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The Misa River on the Italian Adriatic coast is typical of the rivers that drain the Apennine Mountain range. The
focus of this study, conducted in the late summer of 2013 and mid-winter of 2014, was to contrast the general
wintertime-summertime dynamics in theMisa River estuarine system rather than investigate specific dynamical
features (e.g. offshore sediment transport, channel seiche, and flocculation mechanisms). Summertime condi-
tions of the Misa River estuary are characterized by low freshwater discharge and net sediment deposition
whereas, in the wintertime, the Misa River and estuary is characterized by high episodic freshwater discharge
and net erosion and sediment export. Major observed differences between wintertime-summertime dynamics
in the Misa River and estuary are a result of seasonal-scale differences in regional precipitation and forcing con-
ditions driven largely by the duration and intensity of prevailing wind patterns that frequently change direction
in summertime while keep almost constant directions for much longer periods in wintertime, thus generating
major sea storms. Sediment deposition was observed in the final reach of theMisa River and estuary in the sum-
mertime. However, in the wintertime, large flood events led to sediment erosion and export in the final reach of
the Misa River and estuary that, in conjunction with storm-wave-induced mud transport, led to sediment depo-
sition at the river entrance and in the adjacent nearshore region. The seasonal cyclic pattern of erosion and depo-
sitionwas confirmedwith bathymetric surveys of the final reach of the estuarine region. A critical component for
the balance between summertime deposition and wintertime erosion was the presence of an underlying mat of
organic deposits that limited the availability of sediments for erosion in winter, when massive debris transport
occurs. Further, suspended cohesive sediments flocs were subjected to smaller hydrodynamic stresses in the
summertime favoring deposition within the estuary. Conversely, duringwintertime storms, flocswere subjected
to larger hydrodynamic stresses favoring breakup into smaller flocs and deposition outside the estuary.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Large amounts of organic matter and suspended particulate mate-
rials are delivered to coastal waters at the deltas of major river systems
(Milliman and Syvitski, 1992). The sediment plumes from river systems
have acoustic (e.g., see Thorne et al., 2007; Thorne and Hurther, 2014)
and optical (e.g., see Manning and Dyer, 2002; Manning, 2004) proper-
ties distinct from the ambient receiving waters, which makes the
plumes easy to track. Additionally, the suspended sediments in the

plumes increase fluid density and viscosity impacting local hydrody-
namics. The large suspended load delivered by these rivers can signifi-
cantly alter the morphology and rheology of the sediment bed
(Schindler et al., 2015), which may lead to dampening of incoming
waves and reduction of wave breaking as deposited sediments are re-
suspended during high energy events (e.g., Calliari et al., 2001; Rogers
and Holland, 2009).

Fine-grained sediment deposition, accumulation, and transport in
riverine-coastal systems can be spatially and temporally heterogeneous
due to short-to-medium term changes in: sediment supply; tidal varia-
tions on ebb-flood and spring-neap tidal scales; seasonal scale changes
in river flow; anthropogenic disturbances; and natural episodic events
(Woodruff et al., 2001; Smith et al., 2009). Although there is a general
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understanding of fine-particle transport and accumulation processes in
estuarine systems (Olsen et al., 1993; Smith et al., 2009), measurements
andmodeling offine-grained sediment dynamics in coastal regions over
significant spatial-temporal scales are extremely difficult because vari-
ability in local geologic, hydrodynamic and physicochemical processes
interact to create the following difficulties: 1) fine-particle transport
may involve long term suspension of particles as well as numerous
short-term episodes of deposition and resuspension (Sanford, 1992;
Sanford and Maa, 2001); 2) chemical and biological processes interact
at awide-range of scales to govern the dispersal and fate of sedimentary
particles in organicmatter-rich zoneswhere ionic strength changes dra-
matically as freshwater interacts with seawater; and, 3) hydrodynamics
are highly variable and episodic events, such as intense storms, are often
significantly more important than events that occur on a regular basis
during normal flow. Flocculation, in particular, complicates sediment
dynamics in river-estuary-coastal systems. Flocculation is the combined
process of aggregation and disaggregation of particles, colloids, and dis-
solved constituents within a water column (Whitehouse et al., 2000;
Winterwerp, 2002; Manning, 2004; Mehta, 2014). Flocculation affects
particle size distributions in the water column, particle settling rates,
and is an important process in the removal of both organic and inorgan-
ic materials from the water column to the sediments. Flocculation pro-
cesses play a key role in determining the strength, density, and
cohesion of aggregates after deposition and accumulation in the sedi-
ments. Spatial and temporal differences in theflocculation processes oc-
curring with depth along the river-estuarine-coastal gradient alter the
acoustic and optical properties of the water column.

Important aspects of flocculation processes deals with mixed fine-
grained sediment suspension. Recent studies reveal that natural mud
and cohesive sediments (e.g., used as tracers) with similar properties,
lead to flocs of completely different characteristics (e.g. settling veloci-
ty) with respect to natural muddy material (e.g., Spencer et al., 2010).
Further, properties of micro- and macro-flocs are strictly connected to
the percentage of suspended materials (sand, silt, clay) within the
water column (Whitehouse and Manning, 2007; Manning et al., 2010,
2013), this being captured by recent empirical and numerical models
able at reproducing the dynamics of sand-mud mixtures (Manning et
al., 2011; Spearman et al., 2011).

Recent studies demonstrate the importance of cohesion in the bed
morphology of estuarine environments. Physical cohesion is fundamen-
tal in bedform characterization: the larger is the clay content, themilder
is the bed change (e.g., see Schindler et al., 2015). The biological contri-
bution is also important: cohesion often comes from microorganisms
which generate biologically cohesive extracellular polymeric substances
(EPS). Similar to the physical cohesion, but with more pronounced ef-
fects, the biological cohesion increases the erosion threshold and signif-
icantly affects the sediment stability, hence controlling the bedform
dynamics (e.g., Malarkey et al., 2015; Parsons et al., 2016).

In September 2013 and January 2014, we conducted summertime
and wintertime field sampling campaigns at the mouth of the Misa
River (located in the Marche region, Ancona Province of Italy, MR here-
after) in Senigallia, Italy. The MR originates in the Apennine Mountains
and discharges into the Western Adriatic Sea. The summertime experi-
ment was used to establish a baseline low-flow/low-energy condition
for the lower MR estuary system and river mouth. The January 2014
wintertime campaign on the MR consisted of field studies in the river-
ine, estuarine, and coastal provinces, where hydrodynamic data, sedi-
ment and suspended matter samples, and water column profile data
were collected prior to and between the passage of two winter storms.
Results presented here focus on the observations from the wintertime
campaign with discussion focused on comparisons and contrast be-
tween the general wintertime and summertime conditions in the MR-
estuarine coastal system. The MR may be seen as representative of the
majority of the rivers debouching into the Western Adriatic Sea. The
presented resultswill provide the setting for regional-scale comprehen-
sion of general sediment dynamics, with some discussion about specific

mechanisms and factors that influence sediment dynamics in Apennine
rivers like the MR, that will be explored in future dedicated works.

The regional setting is described in Section 2, where the MR and its
estuary are geologically and hydrologically characterized, together
with the sediment transport along the river. Section 3 describes the
equipment used during the experiments and the methods of analysis
used. The main results (hydrodynamics, morphological changes, sedi-
ment transport) of the wintertime campaign are presented in Section
4. In the following discussion (Section 5), comparisons are made with
the data previously collected during the summertime experiment
(Brocchini et al., 2015), showing a fairly different behavior of the final
reach and estuary in summer andwinter, with low-flow conditions pro-
moting sediment/flocs deposition and the high-flow conditions pro-
moting: i) riverbed erosion, ii) large sediment suspension and
development of the river plume, iii) complex morphological patterns
at themouth, due to convergence of sea and river forcing. Some conclu-
sions are presented in Section 6.

