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FIELD CHARACTERIZATION OF FIELD CAPACITY AND  
ROOT ZONE AVAILABLE WATER CAPACITY  

FOR VARIABLE RATE IRRIGATION 

T. Lo,  D. M. Heeren,  L. Mateos,  J. D. Luck,  D. L. Martin,  K. A. Miller,  J. B. Barker,  T. M. Shaver 

ABSTRACT. Accurate spatial characterization of field capacity (FC) and root zone available water capacity (R) can 
enhance site-specific management practices—such as variable rate irrigation—to lower input costs, reduce contaminant 
leaching, and/or improve crop yield. Measuring the volumetric water content after wet soils drain following substantial 
precipitation can provide a field estimate of FC. The average FC (FCa) for the managed root zone was determined at 
thirty-two locations in a topographically variable field in south central Nebraska. The difference between FC and 
permanent wilting point estimates—computed using a pedotransfer function—yielded values for R for the observation 
locations. Sampling locations were too sparse for reliable interpolation across the field. Therefore, relationships between 
a surrogate, or predictor, variable and soil water properties were used to provide spatial distributions of FC and R for the 
field. Field estimates of FCa and R were more strongly correlated to elevation (correlation coefficient, r = -0.77 and -
0.76, respectively) than to deep soil apparent electrical conductivity (r = -0.46 and -0.39, respectively). Comparing maps 
of FCa and R from gSSURGO to maps from field characterization yielded a root mean squared difference of 0.031 m3 m-3 
for FCa and 34 mm for R. Sampling seven locations across the elevation range in this field produced FCa and R prediction 
functions that achieved 95% and 87%, respectively, of the reduction in the standard error achievable with a larger 
number of sampling locations. Spatial characterization of FCa and R depends on identifying a suitable predictor 
variable(s) based on field knowledge and available spatial data. Well-chosen variables may allow satisfactory predictions 
using several sampling locations that are distributed over the entire field. Ultimately, the costs and benefits of spatial 
characterization should be considered when evaluating site-specific water management. 

Keywords. Available water capacity, Electrical conductivity, Field capacity, Permanent wilting point, Spatial variability, 
Variable rate irrigation. 

onventional center-pivot irrigation (CI) does not 
involve site-specific water applications; rather, 
growers seek to apply a uniform depth 
throughout the field, accepting that portions of 

the field may receive more or less water than ideal. The 
emerging technology of variable rate irrigation (VRI) 
enables growers “to spatially vary water application depths 

to address specific soil, crop, and/or other conditions” 
(Evans et al., 2013). The technology is well-developed 
(Kranz et al., 2012) and commercially available; however, 
research on management practices for VRI lacks equivalent 
advancement (Hedley et al., 2009; McCarthy et al., 2014; 
Daccache et al., 2015; O’Shaughnessy et al., 2016; and 
Stone et al., 2016). Improving spatial characterization of 
soil properties remains a critical need. 

Tailoring VRI to site-specific conditions creates benefits 
when conditions vary within a field. VRI can reduce 
pumpage compared to CI without sacrificing yield by 
setting spatially variable thresholds for initiating irrigation 
(Ritchie and Amato, 1990). Lo et al. (2016) analyzed 
potential pumpage reduction by estimating the difference in 
undepleted available soil water at the end of the growing 
season. Using VRI to mine undepleted water in regions of a 
field with larger available water capacity (AWC, 
definitions of selected terms are in the Appendix) could 
reduce pumpage by 25 mm y-1 or more for 13% of the 
center-pivot fields in Nebraska compared to well-managed 
CI. Other benefits include reduced deep percolation and 
fertilizer leaching (Sadler et al., 2000). Adoption of VRI 
may be most advantageous when yield quality and/or 
quantity are sensitive to over-irrigation—such as for cotton 
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(Grimes et al., 1969), wine grape (Matthews and Anderson, 
1988), and soybeans (Brady et al., 1974). Additionally, 
VRI may alleviate yield losses from waterlogged soil due 
to increased denitrification or other nutrient losses (UNL 
Extension, 2014), lack of aeration (Kanwar et al., 1988), 
and/or inability to operate farm machinery (Sadler et al., 
2005). 

Managing VRI systems requires a method to determine 
irrigation timing and application amounts to specific 
management zones—essentially irrigation scheduling for 
each tract. Two common methods of scientific irrigation 
scheduling rely on the knowledge of soil water properties. 
One method calculates soil water depletion as the 
difference between current soil water content and field 
capacity (FC) within the managed root zone, i.e., the soil 
depth considered for irrigation management. Irrigation 
commences when the depletion equals the sum of the net 
irrigation depth and the local rainfall allowance. The 
second method calculates soil water depletion fraction, first 
subtracting permanent wilting point (WP) from current soil 
water content within the managed root zone and then 
dividing by root zone available water capacity. Irrigation 
starts when the soil water depletion fraction reaches 
management allowed depletion (MAD; Merriam, 1966), 
which is generally selected to be smaller than the depletion 
fractions that cause plant water stress (Sadras and Milroy, 
1996; Allen et al., 1998; Steduto et al., 2009). If one of 
these irrigation scheduling methods is adopted in each VRI 
management zone to optimize the application depths over 
that zone, the distribution of FC or R across the field would 
need to be known. 

