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Abstract: Water distribution systems (WDSs) are costly infrastructure in terms of materials, construction, maintenance, 

and energy requirements. Much attention has been given to the application of optimisation methods to minimise the 

costs associated with such infrastructure. Historically, traditional optimisation techniques have been used, such as linear 

and non-linear programming, but within the past decade the focus has shifted to the use of Evolutionary Algorithms 

(EAs), for example Genetic Algorithms, Simulated Annealing and more recently Ant Colony Optimisation (ACO). 

ACO, as an optimisation process, is based on the analogy of the foraging behaviour of a colony of searching ants, and 

their ability to determine the shortest route between their nest and a food source. Many different formulations of ACO 

algorithms exist that are aimed at providing advancements on the original and most basic formulation, Ant System 

(AS). These advancements differ in their utilisation of information learned about a search-space to manage two 

conflicting aspects of an algorithm’s searching behaviour. These aspects are termed ‘exploration’ and ‘exploitation’. 

Exploration is an algorithm’s ability to search broadly through the problem’s search space and exploitation is an 

algorithm’s ability to search locally around good solutions that have been found previously. One such advanced ACO 

algorithm, which is used within this paper, is the Max-Min Ant System (MMAS). This algorithm encourages local 

searching around the best solution found in each iteration, while implementing methods that slow convergence and 

facilitate exploration. In this paper, the performance of MMAS is compared to that of AS for two commonly used WDS 

case studies, the New York Tunnels Problem and the Hanoi Problem. The sophistication of MMAS is shown to be 

effective as it outperforms AS and performs better than any other EAs in the literature for both case studies considered.  

Keywords: Optimisation; Evolutionary Algorithms; Ant Colony Optimisation; Water Distribution Systems 
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1 INTRODUCTION 

Due to the high costs associated with the construction of water distribution systems (WDSs) much research over the last 

25 years has been dedicated to the development of techniques to minimise the capital costs associated with such 

infrastructure. This process has been given the title of “optimisation” or “optimal design” of WDSs. 

Within the last decade, many researchers have shifted the focus of WDS optimisation from traditional optimisation 

techniques based on linear and non-linear programming (e.g.[1]-[3]) to the implementation of Evolutionary Algorithms 

(EAs) namely; Genetic Algorithms (GAs) [4]-[8], Simulated Annealing [9], the Shuffled Frog-Leaping Algorithm 

(SFLA) [10], and Ant Colony Optimisation (ACO) [11], [12]. Noted advantages that exist with the use of EAs for 

application to WDSs are; (i) only discrete, commercial sized pipe diameters are considered, (ii) they deal only with 

objective function information and avoid complications associated with determining derivatives or other auxiliary 

information, (iii) they are global optimisation procedures (i.e. they consider points throughout the entire solution space 

as opposed to descent algorithms that search only locally), and (iv) as they deal with a population of solutions, 

numerous optimal or near-optimal solutions can be determined. 

Due to the iterative nature of the solution generation of EAs, they can be intuitively seen as algorithms that 

incrementally search through the solution-space using knowledge gained from solutions that have already been found to 

further guide the search. The searching behaviour of EAs can be characterised by two main features [13], (i) 

exploration, which is the ability of the algorithm to search broadly through the solution-space and (ii) exploitation, 

which is the ability of the algorithm to search more thoroughly in the local neighbourhood where good solutions have 

previously been found. By definition, these attributes are in conflict with one another. 

ACO is an EA based on the foraging behaviour of ants [14]. It has seen a wide and successful application to many 

different optimisation problems (see [15] for an overview) and recently it has been seen to perform very competitively 

for WDS optimisation [11]. Many different ACO algorithms have been developed, providing advancements on the 

initial and most simple formulation of ACO, Ant System (AS) [14]. These advancements improve the operation of 

ACO’s decision policy (i.e. solution component selection process) and the manner in which the policy incorporates new 

information, to help in exploring the search space. These developments have primarily been aimed at managing the 

trade-off between the two conflicting search attributes of exploration and exploitation. Many notable advances on the 

simple AS have been developed [15], however, only one of these is considered in this paper; the Max-Min Ant System 

(MMAS) [16] (note, comparison is also made with the results of the ACO algorithm used in [11]). 

The objective of this paper is to assess the efficacy of the additional mechanisms incorporated in the Max-Min Ant 

System, compared to the more basic Ant System, for WDS optimisation. To undertake this assessment, a comparison 
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between the performance of AS and MMAS for two case studies is presented. These algorithms are also compared to 

the best performing algorithms previously presented in the literature for the two case studies considered. 

2 THE WATER DISTRIBUTION SYSTEM OPTIMISATION PROBLEM 

A water distribution system (WDS) is a network of components (e.g. pipes, pumps, valves, tanks, etc.) that transport 

water from a source (e.g. reservoir, treatment plant, tank etc.) to the consumers (e.g. domestic, commercial, and 

industrial users). The optimisation of WDSs is loosely defined as the selection of the lowest cost combination of 

appropriate component sizes and component settings such that the criteria of demands and other design constraints are 

satisfied. In practise, the design of WDSs can take many forms, as WDSs are comprised of many different components 

and have many different design criteria. For example, treating the design process as an optimisation problem, the 

decision variables within the problem could involve the selection of diameter sizes for all pipes, the sizing of tanks, 

selection of valve pressure settings and valve locations, pump types and pump locations. In addition to these potential 

decision variables, the demands on the system could involve a range of cases including peak hour, fire and extended 

period simulation loadings. The constraints on the system may be specified to include minimum and maximum 

allowable pressures at each demand point, a maximum velocity constraint for each of the pipes and water quality 

requirements. In addition to this, for the system to be properly assessed, a more rigorous set of design criteria could be 

required that quantifies the inherent uncertainty that exists within the system (examples of uncertainty include variations 

in nodal demands, projected growth of nodal demands and variations in the performance of components). 