2. Regional setting

Two field experiments were carried out along the final reach of the
MR and in the nearshore region in front of the estuary (Fig. 1). The
MR runs for about 48 km from the “Appennino umbro-marchigiano”
(central Italy) to the municipality of Senigallia (Marche Region), one
of the most important touristic towns of the Italian Middle Adriatic
coast. The watershed extension of the MR is 383 km2, with discharges
of about 400, 450, and 600 m3 s−1 for return periods of 100, 200, and
500 years, respectively. Following the classical definition of an estuary,
the place where the tide overlaps with the current of a stream, the MR
is characteristic of a salt-wedge estuary (Kennish, 1986), where the
river forcing prevails on both marine and tidal influence. Such an estu-
ary type is usually characterized by a fresh water layer over seawater
thinning while flowing seaward.

The micro-tidal conditions make it an excellent environment to
study the effects of the coupling between river discharge and nearshore
hydrodynamics (waves and wave-driven currents) on sediment dy-
namics and the resulting morphodynamics. Additionally, the zone
around the MR estuary (Fig. 1a), within the town of Senigallia (Italy),
is heavily engineered having cement walls comparable to a field-scale
laboratory flume (Fig. 1b–c). The beach to the north of the MR estuary
is engineered with breakwaters, while the beach to the south is a natu-
ral open coast.

2.1. Hydrological and geological overview

The MR is typical of many coastal streams that drain the Apennine
Mountains of central Italy into the Adriatic Sea. The Apennine Moun-
tains are comprised of brittle sedimentary rocks, remnants of the Tethys
Sea, which are highly extended and heavily fractured (Doglioni et al.,
1994). Consequently, the mountain surfaces are easily eroded and sup-
ply relatively large quantities of gravel and sediment to the Adriatic Sea
(Milliman and Syvitski, 1992). The MR exemplifies the transport pro-
cess that is commonwithin ApennineMountain rivers. While relatively
small in size, it distributes large quantities of sediment. Sediment min-
eralogy reflects the characteristics of the sedimentary source materials
that dominate the Apennine Mountains such as limestone, shale, and
sandstone. An important addition to this diverse mix of minerals is de-
rived from volcanic ash, which was transported from the southeast by
winds during the Plinian and other volcanic eruptions (e.g. Rolandi et
al., 2008). The deposition of volcanic ash has weathered to form a rela-
tively abundant supply of montmorillonite clays. A similar array of sed-
iment deposits was evident in the alluvial layers that underlie the town
of Senigallia where sediment cores were collected by Favali et al.
(1995). The cores displayed layers of muddy sediments that are inter-
spersed with gravel, all of which overlie the bedrock of fractured and
faulted mud-, silt- and sandstone.
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2.2. Sediment transport and deposition

An important aspect of the sediments of the lowerMRestuary is that
they display a large concentration of montmorillonite clay minerals in-
dicative of allochtonous materials derived from the Apennine Moun-
tains. These fine-grained clay sediments are retained, often
temporarily, or seasonally, within the estuarine area and under the
plume due to aggregation of individual clay particles, and perhaps or-
ganic matter, into flocs. The larger clay flocs settle out of the water col-
umn at a much higher rate than that of the individual, non-aggregated
clay particles (e.g. Milligan et al., 2007). Clay sediments are typically de-
posited rapidly within rivers and near river mouths in fairly shallow
depths, b4 m, as clay concentrations and turbulent kinetic energy
often promote the development of large flocs that settle at rates of up
to 1mms−1 (Fox et al., 2004). Theseflocs contribute to a thick sequence
ofmuddy sediments that dominate the estuarine portion of the riverbed
surface during the low-flow conditions typical of the summertime.

The high stress conditions that promote transport from the Apen-
nines through the coastal rivers and into the littoral zone are enhanced
by heavy rains which typically occur in the wintertime (Milliman and
Syvitski, 1992) as the frequency and intensity of Bora winds (i.e., cool
dry airmassesflowingout of northernUkraine/Siberia into the northern
Adriatic through the Dinaric Alps) increase and as the temperature

difference between the Scirocco winds and air masses in the northern
Adriatic increases. The rains occur due to the interaction of two different
climatic systems. One system occurs when the Bora wind interacts with
a low pressure cell that is centered over the southern Adriatic andMed-
iterranean Seas (e.g., see Camuffo, 1984; Horvath et al., 2008). The sec-
ond rain-producing system occurs when the warm Scirocco wind flows
out of Africa, absorbs moisture as it passes over the Mediterranean, and
creates rain in the mountains that border the Adriatic Sea (Camuffo,
1984). The average rainfall over the Apennine mountain region during
winter is estimated to be 65–84 mm/month (weather station of
L'Aquila, one of themain towns of the Apennines) whereas the average
rainfall in summer is 35–46mm/month (http://cetemps.aquila.infn.it/).

3. Materials and methods

The first of two experimental campaigns was carried out during the
summertime in September 2013 (Brocchini et al., 2015). The summer-
time experiment was smaller in scope and duration than the primary
wintertime experiment executed from 20 to 31 January 2014. Both ex-
periments were located at the MR estuary and included observations of
meteorology, hydrodynamics, and morphodynamics. Additionally,
water column profile data and discrete water, suspended matter, and
sediment samples were collected from a small boat as weather

Fig. 1. a) Study area of summer and winter experiments at the MR estuary (Senigallia, Marche Region, Italy), with locations of deployed quadpods in river (QR) and sea (QS). Pictures
showing b) the final engineered reach of the MR and c) severe wave conditions at the MR estuary during winter Bora in January 2014.
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conditions permitted. Consequently, during thewintertime experiment
three days of water and sediment sampling occurred on 26, 27, and 29
January 2014 within the river, estuary and plume, which extended
N1.3 km offshore during the maximum flow. Sampling was conducted
between two winter storms that occurred on 25 and 28 January 2014,
respectively. The details of the summertime data collection were previ-
ously described (Brocchini et al., 2015).

3.1. Meteorology

During the wintertime experiment, meteorological data (wind
speed and direction, rain, and relative humidity) were logged with a
Davis Vantage Pro 2 station installed on the Senigallia harbor lighthouse
(location shown in Fig. 1). Both mean and maximum values collected
during 15-minute intervals were recorded by the instrument. Atmo-
spheric pressure and tidal observations at the Ancona harbor (about
30 km to the south of Senigallia) confirmed the presence of low-pres-
sure dominated storm events during the end of January 2014. Themea-
sured storm surge did not always oscillate around the zero level
(representing atmospheric pressure of 1013 hPa), as expected from
tidal predictions. The three most energetic events occurred on: 1) 21
January 2014 between 01:00–02:00 UTC; 2) 25 January 2014 between
03:00–05:00 UTC; and 3) 28 January 2014 between 07:00–08:00 UTC.
The last two of the three events were captured by the in-situ
instrumentation.

3.2. Hydrodynamics

A wide range of in-situ instrumentation was deployed for varying
durations during the wintertime experiment to monitor the hydrody-
namic conditions from the lower reach of theMR out to about 1 km off-
shore of theMRmouth. The complete list of instrumentation is found in
Table 1. Instrument configurations, pairings, and deployment times and
locations are described in the sub-sections that follow.