In other words, capturing VRI benefits requires accurate 
spatial data. The required accuracy may exceed the level 
available in gSSURGO soil surveys (NRCS, 2015). 
Delineation of soils into discrete soil map units in soil 
surveys occurred at a scale not intended for precision 
agriculture (Brevik et al., 2003) and was not georeferenced 
using Global Positioning System (GPS) receivers. 
Furthermore, soil properties in surveys originated from 
representative locations, which rarely aligned with a 
specific soil polygon. Therefore, surveys do not account for 
natural or manmade differences in the FC and R data 
between sampling locations and the point of interest. 
Previous research utilized a two-step procedure where FC 
and R were first determined at multiple field locations and 
were then predicted throughout the field using a predictor 
variable (Hezarjaribi and Sourell, 2007; Jiang et al., 2007). 
Following this procedure to map site-specific FC and R 
may be more appropriate than using gSSURGO for in-
season management and in-depth analyses of the economic 
advantages of VRI. 

The challenge becomes determination of FC and R 
throughout the field. A standard method for estimating WP 
has been the pressure plate with 1500 kPa of tension 
(Romano and Santini, 2002). At the same time, the 
volumetric water content at -1500 kPa (θ1500) has been 
found to be relatively well-predicted from soil composition 
data through pedotransfer functions (PTFs; Saxton and 
Rawls, 2006). Some site-specific studies have used the 
pressure plate method (Hezarjaribi and Sourell, 2007; Jiang 

et al., 2007; Hedley and Yule, 2009), whereas others have 
used PTFs (King et al., 2006; Haghverdi et al., 2015). 

Determining FC is more challenging. Although the soil 
water potential associated with FC (ψFC) is somewhat 
related to texture, it is difficult to predict (Romano and 
Santini, 2002). Uncertainty results from the characteristics 
of each soil horizon and the interactions between horizons. 
For example, ψFC and thus FC can increase with soil 
layering (Martin et al., 1990; Romano and Santini, 2002). 
Soil water contents vary widely between soil textures in the 
range of soil water potentials where ψFC may occur; thus, 
accurate estimates of FC can be problematic. Determining 
FC for an intact soil profile captures in-situ effects of free 
drainage. The classic experiment for measuring FC 
involves saturating the soil profile, covering the soil 
surface, and monitoring soil water content and drainage 
(Romano and Santini, 2002). King et al., (2006) used this 
method for VRI research; however, it is impractical for 
irrigation managers. A less demanding method for 
determining FC would be to measure “observational field 
capacity” (FCobs), an estimate of FC determined in the field 
but under non-experimental conditions. The concept of 
FCobs is consistent with the suggestion by Martin et al. 
(1990) that “[a] good indication of the field capacity water 
content can be determined by sampling field soils one to 
three days after a thorough irrigation or rain and when crop 
water use is small.” Also, FCobs has been measured in 
previous site-specific research (Hezarjaribi and Sourell, 
2007; Jiang et al., 2007; Haghverdi et al., 2015). A value of 
R calculated from FCobs and WP can be referred to as 
“observational R” (Robs). Despite the benefits of using FCobs 
compared to other methods of determining FC, few studies 
have quantified the spatial variability in FCobs or Robs for 
VRI management (Hezarjaribi and Sourell, 2007; Jiang et 
al., 2007). 

Once FCobs and Robs have been determined at multiple 
sampling locations, one must forecast parameter values for 
unsampled location within the field. Unless the sampling 
locations are dense, interpolation based on spatial 
autocorrelation alone may poorly predict FCobs and Robs at 
points far from sampling points. Predictor variables 
strongly correlated to FCobs or Robs that can be measured 
densely with less effort than FCobs or Robs are often 
employed to predict the spatial distribution of FCobs or Robs. 
A commonly used predictor variable is apparent soil 
electrical conductivity (ECa). In theory, ECa is a function of 
the volume of the solid phase, the volume of the liquid 
phase in fine pores, the electrical conductivity of the solid 
phase, and the electrical conductivity of the liquid phase in 
large pores (Rhoades et al., 1989). Researchers have used 
regression (Hezarjaribi and Sourell, 2007; Jiang et al., 
2007; Hedley and Yule, 2009), geostatistics, and machine 
learning (Haghverdi et al., 2015) to predict the spatial 
distribution of FC and R from ECa. We will use the term 
“field characterization” to represent the procedure of 
determining FC or R from in-situ measurements (i.e., FCobs 
or Robs) at multiple sampling locations and then predicting 
throughout the field using predictor variables. 

Our goal was to develop methods to characterize FCobs 
and Robs within a field. Multiple spatially dense properties 
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were evaluated for predictor variables for a field in south 
central Nebraska. Then, FCobs and Robs maps produced by 
field characterization were compared with soil survey 
maps. Finally, sampling at two to ten locations were 
simulated to design sampling schemes and estimate the 
accuracy of spatial predictions of FCobs and Robs. The best 
variables for predicting FCobs and Robs and the resultant 
accuracy may be specific to the sampled field; however, the 
procedure should be generalizable to a wide range of fields. 

