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RESEARCH Open Access

Acute maternal oxidant exposure causes
susceptibility of the fetal brain to
inflammation and oxidative stress
Feroz Akhtar1, Christopher A. Rouse2, Gabriel Catano3, Marcus Montalvo1, Sarah L. Ullevig4, Reto Asmis5,
Kusum Kharbanda6 and Shivani K. Maffi1*

Abstract

Background: Maternal exposure to environmental stressors poses a risk to fetal development. Oxidative stress (OS),
microglia activation, and inflammation are three tightly linked mechanisms that emerge as a causal factor of
neurodevelopmental anomalies associated with prenatal ethanol exposure. Antioxidants such as glutathione
(GSH) and CuZnSOD are perturbed, and their manipulation provides evidence for neuroprotection. However,
the cellular and molecular effects of GSH alteration in utero on fetal microglia activation and inflammation
remain elusive.

Methods: Ethanol (EtOH) (2.5 g/kg) was administered to pregnant mice at gestational days 16–17. One hour
prior to ethanol treatment, N-acetylcysteine (NAC) and L-buthionine sulfoximine (BSO) were administered to
modulate glutathione (GSH) content in fetal and maternal brain. Twenty-four hours following ethanol exposure, GSH
content and OS in brain tissues were analyzed. Cytokines and chemokines were selected based on their association
with distinctive microglia phenotype M1-like (IL-1β, IFN γ, IL-6, CCL3, CCL4, CCL-7, CCL9,) or M2-like (TGF-β, IL-4, IL-10,
CCL2, CCL22, CXCL10, Arg1, Chi1, CCR2 and CXCR2) and measured in the brain by qRT-PCR and ELISA. In addition,
Western blot and confocal microscopy techniques in conjunction with EOC13.31 cells exposed to similar ethanol-induced
oxidative stress and redox conditions were used to determine the underlying mechanism of microglia activation associated
with the observed phenotypic changes.

Results: We show that a single episode of mild to moderate OS in the last trimester of gestation causes GSH depletion,
increased protein and lipid peroxidation and inflammatory responses inclined towards a M1-like microglial phenotype
(IL-1β, IFN-γ) in fetal brain tissue observed at 6–24 h post exposure. Maternal brain is resistant to many of these marked
changes. Using EOC 13.31 cells, we show that GSH homeostasis in microglia is crucial to restore its anti-inflammatory
state and modulate inflammation. Microglia under oxidative stress maintain a predominantly M1 activation state.
Additionally, GSH depletion prevents the appearance of the M2-like phenotype, while enhancing morphological
changes associated with a M1-like phenotype. This observation is also validated by an increased expression of
inflammatory signatures (IL-1β, IFN-γ, IL-6, CCL9, CXCR2). In contrast, conserving intracellular GSH concentrations
eliminates OS which precludes the nuclear translocation and more importantly the phosphorylation of the NFkB
p105 subunit. These cells show significantly more pronounced elongations, ramifications, and the enhanced
expression of M2-like microglial phenotype markers (IL-10, IL-4, TGF-β, CXCL10, CCL22, Chi, Arg, and CCR2).
(Continued on next page)

* Correspondence: shivani.maffi@utrgv.edu
1School of Medicine, Department of Biomedical Sciences, Regional Academic
Health Center, University of Texas Rio Grande Valley, 1204 W. Schunior,
Edinburg 78241, TX, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Akhtar et al. Journal of Neuroinflammation  (2017) 14:195 
DOI 10.1186/s12974-017-0965-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s12974-017-0965-8&domain=pdf
mailto:shivani.maffi@utrgv.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


(Continued from previous page)

Conclusions: Taken together, our data show that maintaining GSH homeostasis is not only important for quenching
OS in the developing fetal brain, but equally critical to enhance M2 like microglia phenotype, thus suppressing
inflammatory responses elicited by environmental stressors.

Keywords: Glutathione, Inflammation, Microglia, Oxidative stress, NF-kB, Fetal alcohol syndrome

Background
Clinical and preclinical evidence indicates that maternal
oxidative stress [1–3] and immune activation are a major
source of non-genomic alterations that impair fetal neu-
rodevelopment [4, 5]. Anomalies arise because fetal
brain growth and plasticity is strongly influenced by the
local cellular metabolic milieu and is highly susceptible
to neurochemical perturbations caused by prenatal fac-
tors, such as inflammation and environmental stressors
[6–8]. Ethanol is a common prenatal environmental
stressor known to cause neurocognitive deficits and be-
havioral abnormalities, the broad effects of which are
clinically categorized as Fetal Alcohol Spectrum Dis-
order (FASD) [2]. Irreversible fetal brain damage occurs
due to the loss of glia and neurons in various brain com-
partments [9–11], the degree of injury being directly
dependent on dose, duration of ethanol exposure, and
gestational age of the unborn fetus [9, 12]. Additionally,
neurons are particularly sensitive to the effects of etha-
nol during the period of synaptogenesis, also known as
the brain growth spurt period, generally observed in the
second trimester in rodents and during the last trimester
of gestation in humans [9]. The molecular mechanisms
underlying FASD are yet to be fully understood; how-
ever, there is evidence that increased oxidative stress
[13], diminished antioxidant enzymes [1, 14], and more
recent reports suggest neuro-immune activation and in-
flammation [11, 12, 15, 16] all contribute significantly
towards ethanol-induced neurotoxicity.
Microglia are the resident immune cells of the central

nervous system (CNS). Activation and polarization of
microglia is regulated by both endogenous and exogen-
ous factors [17]. Animal models of adult ethanol con-
sumption further indicate that the damaging effects on
the brain are due to priming and activation of microglia
[18–20], leading to sustained inflammation which is in
turn driven by a surge of pro-inflammatory cytokines,
such as TNF-α, IL-1β, and IL-6 [21–24]. Depending on
molecular signals received by the microglia receptors,
activated microglia acquire either a “cytotoxic M1” or an
“alternatively activated M2” neuroprotective phenotype
[25]. M1-like phenotype is associated with reduced
neurogenesis and deterioration of the neurotrophic sys-
tem due to the release of pro-inflammatory mediators
such as IFN-γ, IL-1β, IL-6, and TNF-α [26, 27]. On the
other hand, a M2-like phenotype triggers an array of

neuroprotective chemokines. Moreover, microglia’s con-
version into either classical or alternative phenotype ap-
pears to be controlled by two transcriptional factors:
nuclear factor kappa-light-chain-enhancer of activated B
cells (NFκB) and nuclear factor (erythroid-derived2)-like
2 (Nrf-2), both extremely sensitive to oxidative stress
and redox signaling [28]. While ROS signaling molecules
augment p65/p50 dimer formation that subsequently
leads to NFκB-dependent transcription of inflammatory
cytokines/chemokines associated with a M1-like pheno-
type, Nrf-2 protects against oxidative damage [29] by ac-
tivating genes involved in the synthesis of antioxidant
enzymes and may likely be a critical regulator of the
M2-like phenotype [28]. Despite this knowledge, the
synergy of these two transcription factors in modulating
microglia function during fetal development and under
redox dysfunction remains poorly understood.
In utero ethanol exposure directly activates microglia

through TLR2 and TLR4, triggering both oxidative stress
and inflammatory cytokine production [11]. Therefore,
intracellular factors such as antioxidants (GSH) are likely
to influence microglia function [28]. However, it is un-
clear how and to what extent changes in maternal redox
homeostasis impact gestational immune environment
and its ultimate influence on microglia activation in the
developing fetal brain. We hypothesized that even a sin-
gle episode of endogenous glutathione dysregulation in
utero around mid-gestation is sufficient to cause oxida-
tive stress and inflammatory imprint in the fetal brain.
Therefore, in this study, we utilized an in vivo and in
vitro model of a short-term shift in oxidative-redox bal-
ance to determine the corresponding effect on fetal im-
mune response associated with microglia M1/M2
phenotypic shift.

