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Carrier-Phase and Frequency-Estimation Bounds for
Transmissions With Embedded Reference Symbols

Feng Rice

Abstract—The true Cramér–Rao lower bound (CRLB) for the
joint estimation of carrier phase and frequency is derived for
transmission bursts with interleaved reference and phase-shift
keying/quadrature amplitude modulated data symbols. Results
are presented for the special cases of midamble, and preamble and
postamble, pilot-symbol insertion. The derivation reveals that the
CRLB is a function of the location of the reference symbols in the
burst, the number of reference symbols, the number of data sym-
bols, the signal-to-noise ratio and the data-modulation scheme. By
distributing the reference symbols symmetrically about the center
of the burst and analyzing relative to the middle of the signal
vector, the joint frequency and phase estimation can be decoupled,
and the optimal phase estimation is achieved. In the decoupled
case, the phase CRLB is independent of the location of reference
symbols in the burst. In a symmetrical burst, the use of a preamble
and postamble is found to provide a lower frequency-estimation
CRLB than that with a midamble. It appears that the frequency
CRLB is reduced as the reference symbols are symmetrically
distributed closer to the ends of the burst.

Index Terms—Cramér–Rao lower bounds (CRLBs), frequency
estimation, phase estimation, synchronization.

I. INTRODUCTION

THE true Cramér–Rao lower bounds (CRLBs) for joint
frequency and phase estimation from unknown data

symbols (blind operation) of modulated signals have been
presented in [1]–[4]. The CRLBs for modulated signals
can be expressed as the CRLBs of a carrier wave (CW)
divided by a function of modulation and noise power, i.e.,
CRLB CRLB , assuming that the CW
and the modulated signal have average unity power. The
is a function of the geometry of the signal set and the en-
ergy-per-symbol-to-noise-density ratio . This applies to
both phase and frequency estimation [1].

In certain scenarios, such as packet transmission for time-
division multiple-access (TDMA) systems, the data symbols
alone may be insufficient for effective synchronization of the
burst. This has motivated the use of synchronization overhead
in the form of inserted reference symbols. These are sometimes
grouped into a preamble, postamble, or midamble, or alterna-
tively distributed throughout the packet as pilots. In the most
general case, the reference symbols are arbitrarily interleaved
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with data symbols in some predetermined order. Given that ref-
erence symbols are inserted, the synchronization performance
may be enhanced where both data and reference symbols are
used to estimate the received signal parameters. Previous CRLB
results may be used to approximate the best-case estimator per-
formance with either known symbols at low signal-to-noise ratio
(SNR) or unknown data symbols at high SNR. It is known that
estimator performance may be enhanced by combining algo-
rithms for both known and unknown data, especially at prac-
tical operating SNRs. However, the CRLB for these cases has
not been well understood. This letter derives the CRLB for an
arbitrary mixture of interleaved reference and data symbols.
The letter investigates the synchronizer CRLBs for various de-
sign-burst structures, such as number of the reference symbols
and their location in the burst. A static additive white Gaussian
noise (AWGN) channel is assumed.

Section II derives the CRLBs for joint frequency and phase
estimation with the interleaved data and reference burst. Since
the location of the reference symbols is important for the fre-
quency CRLB, various frame structures are investigated. It is
found that a symmetrical burst can decouple the joint frequency
and phase estimation, which means that the frequency-estima-
tion error has no impact on the phase estimate. Therefore, the
optimal phase estimation is obtained.

Section III investigates the effect of the location of the refer-
ence symbols on the frequency-estimation accuracy. It is shown
that the performance of the symmetrical burst with preamble
and postamble is superior to that of the symmetrical burst with
midamble at low and moderate SNR. Brief conclusions are pre-
sented in Section IV.

II. CRLBS FOR JOINT FREQUENCY AND PHASE ESTIMATION

Fig. 1 illustrates a general reference and data-interleaved
transmission burst. The length of the burst is symbols,
is the total number of data symbols, is the number of data
symbols in the th subgroups, is the total number of reference
symbols in the burst, is the number of reference symbols in
the th subgroups, is the number of subgroups of reference
symbols, and is the number of the subgroups of data symbols.

We initially assume that the received signal has perfect
symbol timing, and the frequency offset is relatively small so
that the received signal is free of intersymbol interference. The
received signal is given by

or
(1)

where is the frequency offset in radians per symbol pe-
riod, is a fixed, arbitrary value, and are the normal-
ized transmitted data symbols belonging to an arbitrary
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Fig. 1. Reference and data-interleaved transmission burst.

phase-shift keying (PSK)/quadrature amplitude modula-
tion (QAM) constellation. For example, with square 16QAM

. The average
power of the reference symbols is .

is the th noise sample, whose real and imaginary parts
are independent zero-mean Gaussian random variables, each
with variance , and the ’s are mutually independent. The
symbol SNR is . The estimator is defined
at index . For the case where the estimator is derived at
the center of the burst, ,
and we define this as . If the estimator is derived at the start
of the burst, , we define it as . The
symmetrical burst can decouple the joint estimation, and it
will be discussed later.

We use the notation for the probability density function
(pdf) of the whole interleaved signal vector, for the pdf
for the data part, and for the pdf of the reference part.
Boldface symbols denote vectors. The pdf of the received signal
vector is given by

(2)

For a single received reference symbol, we have

(3)

where is known symbol, indicates the complex conjugate,
and and stand for real and imaginary parts.

For a single received data symbol, we have

(4)

where the sumation is taken over all possible constellation
points . We assume that the transmitted symbols are
equally likely, i.e., is independent of .