METHODS 
FIELD SITE 

The study was conducted on a 26-ha center-pivot-
irrigated field located in Hamilton County, Nebraska 
(latitude: 40.832°, longitude: -98.015°). The soils are 
classified as Hastings silt loam and silty clay loam (Fine 
smectitic, mesic Udic Argiustolls) with a small area of 
Hobbs silt loam (Fine-silty, mixed, superactive, nonacid, 
mesic Mollic Ustifluvents) in the southwest corner of the 
field. The highest elevation occurred in the northern area of 
the field and the land slopes downward into two valleys in 
the south (fig. 1). The difference between the maximum 
and minimum elevation was 12 m (USGS, 2014). The 
National Hydrography Dataset (Simley and Carswell, 
2009) indicates that each valley contained an ephemeral 
stream. The valley in the southwest portion of the field 
contained an eroded channel. The channel was dry at the 
beginning of the 2014 growing season, but remained 
inundated for much of the year. The channel and its banks 
were uncropped and inhabited by riparian vegetation (fig. 
1; FSA, 2014). The valley in the eastern portion of the field 
did not form a distinct channel. The soil surface showed 
signs of overland flow, but ponded water was not observed 
during the 2014 growing season. 

Measurement locations were selected along topographic 
transects to characterize the hydrological variability (fig. 
1). Measurement locations were concentrated within two 
hillslope segments where the slope varied the most. Nine 
slope positions were monitored along a pair of longer 
transects extending south into the wider valley. Seven slope 
positions were monitored along a pair of shorter transects 
extending east into the narrower valley. The ridge-tilled 
crop rows were oriented in a north-south direction. The 
transects aligned with crop rows were referred to as the 
parallel transects, whereas the transects orthogonal to crop 
rows were referred to as the perpendicular transects. The 
parallel transects spanned a larger elevation range but 
contained gentler slopes than the perpendicular transects 
(fig. 2). 

SOIL SAMPLING AND SOIL MOISTURE MEASUREMENT 
On 3 and 9 June 2014, a hydraulic probe (Giddings 

Machine Company, Windsor, Colo.) was used to extract 
soil cores and install aluminum neutron gauge access tubes 
at measurement locations. Soil samples—centered at depths 
of 0.15, 0.46, 0.76, 1.07, 1.37, and 1.68 m below the soil 
surface—were extracted from the cores. Samples were 
assumed to represent the 0.30-m layer centered at the 

specified depth. Samples were trimmed to a length of 
approximately 0.10 m. Actual lengths were measured and 
samples were oven-dried to determine the bulk density and 
volumetric water content (θv). Ward Laboratories, Inc. 
(Kearney, NE) ascertained the textural composition and 
organic matter content of each sample. Cores at the 0.15-m 
depth were unavailable at two locations. Soil properties at 
the missing locations were assumed to match values at 
corresponding positions on the paired transects. 

Soil moisture was measured with a neutron gauge (503 
Elite Hydroprobe, CPN International, Concord, Calif.). 
Measurements were centered at the same depths as for soil 
sampling. Measurements were 30 s in duration and were 
assumed to represent the 0.30-m layer centered at the 
measurement depth. Neutron gauge readings were taken 
when tubes were installed. A standard count—taken in the 
shielded position for 256 s— was used to compute count 
ratios. Count ratios were compared with the θv values of the 
soil samples (fig. 3). Samples whose shape or bulk density 
was suspect were omitted from consideration. The linear 
regression between count ratio and θv represents the field-
specific neutron gauge calibration. A separate calibration 
was used for the 0.15-m depth. Neutron readings on 
subsequent days were transformed into count ratios using a 
standard count for the respective day. The linear calibration 
was used to compute θv. 

Figure 1. Topographic map of the field site. Measurement locations 
(dots) form a pair of transects parallel to crop rows (north-south) and 
perpendicular to crop rows. Highest and lowest positions on transects 
are numbered. Elevations are in meters above mean sea level. 

1

9
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POINT DETERMINATION OF FCOBS,A, WP, AND ROBS 
The antecedent precipitation from 1 October 2013 to 

17 June 2014 was 452 mm, which was slightly above 
average (NCEI, 2017). The FCobs was determined from 
neutron probe readings on 18 June 2014, which was three 
days after a 25-mm rain in the area (NDNR, 2017). The 
precipitation was sufficient to replenishing the 1.22-m 
managed root zone to FC. This assessment is supported by 
increases in θv at the 1.37-m and 1.68-m depths following 
access tube installation 15 and 12 days earlier. Unlike 
classic experiments for measuring FC, the managed root 
zone was not recently saturated, and drainage rates were 
not confirmed to be negligible. However, θv on 18 June 
2014 was expected to serve as a sufficiently accurate in-situ 
estimate of FC (FCobs). The average FCobs (FCobs,a) across 
the managed root zone was calculated by averaging FCobs at 
the 0.15-, 0.46-, 0.76-, and 1.07-m depths. 

The Saxton and Rawls (2006) pedotransfer function was 
used to estimate the WP for specific layers and locations. 
This PTF has been commonly used for Nebraska (Deck, 
2010; Mortensen, 2011; Rudnick and Irmak, 2014). The 
WP value was estimated by entering a tension of 1500 kPa 
into the PTF. Other inputs included the sand content, clay 
content, bulk density and organic matter content. The 
average WP (WPa) across the managed root zone was 
calculated by averaging WP at the 0.15-, 0.46-, 0.76-, and 
1.07-m depths. 

Observational available water capacity (AWCobs) was 
calculated by subtracting predicted WP from FCobs. The 
average AWCobs (AWCobs,a) across the managed root zone 
was calculated by averaging AWCobs at 0.15-, 0.46-, 0.76-, 
and 1.07-m depths. Observational root zone available water 
capacity (Robs) was the product of AWCobs,a and the 
managed root zone depth of 1.22 m. 