Methods
In vivo experimental protocol
Animal model
Timed pregnant C57 B6 mice were obtained directly
from Harlan Laboratories (Indianapolis, IN) at or around
gestational day 11. These mice were housed and accli-
matized in the 59th Clinical Research Division (San
Antonio, TX) animal facility until the day of the experi-
ment. All parameters mentioned below were evaluated
in fetal mice of either sex obtained at gestational days
17–18. Seven dams (maternal mice) were placed in each
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of the following treatment groups: control, EtOH only,
NAC only, NAC/EtOH, BSO, and BSO/EtOH totaling
42 total dams.

Treatment
Ethanol, diluted in 20% saline, was administered to dams
subcutaneously at a dose of 2.5 g/kg. BSO, 1.5 g/kg, and
NAC, 4 mg/dose, intraperitoneal treatments were ad-
ministered 1 h prior to alcohol treatment. Twenty-four
hours following ethanol exposure, the maternal dams
were humanely euthanized via cervical dislocation and
the fetuses were harvested. For RNA and protein expres-
sion experiments, maternal and fetal brain tissues were
flash frozen in liquid nitrogen and stored at − 80 °C until
used. A description of the treatment regimen, dosing,
and route of administration is provided in Fig. 1.

In vitro microglia culture protocol
Cell culture
Murine microglia cell line (EOC13.31) was obtained
from the American Type Culture Collection (ATCC;
Manassas, VA, USA). Cells were maintained in Dulbec-
co’s modified Eagle’s medium with 4 mM L-glutamine
adjusted to contain 1.5 g/l sodium bicarbonate and
4.5 g/l glucose, 70%; fetal bovine serum, 10%; and LAD-
MAC conditioned media (produced from the LADMAC
cell line (CRL-2420), 20%, and kept at 37 °C in a 5%

CO2 incubator. The culture medium was regularly
replenished at 3–4-day interval.

Cell treatment
Microglia were seeded at the density of 2 × 105 cells/mL
in either 60 or 100 mm dishes and were pretreated over-
night (~ 18–20 h) with PBS (control), NAC (500 μM),
and BSO (200 μM) diluted in PBS [10]. One set from each
treated group was further exposed to 22 mM (~ 1 mg/ml)
ethanol for 6 h. A small ethanol-filled beaker was placed
in the incubator to maintain optimum ethanol concentra-
tion in the culture media at all times [10].

Total glutathione levels in brain lysates
Brain extracts were subjected to HPLC analysis for the de-
termination of GSH levels as detailed in [30] and [31] with
slight modification. Briefly, brain lysates were prepared in
Tris-EDTA buffer + protease inhibitor cocktail (P8340,
Sigma Aldrich) to yield a concentration of 30-μg protein/
Eppendorf tube. To alkylate the free thiol groups, 100 mM
of freshly prepared N-ethylmaleimide (NEM) was added to
the samples. Proteins were precipitated with 40 μl cold 18%
perchloric acid (PCA). One hundred fifty-microliter ali-
quots of the supernatant obtained were neutralized with
2 M KPi and reduced with dithiothreitol (DTT) (final con-
centration 6.9 mM). Each sample was diluted with 500 μl
of 0.1 M KPi followed by o-phthalaldehyde (final concen-
tration 11.2 mM, DTT < 2.4 mM) to obtain glutathione

Fig. 1 Overview of the experimental design. Top panel in in vivo studies, pregnant C57 B6 mice were divided into the following groups: Control,
NAC, BSO, EtOH, EtOH/NAC, and BSO/EtOH. For combined treatments, NAC or BSO was administered 1 h prior to ethanol exposure. Maternal and
fetal brain samples were used for further experiments. Bottom panel In vitro model using EOC13.31 cells (microglia cell line) were classified similar
to the above 6 groups. Microglia was exposed with NAC or BSO for 18 h followed by 6-h ethanol treatment. Live cells and cell lysates were processed
further for analysis of oxidative stress, inflammatory, and morphological changes
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derivatives, which were subsequently separated by re-
verse phase HPLC. HPLC analysis was performed on a
Jasco HPLC system equipped with a spectrofluorometer
(FP-920, Jasco Inc.) set to an excitation wavelength of
340 nm and an emission wavelength of 420 nm. Gluta-
thione was separated isocratically on a Brownlee 3-cm
C18 ODS guard column (5 μm) and a Brownlee 22-cm
C18 ODS analytical column (5 μm) with 21 mM propi-
onate buffer (in 35 mM NaPi, pH 6.5)/acetonitrile (95/5
by volume) at a flow rate of 1.2 ml/min.

Protein carbonyl content
The reactive carbonyl contents in brain lysates were mea-
sured by the widely applied 2, 4-dinitrophenylhydrazine
(DNPH) procedure [32]. Proteins (1–1.5 mg/ml) were sep-
arated into two 200-μl aliquots (i.e., a test sample and a
blank sample). One milliliter of 10 mM DNPH in 2.5 M
HCl was added to the test sample fraction while 1.0 ml of
2.5 M HCl alone was added to the blank sample fraction.
Both fractions were then incubated in the dark at room
temperature for 15 min. The samples were precipitated
with 1.0 ml of 20% trichloroacetic (TCA) on ice for 5 min
followed by centrifugation at 10,000g for 10 min. Subse-
quently, the tubes were treated with a 10% TCA wash,
followed by washing in ethanol:ethyl acetate (1:1, v/v, four
times). The final pellets were dissolved in 500 μl of 6 M
guanidine-HCl in the presence of 20 mM phosphate buf-
fer:trifluoroacetic acid (pH 2.3) and left vortexing for
30 min at 50 °C. The reactive carbonyl content was calcu-
lated from its peak absorption at 370 nm using a molar
absorption coefficient (ε) of 22,000 M−1 cm−1. Reactive
carbonyl content (μmol/l) was calculated using Beer-
Lambert equation: Abs380nm (test-blank) × 106/ε. The
final carbonyl content in the protein was expressed as
μmol/mg protein.