Inserting (3) and (4) into (2), and then taking the logarithm
and retaining the terms depending on , we obtain the corre-
sponding log-likelihood function

(5)

The Fisher information matrix (FIM) is given by [5]

(6)

where the first matrix is related to the reference symbols and
the second matrix is related to the data symbols, denotes
statistical expectation with respect to the pdf . The
modulation function is the ratio of the CW CRLB to the
CRLB of the modulated signal [1].

To simplify the notation, the shorthand definition of the FIM
is
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Fig. 2. Frequency CRLBs for preamble-assisted frame structure, N = 1000,
16QAM with various L.

For example, the frame structure is preamble, followed by
one block of information data symbols. The range of is

. The corresponding elements of the FIM from
(6) are

Fig. 2 shows the CRLBs for frequency estimation. The data
symbols are 16QAM and the burst length . The solid,
dashed, and dot-solid lines represent 10%, 20%, and 30% pre-
amble ( ) in the burst, respectively. The circle line “o-” is
the CW CRLB (100% reference symbols), and the star line is the
CRLB for a burst with 100% 16QAM data symbols. The CRLBs
with preamble-assisted bursts are bounded between these two
lines. At high SNR, the CRLBs of the preamble-assisted burst
converge to the CW CRLB. At low SNR, the reference symbols
dominate the estimation, and the burst CRLBs asymptotically
approach the preamble CRLBs, which agrees with [6, eq. (36)].

Note that the elements and depend on the range of
and the location of the reference symbols. In (6), the core

of element is given by . If is selected so that the
sampling times are symmetrically located about zero, and also
the reference symbols are distributed symmetrically about the
center of the burst, then we have

where is an odd number.

Fig. 3. Comparison of the CRLBs for MTB and DCTB, N = 101, 16QAM
modulation.

Under this condition, the FIM is a diagonal matrix, which
means that the joint frequency and phase estimation are decou-
pled. The frequency-estimate error will not affect the phase es-
timation. The frequency CRLB will be obtained in the next sec-
tion. The decoupled phase CRLB is given by

CRLB (7)

III. EFFECT OF THE LOCATION OF REFERENCE

SYMBOLS ON FREQUENCY ACCURACY

In the following, we restrict our attention to symmetrical burst
structures. Still, there are many possible arrangements of data
and reference symbols. In general, we can divide them into
two categories: 1) bursts with a reference symbols placed in
the middle of the burst are called midamble transmission bursts
(MTB); 2) bursts with a data symbol placed in the middle of the
burst are called data-centered transmission bursts (DCTB). The
remaining reference symbols are symmetrically placed about
the center of the burst.

Fig. 3 shows the comparison of the CRLBs for MTB and
DCTB. The transmission bursts are of the same length, and con-
tain for MTB and for DCTB (six reference
symbols at each end of the burst). The symbol “p–” is a short-
hand notation for a burst structure, “—” stands for data symbols,
and “p” for preamble/pilot/postamble/midamble symbols. The
legend symbols of Fig. 3 “p—p” and “p-p–p-p” are for DCTB
with two and four subgroups of reference symbols, respectively.
It is interesting to observe that the frequency CRLBs of DCTB
are lower than that of the “-pp-” MTB, although MTB has one
extra known symbol. Moreover, if we move six of the symbols
of the “-p-” MTB to the two ends of the burst forming “p–pp–p,”
which is three reference symbols at each end and ref-
erence symbols in the middle of the burst, the frequency CRLB
(standard deviation) decreases by a factor of 10 at low SNR.
This result shows that the distribution of the the preamble and
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postamble plays a significant role in frequency estimation. It ap-
pears that the frequency CRLB is reduced as the reference sym-
bols are located closer to the ends of the burst.

The phase CRLBs for MTB or DCTB are the same since, the
decoupled phase CRLB is independent of the location of the
reference symbols. (Of course, the phase CRLB of is
slightly lower than that of .)

The generalized frequency CRLB equations for DCTB and
MTB are given by (8), shown at the bottom of the page, where

and are even numbers, and is an odd number, i.e., the ref-
erence symbols are arranged into groups of , and located
at intervals of integer data symbols from the cen-
tral data symbol. We then have (9), shown at the bottom of the
page, where and are odd numbers, and are even, and

, i.e, there are in the center of the burst.
Note that the terms within the first curly brackets in (8) and

(9) are the reference-symbol contribution to the CRLB, and
the terms within the second curly brackets are the data-symbol
contribution to the CRLB. As SNR decreases, becomes
small [1]. At low SNR, the second curly brackets are small
enough that they can be ignored (intuitively, the data symbols
are less significant to the estimator at low SNR).

Fig. 4 shows the CRLBs for the DCTB with various refer-
ence-symbol distributions. It reveals that the distribution with
reference symbols located at the two ends of the burst ( )
obtains the lowest CRLB, compared with other numbers of sub-
group at given . As becomes large, the frequency-esti-
mation error increases. The worst case is the one symbol per
pilot group uniformly distributed in the burst. The reason is that
the frequency CRLB is sensitive to the length of the subgroup

and . At low SNR, as decreases, the term

Fig. 4. Comparison of CRLBs for various DCTB 16QAM withL = 20,N =

201.

increases faster than the lower order terms (term scaled
down by , where ).

IV. CONCLUSION

New carrier-phase and frequency CRLBs for transmissions
with embedded reference symbols have been derived. Since the
location of the reference symbols is important for the CRLBs,
various burst structures have been investigated. In the case of a
symmetrical burst , the joint frequency and phase estimators
can be decoupled, and the optimal phase estimate is achieved.

CRLB

(8)

CRLB

(9)
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Furthermore, the symmetrical burst with preamble and post-
amble achieves lower frequency estimation variance than the
burst with midamble. It appears that frequency CRLB is reduced
as the reference symbols are located closer to the ends of the
burst.
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