However, the literature on optimisation of WDSs has traditionally dealt with a much more simplistic and idealised 

problem. The decision variables have primarily been associated with the pipes within the system, where more 

specifically, the decision options have been the selection of (i) a diameter for a new pipe, (ii) a diameter for a duplicate 

pipe, and (iii) the cleaning of an existing pipe to reduce the hydraulic resistance. The only constraints on the system 

have been that minimum allowable pressures at each of the nodes are satisfied. This form of the optimisation of WDSs 

is used within this paper. A semi-formal expression of the optimisation problem is given in this paper, which expands 

on previous formulations [6], [9], as multiple demand patterns and pipe rehabilitation options are included (similar to 

[8]), such that the formulation encompasses problems such as the Gessler Network [4]. 

Within the framework outlined above, a design , is defined as a set of n decisions where n is the number of pipes to be 

sized and or rehabilitated, that is n where i is the selected option for pipe i, and i  (optioni, j : j = 

1,… , NOi) where optioni, j is the j
th

 option for pipe i and NOi is the number of options available for pipe i. For each 

option there is an associated cost ci, j of implementing that option and an action on the pipe (i.e. the placement of a 

duplicate pipe of a certain diameter or the cleaning of the existing pipe). The optimisation problem (i.e. the 
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minimisation of the WDS design cost) can be expressed in the following way  
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where (1 is the objective and C() is the cost of design , Li is the length of pipe i, c(i) is the unit length cost of i; (2 

is the design constraint where  j

iH  is the actual head at node i for demand pattern j and design  j

iH  is the 

minimum allowable head at node i for demand pattern j, Nnode is the total number of nodes and Npattern is the number of 

demand patterns.  

In addition to the design constraints, the fundamental equations for fluid flow within a closed conduit must be satisfied 

for the set of  j

iH  to be a real solution to the hydraulic equations. These are the nodal continuity and head loss 

equations given in Equations 3 and 4, respectively (note, as the head loss equation is expressed in terms of the nodal 

head difference, the conservation of energy constraint is inherently included). j

iDM  is the demand for node i and 

demand pattern j,  j

kQ  is the flow in pipe k for design  for demand pattern j,  i

in
 is the set of all pipes that 

provide flow into node i for design  and  i

out
 is the set of pipes that provides flow out of node i for design . The 

headloss equation ((4) used within this study is the Hazen-Williams equation (the formulation easily allows the Darcy-

Weisbach equations to be used if desired) where  j

istart
H  is the head at the starting node of pipe i for design  and 

demand pattern j,  j

iend
H  is the head at the ending node of pipe i for design  and demand pattern j,  iD  is the 

selected diameter of pipe i for design ,  iHW  is the associated Hazen-Williams coefficient of the diameter selected 

for design  and pipe i, Npipe is the total number of pipes including new pipes, A is a constant that is dependent on the 

units used and a and b are regression coefficients The adopted values of A, a and b vary throughout the literature (see 

[6] for an overview). The values used in this paper are consistent with those used within the hydraulic solver package 

EPANET2 and are A = 10.670 (for SI units), a = 1.852, and b = 4.871. 

In practice, only the design constraints (i.e. (2) need to be considered, as a hydraulic solver is generally used to 

determine the set of  j

iH  (and corresponding  j

kQ ), which automatically satisfies the continuity and headloss 
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constraints (i.e. Equations 3 and 4). For ease of reference, the optimisation problem outlined above will be referred to as 

the Water Distribution System Problem (WDSP).   

3 ANT COLONY OPTIMISATION 

3.1 General Overview 

3.1.1 Analogical origin of ACO 

ACO [14], is a discrete combinatorial optimisation algorithm based upon the foraging behaviour of ants. Over a period 

of time a colony of ants is able to determine the shortest path from its nest to a food source. The exhibited ‘swarm 

intelligence’ of the ant colony is achieved via an indirect form of communication that involves the individual ants 

following and depositing a chemical substance, called pheromone, on the paths they travel. Over time, shorter (or more 

desirable) paths are reinforced with greater amounts of pheromone, as they require less time to be traversed, thus 

becoming the dominant paths for the colony (i.e. ants tend to follow paths that have greater amounts of pheromone on 

them). This operation is best explained using an example. 

Consider the situation in Figure 1(a) where an ant colony has presently determined the shortest path from its nest (N) to 

a food source (F). Consider then interrupting this system via obstacle A-B, as shown in Figure 1(b). The ants cannot 

continue to follow the old pheromone trails and are required to turn left or right around the obstacle. As route-B is the 

shortest path, the ants that select this path will reconstitute the interrupted pheromone trail the quickest and arrive at F 

or N, depending on their direction of travel, before the ants that selected route-A (Figure 1(c)). 

 

Desired location for: Figure 1 

 

Once the ants on route-B reach F or N and re-enter the circuit they will have a higher probability of reselecting route-B, 

as it contains more pheromone than route-A. This is because route-B has had more ants deposit pheromone on it, as the 

ants on route-A have not yet completed an entire tour. Similarly, once the ants on route-A reach F or N and re-enter the 

circuit, they also will have a higher probability of selecting route-B due to the higher amount of pheromone it possesses 

(as indicated by the thicker lines in (Figure 1(d)) as a result of the larger number of ants that have already traversed this 

route. 

Due to the decaying nature of pheromone, the longer path will eventually lose all of its pheromone as, in terms of 
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probability, a reducing number of ants will choose to traverse it resulting in it receiving fewer and fewer deposits of 

pheromone. The result of this combined impact of pheromone addition and pheromone decay is that the shorter path 

eventually becomes the dominant path that the majority of the ants select (Figure 1(d)). Despite the simplicity of this 

two-decision example, the gradual convergence of the colony to the optimal solution, via the positive reinforcement of 

good solutions with pheromone deposits, is sufficiently illustrated. 