3.2.1. Quadpods and ADCP mooring
Four small quadpods were fabricated for deploying instrumentation

suites in the final reach of the MR and the adjacent estuary and sea out
to depths of about 7 m. The quadpods are small pyramid shaped struc-
tures with an overall height of about 1 m and a roughly square base
about 1 m × 1 m. Four large square plates were placed at the four

corners of the base to prevent the quadpods from sinking in soft sedi-
ments and to provide a location for weights to prevent the quadpods
from being disturbed or mobilized by large waves or currents.

Two different instrumentation suites were each deployed on two of
the four quadpodswith one of each of the twodifferent instrumentation
suites deployed in the river and the sea, respectively. The first instru-
mentation suite (UFQ) included one 1.5MHz SonTek PC-ADP (Pulse Co-
herent Acoustic Doppler Profiler), two Campbell Scientific OBS-3+
(Optical Backscatter) turbidity sensors, one Campbell Scientific OBS-
5+ (Optical Backscatter) turbidity sensor, and one MicroCat CT (con-
ductivity and temperature) probe (see photo in Fig. 2a). The PC-ADP
provides the vertical profile of flow velocity and signal strength (acous-
tic backscatter). The PC-ADP includes a pressure sensor, and can drive
and log separate conductivity, temperature and turbidity sensors sam-
pling synchronously with flowmeasurements. The acoustic and optical
backscatter information from the system can be used to estimate the
vertical profile of suspended sediment concentration (SSC) (e.g., Sahin
et al., 2013). The positions of the instruments with respect to the bed
are reported in meters above the bed (mab). A quadpod deployed in
the river (at QR1 and QR2) has the PC-ADP mounted at 0.51 mab,
OBS-3+ sensorsmounted at 0.10mab and 0.20mab, OBS-5+mounted
at 0.05 mab, and the MicroCat CT mounted at 0.59 mab. The quadpod
deployed in the sea (QS1) has the PC-ADP mounted at 0.54 mab, OBS-
3+ sensors mounted at 0.16 mab and 0.26 mab, OBS-5+ mounted at
0.06 mab, and the MicroCat CT mounted at 0.60 mab. Both PC-ADPs
were programmed for a 5-cm blanking distance and a bin size of
1.6 cm (35 total bins in the profile). All instrumentswere logged contin-
uously at 2 Hz.

The second instrumentation suite (NRLQ) deployed on two of the
four quadpods included a pair of Nortek HR-Aquadoppswith one profil-
ing up mounted at 0.23 mab and one profiling down mounted at 0.54
mab, respectively, to provide a combined vertical profile of flowvelocity
and signal strength (acoustic backscatter) from the bed up to about 1.30
mab (see photo in Fig. 2b). Both Aquadopps were programmed with a
10-cm blanking distance, and the up and down profiles had bin sizes
of 5 cm and 2 cm, respectively (40 total bins in the combine profile).
The Aquadopps include pressure and temperature sensors that logged
at 1 Hz. Data was recorded in bursts for 45 min starting at the top of
every hour at 2 Hz. Additionally, the second instrumentation suite
contained an Imagenex pencil beam sonar operating at a frequency of
1.0MHz and an Imagenex sector scanning sonar operating at a frequen-
cy of 2.25MHz, used to performhourly scans of the bed beneath and ad-
jacent to the quadpod. The pencil beam transducer was located 0.40
mab and performed 10 successive line scans each 90° wide. The sector
scanning sonar transducer was located 0.51mab and performed 10 suc-
cessive 360° rotary scans with 0.3° head angle spacing.

Farthest offshore a Sentinel acoustic Doppler current profiler (ADCP)
from Teledyne RDI®was deployed in about 7mwater depth (see photo
in Fig. 2c). The Sentinel included an upgraded directional wave mea-
surement capability. Hourly observations of wave height and direction
and current profiles were recorded.

3.2.2. Drifters
Several riverine drifters (©QinetiQ North America) were launched

by hand in the final reach of the MR and recovered using a small boat
(see photo in Fig. 2d). Riverine drifters are spherical in shape having a
0.15 m diameter and weigh b1.8 kg. Currents, depth, and temperature
are logged onboard the drifter. Location is determined with a standard
GPS. Drifters have approximately a 24-hour battery life and are
reusable.

3.3. Morphodynamics

Changes in bathymetry were quantified with a series of multibeam
surveys performed in the lower reach of the MR and the adjacent estu-
ary. Surveys were performed using an ODOM ES3 operating at 240 kHz

Table 1
Instrumentation used during wintertime deployment.

Instrument # Type Location Temporal
resolution

Velocity
profiler

4 Nortek Aquadopp: 2 MHz QR1 2 Hz for 40 min/h
QR2
QR3
QS2

Pencil beam 2 Imagenex 881 A:
600–1000 kHz

QR1 10 line scans per
hourQR2

QR3
QS2

Velocity
profiler

2 Sontek PC-ADP: 1.5 MHz QR1 2 Hz Cont.
QR2
QS1

CT probe 2 Seabird MicroCat CT QR1 2 Hz Cont.
QR2
QS1

ADCP 1 TRDI Sentinel 1200KHz wave
array

QS3 Wave hourly
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with an integrated GPS and inertial measurement unit (IMU). The sys-
tem used 90 beams with a 1.5° spacing. The investigation area of the
transducer was about a 120° linear swath having a width N4 times the
depth. The system accuracy was b3 cm RMS. Due to the high repetition
rate of transmit transducer, surveys were performed at speeds of N6
knots. The acquisition ofmultibeamand navigation data was performed
using the HYPACK® software.

3.4. Water column profiles and discrete sampling

A hand-deployed, Hach Quanta Hydrolab®was deployed at regu-
lar intervals from a small boat both in the river and the estuary to log
vertical profiles of temperature, pH, salinity, and turbidity. Surficial
sediments were collected using a hand-deployed mini-Ponar grab
sampler and short sediment cores were obtained from the river
and estuary using a custom made, hand-deployed, messenger
tripped gravity core. Water samples containing flocculated sedi-
ments were bottled and brought back to the laboratory for particle
size analysis using a CILAS 1190 Particle Size Analyzer (PSA)®.
While transporting cohesive sediments to the laboratory for analysis
is a common practice, alteration of the cohesive sediment properties
is likely to occur. In situ quantification of floc size and shape, e.g.
using in situ imaging systems, like INSSEV (Fennessy et al., 1994)
or LISST (Sequoia Scientific Inc.) is preferred, as demonstrated by
several studies during which video systems have been extensively
used to measure floc size and settling velocity, in order to both un-
derstand the floc dynamics and calibrate theoretical/numerical
models (e.g., Winterwerp et al., 2006; Manning and Dyer, 2007;
Manning and Schoellhamer, 2013; Soulsby et al., 2013). To better es-
timate the floc characteristics, future surveys of the MR estuary will
include both in situ (direct floc size and settling velocity population
measurement) and laboratory investigations.

4. Results

Themeasurements obtained during thewintertimefield experiment
provide an overview of the complex dynamics governing the flux of
sediment at the mouth and estuary of the MR. The majority of the in-
situ instrumentation was deployed and recovered during the period
from 20 to 31 January 2014. A Bora storm occurred during 24–25 Janu-
ary 2014 with in-situ instrumentation recording at location QR2 (two
pods deployed here contemporary) in the final reach of the river and
QS1, QS2, andQS3 in the sea just offshore of the rivermouth and estuary
(Fig. 1a). The operation times for each of the four quadpods and the off-
shore ADCP (located at QS3) are summarized in Table 2. The results ob-
tained from the various instrumentation packages described above are
systematically presented here with limited discussion. A detailed dis-
cussion and comparison of the wintertime and summertime observa-
tions are made below, in Section 5.