Reverse transcriptase polymerase chain reaction (RT-PCR)
Total RNA was extracted from fetal brains or microglia
cells using RNeasy mini kit (Qiagen, Valencia, CA) fol-
lowing the manufacturer’s instructions (Catalog 74104).
Quantification and analysis of nucleic acid purity were
performed with spectrophotometry (NanoDrop Tech-
nologies, Wilmington, DE), and 1 μg of each sample was
reverse transcribed with Moloney murine leukemia virus
reverse transcriptase (Superscript II First-Strand Synthe-
sis System for RT-PCR, Invitrogen) in a 20 μl of reaction
mixture using oligo (dT) primer. Gene expression was
measured using real-time PCR. The following primers
and FAM-labeled probes from Applied Biosystems In-
ventoried Assays were used: transforming growth factor
beta 1 (TGF-β1, cat# Mm01178820_m1), interleukin-4
(IL-4, cat# Mm00445259_m1), interleukin-10 (IL-10,cat#
Mm00439614_m1), interleukin-1β (IL-1β, cat# Mm004
34228_m1), interferon γ (IFN-γ, cat# Mm01168134_m1),

interleukin-6 (IL-6, cat# Mm00446190_m1), chemokine
(C-C motif ) ligand 2 (CCL2, cat #Mm00441242_m1),
chemokine (C-C motif ) ligand 3 (CCL3, cat # Mm00
441259_g1), chemokine (C-C motif ) ligand 4 (CCL4, cat
# Mm00443111_m1), chemokine (C-C motif ) ligand 7
(CCL-7, cat # Mm00443113_m1), chemokine (C-C
motif ) ligand 9 (CCL9, cat # Mm00441260_m1), chemo-
kine (C-C motif ) ligand 22 (CCL22, cat # Mm004
36439_m1), C-X-C motif chemokine 10 (CXC 10,cat #
Mm00445235_m1), C-C chemokine receptor type 2
(CCR2, cat # Mm99999051_gH), chemokine (C-X-C
motif ) receptor 2 (CXCR2, cat # Mm99999117_s1), argi-
nase 1 (Arg-1, cat # Mm00475988_m1), Chitinase 3-like
(CHI3, cat # Mm00657889_mH), and 18S rRNA (cat #
Mm03928990_g1). Expression of the target genes was
determined by qRT-PCR using Gene-specific TaqMan
Assay Reagents and TaqMan Gene Expression Assay
products on a 7900 HT Fast Real time PCR system (Ap-
plied Biosystems, Foster City, CA, USA). Real time PCR
was conducted using a 384-well plate (Micro- Amp Fast
Optical 96-well Reaction plates and MicroAmp Optical
Adhesive Film, both from Applied Biosystems). Reac-
tions were performed in triplicate. Each 10 μl reaction
contained 0.5 μL 20× TaqMan gene expression assay,
5 μl 2× TaqMan universal Master Mix, and 4.5 μl of
cDNA template. Following one initial step of 95 °C for
20 s, the cycling parameters were 95 °C for 1 s, 60 °C for
20 s, and 40 cycles; the data were analyzed using Se-
quence Detection Systems software (Applied Biosys-
tems), and the cycle number at the linear amplification
threshold (Ct) of the endogenous control (18S ribosomal
RNA, Applied Biosystems) gene and the target gene was
recorded. Relative gene expression (the amount of target,
normalized to the endogenous control gene) was calcu-
lated using the comparative Ct method formula 2−ΔΔCt.
All PCR data are reported as mean ± SEM relative
expression values.

Western blotting
Lysates were prepared from brain samples or microglia
(EOC13.31) cell lines in chilled RIPA buffer (25 mM
Tris-HCL pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium
deoxycholate, 0.1% SDS; Thermo Scientific, Rockford,
IL) containing protease inhibitor (complete Mini,
EDTA-free Protease inhibitor cocktail tablets, Roche
Diagnostics, Indianapolis, IN). Samples were homoge-
nized (3 cycles of 5 s each) using a cordless pellet pestle
motor (Kontes, Fisher Scientific, Pittsburgh, PA) and
allowed to lyse for 30 min on ice, followed by centrifuga-
tion at 13.2 (×10,000) rpm for 15 min (Eppendorf Cen-
trifuge 5415 D, Eppendorf North America, Hauppauge,
NY), and the cleared supernatant was collected and
stored at − 20 °C. Nuclear and cytoplasmic proteins were
extracted separately using the NE-PER Nuclear and
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cytoplasmic Extraction Reagents (Thermo scientific).
Protein concentrations were determined using BCA kit
(Pierce BCA Protein Assay Kit; Thermo Scientific, Rock-
ford, IL). Fifteen to 20 μg of protein samples were sepa-
rated on a SDS polyacrylamide gel (10–15%) and
subsequently electrophoretically transferred onto nitro-
cellulose membranes (Thermoscientific), followed by
blocking with nonfat dry milk in TBST (50 mM Tris-Hcl,
pH 7.4, 150 mM NaCl, 0.2% Tween 20). The membranes
were incubated overnight with any of the mentioned pri-
mary antibodies: rabbit anti mouse Nrf-2 (1:1000; Thermo
Fisher Scientific, cat# PA5-27882), rabbit anti mouse
4HNE (1:1000; Abcam, cat# ab46545), rabbit anti mouse
Phospho-NF-κB p105 (1:1000; Cell Signaling, cat#4806),
rabbit anti mouse NF-κB p105 p105/p50 (1:1000; Cell Sig-
naling, cat#13586), rabbit mAb NF-κB p65 (1:1000; Cell
Signaling, Cat#8242), Phospho-NF-κB p65 (1:1000; Cell
Signaling, Cat#3033), and anti-mouse ß-actin(1:10,000;
Sigma cat#A5441), followed by HRP labeled goat anti
mouse or goat anti rabbit or goat anti sheep (1:1000;
Santa Cruz). Protein bands were detected using a
chemiluminescence (ECL kit) method (Pierce) and
visualized on x-ray film (Kodak).

Cytokine ELISA
The concentration of the following cytokines in the
brain lysates were determined using ELISA kits accord-
ing to the manufacturer’s instructions: IL-10 (Thermo-
Fisher Scientific, cat# KMC0101), IL-6 (ThermoFisher
Scientific, cat# KMC0061), IFN-γ (ThermoFisher Scien-
tific, cat# KMC4021), TNF-α (ThermoFisher Scientific,
cat# KMC3011), and IL1β (ThermoFisher Scientific,
cat# KMC0011).

Cell viability
Microglia were seeded at a density of 5000 cells/well in a
96-well plate, and the cell viability was determined using
MTS assay (Promega; cat#G3580). Briefly, at the end of
treatment regimen, 100 μl of media was removed and
20 μl of Cell Titer 96Aq reagent was added. The plates
were incubated for 1.5 h at 37 °C to allow the MTS
tetrazolium compound to convert into a colored soluble
formazan. Absorbance was recorded at 490 nm using a
microplate reader (Spectra Max, Molecular Devices).

Cellular glutathione content
GSH levels were determined as described by Kamencic
et al. with slight modification [33]. Cells were cultured
in 96-well plates as described above and subjected to
various treatments, after which wells were washed with
PBS and incubated with 40 μM monochlorobimane
(MCB) in the dark for 30 min at 37 °C, followed by two
further washes with PBS. Fluorescence intensity was
measured using a spectrofluorophotometer microplate

reader (SpectraMax, MS Molecular Devices), with exci-
tation and emission wavelengths of 405 and 510 nm, re-
spectively. Samples were assayed in triplicates.