3.1.2 ACO as an optimisation process 

As with most EAs, the ACO algorithm iteratively generates populations of solutions that are a stochastic function of 

information that has been learned from previous iterations. To apply ACO to a combinatorial optimisation problem, it is 

important to outline the problem structure that ACO deals with and the nature of its solution generation. As given in 

[17], ACO represents a combinatorial optimisation problem by a graph G and a constraint set

 . The graph is defined 

as G = G(N, L) where N  is the set of nodes and L is the set of edges linking the nodes. A solution to the problem is a 

permissible tour through G(N, L), that is, a solution can be viewed as a set of edges S   S  where S is the set of 

solutions that satisfies the constraints . A tour is constructed by an ant (i.e. decision agent) starting at some node 

(typically randomly selected) and incrementally selecting edges to follow based on the set of edges that are available to 

the ant given its semi-constructed tour. The set of permissible edges is specified by the constraint set  = (i, S´) where 

(i, S´) is the set of edges available for selection to an ant that is at decision point i, given that the ant has the semi-

constructed tour S´ (i.e. the ant has followed the path S´ from its initial decision point to get to decision point i). This 

process is continued until the ant completes its tour, that is, until the tour is an element of S (e.g. clearly (i, S´) = Ø for 

any i where S´   S).  

For example, if the small problem depicted in Figure 1 is considered to be the problem of finding the shortest path from 

the nest to the food source and back to the nest again, this problem can be represented by the graph given in Figure 2 

(note that this is one of many possible formulations of the graph). Within this graph there are two nodes N = {N, F} and 

four directed edges L = {NFA, NFB, FNA, FNB}, where the direction is indicated by the ordering of the nodes’ initials in 

the edge symbol and the subscript refers to the route taken. As the problem is considered to be the determination of the 

shortest path from N to F and back again, the constraint set can be defined by (N, Ø) = (N) = {NFA, NFB} (S´ = Ø for 

decisions from N as it will always be the starting node) and (F,{NFA}) = (F,{NFB}) = (F)  = {FNA, FNB} (i.e. 

decisions from F are independent of the path chosen to get to F). Therefore the problem solution space is given by 

S = {S : S = {sN, sF}, sN(N), sF(F)}, and clearly the optimal solution is S
*
 = {NFB, FNB}. 
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Desired location for: Figure 2 

 

An ant’s selection process from the edges in (i, S´) is based on a probabilistic decision policy. This policy considers a 

trade-off between the pheromone intensity on a particular edge and the desirability of that edge with respect to its 

individual influence on the objective function. The desirability has different definitions for different problems. For 

example, if the objective is to minimise cost, the desirability of an edge may be set equal to the inverse of the cost 

associated with that edge (e.g. cheaper edges are more desirable) or in the example given above, as shorter edges are 

more desirable, the desirability would be set equal to the inverse of the edge’s length. Taking these two properties of an 

edge into account, ACO algorithms effectively utilise heuristic information that has been learnt (represented by 

pheromone intensity) in addition to incorporating a bias towards edges that are of a greater desirability. The decision 

policy is given by the probability function [14] 
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where pi, j(t) is the probability that edge (i, j) is chosen from node i in iteration t, i, j(t) is the concentration of pheromone 

associated with edge (i, j) in iteration t, i, j is the desirability of edge (i, j) and  and  are the parameters controlling 

the relative importance of pheromone intensity and desirability, respectively, for each ants’ decision. If  >>  then the 

algorithm will make decisions based mainly on the learned information, as represented by the pheromone, and if >> 

 the algorithm will act as a greedy heuristic selecting mainly the shortest or cheapest edges, disregarding the impact of 

these decisions on the final solution quality. 

As with the example given in Figure 1, the evolution of the pheromone values i, j(t) with time is at the heart of the ACO 

process. At the end of an iteration (i.e. after each ant has generated a solution) the pheromone value on each edge is 

updated. The pheromone updating rule consists of two operations; (i) a decaying operation that reduces the current level 

of pheromone and (ii) an additive operation, where, based on the solutions generated within an iteration, pheromone is 

added to an edge. The updating rule can be expressed as [14] 

 ttt jijiji ,,, )()1(   , Equation 6 

where  is the pheromone persistence factor representing the pheromone decay (note: 0 ≤  ≤ 1) and i, j(t) is the 

                                                                                                                                                                                                 
1 The constraint set  determines admissible tours through the graph G(N, L) and has nothing to do with the set of constraints 

outlined in Equations 2 – 4 that determine the hydraulic feasibility of a solution for the WDSP. Similarly, the nodes N refer to graph 
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pheromone addition for edge (i, j). The decay of the pheromone levels enables the colony to ‘forget’ poor edges and 

increases the probability of good edges being selected (i.e. the assumption behind this is that as the process continues in 

time, the algorithm learns to add pheromone only to good edges, implying that more recent information is better than 

older information). For  → 1, only small amounts of pheromone are decayed between iterations and the convergence 

rate is slower, whereas for  → 0 more pheromone is decayed resulting in faster convergence.  

The pheromone addition operation is different for each ACO algorithm and is the main feature that dictates how an 

ACO algorithm utilises its learned information. Typically, pheromone is only added to edges that have been selected, 

and the amount of pheromone added is proportional to the quality of the solution
2
. In this way, solutions of higher 

quality receive greater amounts of pheromone. The form of i, j(t) for the algorithms used within this paper is discussed 

in more detail for each algorithm in the following sub-sections. 

An example of an ACO procedure is given in Figure 3. The subroutine initialisation_routines() involves 

the initialisation of all ACO parameters, including all pheromone trails, to a specified initial value 0. For each iteration 

the process generates a solution for each ant (symbolised by the construct_solution() routine). During an 

iteration, after each ant has generated a solution, the pheromone paths are updated as given by 

update_pheromone(). Once all iterations have been looped through, the process outputs the required information 

and terminates. 