4.1. Meteorology

During the period from 20 January–4 February 2014, the most fre-
quentwind came fromNW(17.8%) andWNWsectors (17.4%), followed

Fig. 2. Quadpods for the measurements of (a) suspended sediments (QR1, QR2, QS1) and (b) flow velocity (QR1, QR2, QR3, QS2); (c) ADCP for measurements of offshore wave
characteristics (QS3); (d) surface Lagrangian drifters (river and estuary).

Table 2
Operation time of the pods.

Location Instrument suite Operation time [UTC]

QR1 NRLQ 22/01 (13:30) to 24/01 (09:30)
QR1 UFQ 22/01 (10:30) to 24/01 (09:20)
QR2 NRLQ 24/01 (10:45) to 29/01 (09:10)
QR2 UFQ 24/01 (10:15) to 29/01 (09:00)
QR3 NRLQ 27/01 (14:00) to 29/01 (09:30)
QS1 UFQ 23/01 (09:30) to 27/01 (12:20)
QS2 NRLQ 23/01 (10:00) to 27/01 (12:00)
QS3 ADCP 23/01 (11:10) to 29/01 (12:20)
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by SE direction (17.1%). The most intense wind speed was measured
from the NE during the storm of 24–25 January 2014. During this
event, which lasted 28 h, the wind direction was almost constant at
about 22.5°N. The mean wind speed over the period was of
11.3 m s−1, while the maximum of mean speeds and the peak speed
were 18.8 m s−1 and 25.0 m s−1, respectively. An intense, but shorter,
event was observed on 21 January 2014, with the wind coming from
315°N (NW) and characterized by a mean wind speed of 10.0 m s−1.
The local rain data confirmed that the stormevents of 21 and 24–25 Jan-
uary 2014 were characterized by an intense precipitation in terms of
both total daily rain and rain rate.

4.2. Hydrodynamics

The hourly and daily hydrodynamic conditions in the final reach of
the MR are strongly influenced by a combination of precipitation,
tides, winds, and waves. During the wintertime experiment, the inter-
play between these forces strongly modulated the discharge into the
sea. In the summertime, conditions were more benign with low dis-
charge, smallwaves, and changingwinds. The hydrodynamic conditions
during thewintertimeexperimentwere characterizedwith a suite of in-
strumentation at a number of different locations described below.

4.2.1. Drifters
The river surface flow in the final reach of the MRwas the dominant

forcing in the wintertime experiment. The surface drifters were
launched more than one hundred times during the campaign to mea-
sure speed, direction and temperature. The tracks have been divided
into three different strokes (or paths) referring to: (1) the river portion
upstream of the bend, (2) the river portion downstream of the bend,
and (3) the area outside the estuary. The mean speed and direction
for drifter observations obtained during the wintertime experiment in
each of the three strokes are compiled in Table 3. The speed increased
downstream of the bend (passing from stroke 1 to 2) and was greatest
in the sea (stroke 3). The direction of the drifters was always consistent
with the MR orientation (~10–30°N), and the drifters followed the MR
plume into the sea. The drifter tracks suggested that on average the
river surface flow was dominant over the influence of tides and waves.

4.2.2. Current profiles
During the wintertime experiment three of the four quadpods were

deployed at three different locations at different times along the final
reach of the MR (Table 2). Two quadpods were deployed at QR1 from
the period starting at 1030 on 22 January 2014 through 0930 on 24 Jan-
uary 2014. The two quadpods were recovered just past 0930 on 24 Jan-
uary 2014 and deployed again at QR2 starting at 1015 on 24 January
2014 through 0910 on 29 January 2014. Additionally, a third quadpod
was deployed at QR3 starting at 1400 on 27 January 2014 through
0930 on 29 January 2014.

Profiles of mean currents and direction observed at QR1, QR2, and
QR3 for NRLQ (45-minute burst averaged) are shown in Figs. 3, 4, and
5, respectively. In all casesmean currents are plotted in the upper panels
and directions of mean currents are plotted in the middle panels. The
observed directions exhibited a significant amount of variance. The ob-
served variance in direction was persistent regardless of measurement
correlation values. Some of the observed variance may have been due
to the uncertain location of the instruments across the width of the
channel coupled with secondary flows from the buoyant river plume
and the slight bend in the channel at QR3. Additionally, some of the var-
iance with respect to the NRLQ instruments resulted from the orienta-
tion of the quadpod in the flow with Aquadopp sensor heads
nominally pointed upstream. Particularly, during times of saltwedge in-
trusion the Aquadoppsweremeasuring nearbed flow in thewake of the
quadpod. The normalized backscatter intensity plotted in the lower
panel for all cases along with observed changes in bed elevation will
be presented below in Section 4.3.2.

For the majority of the period of observation at QR1 (located 525 m
upstream of the river mouth) the current in the lower meter of the
water column was nearly stagnant with a small, but measurable up-
stream component suggesting the presence of a salt wedge near the
bed (Fig. 3 – upper). Just before the onset of the storm event during

Table 3
Surface flow features recorded by the drifters.

Stroke Jan 22nd Jan 23rd Jan 26th Jan 27th Jan 29th

Mean speed
[m s−1]

1 0.329
± 0.068

0.297
± 0.059

0.225
± 0.079

0.364
± 0.068

0.335
± 0.088

2 0.463
± 0.107

0.360
± 0.081

0.324
± 0.111

0.306
± 0.093

0.439
± 0.138

3 0.454
± 0.153

– 0.556
± 0.139

0.302
± 0.088

–

Max speed
[m s−1]

1 0.823 0.741 0.422 0.463 0.622
2 0.736 0.787 0.633 0.566 0.684
3 0.808 – 0.715 0.602 –

Direction/course
[°N]

1 14.65 15.18 13.15 16.15 13.17
2 30.83 35.65 30.59 29.51 32.99
3 33.97 – 25.94 23.96 –

Temperature [°C] all 9.8 9.7 6.6 6.1 7.7

Fig. 3. Shown is hourly burst averaged velocity profiles (upper), direction (middle) and
normalized acoustic backscatter intensity (lower) observed with the down and up
looking Aquadopps at QR1. Backscatter was normalized by the maximum backscatter
value from the two Aquadopps for time period shown here. Overlaid on all panels is the
location of the bed estimated from hourly averages of the pencil beam sonar line scans.

Fig. 4. Shown is hourly burst averaged velocity profiles (upper), direction (middle) and
normalized acoustic backscatter intensity (lower) observed with the down and up
looking Aquadopps at QR2. Backscatter was normalized by the maximum backscatter
value from the two Aquadopps for time period shown here. Overlaid on all panels is the
location of the bed estimated from hourly averages of the pencil beam sonar line scans.
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the time from0930 to 1030 on 24 January 2014, the two quadpodswere
relocated fromQR1 toQR2 (400mupstreamof the rivermouth). During
the Bora storm event from about 1100 on 24 January 2014 until about
2400 on 25 January 2014 we observed flushing of the channel at QR2
(Fig. 4) evidenced by the strong near bed current profile (upper panels)
and the alignment of the flow direction across the entire observed pro-
file (middle panels). Starting around 0000 on 26 January 2014 themag-
nitude of the strong near bed flow towards the sea reversed direction
and decreased to b0.10 m s−1 similar to the conditions prior to the
storm indicating the return of the salt wedge in the lower meter of the
water column. However, the near 180° change in direction across the
lower water column (Fig. 4 –middle) suggested that the salt wedge ap-
peared to be confined to a range between 0.8 and 1.2 mab. Above the
salt wedge the buoyant river plume flowed towards the sea with a
speeds up to 0.4 m s−1 between 1.0 and 1.2 mab (Fig. 4 – upper). The
small, upstream directed current very near the bed (b0.5 mab)
persisted until a second storm occurred on 28 January 2014. During
the second, smaller storm we observed the flow direction towards the
sea across the entire lower water column for just a brief time period
starting around 1200 until about 1800 on 28 January 2014 at QR2 (Fig.
4). Additionally, during the second smaller storm there was a third
quadpod with instrumentation suite NRLQ located at QR3 (280 m up-
stream of the river mouth). At the location QR3 flow reversal towards
the sea was not observed (Fig. 5 - middle) suggesting the existence of
a convergence zone between QR2 and QR3.

