognitive system may have resolved issue of picture identity by this point, leaving no 

residual difference between these two image types. Our tentative finding—that the 

difference in N2 amplitude between HNA and AN pictures was reliable, but the 

difference in N2 amplitude between HNA and PU pictures was not—tends to support 

the idea that it is lemma selection which is driving the N2 component. Of course, 

confirmation would require more careful manipulation of the source of name 

agreement than in the present study. However, the idea that our N2 component is 

related to lemma selection is consistent with Jescheniak et al.‘s finding (2002) that 

phonological codes for a depicted object‘s name (or in our case, possible names) are 

not automatically activated, but are activated only when its name is to be produced. 

In our treatment of the differential effects of the source of name agreement 

effects on N2 we appear to have generated a paradox: In our consideration of the 

timing of the N2 peak, we argued that effects of name agreement differences appeared 

to persist into the period of, and might (pace LRM) be resolved by phonological 

encoding processes. But Jescheniak et al. concluded (2002) that phonological codes for 

a depicted object‘s name are only activated if that object is to be named. These 

assertions can only both be correct if multiple phonological codes are obligatorily 

activated in the case where the picture is unambiguous (‗uni-categorical‘) but 

nonetheless has multiple lemmas associated with it. Again, more definite data are 

required, but the utility of studying name agreement in this context is clear. 

Furthermore, in parietal clusters, hemispheric asymmetry of P1 appears to have 



 

 

been caused by both uncertainty of identification of the images themselves and by 

those pictures having more than one name (ERPs to HNA pictures were more positive 

than both subgroups in the left parietal cluster). In contrast, in the left frontal cluster, 

P1 amplitude to HNA pictures was more positive than for the PU, but not the AN 

subgroup. To the extent that the AN pictures differed from PU pictures—in that the 

former each represent a single concept with multiple names—the difference in P1 

effects in frontal versus parietal areas might suggest that different cognitive processes 

were measured by these clusters. Neuroimaging with greater spatial resolution than 

ERP is required to investigate this further. However, our results for the first three 

‗stages‘ of processing are in line with Vitkovitch and Tyrell‘s (1995) behavioral data 

that name agreement effects tend to occur because of differences between the high 

name agreement pictures and those from a ‗Picture Uncertainty‘ subgroup in the early 

stage of picture naming, and then between the high name agreement pictures and those 

from an ‗Alternative Names‘ subgroup at or after lexical selection.  

Although we have found results which are consistent with previous studies, a 

methodological issue in the present study is worth noting. We matched the two groups 

of pictures very carefully on several dimensions i.e., high and low name agreement 

pictures did not differ in Objective AoA (months), Rated AoA, Word frequency, 

Familiarity, Visual complexity, Picture-name agreement, Number of phonemes, 

Number of syllables, or on the two low level image attributes of proportion of black 

pixels, and internal complexity of each image. However, some studies have shown that 

other dimensions of a word may affect word production as well, such as, neighborhood 

frequency (e.g., Vitevitch & Sommers, 2003), morphology (e.g., Roelofs & Baayen, 

2002), and semantic transparency (e.g., Dohmes, Zwitserlood, & Bölte, 2004). 

Therefore it is still possible that besides name agreement effects, other effect from 



 

 

unknown attributes may affect the present findings. Future experiments concerning 

effects from a specific attribute of a word should consider as many attributes as 

possible. 

In conclusion, in the present study we obtained significant effects of name 

agreement on ERP responses, while participants covertly named images presented one 

at a time on a screen in front of them. During covert picture naming, in the first stage, 

ascribed to processes of object recognition and concept activation, we found name 

agreement effects, and also a hemispheric asymmetry, associated with differences 

between ERPs to pictures with low name agreement and pictures with high name 

agreement, for P1s in frontal and parietal clusters. A strong name agreement effect was 

also found in N2s, tentatively ascribed to the beginning of the phonological encoding 

stage. It may be concluded that there are two stages during picture naming in which 

name agreement effects occur, one in object recognition, due to the activation of one or 

more concept networks, and the other either towards the end of the lemma selection 

process, or at the start of phonological encoding, due to several activated lemmas from 

a single activated concept network.  

Additional (and necessarily provisional) analyses suggested that the early name 

agreement effect and hemispheric asymmetry predominantly originated from images in 

the Picture Uncertainty subgroup, rather than images in the Alternative Names 

subgroup. In contrast, it is probable that pictures in Alternative Names subgroup 

contributed to the strong name agreement effect in N2. To confirm the modulation by 

name agreement of more than one cognitive process in picture naming, a partial 

replication of the present study is required, in which pictures in the PU and AN groups 

are at least as closely matched as were the pictures in the LNA and HNA groups in the 



 

 

present study. 
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Footnotes 
1
We use the term ‗semantic‘ to refer to knowledge of word meaning. We use the term 

‗conceptual‘ to refer to knowledge about an object. The former entails but is not limited 

to lexical knowledge; the latter may or may not entail linguistic knowledge. 

 

2
We recognize that this analysis involves averages computed for different numbers of 

epochs. Nonetheless, the averages constitute valid estimates of the peak amplitudes to 

the stimuli, albeit prone to noise and to confounds introduced by unbalancing the 

careful matching of stimulus attributes described in the Methods section. We offer 

these comparisons as additional data, rather than as definitive results. 