 

Desired location for: Figure 3 

 

3.2 ACO Algorithms Used Within This Study 

3.2.1 Ant System 

Ant System [14] is the original and most simplistic ACO algorithm. As such, it has been extremely influential in the 

development of more advanced ACO algorithms [15]. The decision policy and the pheromone update rule used within 

AS are given by Equations 5 and 6, respectively. For AS, each ant adds pheromone to all edges it has selected and 

consequently the pheromone addition received by each edge (i, j)   L  is given by [14] 

                                                                                                                                                                                                 
nodes and not the WDS nodes of the WDSP. 
2 For minimisation problems, lower cost solutions are of a higher “quality”. 
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iteration t. The individual pheromone addition contributed by each ant is given by [14] 
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where Q is the pheromone addition factor (a constant), Sk(t) is the set of edges selected by ant k in iteration t and f(∙) is 

the objective function. From (8 it is clear that ants only add pheromone to the edges that they select and that solutions of 

better quality (e.g. solutions with lower f(∙) values, as the problem is assumed to be a minimisation problem) are 

rewarded with greater pheromone additions. 

3.2.2 Max-Min Ant System 

Premature convergence to sub-optimal solutions is an issue that can be experienced by all EAs, especially those that 

have a greater emphasis on exploitation. To overcome this problem, the Max-Min Ant System (MMAS) was developed 

by [16]. The basis of MMAS is to provide dynamically evolving bounds on the pheromone trail intensities such that the 

pheromone intensity on all paths is always within a specified limit of the path with the greatest pheromone intensity. As 

a result all paths will always have a non-trivial probability of being selected and thus wider exploration of the search 

space is encouraged.  

MMAS uses upper and lower bounds to ensure pheromone intensities lie within a given range, that is min(t) ≤ i, j(t) 

≤ max(t). The upper bound max(t) is given by
3
 [16] 
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where S
gb

 is the global best path found up to iteration t, and the lower bound min(t) is given by [16] 
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where pbest is the probability that S
gb

(t) will be selected by any ant in iteration t given that all non-global best edges have 

a pheromone level of min(t) and all global-best edges have a pheromone level of max(t), n is the number of decision 

points and NOavg is the average number of edges at each decision point. Within MMAS, the pheromone paths are 

initialised to an arbitrarily high value such that in the second iteration the paths are set to max(t). 
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Theoretical justifications of the bounds are given in [16] but here it is sufficient to say that max(t) is the theoretical 

asymptotic maximum pheromone level that an edge repeatedly receiving pheromone additions of Q/f(S
gb

(t)) can achieve 

and min(t) is an approximation to the pheromone level such that in the limit as t → ∞, the probability that an ant selects 

S
gb

(t) is pbest. An analysis of (10 shows that lower values of pbest indicate tighter pheromone bounds, that is min(t) → 

max(t) as pbest → 0. 

As the bounds serve to encourage exploration, to provide an emphasis on exploitation, MMAS updates the iteration best 

ant’s path, and periodically the global best path at the end of an iteration, to ensure that good information is being 

retained and reinforced. The updating scheme is as in Equation 6, where i, j(t) is given by [16]  

     ttt gb

ji

ib

jiji ,,,   , (11) 

where the addition from the iteration best ant  tib

ji,  is given by 
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where S
ib

(t) is the iteration best path found in iteration t. The pheromone addition from the global best ant  tgb

ji,  is 

given by  
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(13) 

where fglobal is the frequency of the global best pheromone updating and N is the set of natural numbers. MMAS also 

utilises another mechanism known as pheromone trail smoothing (PTS). This reduces the relative difference between 

the pheromone intensities, and further encourages exploration. The PTS mechanism is given by [16] 

        tttt jijiji ,max,

*

,   , (14) 

where 0 ≤  ≤ 1 is the PTS coefficient, and *
i, j(t) is the pheromone intensity after the smoothing. If  = 0 the PTS 

mechanism has no effect, whereas if  = 1 all pheromone paths are scaled up to max(t). 

4 APPLICATION OF ANT COLONY OPTIMISATION TO WATER DISTRIBUTION 

SYSTEM OPTIMISATION 

4.1 Transformation of constrained problem 

                                                                                                                                                                                                 
3[16] omit Q from their formulation, but for the sake of consistency with the adopted formulation of AS, it is included in this study. 
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The WDSP is a constrained optimisation problem. ACO, like all EAs, is unable to deal directly with constrained 

optimisation problems as, within its solution generation, it cannot adhere to constraints that separate feasible regions of 

a search space from infeasible regions. The standard technique to convert constrained problems to unconstrained 

problems is to use a penalty function. EAs direct their search solely based on information provided by the objective 

function. To guide the search away from the infeasible region and towards the feasible region, a penalty function 

increases the cost of infeasible solutions such that they are considered to be undesirable solutions. The unconstrained 

optimisation problem for the WDSP takes the form of minimising the sum of the real cost plus the penalty cost, that is 

      PCCNCmin  (15) 

where NC() is the network cost for design  C() is the material and installation cost of  (i.e. the objective of the 

constrained problem) and PC() is the penalty cost incurred by . Within this study, PC() was taken to be 

proportional to the maximum nodal pressure deficit induced by  as in [11]. That is 
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where PEN is the penalty factor (constant) with units of dollars per meter of pressure violation (note, the set of heads 

{ )(j

iH : i = 1, …, Nnode, j = 1, …, Npattern} is calculated by a hydraulic solver). The parameter PEN is a user-defined 

parameter and appropriate values of PEN are different for each case study. To reduce calibrational requirements, a 

semi-deterministic expression for PEN derived in [12] is used, that is  

    
d

CC
PEN

minmax 
  (17) 

where 
max

 and 
min

 are the maximum and minimum material cost network designs, respectively, and d is a user 

selected pressure deficit. The value of PEN ensures that all networks with a pressure violation greater than or equal to d 

(an extremely small value) are made more expensive than the maximum feasible network cost. 