During the wintertime experiment two of the four quadpods were
deployed at two different locations in the sea (Table 2). One quadpod
with instrumentation suite UFQ was deployed at QS1 in about 5 m
water depth from the period starting at 0930 on 23 January 2014
through 1220 on 27 January 2014. Another quadpod with instrumenta-
tion suite NRLQwas deployed at QS2 in about 6mwater depth from the
period starting at 1000 on 23 January 2014 through 1200 on 27 January
2014. The observations at QS1 and QS2 spanned the Bora storm of 24–
25 January. Profiles of mean currents, direction, and backscatter intensi-
ty observed at QS1 and QS2 for UFQ (20-minute averaged) and NRLQ
(45-minute burst averaged) are shown in Figs. 6 and 7, respectively.
Mean currents near the bed (b0.5 mab) at QS1 prior to the arrival of
the storm were typically much b0.2 m s−1 with directions varied (Fig.
6). During the hours of 1200 on 24 January through 0000 on 25 January
2014 the currents near the bed roughly aligned directed alongshore to
the south and began increasing in magnitude and eventually peaked
at over 0.8 m s−1 very near the bed (b0.5 mab). Similarly, mean cur-
rents near the bed (b1.2 mab) at QS2 prior to the arrival of the storm
were typically much b0.2 m s−1 with directions varied (Fig. 7). During

the hours of 1200 on 24 January through 0000 on 25 January 2014 the
currents near the bed roughly aligned directed alongshore and began
increasing in magnitude and eventually peaked near 0.80 m s−1. After
the passage of the storm, starting around 0000 on 26 January 2014,
the mean currents near the bed (b1.2 mab) at QS2 exhibited similar
conditions to those observed before the storm. Observed changes in
backscatter intensity and local bed elevation will be presented below.

4.3. Morphodynamics

The overall morphodynamics picture was best captured by a series
of bathymetric surveys that were obtained around the summertime ex-
periment in May and September 2013 (Brocchini et al., 2015) and after
the wintertime experiment in February 2014. Additionally, evidence of
sediment transport and short term changes in bed elevation were ob-
served at various quadpod locations during the storms of 24–25 January
and 28 January 2014. Observed local changes are presented below.

Fig. 5. Shown is hourly burst averaged velocity profiles (upper), direction (middle) and
normalized acoustic backscatter intensity (lower) observed with the down and up
looking Aquadopps at QR3. Backscatter was normalized by the maximum backscatter
value from the two Aquadopps for time period shown here. Overlaid on all panels is the
location of the bed estimated from hourly averages of the pencil beam sonar line scans.

Fig. 6. Shown is half hour averaged velocity profiles (upper), direction (middle) and
normalized acoustic backscatter intensity (lower) observed with the PC-ADP at QS1.
Backscatter was normalized by the maximum backscatter value from the PC-ADP for
time period shown here. Overlaid on all panels is the location of the bed estimated using
the acoustic backscatter.

Fig. 7. Shown is hourly burst averaged velocity profiles (upper), direction (middle) and
normalized acoustic backscatter intensity (lower) observed with the down and up
looking Aquadopps at QS2. Backscatter was normalized by the maximum backscatter
value from the two Aquadopps for time period shown here. Overlaid on all panels is the
location of the bed estimated from hourly averages of the pencil beam sonar line scans.
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4.3.1. Bathymetric surveys
Bathymetrywas obtained from amultibeamsurvey after thewinter-

time experiment in February 2014 in the final reach of the MR extend-
ing from just upstream of QR1 out past the river mouth and estuary
region. Thewintertime bathymetrywas comparedwith the bathymetry
obtained using the same multibeam system at the end of the

summertime experiment in September 2013. Shown in Fig. 8a and b
are the bathymetric surveys for September 2013 and February 2014, re-
spectively. Therewas up to 1mof erosion in the channel along the reach
from QR1 to QR3 as evidenced in the bathymetry difference plot for the
time period between September 2013 and February 2014 (Fig. 8d). In
the final reach from QR3 extending to the river mouth there was very

Fig. 8. Bathymetry (a) before the summertime (September 2013) and (b) after (February 2014) thewintertime experiments. Seabed variation (c) betweenMay and September 2013 and
(d) between September 2013 and February 2014.
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little change in the bathymetry until reaching the end of the channel. At
the end of the engineered river channel and just beyond the channel to
the south an alternating pattern of deposition and erosion was evident
with the erosion and deposition beyond the channel suggesting the for-
mation of a nearshore bar system. Just beyond the channel to the north
was a large region of deposition.

4.3.2. Sediment transport
Periods of intense sediment transport during the wintertime exper-

iment were inferred from variations in the observed backscatter inten-
sity at quadpod locations QR2, QR3, QS1, and QS2. Time series of the
vertical profiles for the normalized backscatter intensity were plotted
in lower panels of Figs. 3–7. Here we simply normalized the observed
backscatter intensity by the maximum for the time series record at
each location (i.e., normalization is different for each Figure). We also
observed that increases in backscatter intensity often coincided with
observed changes in local bed elevation. Consequently, it was assumed
that increased sediment load was likely the main factor driving ob-
served increases in backscatter intensity.

The NRLQ also contained a pencil beam sonar (1MHz), which effec-
tivelywas deployed as an acoustic altimeter. The pencil beam sonar per-
formed a series of 10 successive line scans (90° width) every hour. The
line scans were averaged to obtained a single distance from the trans-
ducer to the bottomonce anhour. The location of the bed as determined
by the pencil beam sonar is overlaid on all panels of Figs. 3, 4, 5, and 7. In
Fig. 6, the location of the bed as determined by the backscatter intensity
from the PC-ADP is overlaid on all panels.

During the storm from 24 to 25 January 2014, backscatter inten-
sity peaked at QR2 near the bed (Fig. 4 – lower). The vertical location
of the peak in backscatter intensity during the storm remained close
to the bed (b0.5mab) at QR2 andwas observed to reduce afterwards.
The appearance of a rise in bed elevation immediately upon deploy-
ment, probably due to local deposition or pod sinking, and then grad-
ual decay starting from 1100 until about 2200 on 24 January 2014 at
QR2 was evident (Fig. 4). At QS1 (Fig. 6) and QS2 (Fig. 7) similar
peaks in backscatter intensity were observed during the storm on
24–25 January 2014. The backscatter intensity began growing
around 0700 on 24 January 2014. At QS1 a gradual deposition
(b0.1 m) from 1200 on 24 January through 0000 on 25 January
2014. The gradual deposition was followed by rapid deposition
from 0000 through about 0600 on 25 January 2014 that eventually
saturated the signal as the freshly deposited bed approached the
transducers of the PC-ADP. Nearly 0.5 m of sediment were deposited
at QS1 during the storm and remained in place over the quadpod
until the recovery on the morning of 27 January 2014 (Fig. 6). Simi-
larly, at QS2, rapid deposition occurred from 0000 through about
0600 on 25 January 2014. Subsequently the rate of deposition slowed
and subsided around 1800 on 25 January 2014. Roughly 0.2 m of sed-
iment were deposited at QS2 during the storm and remained in place
over the quadpod until the recovery on the morning of 27 January
2014 (Fig. 7).