SPATIAL DATASETS 
The gridded Soil Survey Geographic (gSSURGO) 10-m 

soil map unit raster for Nebraska (NRCS, 2015) and the 
1/9 arc-second (about 3 m) National Elevation Dataset 
(NED) digital elevation model (DEM) tile that encom-
passed the field (USGS, 2014) were obtained. In 
gSSURGO, soil map units include one or more compo-
nents, each representing a fraction of the area for that map 
unit. In turn, each component is comprised of one or more 
soil horizons. Each horizon represents a specified thickness 
within a soil profile for that horizon. Values of R and 
average FC (FCa) for a 1.22-m managed root zone were 
calculated for each component using the gSSURGO tabular 
data. Then, R and FCa for each map unit were calculated by 
weighting component values by the percent composition of 
that component. 

Apparent soil electrical conductivity (ECa) was meas-
ured throughout the field using a georeferenced on-the-go 
electrode-type sensor system (MSP, Veris Technologies, 
Salina, Kan.) on 23 April 2015. With 24 mm of rain during 
the previous seven days (NDNR, 2017), the soil was moist. 
Anhydrous ammonia at 247 kg ha-1 of N was applied 

Figure 2. Elevation and slope along transects parallel and perpendicular to crop rows versus horizontal distance from the top of each transect. 
The 32 measurement locations are marked by dots and labeled with their respective slope position number. 

Figure 3. Field-specific calibrations of volumetric water content (θv) 
vs. soil to standard count ratio for neutron gauge. Calibrations are for
the 0.15-m measurement depth (triangles, dashed line, and bottom
equation) and for deeper measurement depths (0.46, 0.76, 1.07, 1.37, 
and 1.68 m; circles, solid line, and top equation). 

Deeper depths:
θv = 0.2392 × Count Ratio
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uniformly on 30 March 2015, which was 24 days before 
EC sampling (23 April 2015). The ECa sensor system 
travelled along north-south passes (parallel with crop row 
direction) that were spaced approximately 30-m apart. An 
ECa sampling point was omitted if a shallow ECa reading 
was beyond 1.5 interquartile ranges from the first and third 
quartiles of all shallow ECa readings, or if a deep ECa 
reading was beyond 1.5 interquartile ranges from the first 
and third quartiles of all deep ECa readings. Interpolation 
between ECa data points was performed using ordinary 
kriging, as implemented in Geostatistical Wizard of 
ArcGIS 10.2 (ArcGIS, 2013). A shallow ECa raster and a 
deep ECa raster were produced, each with the same cell size 
as the DEM. An ECa ratio (Kitchen et al., 2005) raster was 
computed using Raster Calculator in ArcGIS by dividing 
the value of each shallow ECa raster cell by the value of the 
corresponding deep ECa raster cell. 

The coordinates of the FCobs and Robs measurement 
locations were obtained using a handheld GPS device 
(GPSMAP 64s, Garmin, Olathe, Kan.). Each measurement 
location was assigned the value of the elevation, shallow 
ECa, deep ECa, and ECa ratio of the raster cell encompass-
ing the measurement location. 

SPATIAL PREDICTION AND SAMPLING SCHEMES 
A regression equation between relative elevation (height 

above the minimum elevation) and FCobs,a, along with a 
second function for Robs, was generated for the measure-
ment locations. A piecewise approach was adopted to avoid 
extrapolation beyond the range of elevations at the 
measurement locations. Specifically, points above the 
highest measurement location were assigned the values of 
FCobs,a and Robs computed from the regression equations 
with the highest measurement location. Likewise, points 
below the lowest measurement location were assigned the 
value of FCobs,a and Robs from the regression equations 
using the lowest measurement location. The piecewise 
functions were applied to the DEM using Raster Calculator 
in ArcGIS to produce FCobs,a and Robs maps. 

The effect of the number of sampling locations (n) on 
the accuracy of the piecewise functions for FCobs,a and Robs 
was analyzed through simulation. Locations along the 
western parallel transect or the northern perpendicular 
transect constituted the calibration set. Locations along the 
parallel east transect or the perpendicular south transect 
formed the validation set. For each n ∈ (2, 4, 6, 10), one 
sampling scheme was simulated, which sampled n locations 
from the calibration set. For each n ∈ (3, 5, 7, 8, 9), two 
sampling schemes were simulated, each sampling n 
locations from the calibration set. Sampling schemes 
incorporated the elevation range of the calibration set while 
prioritizing coverage of intermediate elevations. The 
measurement locations at the highest and lowest elevations 
were sampled in all schemes. 

For each scheme, piecewise functions for FCobs,a and 
Robs—like those based on all measurement locations—were 
constructed from sampled locations. A balance between 
matching higher-order trends and the risk of overfitting was 
desired. The polynomial order of the regression equations 
was limited to one for sampling schemes with n = 2, to (n – 

2) for sampling schemes with 2 < n < 6, and to 3 for 
sampling schemes with n ≥ 6. Similarly, the polynomial 
order for Robs was one for sampling schemes with n = 2, to 
(n – 2) for sampling schemes with 2 < n < 7, and 4 for 
sampling schemes with n ≥ 7. The standard error of the 
estimate (s) for each piecewise function was calculated for 
the validation set. All regression parameters were estimated 
from the calibration set; thus the degrees of freedom were 
equal to the number of measurement locations in the 
validation set. 

A three-parameter equation represented the relationship 
between s and n (eq. 1). The strength of the relationship 
between FCobs,a or Robs and the predictor variable (relative 
elevation) was denoted s∞, which was the asymptotic value 
of s as n approaches infinity. The magnitude of spatial 
variability for FCobs,a or Robs was described by s1, the value 
of s at n = 1. The complexity of the relationship between 
FCobs,a or Robs and predictor variable(s) was described by k, 
the exponential decay coefficient. 