4.2 Modification of ACO elements 

As in [11], the graph G(N, L) of the WDSP can be represented as a set of nodes
4
 N = {1, 2, …, n + 1}. Each node i ≤ n 

is connected to the next via a set of directed edges i = {li, j: j = 1, 2,  …, NOi}, where li, j is the j
th

 edge (diameter option) 

connecting node i to node i + 1, NOi is the number of edges connecting node i to node i + 1 and the set of all edges is 

L = {s : s 
n

i 1 i}. (To be consistent with the notation established thus far, the symbols should be i,k to indicate the 

                                                           
4 Node here does not refer to the nodes in a water distribution system network. 
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set of edges connecting node i to node k and li,k,j to indicate the j
th

 edge connecting node i to node k, however, as node i 

only has edges connecting it to node i+1, the additional k subscript is unnecessary. An important point to note arising 

from this notational change is that for the WDSP, edge (i, j) is the j
th

 edge connecting node i to node i+1 and not the 

edge connecting node i to node j). A feasible tour through this graph is then an element of the solution space 

S = {S : S = {s1, s2, …, sn}, si i, i = 1, …, n} or in reference to the terminology of section 3.1.2,  is independent of 

the semi-constructed tour and (i, S´) = (i) = i. There are clearly many ways to formulate the graph and 

accompanying constraint set to describe the WDSP, however due to simplicity, and to avoid the introduction of a 

superficial dependence between the decision process at different decision points, this graph structure was adopted. 

As the objective is to minimise cost, lower cost options are more desirable. Therefore the desirability of an option is 

taken as the inverse of the cost of implementing that option [11]. In other words   

ji

ji
c ,

,

1
  (18) 

where ci, j is the unit cost of implementing diameter j at pipe i. As lower cost diameter options are more desirable, a bias 

in the probability towards the selection of lower cost diameters results. For options with zero cost (i.e. the null option), a 

virtual-zero-cost was selected. 

A summary of the conversion of the general ACO problem formulation to the WDS optimisation is given in Table 1.  

 

Desired location for: Table 1 

 

5 CASE STUDIES 

5.1 Preliminaries 

Experiments were performed on two different case studies, the New York Tunnels Problem (NYTP) and the Hanoi 

Problem (HP). The AS and MMAS programs were coded in FORTRAN 90 with EPANET2 as the hydraulic solver. 

Simulations were typically performed on a dual processor 1 GHz Pentium LINUX system. 

Based on a preliminary sensitivity analysis, the parameters were set to the following values.  For both AS and MMAS 

within both of the case studies,  = 1.0,   = 0.5 and   = 0.98 (See [12] for a more detailed discussion of the ACO 

parameters). For MMAS, fglobal was set to 10, as was the case for some of the simulations in [16]. The optimal setting 

for the other parameters, namely 0 (for AS only), pbest (for MMAS only) and m and Q (for both) were found to be case 
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study dependent and were consequently calibrated independently (the guidelines determined in [12] were used for the 

parameters 0, m and Q). All results presented are based on 20 runs with different random number generator seeds. 

5.2 Case Study 1: The New York Tunnels Problem 

5.2.1 Background 

The WDS for the NYTP is a gravity fed system from a single reservoir and consists of 20 nodes connected via 21 

tunnels (Figure 4). The network details are given in Table 2. For each of the tunnels there is the option to leave the 

tunnel (e.g. a null option) or the option to provide a duplicate tunnel with one of fifteen different diameter sizes (Table 

3).  

 

Desired location for: Figure 4 

 

Desired location for: Table 2 

 

Desired location for: Table 3 

 

As there is a null option, a virtual-zero-cost of $110 per metre was used in this study. This is approximately 1/3 of the 

cost of the cheapest duplicate option. This case study has a search space of approximately 1.934 x 10
25

 possible designs. 

The parameters were set as follows: 0 = 140 (for AS), pbest = 0.05,  = 5x10
-5

  (for MMAS), m = 90 and Q = 2.94 x 10
8
 

(for both algorithms). 

The known-optimum solution is $38.638 million found first by ACOA (a version of ACO with a similar updating 

scheme to that used by MMAS, but without the pheromone bounds) in [11] with a minimum search-time of 7,014 

evaluations. It is important to note that other authors [6]-[8], [10] have proposed cheaper solutions to the NYTP, 

however these solutions were assessed as being infeasible by EPANET2 [11], which was the benchmark hydraulic 

analysis tool used in this research. In the situation where authors have presented numerous solutions, the results for the 

lowest cost feasible solution have been presented in this paper. 

5.2.2 Results and Discussion 

 Table 4 shows a comparison of the two ACO algorithms with current best performing algorithms from the literature; an 



Zecchin et al., Comparison of two ant colony optimisation algorithms applied to water distribution system optimisation 

14 

improved GA (GAimp) [5] that uses gray coding combined with creep mutation and a variable power scaling of the 

fitness function, ACOA [11], and SFLA [10]. 

 

Desired location for: Table 4 

 

From Table 4, it is seen that AS performs the worst of all the algorithms as it does not find the known-optimum, and its 

lowest solution deviates 1.45% from the known-optimum. MMAS was able to find the known-optimum and achieved a 

mean best-cost deviating only 0.51% from the known-optimum. ACOA is the only other algorithm to find the known-

optimum. Even though ACOA searches more efficiently, as derived from is shorter search-times, it is known that it was 

not able to find the known-optimum as frequently as MMAS. MMAS is more efficient than AS and GA, but despite its 

better solution quality, it is less efficient than SFLA. 

The improvements that the use of the pheromone bounds provide are made clear when comparing the performance of 

MMAS with that of ACOA. Both of these algorithms have similar updating schemes – both algorithms update the 

iteration-best ant’s path – however, due to the pheromone bounds, MMAS is able to generally find solutions of better 

quality. The trade off for this is seen in MMAS’ longer average search-times.  

To illustrate the different behaviours of AS and MMAS, the network costs found for each evaluation number for a 

sample run are given in Figure 5. A total of 100 000 evaluations are shown and the function values found by AS are 

given in black and the values found by MMAS are given in grey. From this plot it is seen that within the first 20 000 

evaluations, both algorithms were able to greatly improve the quality of solutions they found as the cost of the bulk of 

the solutions found tended towards the known-optimum value. It is seen that after this period of initial improvement, 

AS reached a point where it was unable to find solutions of increasing quality and with an increasing number of 

iterations the spread of the solution costs converged to a much tighter interval, implying that AS was converging.  