Reactive oxygen species (ROS) detection
ROS generation was measured by labeling cells with
CellROX Deep Red Reagent following the manufacturer’s
instructions (Molecular Probes, Life Technologies). Cell-
ROX deep red is a cell permeable non-fluorescent dye that
is oxidized by cytoplasmic free radicals to emit fluores-
cence. Microglia were grown on 35-mm glass bottom
dishes (MatTeK Corps). After various treatments, cells
were washed twice and loaded with 5 μM of the fluores-
cent probe for 1 h at 37 °C. Cells were washed three times
with PBS and imaged immediately. Multiple random im-
ages were captured using an Olympus FV1000 confocal
microscope equipped with a HeNe 635 nm laser, 20×
objective, NA 0.75 with an electronic zoom of 1.2.
Laser intensity, scan speed, and other settings were at-
tenuated to minimize phototoxicity and photobleach-
ing. In addition, for reproducibility and comparison
purposes, all microscope settings were kept identical
across all treatment groups.

Analysis of cell morphology
Differential Interference Contrast (DIC) images of
microglia grown on 35-mm glass bottom dishes were
captured using a Fluoview FV 1000 Olympus confocal
microscope equipped with HeNe laser, 20× objective,
NA 0.75. Morphological analysis was conducted as de-
scribed by McWhorter et al. [34]. Briefly, NIH ImageJ
software was used to trace and measure long and short
axis of each cell manually. The long axis was defined as
the longest length of the cell, and the short axis was de-
fined as the length across the nucleus in a direction per-
pendicular to the long axis. The ratio of the two axes
was determined and considered as the elongation factor.

Immunofluorescence microscopy
After treatment, cells were fixed in 4% paraformaldehyde
for 20 min, then permeabilized with 0.2% saponin in
10% FBS-PBS for 20 min at room temperature, and
stained with goat anti Arginase 1 (1:200; Santa Cruz,
cat# SC18355), goat anti IL-1β (1:300; Abcam, cat
#ab195991), and a secondary antibody conjugated with
Alexa Fluor 647 or Alexa Fluor 488 (1:200, Abcam).
Cells were mounted using VectaShield mounting
medium containing DAPI (Fisher Scientific), and images
were visualized using an Olympus FV1000 confocal
microscope with a 60× PlanApoN objective, NA 1.42
using inbuilt 405-nm diode, 488-nm argon, and 635-nm
diode laser settings. Images were captured sequentially
with a scan speed of 12.5 μs/pixel. Acquisition settings
were offset to minimize photobleaching and also set
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using appropriate iso-controls. In addition, microscope
settings were kept identical for each treatment group.

Statistics
Statistical analyses were performed using either Stata
11(College Station, TX) or sigma plot 12.0. Student’s T
test or one-way analysis of variance or Student-
Newman-Keuls Method were applied for pairwise
multiple comparisons. All data are presented as
mean ± SEM. Compounded.

Results
Maternal exposure to a single episode of GSH imbalance
increases ethanol-induced oxidative damage in the fetal
brain
The susceptibility of the fetal brain to oxidative stress pro-
duced by ethanol is likely to be augmented by its under-
developed antioxidant machinery. Therefore, as a first
step, the contribution of maternal antioxidant status to
oxidative damage in the fetal brain was evaluated by meas-
uring the levels of reduced glutathione and protein and
lipid peroxidation products (carbonyls and 4-HNE ad-
ducts) at 24 h, following a single episode of moderate
ethanol exposure in dams pretreated with two GSH mod-
ulators, NAC or BSO. NAC is a weak ROS scavenger that
supplies cysteine for GSH synthesis, while BSO is an irre-
versible inhibitor of γ-glutamylcysteine, the rate-limiting
step in GSH synthesis, and is extensively used to deplete
GSH levels. Ethanol treatment alone did not produce any
significant change in GSH levels in the fetal brain. Com-
pared to control or ethanol-treated group, pretreatment of
dams with BSO alone or with ethanol significantly re-
duced the GSH content by 79.5 and 83.8% in the fetal
brain (p < 0.005). However, no changes in GSH levels were
observed in the maternal brains from either treated or
control mice (p < 0.08) (Fig. 1b). The presence of protein
carbonyls and 4-HNE represents the extent of oxidative
damage induced by ROS. The decrease in GSH levels fol-
lowing BSO pretreatment corresponded with increased
protein and lipid peroxidation products, like 4-HNE, in
fetal brain homogenates. Carbonyl content was sharply in-
creased in the fetal brains exposed to BSO (+ 365%;
p < 0.005), BSO + EtOH (401%; p < 0.005), and EtOH (+
295%; p < 0.05) when compared to control (Fig. 2c). Not-
ably, maternal brain was resistant to protein oxidation
when exposed to ethanol alone (p < 0.060). However, ad-
ministration of BSO before EtOH exposure significantly
enhanced the levels of protein carbonyls (p < 0.005) in
comparison to the control or the ethanol-treated group
(Fig. 2d). Ethanol-induced protein oxidation was com-
pletely prevented by supplementation with NAC in both
fetal and maternal brain (Fig. 2c, d). Furthermore, we
probed immunoblots of brain homogenates with anti-
bodies directed against 4-HNE, a cytotoxic breakdown

product of fatty acid peroxides, and found levels of 4-
HNE were noticeably increased in both fetal and maternal
brains exposed to EtOH, BSO, or BSO + EtOH, when
compared with control (Fig. 2e, f ) as evidenced by the
presence of protein bands of approximately 76, 60, 50, and
37 kDa. This effect was reversed by pretreatment with
NAC similar to carbonyl content in the control group.