 ( ) ( )1
1

k ns s s s e− −
∞ ∞= + −  (1) 

The parameter s1 was the value of s for the mean value of 
the calibration set relative to the validation set. The 
parameter s∞ was the value of s for the whole calibration set 
when applied to the validation set. The parameter k was 
determined using the Solver add-in in Microsoft Excel 
(2010) after the observed values of s for FCobs,a or Robs were 
averaged among sampling schemes with equal n. For a 
given n, the percentage of the maximum achievable 
reduction in the value of s was calculated as (s1 – s) / (s1 – 
s∞). All statistical computations were conducted in 
Microsoft Excel. 

RESULTS AND DISCUSSION 
SPATIAL VARIABILITY OF SOIL WATER PROPERTIES 

The variability of soil water properties along the parallel 
and perpendicular transects was evaluated to ascertain the 
effect of slope position. Property values for the pair of 
observations at the same slope position were averaged and 
plotted against the slope position (fig. 4). Recall from 
figure 2 that smaller slope positions represent the hilltops, 
middle positions the hillside and larger slope positions the 
toe of the hill. Slopes were steepest for the middle positions 
and were steeper for the perpendicular transect than the 
parallel transect. 

The FCobs appeared to change where the hillslope 
transformed from convex to concave (figs. 4a-b). At the 
0.46-m depth, FCobs decreased along the convex slopes 
(parallel slope positions 1-5 and perpendicular slope 
positions 1-4) and increased along the concave portion 
(parallel slope positions 6-9 and perpendicular slope 
positions 5-7). At 0.76 and 1.07 m, FCobs was relatively low 
along the convex part (parallel slope positions 1-5 and 
perpendicular slope positions 1-3) and relatively high along 
the concave portion (parallel slope positions 6-9 and 
perpendicular slope positions 5-7). No consistent 
relationship in FCobs at 0.15 m to slope position was 
observed. The biggest differences in FCobs among the  
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4. Observational field capacity (FCobs) (a-b), permanent wilting point (WP) estimated by pedotransfer function (c-d), and FCobs, WP, and 
observational available water capacity (FCobs,a, WPa, and AWCobs,a) averaged over the 1.22-m managed root zone (e-f) at four soil depths. 
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measurement locations occurred at the 0.76- and 1.07-m 
depths, with ranges of 0.08 to 0.09 m3 m-3. 

Two trends in WP were observed along the two pairs of 
topographic transects (figs. 4c-d). At the 0.15 m depth, WP 
was higher along the shoulder of the slopes (parallel slope 
positions 4-5 and perpendicular slope positions 2-3) than 
elsewhere. At 0.76 m, WP was lower along the backslopes 
(parallel slope positions 5-7 and perpendicular slope 
positions 4-6) than elsewhere. The largest differences in 
WP among measurement locations did not consistently 
occur in any one of the four measurement depths within the 
managed root zone. 

The average value of FCobs, WP, and AWCobs over the 
1.22-m managed root zone was determined (figs. 4e-f). The 
FCobs,a decreased slightly along the convex slopes, rose 
sharply along the transition portion, and increased slightly 
along the concave section. No consistent spatial pattern in 
WPa was observed along either transect. The AWCobs,a was 
lower along the convex part of the slopes and higher along 
the concave portions. 

DISTRIBUTION OF APPARENT ELECTRICAL 

CONDUCTIVITY 
Apparent electrical conductivity has been used to infer 

soil properties in many studies. We mapped ECa to 
determine how well it related to soil water properties. The 
shallow ECa was lowest near the hilltops and in the bottom 
of the wider valley in the southwest region. Values were 
moderate along east-facing slopes of the narrower valley in 
the east, and high along south-facing slopes of the wider 
valley (fig. 5a). Deep ECa was low in the bottom of the 
wider valley, high in the southeastern portion of the field, 
and moderate elsewhere (fig. 5b). The ECa ratio was low on 
hilltops, moderate along east-facing slopes of the narrower 

valley, and high along south-facing slopes in the wider 
valley (fig. 5c). 

PREDICTOR VARIABLES 
Since it was impractical to measure soil water properties 

across an entire field, we sought a surrogate parameter that 
relates well to soil water properties, i.e., a predictor 
variable. Two spatially dense variables that we considered 
were the ECa and elevation. The range of ECa variables 
along the parallel transects was larger than for the 
perpendicular transects, yet the range of FCobs,a and Robs are 
similar (fig. 6). The FCobs,a and Robs were moderately well 
correlated with shallow (results not shown) and deep ECa (r 
= -0.62 for FCobs,a and r = -0.60 for Robs) for the parallel 
transects (figs. 6a and 6c). However, both shallow and deep 
ECa were not correlated to FCobs,a or Robs at the 0.05 
statistical significance level for the perpendicular transects 
(figs. 6a and 6c). The ECa ratio was not correlated to FCobs,a 
or Robs at the 0.05 statistical significance level for either 
pair of transects. Smoothing the ECa maps would not 
improve correlation because the spatial trends of ECa did 
not match the spatial trends in FCobs and Robs. The 
relationship between ECa and FCobs,a or Robs was overall 
poor or inconsistent between transects; thus, none of the 
ECa variables were a suitable predictor variable of FCobs,a 
and Robs at this field site. 