 

Desired location for: Figure 5 

 

Contrasting this performance to MMAS, it is seen that after a slightly slower rate at which the bulk of the solution 

qualities tended to the known-optimum value, MMAS was able to find optimal and near optimal solutions as seen by 

the lower values being extremely close to the known-lowest cost of $38.638 million. In time however, MMAS did not 

converge to the same extent as AS, but continued to generate solutions of a broad quality, indicating that, despite the 

fact that it located solutions of extremely high quality, the algorithm was still actively exploring the search space.  
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5.3 Case Study 2: The Hanoi Problem 

5.3.1 Background 

The Hanoi Problem (HP) has been considered by numerous authors in its discrete problem formulation [6], [8], [9]. 

Unlike the NYTP, it is a new design as there are no existing pipes in the system. The network consists of 34 pipes and 

32 nodes organised in three loops (Figure 6). The system is gravity fed by a single reservoir and has only a single 

demand case. Network details are given in Table 5. For each link there are six different new pipe options where a 

minimum diameter constraint is enforced (i.e. no null option is available for any pipe). Table 6 gives the design options 

for the HP. This case study has a problem size of approximately 2.78 x 10
26

 possible designs. The parameters were set 

as follows: 0 = 26 (for AS), pbest = 0.5,  = 0.0 (for MMAS), m = 80, and Q = 1.1 x 10
7
 (for both algorithms). 

 

Desired location for: Figure 6 

 

Desired location for: Table 5 

 

Desired location for: Table 6 

 

The best solution given in the literature is $6.182 million found by the fast messy genetic algorithm (fmGA1) in 113 

626 evaluations [8]. Again, it is important to note that other authors found solutions cheaper than this [6], [8]-[10], but 

these were determined as infeasible by EPANET2 (See [12] for hydraulic analysis results for these solutions). As with 

the NYTP, in the situation where authors have presented numerous solutions, the results for the lowest cost feasible 

solution have been presented in this paper. 

5.3.2 Results and Discussion 

Table 7 shows a comparison of the results obtained using the two ACO algorithms with those obtained using three other 

algorithms; GA-No.2 [6], a version of the standard GA, and fmGA1 [8]. No feasible solutions were found by AS in any 

run for the HP. As the lowest cost solution for the HP contains many of the larger size diameters, it can be deduced that 

the problem has a small feasible region, thus explaining AS’ poor performance. Other authors have also reported on the 

difficulty associated with this problem [10].  
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Desired location for: Table 7 

 

MMAS was found to be the best performing algorithm for this case study as it was able to find a new lowest cost 

solution, 0.78% less than the previous lowest cost solution found by fmGA1 [8]. MMAS also achieved the lowest mean 

best-cost (deviating 4.24% from the new best solution) but also had the longest search-times. The relative performance 

of MMAS compared to that of AS is a result of its ability to explore the search space more widely for a longer period of 

time, resulting from its non-convergence mechanisms, but still having its search guided by only the best information, 

resulting from its elitist updating scheme. 

A comparison of the lowest cost solution found by MMAS along with the solutions found by fmGA1 and GA-No. 2 is 

given in Table 8. It can be seen that the fmGA1 and GA-No.2 solutions differ from the MMAS solution by five links, 

which corresponds to an 85% similarity between the solutions. Of these five different links, four pipes of both the 

fmGA1 and GA-No.2 solutions have larger diameters than the solution found by MMAS, and only the diameter of link 

[13] is larger for the solution found by the MMAS algorithm compared with those found by the GAs. An interesting 

point to note is that the first 18 links of the MMAS solution are identical to those of the fmGA1 solution (except link 

[13]) and the last 15 links are identical to those of the GA-No.2 solution. These similarities correspond to the right-most 

loop of the MMAS solution being the same as the right-most loop of the fmGA1 solution (except for link [19]) and the 

left-most and centre loop being the same for the MMAS and GA-No.2 solutions (see Figure 6). 

 

Desired location for: Table 8 

 

Pressure heads for selected nodes and flows for selected links are given in Tables 9 and 10, respectively. Considering 

the three main links from the source feeding the network (links [3], [19], and [20]), it is seen that the MMAS solution 

increases the flow to the right-most arc through [3] and reduces the flow up the right-centre main through [19]. The 

increased flow through the right-most arc explains the need for the increase in the diameter size at link [13] in the 

MMAS solution. The extra flow in the right-most arc is used to provide greater flow to nodes along the top main (as 

illustrated by the larger flow rate in links [13] and [14] of the MMAS solution in Table 10) and so to reduce frictional 

losses, the diameter of link [13] was increased (see a comparison of the nodal heads at node 14, the node on the 

downstream end of link [13], in Table 9). 
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Desired location for: Table 9 

 

Desired location for: Table 10 

 

6 CONCLUSIONS 

Within this paper, the advanced ACO algorithm, MMAS, is compared to the simplistic ACO algorithm, AS, and other 

best performing algorithms from the literature for two WDS case studies. For both case studies MMAS is shown to 

outperform AS. The ease at which the water distribution system problem can be translated into the ACO problem 

paradigm combined with the excellent performance of MMAS illustrate that ACO is a well suited algorithm for this 

problem. 

Within the first case study, the New York Tunnels Problem (NYTP), MMAS found the known-optimum and provided 

the best performance found within the literature for this case study
5
 (MMAS achieved a mean objective function 

deviation of 0.51% from the known-optimum value). AS was unable to find the known-optimum for any runs. For the 

second case study, the Hanoi Problem (HP), AS performed worse than the genetic algorithm, the other ACO algorithms, 

and the shuffled frog leaping algorithm as it was unable to find any feasible solutions. MMAS, again provided the best 

performance seen in the literature
5
, as it found a new lowest cost solution that was 0.78% lower than the previous 

lowest cost solution. 