Oxidative-redox shift causes divergent immune responses
in fetal and maternal brain
Redox imbalance and oxidative stress are known to elicit
transcriptional induction of inflammatory genes [28].
Thus, we initially set to evaluate the effect of ethanol and
GSH modulation on selected pro- and anti-inflammatory
mRNA expression and also the subsequent changes in
cytokine proteins in fetal and maternal brain. To deter-
mine changes in gene expression for each treatment regi-
men, values are expressed as fold change over the
corresponding control and analyzed using independent
Student’s t test. Since differential expression of inflamma-
tory mediators are known to drive microglia to acquire ei-
ther M1-like or M2-like phenotypes [35], we grouped
these markers according to their association with distinct-
ive microglia phenotype M1 (IL-1β, IFN-γ, IL-6, CCL3,
CCL4, CCL-7, CCL9,) or M2 phenotype (TGF-β, IL-4, IL-
10, CCL2, CCL22, CXCL10, Arg1, Chi1, CCR2, and
CXCR2). Exposure to BSO or EtOH alone or their com-
bination upregulated the expression of inflammatory cyto-
kines (IL-1β, IFN-γ, IL-6) in the fetal brain, when
compared to control (Fig. 3a), although only IL-1β and
IFN-γ expression was significantly affected by BSO and
EtOH treatments (p < 0.05). In contrast, NAC pretreat-
ment significantly downregulated the expression of both,
IL-1β and IFN-γ in the fetal brain, in the absence and
presence of ethanol (p < 0.05 and p < 0.005, respectively).
Elevated expression of IL-6 was observed across all the
groups, though not statistically significant. The most not-
able anti-inflammatory M2 cytokine was IL-10: its expres-
sion was significantly suppressed in the group treated with
BSO + EtOH (p < 0.05 vs control) (Fig. 3a). Conversely,
the expression of M2-associated cytokines was upregu-
lated in NAC or NAC + EtOH-exposed fetuses. Modula-
tion of these inflammatory markers was less evident in the
maternal brain. However, IL-6 was clearly upregulated in
NAC, NAC + EtOH, BSO, BSO + EtOH groups, and TGF
β was downregulated in BSO + EtOH group (p < 0.05).
Surprisingly, none of the chemokines measured showed
any significant changes in gene expression in either mater-
nal or fetal brain; however, an overall trend of upregula-
tion of M1-associated chemokines (CCL3, CCL4, CCL7,
CCL9) and downregulation of M2-associated chemokines
(CCL2, CXCL10, and CCL22) was observed in GSH de-
pleted fetal brain. Similarly, NAC pretreatment appeared
to inhibit the expression of M1-associated chemokine
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genes (CCL3, CCL4, CCL9) and simultaneously increase
the expression of M2-associated chemokines (CCL2,
CXCL10, CCL22) (Fig. 3c).
We next tested the expression of phenotype-specific

markers Arg1, Chi, CCR2, and CXCR2, which indicate
the polarization of microglia towards an M2 phenotype.
More specifically, Arg1 was significantly induced in fe-
tuses exposed to NAC (p < 0.001), when compared to
control; however, ethanol treatment mitigates this re-
sponse. In contrast, Arg1, Chi1, and CCR2 expression
were reduced in fetal brain from BSO and BSO + EtOH
groups. With respect to maternal brain, the following
significant changes were observed in maternal brain:
upregulation of Arg1 following EtOH exposure, up-
regulation of CCR-2 upon exposure to BSO + EtOH,
and suppression of CXCR-2 and Chi with NAC expos-
ure (p < 0.05) (Fig. 4a, b).
Cytokines such as IL-1β, TNF-α, IL-6, IL-10, and IFN-γ

also play a key role in neuronal differentiation [36], sur-
vival [37], and pathological profile that emerges in later

life [38]. Therefore, we next determined protein ex-
pression of these cytokines by ELISA in lysates of fetal
and maternal brain. Ethanol exposure increased IFN-γ
(p < 0.05), but this effect was mitigated by NAC pretreat-
ment (p < 0.025). A M2 phenotypic (IL-10) response was
observed in fetal brain from the group with NAC exposed
alone (p < 0.025). High levels of IL-1β are known to occur
in the developing brain, and these levels taper off towards
the end of gestation [39]. No significant differences in
relative cytokine protein levels were detected in maternal
brain lysates between the treatment groups (Fig. 4d).

Nrf-2 activation promotes cell survival despite loss in GSH
and increased OS
In order to identify key components of the inflammatory
cascade in the fetal brain, we next employed an in vitro
model using microglia EOC13.31 cells subjected to simi-
lar ethanol-induced oxidative stress with varying redox
status, in the presence or absence of NAC or BSO pre-
treatment. Initially, cell toxicity of various concentrations

Fig. 2 Ethanol and glutathione depletion generate oxidative stress in fetal and maternal brain. Twenty-four hours after dams were subcutaneously
administered ethanol (2.5 g/kg), following 1 h intraperitoneal pretreatment with either NAC (4 mg/dose) or BSO (1.5 g/kg), total GSH levels were
determined by HPLC in fetal (a) and maternal (b) brain lysates. 2,4-Dinitrophenylhydrazine (DNP) derivatized protein carbonylation levels in lysates
were quantified spectrophotometrically in fetal (c) and maternal (d) brains. Expression of 4-Hydroxynonenal adduct formation was used to determine
lipid peroxidation in the brain. A representative immunoblot against 4HNE in fetal (e) and maternal (f) lysates. Values are mean ± SEM
(*p ≤ 0.05, **p ≤ 0.005 vs control; #p ≤ 0.05, ##p ≤ 0.005 vs ethanol), (n = 6 per group)

Akhtar et al. Journal of Neuroinflammation  (2017) 14:195 Page 7 of 17



of ethanol was tested using MTS assay which indicated a
significant loss in cell viability of microglia at 44 mM etha-
nol and above (Additional file 1: Figure S1). Therefore, an
optimum non-cytotoxic dose of 22 mM ethanol for 6 h
was selected for all subsequent experiments. This dose is
physiologically relevant in humans and is reflective of
blood alcohol levels reported during EtOH intoxication
[40]. A comparison of oxidative stress levels in microglia
between various groups was determined using confocal
microscopy (Fig. 5a). Quantitative analysis of the fluores-
cence intensities by Image J (Fig. 5b) demonstrated an in-
creased ROS generation in microglia exposed to EtOH
and BSO alone (p < 0.05) or in combination (p < 0.005),
as compared to control (saline). Interestingly, the fluores-
cence signal was diminished in cells treated with NAC+
EtOH, as compared to EtOH group (p < 0.05). Since oxi-
dative stress rapidly converts reduced GSH into its

oxidized GSSG state, thus depleting the total cellular GSH
pool, we also measured GSH levels using the fluoro-
chrome monochlorobimane (Fig. 5c). Exposure to EtOH
and BSO either alone or in combination significantly re-
duced intracellular GSH content (p > 0.005). Similar to in
vivo conditions, intracellular GSH levels were neither sig-
nificantly altered after overnight NAC pretreatment alone
nor perturbed when NAC treatment was followed by
EtOH exposure (Fig. 5c). We next examined the expres-
sion of Nrf-2, a transcription factor known to trigger ex-
pression of several antioxidant enzymes which is an
important cellular defense and survival mechanism against
oxidative stress, especially following EtOH and BSO ex-
posure. Western blot analysis in Fig. 5d shows an in-
crease in nuclear accumulation of Nrf-2 expression in
microglia pretreated with BSO and/or exposed to EtOH
that was concurrent with a decline in cytosolic Nrf-2.

Fig. 3 Effect of Ethanol and glutathione modulation on inflammatory response in fetal and maternal brain. Gestational exposure to ethanol and
GSH variation has a direct consequence on fetal cytokine/chemokine RNA expression as determined by qRT-PCR. Levels were normalized to 18S
rRNA and expressed relative to control. Cytokine and chemokine response in the fetal (a, c) and maternal (b, d) brain, respectively, were further
outlined based on their distinct association with microglia M1 or M2 phenotype. Values are mean ± SEM. (*p ≤ 0.05, **p ≤ 0.005 vs control; #
p ≤ 0.05, ## p ≤ 0.005 vs ethanol) (n = 4–6 per group)
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Thus, it appears that GSH depletion facilitates the ac-
cumulation of Nrf-2 in the nucleus. Consistent with
this result, expression of CuZnSOD, an antioxidant,
was enhanced in GSH depleted cells exposed to EtOH
(Additional file 2: Figure S2), which is indicative of a
concurrent defense mechanism to quench the free radi-
cals being generated and thus inhibiting ROS-mediated
cytotoxicity (Fig. 5e).