In contrast, FCobs,a and Robs were strongly negatively 
correlated with elevation for parallel transects and 
moderately negatively correlated with elevation for 
perpendicular transects (figs. 6b and 6d). Both field 
capacity and available water capacity were higher at the toe 
of the hill, decreased along the hillslope and then increased 
somewhat near the top of the hill. Values near the hilltop 
were consistently smaller than at the toe of the hill. This 

 
(a) (b) (c) 

Figure 5. Kriged maps of (a) shallow apparent soil electrical conductivity (ECa), (b) deep ECa, and (c) the ratio of shallow ECa to deep ECa, as 
measured by an on-the-go electrode-type sensor system. Measurement locations for FCobs and Robs were indicated as dots. 
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finding was in agreement with the topographic trends in 
FCobs,a and AWCobs noted in figs. 4e-f. The consistent 
relationship between elevation and FCobs,a and Robs suggests 
that elevation might be a suitable predictor variable. The 
relationship between elevation and FCobs,a, or Robs, would 
seem to be non-causal; however, topography is important in 
soil formation (Jenny, 1941). Therefore, site-specific 
prediction of FCobs,a and Robs based on elevation could be 
justified, especially for a field with marked topographic 
variability. Rather than being an exception unique to this 
field, a close relationship between topography and soil 
water properties has been recognized in previous research, 
and including elevation as an input has improved 
pedotransfer functions for predicting soil hydraulic 
properties (Leij et al., 2004). Thus, elevation per se is likely 
not the driving force for soil water property patterns, but 

rather topographic effects on soil formation are probably 
the reason for strong relationships. 

PREDICTION FUNCTIONS 
Our ultimate goal was to predict soil properties across 

the field. Predictions require a functional relationship 
between soil water properties and the surrogate variable. 
The lowest order regression equation that captured trends 
between FCobs,a and relative elevation—i.e., height above 
the minimum elevation—was a third-order polynomial. A 
fourth-order polynomial best represented the relationship 
between Robs and the relative elevation. The polynomials 
satisfactorily describe the relationship between relative 
elevation and soil water properties (fig. 7). Overfitting was 
improbable with 28 and 27 degrees of freedom for FCobs,a 
and Robs, respectively. Independent and dependent variables 
also included adequate variation to avoid clustering. The 

(a) (b) 

(c) (d) 

Figure 6. Average observational field capacity (FCobs,a) and observational root zone available water capacity (Robs) along parallel and 
perpendicular transects vs. deep apparent soil electrical conductivity (ECa) (a and c) and elevation (b and d). Correlation coefficients (r) are for 
parallel and perpendicular transects. 
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standard error of the estimate was 0.009 m3 m-3 for FCobs,a 
and 17 mm for Robs. The coefficient of determination (R2) 
was 0.83 (unadjusted) and 0.81 (adjusted) for the FCobs,a 
regression equation and 0.76 (unadjusted) and 0.72 
(adjusted) for Robs. These correlations are stronger than or 
comparable to regressions between ECa and soil water 
properties from other research (Hezarjaribi and Sourell, 
2007; Jiang et al., 2007; Hedley and Yule, 2009; Rudnick 
and Irmak, 2014). 

Field elevations extended 0.8 m below and 1.6 m above 
the elevations from the measurement locations. Nine 
percent of the field resided below the minimum elevation 
of measurement locations, whereas 19% of the field was 
above the highest measurement location. The most 
prominent changes in FCobs,a and Robs occurred where 
slopes were steep (figs. 4e-f). Thus, we reasoned that soil 
water properties for points above measured elevations were 
similar to properties at the highest measured elevations, and 
properties below the lowest measured elevation 
corresponded to the lowest measurement locations. 
Piecewise prediction functions were constructed to follow 
the polynomial relationships within the elevation range of 
the measurement locations, and represent high and low 
regions as described for points outside of range of 
measurement elevations (fig. 7). More measurements on 
top of the hills and in the valleys may have improved the 
representation of FCobs and Robs. 

MAPS OF SOIL WATER PROPERTIES 
An alternative to the field characterization approach is 

using gSSURGO data to produce maps of soil water 
properties for site-specific management. Our goal was to 
compare FCa and R maps from gSSURGO (figs. 8a and 8c)  
to those generated from the field characterization approach 
(figs. 8b and 8d). Both sets of FCa and R maps depicted 
similar general relationships between topography and the 
two soil water properties. However, the discrepancies 

between the two sets of maps were not merely whether FCa 
and R values were classified into one of a few discrete 
levels by gSSRUGO or distributed throughout a continuous 
range by field characterization. Disagreement about the 
exact slope positions at which FCa and R rapidly 
transitioned between high and low caused substantial 
differences between the two sets of soil water property 
maps in some parts of the field site.Overall, the FCobs,a map 
from field characterization spanned a range 26% larger than 
the range from gSSURGO. The Robs map from field 
characterization spanned a range 42% larger than the range 
from gSSURGO. Comparing raster cell values, the root 
mean squared difference between gSSURGO and field 
characterization values was 0.031 m3 m-3 for FCa and 34 
mm for R. The Nash-Sutcliffe efficiency of gSSURGO 
predictions versus field-characterized values gave an index 
of -2.08 for FCa and -0.64 for R. This indicates that the 
gSSURGO map approach is not a reliable approximation of 
patterns derived from the field characterization method. 
The spatial and numerical accuracy of FCa and R maps 
could be important for avoiding excessive or deficient 
irrigation; thus, field characterization would be recom-
mended over gSSURGO as the source of FCa and R maps 
for VRI management. 