During the storm on 28 January 2014 the backscatter intensity
peaked again and small, but consistent changes in bed elevation
were observed at QR2 (Fig. 4). The conditions during the storm on
28 January 2014 were quite different at QR3 located just 120 m
downstream of QR2 where up to 0.4 m of sediment deposition was
observed (Fig. 5). The pencil beam sonar was completely saturated
as deposition began around 0600 and completely covered the sonar
by 1000 on 28 January. The sonar head remained buried until after
the storm subsided on the morning of 29 January. Strong currents
up to 0.4 m s−1 (Fig. 5 – upper) were observed roughly between
1200 and 1800 on 28 January, but were directed upstream (Fig. 5 –
middle) suggesting the source of the observed deposition was from
the convergence of downriver transport and waves and currents
transporting sediment from the mouth up the channel.

4.4. Water and sediment samples

Water columnprofile data and discretewater and sediment samples
were collected throughout the final reach of the river, the estuary and
the nearshore area in front of it, with the aim to investigate the role of
wintertime conditions in the estuarine dynamics. Large plumes of sedi-
ment were visually observed in the area during and after the storm
events on 24–25 January and 28 January 2014. Efforts weremade to ob-
tainwater and sediment samples during quiescent conditions following
each of the storms with small boats.

4.4.1. Water column profiles
Analyses of water column profiles suggested that precipitation and

tides significantly influenced the temperature and salinity of the lower
reach of the MR, dramatically changing the estuarine circulation and
mixing. However, the observed pH was almost constant along the
water column and throughout the investigated period. Due to an in-
creased supply of eroded basin materials, an increase in river turbidity
was observed during high-flow states. Further, the MR under normal
conditions resembled a partially-mixed estuary but under higher river
flow conditions the lower reaches of the MR took on the characteristics
of a salt-wedge estuary,with a clear stratification between the fresh sur-
face waters flowing seaward and more saline bottom waters flowing
landward.

4.4.2. Riverbed sediment samples
Riverbed sediments were collected primarily in the final 620 m of

the MR (i.e., between the train bridge and the mouth). It was observed
that sediments were highly heterogeneous, with a mix of gravel, mud
and sand within this transitional zone of the MR. In particular, the cen-
tral portion of the river was characterized by large concentrations of
gravel, due to surficial deposits, while in some spots of this zone sample
coringwas prevented, due to a large concentration of particulate organ-
ic matter, comprised of grasses, twigs and leaves. The photographs in
Fig. 9 depictmaterial thatwas freshly deposited on the quadpod located
at QR3. A dense mixed layer of fine-grained sediments and organic ma-
terial remained on the base of the quadpod during the recovery process.
The inset (Fig. 9) is a photograph of material from a diver grab sample
that was recovered at QR1 prior to the storm of 24–25 January 2014.
The similarity of sediment samples before and after the storm demon-
strated that the dense layer of fine-grained sediments and organic ma-
terial was persistent along the final reach of the MR and throughout
the experimental period. The deposits suggested a protective top layer

Fig. 9. Shown is a photograph of the base of the quadpod immediately after recover from
QR3. The red outline highlights a mat of fine-grained sediments and organic material that
wasdeposited during the deployment. The inset (upper left) shows leavesmixedwithfine
cohesive sediments from a diver grab sample taken at QR1 prior to the storm of 24–25
January 2014.
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of the river bed that may act as a mat of organic matter that inhibits
short-term erosion of the bed.

The fine-grained sediment fraction was characterized by clay and si-
liceousminerals,withmontmorillonite dominating the claymineralogy.
Montmorillonite tends to form large aggregate flocs, which settle rapid-
ly within the estuary during low flow, andwhich shear apart during the
turbulent flows of winter, into small flocs, which are transported in sus-
pension within the plume. In the interim periods, such as during slack
tides or other periods of reduced stress it is likely that flocs could aggre-
gate into larger sized flocs. The mineralogy was consistent throughout
the final reach of the MR (fine-silt and clay-sized sediment deposits)
with fine-grained sediment and silt dominant, except in the area around
the train bridge and the adjacent 50–70 m downstream, where sandy
gravel lag-deposits dominated the middle of the river bed. At the river
mouth, the grain size distribution switched to fine sand, which charac-
terized the nearshore littoral up to the offshore quadpods and the
“plume” area. Hence, in this region the sediment was dominated by
fine-grained quartz sands, with clay- and silt-sized sediments compris-
ing a small fraction of the seafloor sediment assemblage. The observed
provinces of sediment suggested that clays are concentrated within
the river and widely dispersed outside the river mouth, under the
plume and within the nearshore zone.

4.4.3. Suspended sediment samples and flocculated particles
Suspended sediments were collected in the water column and ana-

lyzed. As observed from the surface-water analyses, they were found
up to the plume edge (~1.3 km offshore of the river mouth) with the
fine sand dominating the sediment size distribution. A large portion of
the suspendedmatter collectedwithin theMRwas characterized by floc-
culated sediments. Flocculated particles in suspension displayed a poten-
tial to decrease size and disaggregate as flow velocities were increased.
Comparing the response of flocs sampled at the same locations (see
Table 4), we observed that after the passage of the storm on 24–25 Jan-
uary 2014 the sizes of the natant flocs were larger on 26 January than on
27 January 2014. However, the sizes of the natant flocs sampled on 29
January 2014, after the passage of the next storm on 28 January 2014,
were more comparable to the smaller flocs collected on 27 January
2014. While flocs tend to disaggregate under higher shear stresses
(e.g., during the peak of the storm), they also tend to strongly aggregate
when the storm subsides, during the transition from high to low flow
conditions. Both the duration and magnitude of the storm on 28 January
were less than the stormon 24–25 January 2014. The observation of only
the smaller flocs remaining in thewater column on 29 January 2014 sug-
gested that any larger flocs formedwhile the storm subsided had already
been deposited when the sampling occurred. While we believe floc de-
positionwas also the cause for the reduction in size of the natantflocs be-
tween 26 and 27 January 2014, the need for in situmeasurements of floc

size distributions (e.g., using INSSEV or LISST instruments) within the
river plume would greatly increase our understanding about the segre-
gation and distribution of macro- and micro-flocs.

5. Discussion

The results of the wintertime experiment presented above showed
significant differences from the summertime experiment (Brocchini et
al., 2015) across all the investigated fields including the meteorology
(wind and rainfall), the hydrodynamics observed both in the sea and
in the river (surface flow and current profiles), and the
morphodynamics (bathymetric changes and sediment characteristics).
The primary differenceswere found in thewind forcing, which generat-
ed waves of moderate/large heights during the summertime/winter-
time, essentially due to the more/less frequent changes in direction,
rather than in the velocity. Further, waves generated in winter by
WNW, N or NNE (Bora) winds can easily enter the river mouth, as
after a small refraction they are almost perfectly aligned to the river di-
rection. Other winds coming from ESE (Scirocco), generated waves
which even after the seabed refraction, were still too angled to easily
enter the river channel. The Scirocco-generated waves probably more
strongly affected the morphology around the estuary, being partially
reflected by the river walls.