Microglia GSH content impacts differential expression of
M1 and M2 markers and morphological changes
Microglia are morphologically dynamic cells whose mor-
phological changes appear to be closely associated with
their functional activities. Overall, under normal condi-
tions, microglia grow as a mixed population, consisting
predominantly of bipolar rod-like structures, some with
extensive ramifications, in addition to a small percentage
of rounded cells. Both representative confocal DIC im-
ages (Fig. 6a) along with quantification of the morpho-
logical observations (Elongation factor (EF)) (Fig. 6b)
demonstrate that oxidative stress whether induced by
EtOH or BSO or their combination had a prominent
influence on microglia morphology p < 0.001. While
ethanol exposure caused microglia to predominantly as-
sume a round-amoeboid shape, with fewer cells retaining

ramifications, BSO exposure caused almost 85% of cells
to become rounded. Despite noticeable cellular elonga-
tions and extensive ramifications, the presence of NAC
did not yield any significant difference (p = 0.155), as
compared to control (Fig. 6b). Intriguingly, NAC pre-
treatment prior to EtOH exposure allowed microglia to
retain their ramified state, whether compared to control
or ethanol group (p = 0.006 and 0.008, respectively).
Such obvious morphological changes possibly are inter-
locked with functional activities; thus, we next examined
the mRNA expression of M1/M2-like phenotype signa-
tories driving the microglia polarization states (Fig. 6c).
EtOH or BSO exposure significantly increased the gene
expression of IL-1β and IL-6, both M1 pro-inflammatory
markers. Conversely, NAC pretreatment significantly
downregulated the expression of IL-1β and IL-6 and, as
expected, upregulated IL-10 and CCL2, both markers of
M2 polarization. Consistent with this, immunofluo-
rescent microscopy images of microglia exposed to
EtOH, BSO alone, or their combination showed IL-1β
expression and, concurrently, an extremely low expres-
sion of Arg1, an M2 marker (Fig. 7). On the other hand,
NAC treatment inhibited the expression of M1 markers
(Fig. 7 and Additional file 3: Figure S3) while simultan-
eously enhancing Arg1 expression. Taken together, these

Fig. 4 Effect of oxidative stress on inflammatory markers and protein expression. qRT-PCR analysis of M1 (CXCR2) and M2 (Arg-1,Chi,CCR2) specific
markers in the fetal (a) and maternal (b) brain. Expression level of each gene was normalized to 18S rRNA and expressed relative to the control
group. Values are ± SEM. Protein level expression of cytokines in the fetal (c) and maternal (d) brain. Values are mean ± SEM. (*p ≤ 0.05, **p ≤ 0.005 vs
control; #p ≤ 0.05, ##p ≤ 0.005 vs ethanol) (n = 6 per group)
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findings demonstrate that ROS and intracellular GSH
directly regulate microglia phenotype, expression of in-
flammatory markers, and the positive relationship
between M2 polarization and cell elongation.

Activation of NF-κB contributes to acquisition of
pro-inflammatory phenotypes
Depending on the stimuli and cell type, NF-κB signaling
serves a dual function in the brain and is directly associ-
ated with inflammation, neuroprotection, neurotrans-
mission, cell death, and cell survival [41–43]. The NF-κB
family of transcriptional factors are redox sensitive,
dysregulated redox homeostasis may impact NF-κB acti-
vation and subsequent release of pro-inflammatory me-
diators by microglia. Thus, in order to understand the
underlying mechanism associated with our treatment
regimens, we explored the activation and expression of
NF-κB subunits: p105, p50, and p65/RelA. Western blot-
ting results show increased processing of p105 into p50
subunit, elevated expression of p65, and nuclear trans-
location of p50 in BSO + EtOH-treated cells (Fig. 8a–c),
suggesting activation of the classical NF-κB pathway in

vitro in microglia depleted of GSH which is augmented
by exposure to ethanol. Moreover, ethanol treatment
dampened the phosphorylation of p105 and p65 across
all groups. Consistent with this, we also observed upreg-
ulated expression of p50 in fetal brain exposed to EtOH
or BSO alone or in combination (Fig. 8d).

Discussion
Our results reaffirm that oxidative stress [13, 44] is a
causal factor for several immunological and neurological
impairments [45] observed in FASD. More importantly,
these results show that maternal antioxidant status has
direct consequences on fetal brain development; there-
fore, even a minor short-term shift in redox-oxidative
balance during gestation increases the possibility of feto-
toxicity from ethanol exposure. To this end, moderate
single doses of ethanol, NAC, and BSO were admi-
nistered at gestational days 16–17 in mice. Twenty-four
hours later, we determined the extent of oxidative stress
and immune status in the brains of dams and fetuses
using microglia M1/M2 paradigm comparison. We show
that NAC, BSO, and ethanol all had a predominant

Fig. 5 Loss of GSH content in microglia influences oxidative stress but not cell viability. EOC13.31 microglia cells were divided into six groups:
either untreated (control) or pretreated with 500 μM NAC or 200 μM BSO for 18 h, prior to 22 mM EtOH exposure for 6 h. Confocal images (20×)
of cells labeled with CellROX Deep Red Reagent to detect ROS generation (a). Semi-quantification analysis of ROS fluorescence intensity (b). Intracellular
GSH levels were determined fluorometrically by labeling cells with 50 μM Monochlorobimane (c). Western blot analysis for Nrf-2 expression and nuclear
translocation, where Lamin B1 and β actin was used as a loading control for nuclear and cytosolic fraction, respectively (d). Effect of the above treatment
regimen on cell viability (MTS assay) (e). Values are presented as mean average ± SEM three independent experiments. Student-Newman-Keuls comparison
analysis was used (*p ≤ 0.05; **p ≤ 0.005)
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effect on the fetal brain and less on the maternal brain.
Pronounced oxidative damage characterized the fetal
brain response to redox imbalance alone and sometimes
in conjunction with ethanol exposure, as seen by in-
creased oxidation of both protein and lipids, as well as
GSH depletion (Fig. 2). Although maternal ethanol con-
sumption is reported to reduce GSH content of the fetal
brain [46, 47], we observed no such effect. Surprisingly,
NAC pretreatment used in this study did not alter GSH
levels, unlike restoration of GSH levels by NAC as re-
ported by others [48]. These variations in findings are
likely due to difference in administration routes and ex-
posure regimens adopted by us and others.
Our work and evidence from earlier studies show that

redox imbalance and oxidative stress are central to in-
duction of inflammatory genes [28]. Moreover, when
these factors are combined with ethanol, they appear to

leave a persisting inflammatory signature in the offspring
[15, 49]. A number of earlier studies suggest microglia
activation as the source of inflammation and tissue dam-
age following ethanol intake. However, microglial “acti-
vation” which is highly dependent on cytokines and
chemokines present in the surrounding milieu may or
may not necessarily lead to an inflammatory response
[12, 23, 24, 50–52]. Therefore, it is important to distin-
guish that once activated, microglia can acquire either a
detrimental neurotoxic (M1)-like phenotype [11, 49, 53,
54] or a neuroprotective (M2)-like phenotype [25, 54].
Low tissue levels of GSH quite often exacerbated by en-
vironmental stressors (ethanol exposure) cause microglia
activation to trigger the pro-inflammatory response
whereas maintaining optimal tissue GSH concentrations
not only abate the neurotoxic response of ethanol but
also provide cues for switching to an anti-inflammatory