MMAS’ consistently high performance for both case studies illustrates that the additional mechanisms incorporated in 

MMAS to manage the exploit-explore relationship are effective in improving the performance of ACO algorithms (c.f. 

the other ACO algorithm, AS, which performed reasonably for the NYTP but extremely poorly for the harder HP). This 

extremely desirable characteristic of robustness to case study type can be mostly attributed to MMAS’ anti-convergence 

mechanisms. These were seen to enable the algorithm to search the solution space more thoroughly, whilst still being 

guided by the iteration-best solution. As MMAS is only one of many advanced ACO algorithms, future work should 

focus on the testing of the other algorithms to determine the algorithmic characteristics that are most suited to WDS 

optimisation. 
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Table 1. Conversion from the general ACO problem formulation to the WDSP 

 

General ACO problem formulation  WDSP equivalent 

Element Symbol  Element Symbol 

Path or solution. 

Admissible tour through 

the problem graph. 

S  

Design. Permissible 

set of diameter 

allocations to each 

pipe. 

 

Edge connecting node i to 

node j. 

(i, j)  

Diameter option j 

available for pipe i. 

diai, j 

Set of edges available from 

decision point i given the 

semi-constructed tour S´. 

(i, S´)  

Set of diameter 

options available for 

pipe i, independent 

of previous diameter 

selections. 

i = {diai, j : j = 1,…, NOi} 

Objective function f(S)  Network cost NC() 
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Table 2. Network data for the New York Tunnels Problem. For brevity, data are presented in imperial units but 

metric units were used in the simulations with conversion factors of 1 ft = 0.3048 m and 1 in = 0.0245 m. 

 

Link Data
a
 Node Data

b 

Link 

Existing 

Diameter 

(in) 

Length 

(ft) 
Node 

Demand 

(ft
3
/s) 

Minimum 

Head 

(ft) 

  [1] 180 11600   1 Reservoir - 

  [2] 180 19800   2   92.4 255 

  [3] 180   7300   3   92.4 255 

  [4] 180   8300   4   88.2 255 

  [5] 180   8600   5   88.2 255 

  [6] 180 19100   6   88.2 255 

  [7] 132   9600   7   88.2 255 

  [8] 132 12500   8   88.2 255 

  [9] 180   9600   9 170.0 255 

[10] 204 11200 10     1.0 255 

[11] 204 14500 11 170.0 255 

[12] 204 12200 12 117.1 255 

[13] 204 24100 13 117.1 255 

[14] 204 21100 14   92.4 255 

[15] 204 15500 15   92.4 255 

[16]   72 26400 16 170.0 260 

[17]   72 31200 17 57.5    272.8 

[18]   60 24000 18 117.1 255 

[19]   60 14400 19 117.1 255 

[20]   60 38400 20 170.0 255 

[21]   72 26400    

a
 All tunnels have a Hazen–Williams coefficient of 100 

b
 Reservoir has an elevation of 300 ft and all demand nodes 

have zero elevation  
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Table 3. Design options for the New York Tunnels Problem. For brevity, data are presented in imperial units but 

metric units were used in the simulations with conversion factors as given in the Table 2 caption. 

 

Option 

Number 

Diameter 

(in) 

Cost 

($/ft) 

Hazen–

Williams 

Coefficient 

  1     0        0
a
   - 

  2   36      93.5 100 

  3   48 134 100 

  4   60 176 100 

  5   72 221 100 

  6   84 267 100 

  7   96 316 100 

  8 108 365 100 

  9 120 417 100 

10 132 469 100 

11 144 522 100 

12 156 577 100 

13 168 632 100 

14 180 689 100 

15 192 746 100 

16 204 804 100 

a
 A virtual unit cost of 110 $/m was used to calculate i1 for 

all links i =1, …, 21. 
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Table 4. Comparison of algorithmic performance for applications to the New York Tunnels Problem. Results for 

AS and MMAS are based on 20 runs. NA means that the information was not available. In the situation where 

other authors have presented numerous solutions, the results for the lowest cost feasible solution have been 

presented in this table where feasibility was determined by EPANET2. 

 

Algorithm 
Best-cost ($M) (% deviation from known-optimum)  

Search-time 

(evaluation number) 

Min mean max min mean max 

AS 39.204 (1.45) 39.910 (3.29) 40.922 (5.91) 23,601 34,877 44,837 

MMAS
 

38.638 (0.00) 38.836 (0.51) 39.415 (2.01) 22,635 30,711 42,169 

GAimp
a
 38.796 (0.41) NA NA 96,750 NA NA 

ACOA
b
 38.638 (0.00) NA NA 7,014 13,928 23,045 

SFLA
c
 38.796 (0.41) NA NA 21,569 NA 24,817 

a
 Ref. [5]  

b
 Ref. [11] 

c
 Ref. [10] 
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Table 5. Network data for the Hanoi Problem. 

 

Link Data Node Data
a, b

 

Link 

Number 

Length 

(m) 

Node 

Number 

Demand 

(L/s) 

  [1]   100   1 Reservoir 

  [2] 1350   2 247.22 

  [3]   900   3 236.11 

  [4] 1150   4   36.11 

  [5] 1450   5 201.39 

  [6]   450   6 279.17 

  [7]   850   7 375.00 

  [8]   850   8 152.78 

  [9]   800   9 145.83 

[10]   950 10 145.83 

[11] 1200 11 138.89 

[12] 3500 12 155.56 

[13]   800 13 261.11 

[14]   500 14 170.83 

[15]   550 15   77.78 

[16] 2730 16   86.11 

[17] 1750 17 240.28 

[18]   800 18 373.61 

[19]   400 19   16.67 

[20] 2200 20 354.17 

[21] 1500 21 258.33 

[22]   500 22 134.72 

[23] 2650 23 290.28 

[24] 1230 24 227.78 

[25] 1300 25   47.22 

[26]   850 26 250.00 

[27]   300 27 102.78 

[28]   750 28   80.56 

[29] 1500 29 100.00 

[30] 2000 30 100.00 

[31] 1600 31   29.17 

[32]   150 32 223.61 

[33]   860   

[34]   950   

a
 Reservoir has an elevation of 100 m. 

b
All demand nodes have an elevation of zero and a 

minimum head of 30 m. 
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Table 6. Design options for the Hanoi Problem. 