Duringwintertime storm events therewas an enhanced transport of
sediments that influenced themorphological and rheological properties
of the bed in the vicinity of the river mouth and in the area under the
river plume. The suspended sediment plume affected the hydrodynam-
ics, increasing the fluid density and viscosity, as evidenced by the ob-
served dampening of capillary waves at the perimeter of the plume. In
summertime the flow at the estuary was ruled by both river and sea
forcing, the salt wedgemodulated by the tide being evident throughout
the experiment. Similarly, the wintertime response of the estuary
followed both river and sea forcing during low-flow states, but severe
storms/rainfalls caused the river forcing upstream of the bend (290 m
from the mouth) to be dominant regardless of tidal oscillations and
waves entering the channel. However, downstream of the bend (final
290 m), the interaction between sea and river fluxes was important,
leading to the observed sediment deposition at that location.

5.1. Wintertime versus summertime

We begin the comparison between wintertime and summertime
conditions with the meteorological data recorded during the experi-
ments. Fig. 10 illustrates the observedwind andwave conditions during
the summertime experiment in September 2013. The time series shown
was partially reconstructed using a north Adriatic implementation of
the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST)
system (Russo et al., 2013). Both wind and wave directions suggested
large variabilitywith the largest significant wave height, Hs≈ 1m. Con-
versely, the wind and wave climate during the wintertime experiment
(Fig. 11) was completely extracted from in-situ observations, either
local (e.g., using both weather station and offshore ADCP located at
QS3) or from the nearby Ancona harbor (~40 km south of Senigallia).
The time series wasmainly characterized by long periods of almost con-
stant wind and wave directions, which contained the most severe
storms with the largest wave heights. In particular, the most severe
storm during the experiment was coincident with a long-lasting wind
coming fromNNE (see the third panel of Fig. 11 between 24 and 25 Jan-
uary), whose velocity gradually increased until 0000 on 25 January. The
second storm occurring on 28 January contained less energy primarily
resulting from a smaller wind velocity (fourth panel of Fig. 11) and a
WNW incoming wind (third panel of Fig. 11), which forced the waves
to be refracted and rotate of about 90°, thus providing wave energy
dissipation.

The large influence of both river and sea forcing during the summer-
time experiment was also supported by the surface flow results (see

Table 4
Median grain size d50 (μm) of flocculated sediments at different times and locations along
the final reach of the MR. Several samples were collected at the location where the
quadpod was placed and these are denoted by QR#. The sediment samples were collected
at the specified dates and then transported to a laboratory where dynamic floc sizes were
determined in a CILAS 1190 Particle Size Analyzer at three different flow velocities.

Sampling
date

Distance from MR mouth
[m]

Low
flow

Transitional
flow

Turbulent
flow

26/01 525 - QR1 33.0 11.6 8.2
26/01 400 - QR2 31.9 13.9 10.3
26/01 280 - QR3 46.6 15.9 23.4
26/01 190 103.2 18.1 10.9
27/01 789 24.5 9.8 7.2
27/01 620 12.0 8.0 7.0
27/01 525 - QR1 13.3 9.0 7.3
27/01 525 - QR1 18.4 10.2 7.8
27/01 400 - QR2 9.8 7.1 6.5
29/01 525 - QR1 16.4 9.6 6.9
29/01 400 - QR2 13.2 8.8 7.1

36 M. Brocchini et al. / Marine Geology 385 (2017) 27–40



Table 5 and Fig. 12). Surprisingly, the wave forcing and tides were com-
parable to the river discharge and changed the surface flow (Brocchini
et al., 2015). Somedrifter trackswere observed to flowupstreamduring
the summertime (blue dots in the bottom left panel, Fig. 12). Overall,
the speeds along individual drifter tracks were reduced in the summer-
time as compared to the wintertime (top panels, Fig. 12). On average
the flow was slowed down at the bend and decreased at stroke 2, due
to both geometry of the MR cross-section and the influence of waves
and tides. The influence of thewave forcingwas evident in the observed
change in direction of the drifters to NWupon exiting theMR in front of
the estuary during the summertime as compared to the wintertime

(bottom panels, Fig. 12). Further, while wintertime tracks were always
consistent with the streamwise river alignment, with an increasing ve-
locity moving downstream, the importance of the sea forcing on the
summertime surface flow was suggested by the larger standard devia-
tions of both speed and direction (Table 5). Fig. 12 also shows that lon-
ger downriver paths were recorded during wintertime.

When comparing the river current profiles, the main differences
are found in the storm events, which affect the wintertime behavior of
the estuary, more than the normal-flow conditions. As described in
Section 4.2.2, the storm events forced the flow downstream across the
water column in portions of the lower reach of the MR, without any

Fig. 10. Climate during the summertime experiment. From top to bottom: atmospheric pressure (solid red line, from pressure gauge at the Ancona harbor) and storm surge (solid black
line, from the tide gauge at the Ancona harbor); modeled significant wave height; modeled incoming direction of waves (solid black line) and winds (dashed blue line); modeled wind
velocity.

Fig. 11. Climate during the wintertime experiment. From top to bottom: atmospheric pressure measured in Ancona (solid red line, from pressure gauge at the Ancona harbor) and
Senigallia (dashed red line, from the local weather station) and storm surge (solid black line, from the tide gauge at the Ancona harbor); measured significant wave height (solid black
line, from ADCP at QS3) and peak period (dashed red line, from ADCP at QS3); measured incoming direction of waves (solid black line, from ADCP at QS3) and winds (dashed blue
line, from weather station); measured wind velocity (from the weather station).
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visible influence of the sea forcing upstreamof the river bend. However,
the flow was significantly influenced by the incoming waves down-
stream of the bend, suggesting complex dynamics and interactions
within the estuary during storms. The analysis of the velocity profiles
demonstrated that direction was not clearly seaward throughout the
lower reach of the MR leading to the observed deposition at QR3 near
the bend (Fig. 5). Similar deposition was observed at QR2 reaching an
initial maximumaround 1200 on 28 January, but thenwas immediately
eroded when the flow aligned downstream across the profile. Subse-
quently, the deposition returned when the flow reversed again near
the end of the day on 28 January (Fig. 4). The observations suggested
the generation of sediment trapping (e.g., see Liu et al., 2011) at the
bend, or more downstream, due to the convergence of both hydrody-
namic fluxes and suspended sediments.

Large sediment transport directed upstream close to the bed with
fresh water flowing overtop in the downstream direction has been pre-
viously observed (e.g., Traykovski et al., 2004).

Similar morphodynamics may explain the large erosion that oc-
curred in wintertime upstream of the bend, where the flow was domi-
nated by the river discharge, and the more complex patterns
downstream of the bend and at the mouth, where sediment deposition
was also observed (Fig. 8d). The wintertime morphodynamics were in
contrast to the observations from summertime (see also Brocchini et
al., 2015), when a large sediment deposition occurred throughout the
final reach of the MR, suggesting that the flocculation zone was proba-
bly located upstream of the train bridge (Fig. 8c).

Floc aggregation and transportwere significantly affected by thewin-
tertime varying flow conditions, which determined large variations in
their size and settling velocity. They were also characterized by mixed
fine-grained sediments, hence their properties depended on the percent-
age of suspendedmaterial (e.g., Manning et al., 2010). Further, theywere
subject to both physical and biological cohesion, as suggested by the
large amount of organicmatter bothfloating at thewater surface and de-
posited on the river quadpod (Fig. 9), this also explaining the reduced
change of the bed morphology during storms (e.g., Parsons et al., 2016).

5.2. Role of waves

Summertime and wintertime storms were characterized by different
atmospheric conditions (see Figs. 10 and 11) resulting in distinct wave

Table 5
Surface flow features during summertime and wintertime experiments.