Fig. 6 Redox status alters microglia morphological phenotypic changes. Differential interference contrast (DIC) images of EOC13.31 (20×), cells
were either untreated (control) or pretreated with 500 μM NAC or 200 μM BSO for 18 h, prior to 22 mM EtOH exposure for 6 h. (a). Elongation
factor was calculated by measuring the length of the long axis divided by the length of the short axis (b). Values obtained were divided into
three categories, and a reference image of each category is depicted along the Y-axis. qRT-PCR was conducted of selected M1 (IL-1β, IL-6, CCL9)
and M2 (IL-10, CCL2) markers. Expression level of each gene was normalized to 18S rRNA and illustrated relative to the control group (c). Values
are presented as mean ± SEM of three independent experiments (*p ≤ 0.05; **p ≤ 0.005)
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Fig. 7 Oxidative stress and intracellular GSH dictate M1/M2 phenotypic acquisition of microglia. EOC 13.31 cells grown on coverslips were pretreated
with either NAC (500 μM) or BSO (200 μM) for 18 h, followed by either absence or presence of EtOH (22 mM) exposure for 6 h. Immunohistochemistry
was performed using antibodies against IL-1β (M1), Arginase1 (M2) and subsequently visualized with Alexa Fluor 488 (green) and Alexa Fluor 647 (red)
labeled secondary antibodies, respectively. DAPI was used as a nuclear stain. Images were captured with a confocal microscope using a 60× objective.
Scale bar = 40 μm. Images shown are representative from three independent experiments

Fig. 8 Suppression of GSH triggers NF-κB activation both in in vitro and in vivo. EOC cells were either untreated (control) or pretreated with 500 μM
NAC or 200 μM BSO for 18 h, prior to 22 mM EtOH exposure for 6 h. Western blot analysis was performed to determine the expression and activation
of NF-κB p105 (a) phosphorylated p65 at ser536 and total p65 protein (b). β-actin served as a loading control. In similar experiments, nucleus and cytosol
fractions were separated to determine expression levels of p50 (c). Lamin B and β-actin served as nuclear and cytosolic loading control, respectively.
Representative immunoblot of p105 in fetal brain samples taken 24 h after dams were pretreated 1 h with either NAC (4 mg/dose) or BSO (1.5 g/kg)
followed by ethanol exposure (2.5 g/kg, s.c) (d)
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response (Figs. 3, 4, and 5). We emphasize again that
GSH levels in the maternal brain remain unaltered
across all treatment groups; interestingly however, etha-
nol, BSO, and NAC individually or in combination do
elicit M1/M2 immune responses. This is always more
striking in the fetal brain when compared to maternal
brain (Figs. 3, 4, and 5). Inadequately developed fetal
antioxidant system in early to mid-gestational stages is
highly vulnerable to oxidative stress [55] and also ex-
plains the differential response seen between the mater-
nal and the fetal brain.
Most distinctly, in the present study, we show a complex

co-existence and alterations in microglia phenotype,
which is primarily driven by GSH status. Notably, oxida-
tive stress enhances the expression of pro-inflammatory
cytokines IL-1 β, IFN-γ, and iNOS and simultaneously re-
duces anti-inflammatory cytokines IL-4 and IL-10, espe-
cially in groups exposed to BSO or ETOH alone or in
combination (Figs. 3, 4, 6, and 7). These pro-inflammatory
cytokines can directly or indirectly cause neuronal death,
dysfunction, attenuate neurogenesis (our unpublished
data), and impair spatial learning and memory function
[21, 26, 27]. Conversely, treatment with NAC triggers the
expression of M2-associated markers such as IL-10, IL-4,
TGF-β, CCL22, and Arg and reduced the expression of
M1-associated signals (IL-1β, IFN-γ, and CCL9) (Figs. 3, 4,
6, and 7). Previous studies with adult rats found no
changes in cytokine expression following ethanol exposure
[51, 52] concur with our observations, wherein maternal
brain tissues showed either a total absence of IL-10, and
IFN-γ mRNA levels or an insignificant difference of protein
levels (IL-10,TNF-α, IL1β,IFN-γ). Thus, a fully developed
maternal antioxidant system is likely to resist transient fluc-
tuations in oxidative stress and inflammation.
To determine the underlying mechanism of microglia ac-

tivation and its phenotypic changes, we undertook in vitro
experiments (Figs. 5, 6, 7, and 8). Exposure to ethanol and
GSH depletion, alone or in combination, alters both the
morphological and the functional characteristics of micro-
glia cells by inducing ROS production (Figs. 5 and 6). Simi-
lar to our in vivo conditions, pretreatment with NAC
maintained cellular GSH and, however, mitigated ethanol-
induced ROS generation. In addition, ethanol and BSO ex-
posure generate ROS (Fig. 5a, b) and deplete GSH levels
(Fig. 5c). Ethanol augments ROS generation through the ac-
tivation of NADPH oxidase (data not shown) [20]. GSH
serves as a redox buffer against ROS [56], and its depletion
is a distinctive feature of apoptotic cell death [57]. However,
in this study, BSO treatment resulted in depleting cellular
GSH pool and magnifying ROS production in microglia
without affecting mitochondrial respiration rate and
cell viability. This is likely driven in part by activation
of Nrf-2 pathways (Fig. 5d) as an adaptive cellular
mechanism to counteract GSH perturbation by eliciting

the expression of antioxidant genes, including Cu/Zn
SOD for ROS removal. A similar regulatory response to
GSH depletion has been observed in other cellular
models [58, 59]. In addition to aggravating oxidative
damage, ROS also acts as a secondary messenger, modi-
fying gene expression critical for survival [60].
Soluble factors in the microenvironment are known to