The application of FCa and R maps extends beyond VRI. 
These soil water properties are associated with retention of 
precipitation; thus they could relate to the potential and/or 
severity of nitrate leaching and water and/or nitrogen 
stresses. Knowledge of the spatial distribution of FC and R 
may improve deployment of soil and plant sensors and 
enhance site-specific seeding and fertilization for irrigated 
and rainfed crops. Research and extension in applying field 
characterization of FC and R to advance various aspects of 
agronomic management could be fruitful. 
  

(a) (b) 

Figure 7. Piecewise prediction functions for average observational field capacity (FCobs,a), and observational root zone available water capacity 
(Robs) as a function of elevation above the minimum field elevation. 
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SAMPLING SCHEMES 
Success with the predictor variable approach depends on 

a robust sampling strategy to efficiently represent the 
distribution of soil water properties. As the number of 
sampled locations (n) increases, the observed trend in 
FCobs,a and Robs should approach the true trend in  FCobs,a 

and Robs; therefore, the accuracy of the prediction functions 
should improve with an increase in the number of sampled 
locations. The standard error of the estimate (s) for both the 
FCobs,a and Robs prediction functions—when applied to the 
validation set—did decrease as n increased from two to ten 
(fig. 9). The sampling scheme with n = 6 resulted in a large 
standard error for the Robs prediction function. This was the 

(a) (b) 
 

(c) (d) 

Figure 8. Maps of average field capacity (FCa) and root zone available water capacity (R) calculated from the gridded Soil Survey Geographic 
database (a and c) compared to maps derived from the piecewise prediction functions (b and d). 



 

33(4): 559-572  569 

only scheme with a small number of sampled locations that 
included the apparently outlying Robs data point (fig. 7b). 
When this Robs data point was included into sampling 
schemes with a larger number of observations its influence 
was dampened. These observations illustrate how outliers 
can affect the regression of the prediction functions—
especially with a small number of sampling locations and 
no prior knowledge of the underlying FCobs,a or Robs 
distributions. Restricting regression to lower polynomial 
orders can help avoid overfitting, but may limit the ability 
to match actual trends. Individual analysis will be required 
to ascertain the appropriate number of sampling locations 
for a specific field. 

When points for the subsample were selected randomly, 
a portion of the elevation range of the measurement 
locations was often poorly characterized. Consequently, the 
regression equation inaccurately represented those 
elevations (results not shown). The sampling scheme 
presented here encompassed the range of elevations, which 
reduced the occurrence of such omissions and the ensuing 
errors. This finding highlighted that sampling locations 
should provide representative coverage throughout the 
entire range of the predictor variable(s). 

If the irrigation management strategy requires both field 
capacity and available water capacity, then the number of 
required observations would equal the larger requirement 
of the two properties. The exponential decay coefficient for 
Robs (omitting the sampling scheme with n = 6) was smaller 
than that for FCobs,a. Thus, more sampling locations would 
be needed for Robs than for FCobs,a to achieve the same 
reduction in s. According to the equations, at least 75% of 
the achievable reduction in s would be achieved at n = 4 for 
FCobs,a and at n = 5 for Robs. Attaining at least 90% of the 
achievable reduction in s would require n = 6 for FCobs,a 
and at n = 8 for Robs. 

DISCUSSION OF ECA 
Our results showed that ECa data were poorly correlated 

with soil water properties (fig. 6) or soil composition 
(results not shown) at our field site. Variability in fertilizer 
application and/or leaching was not considered to be a 
contributing factor for EC being a weak predictor. This 
differs from other research. Sudduth et al. (2005) found that 
ECa related moderately or strongly to clay content and 
cation exchange capacity for twelve fields across the north-
central United States. Rudnick and Irmak (2014) found 

(a) 

(b) 

Figure 9. Decay of the standard error of the estimate (s) for the piecewise prediction function for average observational field capacity (a) and
observational root zone available water capacity (b) with the number of sampled locations (n). Dots signify s when following a series of sampling 
schemes compared to data for a fixed set of 16 validation locations. Lines represent the fitted three-parameter equation. 
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moderate to strong relationships between ECa and WP and 
also between ECa and volumetric water content at 33 kPa 
of tension for a field 30 km south of our site. The 
variability of ECa and soil water properties was comparable 
for the two Nebraska fields. Thus, insufficient variability in 
ECa and/or soil water properties is probably not the primary 
reason for lack of correlation between ECa and soil water 
properties in our field. Differences in FCobs,a among 
measurement locations in our field do not appear to be 
driven by differences in soil composition within the 
managed root zone (results not shown). The underlying 
variables that cause spatial variability in FCobs,a at this field 
may be occurring below the effective measurement depth 
of the ECa sensor we used or might be imperceptible using 
ECa sensors. Keep in mind that our results represent the 
crop root zone and not individual soil cores. 

Poor correlation between soil property measurements 
and ECa readings was not unique to our study. Hillyer and 
Higgins (2014) obtained an ECa map that exhibited “very 
poor correlation” with soil texture and appeared to be “not 
representative of observed conditions” for several fields in 
the northwestern United States. The cause of unacceptable 
results was not identified. A second ECa measurement 
campaign produced data that “was deemed acceptable 
enough” (Hillyer and Higgins, 2014). Uniformity in Robs 
among measurement locations with diversity in ECa was 
also noted for one of two fields in Nebraska that were 
studied by Miller (2015). These observations suggest that 
the quality of ECa data may be sensitive to when and/or 
how ECa was measured (Zhu et al., 2010). 