 

3
Of course, as pointed out by Vitkovitch and Tyrell (1995), it is also possible that each 

lemma has its own associated conceptual network, ‗upstream‘ from lemma selection 

(i.e., distinct conceptual representations underlying each alternative name). 
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Table 1 

 

Attributes of stimulus pictures and picture names (for details, see Morrison, Chappell, 

& Ellis, 1997). SD for each attribute is presented in brackets. 

 Low name 

agreement 

images and their 

names 

High name 

agreement 

images and 

their names 

Independent t-

tests: 

Two-tailed 

significance 

Name agreement 76.0% (0.102)  100% (0)  .001 

Objective AoA (months) 65.0 (27.9)  59.3 (24.6)  .28 

Rated AoA 2.70 (0.606)  2.77 (0.626)  .56 

Word frequency 2.54  (0.708) 2.56 (1.01)  .90 

Familiarity 2.85 (0.834)  2.73 (0.808)  .50 

Visual complexity 3.03 (0.713)  2.95 (0.741)  .57 

Picture-name agreement 4.52 (0.277)  4.59 (0.226)  .15 

Number of phonemes 4.40 (1.55)  4.50 (1.55)  .75 

Number of syllables 1.64 (0.693)  1.64 (0.693)  .99 

Note. AoA = age of acquisition. 



 

 

Table 2 

Summary of ANOVA effects on ERP components involving Name Agreement 

 

ERP 

Component 

Hypothesized 

processing stage 

(according to Indefrey 

& Levelt, 2004; see 

main text) 

ANOVA effects 

involving name 

agreement 

Simple effects 

(significant after 

correction) 

P1 Object recognition NA main effect; 

NA X Hemisphere; 

NA X Hemisphere 

X Cluster 

High NA > Low NA in 

left F and P; 

Left < Right for Low NA 

in F and P 

N1 Lemma selection - - 

P2 Lemma selection - - 

N2 Lemma 

selection/Phonological 

encoding 

NA main effect; 

NA X Hemisphere 

(P only) 

High NA > Low NA over 

left P 

Left < Right for Low NA 

in P  

P3 Phonological 

encoding 

- - 

Late wave Phonological 

encoding 

NA main effect  High NA > Low NA 

 

Notes: NA: Name agreement; F: Frontal; P: Parietal; O: Occipital. 

 



 

 

Figure captions: 

 

Figure 1. Three kinds of name disagreement: (a) the use of multiple alternative names 

(‗AN‘ in the text); (b), the use of correct abbreviations (or elaborations); (c), incorrect 

names (‗PU‘ – ‗picture uncertainty‘ in the text). Pictures were from Snodgrass & 

Vanderwart (1980).  

 

Figure 2. Electrode clusters in the 128 electrode array. Approximate corresponding 

locations in the 10-20 system are shown. Six clusters of electrodes were selected a 

priori as regions of interest for the data analyses, namely left and right frontal, left and 

right parietal, and left and right occipital: these are shown in black on the diagram. 

 

Figure 3. ERPs to pictures with different levels of name agreement (see text). The 

waveforms in this figure show the average ERP in each cluster, averaged over 

electrodes in the cluster. Vertical whiskers at the start of each epoch represent 1μV. 

 

Figure 4. The interaction between Name Agreement, Hemisphere and Cluster in P1. 

Amplitudes of P1 to High Name Agreement (‗HNA‘) pictures were more positive than 

those to Low Name Agreement (‗LNA‘) pictures in left frontal and parietal clusters, but 

not in the right hemisphere. Amplitude of P1 to HNA pictures in occipital clusters did 

not differ from amplitude of P1 to LNA pictures in either hemisphere. Error bars 

denote one standard error and ―**‖ denotes that significance is less than 0.05. 

 

Figure 5. The interaction between Name agreement and Hemisphere in N2. Amplitudes 

of N2 to High Name Agreement pictures were less negative than those to Low Name 

Agreement pictures in the left hemisphere, while they did not show a reliable 

difference in the right hemisphere. Error bars denote one standard error. 



 

 

 

Figure 6. A topographic map of ERP response to covert picture naming, as it unfolds 

following picture onset. 
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Appendix: Experimental words and filler pictures lists 

 

Low name agreement words 

ant barn bear bee beetle 

boat bow broom brush bus 

cooker deer diamond dice dustbin 

eagle flask glasses gorilla gun 

handbag helicopter hen jacket jumper 

leopard lettuce lightbulb lips lorry 

mitten monkey mouse mushroom necklace 

needle nut ostrich peach peg 

pineapple pliers potato rocket scales 

sledge suitcase tiger web wheel 

 

High name agreement words 

acorn anchor arrow axe bell 

book cake camel cannon carrot 

coat crown dress drum elephant 

flag grapes guitar harp iron 

jelly mermaid microphone nun onion 

scarecrow screwdriver pipe plug pumpkin 

seahorse shirt snail snake squirrel 

stool strawberry sun swan telescope 

toaster torch tortoise van violin 

waistcoat whale whistle windmill yo-yo 

 

Fillers 

accordion ball bowl butterfly cat 

chair comb dog ear finger 

flower fox hand house king 

ladybird lemon nurse owl peacock 



 

 

pencil pepper pram ruler scissors 

snowman sword tractor vase witch 

 