 

Option 

Number 

Diameter 

(mm) 

Cost  

($/m) 

Hazen–Williams 

Coefficient 

1 304.8   45.726 130 

2 406.4   70.400 130 

3 508.0   98.378 130 

4 609.6 129.333 130 

5 762.0 180.748 130 

6 1016.0 278.280 130 
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Table 7. Comparison of algorithmic performance for applications to the Hanoi Problem. Results for AS and 

MMAS are based on 20 runs. NFS means no feasible solution was found and NA means that the information was 

not available. In the situation where other authors have presented numerous solutions, the results for the lowest 

cost feasible solution have been presented in this table where feasibility was determined by EPANET2. 

 

Algorithm 
Best-cost ($M) (% deviation from optimum)  

Search-time 

(evaluation number) 

min Mean max min mean max 

AS NFS NFS NFS - - - 

MMAS
a
 6.134 (0.00) 6.394 (4.24) 6.635 (8.17) 35,433 85,571 113,429 

GA-No. 2
b
 6.195 (1.00) NA NA ~10

6
 NA NA 

fmGA1
c
 6.182 (0.78) NA NA 113,626 NA NA 

a 
A slightly better mean best-cost was found for  = 0.8, but as the difference between the means was near insignificant 

(i.e. less than 0.04%),  = 0.05 was considered to be the best parameter setting, as it found a significantly lower 

minimum best-cost solution 

b
 Ref. [6] 

c
 Ref. [8]  
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Table 8. Comparison of MMAS’s minimum best-cost solution with other lowest cost solutions from the literature 

for the Hanoi Problem. The symbols 
(+)

 and 
(–)

 indicate an increase or reduction in diameter size, respectively, 

relative to the MMAS solution. 

Link 
Designs 

MMAS fmGA1 GA-No.2 

  [1] 40 40 40 

  [2] 40 40 40 

  [3] 40 40 40 

  [4] 40 40 40 

  [5] 40 40 40 

  [6] 40 40 40 

  [7] 40 40 40 

  [8] 40 40 40 

  [9] 40 40 40 

[10] 30 30 30 

[11] 24 24     30 
(+)

 

[12] 24 24 24 

[13] 20     16 
(–) 

    16 
(–)

 

[14] 12 12     16 
(+)

 

[15] 12 12 12 

[16] 12 12     16 
(+)

 

[17] 20 20 20 

[18] 24 24 24 

[19] 20     24 
(+)

     24 
(+)

 

[20] 40 40 40 

[21] 20 20 20 

[22] 12 12 12 

[23] 40 40 40 

[24] 30 30 30 

[25] 30 30 30 

[26] 20     24 
(+)

 20 

[27] 12 12 12 

[28] 12 12 12 

[29] 16 16 16 

[30] 16 16 16 

[31] 12 12 12 

[32] 12     16 
(+)

 12 

[33] 16 16 16 

[34] 20     24 
(+)

 20 

Network Cost  

(M$) 
6.134 6.182 6.195 

a
 Ref. [8] 

b
 Ref. [6] 
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Table 9. Pressure excess (m) for critical nodes for designs (solutions) presented in Table 8. A critical node here is 

defined as one where one of the three designs has a pressure excess less than 5m above the minimum allowable 

pressure head. Nodes with lower pressure heads than those for the MMAS solution are marked with 
(–)

. 

Hydraulic analysis was performed using EPANET2. 

 

Node 
Pressure excess (m) 

MMAS fmGA1
a
 GA-No.2

b
 

13 0.940 1.756 4.184 

14 7.247     4.275 
(–) 

    4.774 
(–)

 

15 2.952     2.072 
(–) 

4.313 

16 2.230     2.046 
(–)

 4.313 

26 2.659 3.590 3.656 

27 1.705 1.998 3.100 

29 1.361 2.294 1.844 

30 0.419 1.846 0.973 

31 0.895 1.994 1.465 

32 2.166 3.496 2.764 

a
 Ref. [8] 

b
 Ref. [6] 
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Table 10.  Flow rates (L/s) in main links distributing flow from source and links where the MMAS design has 

differing diameter sizes from the other solutions in Table 8. Links with flow less than the MMAS design are 

marked 
(–)

. Hydraulic analysis was performed using EPANET2. 

 

Link 
Flow rate (L/s) 

MMAS fmGA1
b
 GA-No.2

c
 

   [3]
a 

2184.39     2147.45 
(–)

   2140.28 
(–)

 

[11]   416.76   416.76 416.76 

[13]   292.86       255.93 
(–)

    248.76 
(–)

 

[14]   121.99         85.06 
(–)

      77.89 
(–)

 

[16]     73.40     87.61 135.54 

 [19]
a 

  704.10   718.31 766.24 

 [20]
a 

2167.63 2190.35   2149.59 
(–)

 

[26]   321.39   344.11     303.36 
(–)

 

[32]     71.32     80.80   72.52 

[34]   324.15   333.63 325.35 

a
 Main links leading from source (i.e. the reservoir at node 1). 

b
 Ref. [8] 

c
 Ref. [6] 
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Figure 1. Illustration of the development of pheromone trails and the eventual dominance of the pheromone level 

of the shortest path. 
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Figure 2. Possible graph representation of example given in Figure 1. 
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procedure ACO_program 

  initialisation_routines() 

  do(for all iterations) 

    do(for all ants) 

      construct_solution() 

    end do 

    update_pheromone() 

  end do 

  output_routines() 

end procedure ACO_program 

 

 

 

 

 

Figure 3. Example of the structure of an ACO procedure 
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Figure 4. Network layout for the New York Tunnels Problem. 
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Figure 5. Network cost values found at each evaluation number (i.e. each ant within each iteration) for AS and 

MMAS applied to the New York Tunnels Problem. 

Evaluation number / 1000 
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Figure 6. Network layout for the Hanoi Problem. 