regulate microglia polarization [28]. We found ROS and
intracellular GSH to be critical for regulating cellular
morphologies and a strong association exists between
cell shape and inflammatory status of these cells (Figs. 6
and 7). Confocal data shows cells to predominantly
assume round amoeboid shape under conditions of oxi-
dative stress and redox imbalance. Conversely, micro-
glia exhibit bipolar elongation when cellular redox
homeostasis is maintained. Importantly, recent studies
report the presence of similar bipolar/rod-shaped
microglia at the site of injury, during the early phases
of brain damage [61–63]. Such morphologies exert neu-
roprotective effects by producing greater amount of
anti-inflammatory cytokines than pro-inflammatory cy-
tokines [63]. Additionally, changes in morphology are
closely associated with the functional activity of micro-
glia [64, 65]. Our RT-PCR data shows that microglia
with optimum GSH levels express significantly in-
creased levels of IL-10 and CCL2 and subsequently
downregulation of inflammatory cytokines and chemo-
kines (IL-1β, IL-6, and CCL9). On the other hand, de-
pletion of cellular GSH results in microglia expressing
higher levels of pro-inflammatory factors compared to
control cells. Although ethanol induces microglia acti-
vation [20, 66], its polarizing potential on microglia has
yet not been fully addressed. Our results establish a
strong correlation between morphological alterations in
microglia with gene expression profile distinctive to
either M1- or M2-like phenotypes. The most well-
characterized prototypic M2 marker is the expression
of arginase1, and that of M1-like phenotype are IL-1β
and iNOS [67–69]. Depletion of GSH resulted in a
higher expression of M1-associated markers (IL-1β and
iNOS) and exposure to NAC promoted Arg1 expres-
sion (Fig. 7 and Additional file 2: Figure S2). Together,
these data demonstrate that intracellular GSH status in-
fluences cell morphology and modulates microglia
polarization. Cell shape is reported to influence
polarization in macrophages [34]. In agreement with
this study, our results show that ethanol-induced mor-
phological changes in microglia are highly attuned with
cytokine and intensify its overall effect on M1
polarization state.
A mechanism that emerges from this study is that the

plasticity and functional polarization of microglia is
strongly influenced by oxidative stress [28], redox
status, and pro- or anti-inflammatory factors [70].
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Animals with perturbed redox homeostasis are prone
to generate higher levels of ROS and acquire M1
phenotype. Acting as secondary messengers, ROS acti-
vate NF-κB signaling leading to transcription of pro-
inflammatory cytokine genes. The present study
revealed “non-classical” pathway for NF-κB activation.
Western blot analysis of NF-κB p105/50, phospho NF-
κB p105/50, NF-κB p65/RelA, and phospho NF-κB
p65/Rel A reveals increased processing of p105 precur-
sor protein via phosphorylation leading to overexpres-
sion of p50 and induction and phosphorylation of p65
in GSH depleted group which was further augmented
by ethanol exposure. Of the various homo- and hetero-
dimers of NF-κB, the p65/p50 dimer is the best-
characterized inducer of pro-inflammatory genes and is
fully functional in microglia [28]. On the other hand,
p50 and p52 homodimers function as repressors due to
their lack of a transcription activation domain [71].
Earlier studies have established p65/p50 as the primary
mediator of NF-κB transcriptional activity for pro-
inflammatory genes.

Expression of pro inflammatory cytokines and chemo-
kines (IL-1β, TNF-α, IFN-γ, CCL9, CCL4, CCL3) subse-
quently incorporate microglia into the network of
detrimental M1 phenotype. When abundant cellular
GSH pools exist, M2-inducing signals such as IL-10 gen-
erally inhibit the expression of M1 chemokines. On the
other hand, IL-10 inhibitory effects rely on both the
inhibition of NF-κB [72] and STAT-dependent mechan-
ism [73]. The schematic (Fig. 9) depicts the underlying
mechanism of phenotypic acquisition of microglia
under perturbed redox status and oxidative stress. We
speculate that GSH content and ROS levels in microglia
constitute a potential link for the crosstalk between
Nrf-2 and NF-κB pathways, the two known crucial
factor in regulating microglia dynamic and neuroin-
flammation [74], thereby driving the immunological
phenotypic profiles.

Conclusion
In conclusion, our study shows that even a slight imbalance
in the oxidative-redox homeostasis in the immature fetal

Fig. 9 Schematic diagram shows the effect of ethanol, antioxidant disruption on microglia phenotype, and the underlying mechanism in the
developing fetal brain. Maternal ethanol consumption acts as an oxidant in the fetal brain by activating the generation of ROS. Also, suboptimal
conditions of cellular GSH further aggravates ethanol-induced oxidative stress, ROS accumulation, and Nrf-2 activation. ROS in turn triggers
redox-sensitive NF-κB activation by phosphorylation of NF-κB p65 on its two serine residues. Activated NF-κB then induces the production of inflammatory
cytokines (IL-1β, IL-6, TNF-α, IFN-γ), chemokines (CCL3, CCL4, CCL7, CCL9) in the fetal brain. Inflammatory milieu drives the microglia cells to a classically
activated (M1) phenotype which displays spherical morphology in vivo. Enhanced expression of these inflammatory cytokines, chemokines, iNOS and free
radical are key to cytotoxicity and tissue injury. In contrast, optimal or enhanced GSH content in the fetal brain inhibits the damaging mechanism that
accompanies maternal ethanol consumption. In addition, it predominantly drives M2 phenotypic changes which exhibit an elongated bipolar morphology
with robust expression of (ARG-1, IL-10, TGF-β), the absence (or very low levels) of pro-inflammatory cytokines, and ROS response generally associated with
tissue injury. Therefore, poor nutritional status or antioxidant reserves pertaining to maternal-fetal environment amplifies effects of environmental stressors
such as ethanol
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brain triggers activation of microglia towards a pro-
inflammatory M1 phenotype that persists up to 24 h. On
the other hand, maintaining GSH levels triggers anti-
inflammatory M2-phenotypic response. Therefore, the ex-
istence of a bidirectional feedback loop between Nrf2 acti-
vation and phosphorylation of NFkB components p105 and
p65, and their nuclear translocation associated with expres-
sion of inflammatory markers such as IL1-βand IFN-γ,
merits further exploration. Further, time-based studies will
facilitate our understanding of the extent of fetal brain
damage and whether these effects are reversible.

Additional files

Additional file 1: Figure S1. Concentration-dependent effect of ethanol
on cell viability. Plot of cell viability (MTS assay) obtained following 6 h
treatment of cells with various concentration of ethanol. Data represent the
average and standard deviation values from three replicate experiments.
Where *p ≤ 0.05. (TIFF 92 kb)

Additional file 2: Figure S2. Altered glutathione homeostasis impacts
ethanol-induces superoxide dismutase expression in microglia. A
representative Western blot of CuZnSOD expression in control and
treatment groups. Actin served as the loading control. (TIFF 121 kb)

Additional file 3: Figure S3. Intracellular GSH is pivotal in EtOH-induced
phenotypic acquisition of microglia. EOC 13.31 cells grown on coverslips
were treated with NAC (500 μM) or BSO (200 μM) for 18 h prior to the
presence or absence of EtOH (22 mM) exposure for 6 h. Cells were labeled
by antibodies against iNOS and Alexa Fluor 488 labeled secondary anti-
bodies. The nuclei of the cells were counterstained with DAPI. GSH deple-
tion by BSO and EtOH exposure synergistically exaggerate the expression
of M1 marker (green) iNOS. Images were acquired on FV1000 confocal
microscope equipped with a HeNe laser, 60× objective, NA 1.42 with an
electronic zoom of 2. Scale bar = 40 μm (TIFF 301 kb)
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