Stroke Summertime (Sep 2013) Wintertime (Jan 2014)

Mean speed [m s−1] 1 0.168 ± 0.141 0.294 ± 0.078
2 0.111 ± 0.072 0.377 ± 0.115
3 0.271 ± 0.119 0.445 ± 0.142

Direction/course [°N] 1 79.28 ± 99.02 14.57 ± 32.17
2 128.72 ± 123.30 32.65 ± 11.78
3 307.20 ± 93.24 22.55 ± 9.66

Temperature [°C] All 21.23 ± 1.52 8.76 ± 1.53

Fig. 12. Shown is a compilation of drifter tracks denoting theflow speed (top) anddirection (bottom)during the summertime (left panels) andwintertime (right panels) experiments. The
railway bridge location is illustrated at the bottom left edge of each panel (solid thick line), while dash-dotted lines separate the three strokes.
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climates. The direction and intensity of winds was the controlling factor
determining the differences in the direction of the incoming waves and
the intensity of the storms. The effects of waves on the shoreline and
river may be simplified by decomposing the wave energy into two cate-
gories. First, swell energy was likely responsible for sediment transport
in the estuary, and second, infragravity (IG) wave energy was likely re-
sponsible for altering sedimentary processes farther upstream.

Wintertime conditions were dominated by strong sustained north-
erly winds (blowing along the short axis of the Adriatic) that can
reach speeds up to 20 m s−1. The relatively short fetch of these winds
generated short, steep swells propagating almost shore-normal to the
shoreline, and directly into the MR mouth. These short, steep swells
generated intense breaking before and at the river mouth, suspending
sediment and enhancing sediment transport, as evidenced by the
large sediment deposition observed at our offshore quadpods in 5 m
(QS1) and 6 m (QS2) water depth during the Bora storm of 25 January.
During both observed storms, large wave heights were measured at lo-
cation QR2, suggesting that only storm conditions are capable of driving
pulse-like waves up the channel.

The conditions for the typical summertime storm are driven by
south-easterly winds availing themselves of the long fetch of the
Adriatic long axis. Summertime stormsproduce long, narrow-spectrum,
but comparatively weaker, less-steep swells that approach the coast
with awide incidence angle. The summertime storms aremore efficient
producers of IG waves, due to a longer shallow-water run and less in-
tense breaking. Consequently, the river ismore typically affected at larg-
er distances from the rivermouth during the summertime, as evidenced
by previous surface flow measurements (Section 4.2.1) and salinity
values, which were larger than zero up to about 1.8 km upstream and
larger than 10 psu between the train bridge and the estuary
(Brocchini et al., 2015). Similar summertime dynamics are observed in
different rivers where the dry-season enhances prolonged seawater in-
trusion (Dong et al., 2004).

The combined observations of waves and morphodynamics in the
final reach of the MR during wintertime storms were in agreement
with the proposed role of storm waves as a fundamental agent for the
upstream, nearbed advection of thick layers of fluid mud (e.g.,
McAnally et al., 2007). We believe that the ~0.4 m of sediment deposi-
tion observed at QR3 (Fig. 5) resulted from the convergence of down-
stream sediment transport and an upstream, nearbed advection of
sediment induced by storm waves.

5.3. Comparison with existing studies

Seasonal variability of estuarine environments has been studied pre-
viously, though typically these estuaries have been much larger in size
and subject to larger tidal excursions than theMR.While these larger riv-
ers, e.g., the Pearl River, China (Dong et al., 2004), or the Ba Lat River,
Vietnam (van Maren and Hoekstra, 2004), are characterized by larger
discharges they still exhibit fresh water dominating in the upper layer
and salt water intruding landward near the bottom, similar to the condi-
tions in the MR. Despite the large range in size, discharge, and tidal ex-
cursion all these estuary systems (including the MR see Section 4.4.1)
exhibit (1) highly stratified water columns with small mixing rates dur-
ing the rainy season (salt-wedge estuary), and (2) partly stratifiedwater
columns during the dry season, with a larger water mixing (partly strat-
ified estuary). The seasonal behavior leads to varying dynamics both in-
side the estuary and offshore of the mouth (Chao, 1988; Dong et al.,
2004). Numerical simulations underline the important role of tides and
winds in water mixing, and their influence on bottom turbulence at
the plume location (Pan and Gu, 2016).

Winds exhibit different controls on estuarine dynamics. Wind-gen-
erated residual currents in the estuarine systemmainly affect fine sedi-
ment transport (Narváez and Valle-Levinson, 2008). Intertidal areas
influenced by small wind-generated waves, which increase the bed
shear stress, generate orbital velocities that may bemuchmore efficient

than tidal currents in eroding sediments (Noernberg et al., 2007; Hunt
et al., 2015). Similar behavior was observed at the MR estuary, where
the tidal forcing had a negligible effect onmorphological changes, espe-
cially given the strong impact of wave-forcing during storms.

5.4. Limitations and possible improvements

The present study was characterized by some limitations, mainly
due to both the reduced number of bathymetric surveys and the lack
of in situ floc measurements. Future experiments on the MR estuary
will leverage an existing video-monitoring systems installed at the
Senigallia harbor in summer 2015, which is enabling an almost real-
time reconstruction of both wave field and bathymetry in the estuarine
and coastal area. The continuous remotely sensed data will allow us to
better quantify the eroded/deposited sediment volumes, especially dur-
ing high-flow conditions. Further, the use of novel optical techniques for
in situ floc measurements in the future will improve identification and
classification of floc size and settling velocity.

6. Conclusions

The experimental campaigns carried out within the estuarine envi-
ronment of the Misa River (Senigallia, Italy) provided insight into the
complex dynamics occurring during both low-flow and high-flow condi-
tions. The baseline (summertime) experiment of September 2013 sug-
gested a strong interaction of waves, tide and river flow within the
final reach of the river and at the estuary, where sea forcing-induced
waves and currents traveled up to 1.8 km upstream and promoted floc-
culationwithin the river at distances larger than 700m from the estuary.
Infragravitywaves generated from southeast (Scirocco)winds propagat-
ed energy farthest upstream. Further, the bathymetric surveys confirmed
that sediment and flocculation deposition occurred in the final 600–
700 m of the river.

Thewintertime experiment, carried out in January 2014, was charac-
terized by alternating low and high flow conditions, which influenced
the river hydro-morphodynamics in different ways. The low-flow condi-
tions of the wintertime highlighted a fairly strong interaction between
the sea and river forcing, similar to the observations in summertime.
However, in the wintertime the surface flow was constantly directed
downstream, highlighting the dominance of the river forcing. Addition-
ally, the high-flow conditions of the wintertime played an important
role controlling the morphological response of both the river and adja-
cent nearshore region. The wintertime winds were characterized by al-
most constant directions for much longer periods than in summertime,
enabling waves to reach heights up to three times larger. Larger wave
heights, coupled with comparable storm surges and larger river flows,
when compared to summertime measurements, lead to complex
hydro-morphodynamics within the final reach of the MR. In particular,
during storm events, river flow dominated over sea forcing at distances
from the rivermouth larger than ~300m, theflowbeing downstreamdi-
rected throughout the water column and the riverbed being slightly
eroded due to the protective action of a surficial muddy layer, mixed
with organic matter. Localized patterns of mud deposition at the river
entrance were thought to be the result of downstream sediment trans-
port and upstream, nearbed advection of sediment induced by storm
waves. However, such strong sea-river interactions mainly occurred
close to the river mouth, due to the reduced contribution of infragravity
waves during Bora winds.
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