Apparent soil electrical conductivity has been shown to 
be a suitable predictor of soil water properties in multiple 
research studies which were conducted on fields containing 
substantial spatial disparities in soil texture within the 
managed root zone (Hezarjaribi and Sourell, 2007; Jiang et 
al., 2007; Hedley and Yule, 2009). It has been widely used 
and highly regarded in precision agriculture for applica-
tions including soil mapping for site-specific agricultural 
water management. However, our results and other studies 
highlight that ECa might not be universally suitable. 

SUMMARY AND CONCLUSIONS 
Field characterization of field capacity (FC) and/or root 

zone available water capacity (R) is a procedure to map soil 
water properties within an individual field for site-specific 
water management. The first component of field 
characterization consists of determining average 
observational FC (FCobs,a) within the managed root zone 
and observational R (Robs) at a number of sampling 
locations. The FCobs,a can be determined from the 
volumetric water content of the soil profile after a thorough 
wetting event. The permanent wilting point can be 
estimated using a pedotransfer function after soil 
composition analysis, a pressure plate/membrane apparatus, 
or other laboratory procedures. The second component of 
field characterization consists of predicting FCobs,a and Robs 
throughout the field using a surrogate or predictor 
variable(s). Regression relating FCobs,a or Robs to densely 

measured spatial variables enables determination of the 
spatial distribution, and production of maps, of FCobs,a or 
Robs. Field characterization of FC and R on a topographical-
ly variable field in south central Nebraska generated several 
recommendations for the procedure. 

Instead of arbitrarily relying on the same surrogate 
variable for all fields, selection of predictor variables 
should depend on an understanding of each field and 
consideration of existing spatial data. Apparent soil 
electrical conductivity (ECa) has proven to be useful for 
predicting soil water properties; however, FCobs,a and Robs 
were not well-correlated to ECa at our field site. The FCobs,a 
and Robs did show a close and consistent correlation with 
relative elevation. Topographic attributes calculated from 
public DEMs, reflectance indices computed from remote 
sensing, and various precision agriculture products (e.g., 
ECa, yield maps, grid sampling) might enhance spatial 
description of FCobs and Robs. Requirements for selecting 
predictor variables might be reduced if regional patterns of 
predictor variables (e.g. slope) could be identified. 

A small number of well-chosen sampling locations may 
be adequate for accurate predictions when predictor 
variables are strongly and smoothly related to FCobs,a or 
Robs. Calibration at seven locations that were distributed 
across the elevation range in our field resulted in FCobs,a 
and Robs prediction functions that achieved 95% and 87%, 
respectively, of the achievable reduction in the standard 
error of the estimate. Sampling locations should be evenly 
distributed over the range of the predictor variable(s). In 
addition, a careful choice of regression equation is 
necessary to balance the risk of overfitting against the 
ability to simulate complex trends. 

While the public soil survey may capture the general 
spatial trends of soil water properties, field characterization 
can better pinpoint the values of FCobs,a and Robs and the 
transitions in these values. The public soil survey and field 
characterization were in agreement about the correspond-
ence between terrain and soil water properties in our field. 
Nevertheless, the two sets of FCa and R maps diverged 
substantially along the hillsides where sharp transitions in 
soil water properties occurred. The root mean squared 
difference between maps from the methods was 0.031 m3 
m-3 for FCa and 34 mm for R. Growers and consultants 
must weigh the costs and benefits of field characterization 
as they develop data for analyzing VRI viability (Lo et al., 
2016) and/or VRI management (Ritchie and Amato, 1990). 
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APPENDIX 
SOIL AND WATER TERMINOLOGY 

The ASABE Standard on soil and water terminology 
(ASABE Standards, 2015) provides definitions for several 
terms utilized in the manuscript. Excerpts of those 
definitions are provided below. 

• Allowable depletion: That part of soil water stored in 
the plant root zone managed for use by plants, usual-
ly expressed as equivalent depth of water in mm 
(acre-inches per acre, or inches). 

• Available water capacity (AWC): The portion of soil 
water that can be readily absorbed by plant roots of 
most crops, expressed in mm water per mm soil 
(inches per inch, inches per foot, or total inches) for a 
specific soil depth. It is the amount of water stored in 
the soil between field capacity (FC) and permanent 
wilting point (WP)… Also called available water 
holding capacity (AWHC), or available soil water. 

• Field capacity: Amount of water remaining in a soil 
when the downward water flow due to gravity be-
comes negligible… 

• Full irrigation: Management of a water application to 
fully replace the soil water deficiency over an entire 
field. 

• Irrigation scheduling: The process of determining 
when to irrigate and how much water to apply, based 
upon measurements or estimates of soil moisture or 
water used by the plant. 

• Management allowed depletion: The desired soil 
water deficit at the time of irrigation (can be ex-
pressed as a fraction or percentage of the AWC). 

• Net irrigation: The actual amount of applied irriga-
tion water stored in the soil for plant use or moved 
through the soil for leaching salts. 

• Permanent wilting point: Soil water content below 
which plants cannot readily obtain water and perma-
nently wilt. Sometimes called “permanent wilting 
percentage” or WP. Often estimated as the water 
content corresponding to a matric potential of  
-1.5 MPa (-15 bar). 

• Soil water deficit: Amount of water required to raise 
the soil water content of the crop root zone to field 
capacity. It is measured in mm (inches) of water. 
Also called soil water depletion. 
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