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Abstract Theoretical models have implicated amygdala dys-
function in the development of Disruptive Behavior Disorders
(DBDs; Conduct Disorder/Oppositional Defiant Disorder).
Amygdala dysfunction impacts valence evaluation/response
selection and emotion attention in youth with DBDs, particu-
larly in those with elevated callous-unemotional (CU) traits.
However, amygdala responsiveness during social cognition
and the responsiveness of the acute threat circuitry (amygda-
la/periaqueductal gray) in youth with DBDs have been less
well-examined, particularly with reference to CU traits. 31
youth with DBDs and 27 typically developing youth (IQ,
age and gender-matched) completed a threat paradigm during
fMRI where animate and inanimate, threatening and neutral
stimuli appeared to loom towards or recede from participants.
Reduced responsiveness to threat variables, including visual
threats and encroaching stimuli, was observed within acute
threat circuitry and temporal, lateral frontal and parietal
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cortices in youth with DBDs. This reduced responsiveness,
at least with respect to the looming variable, was modulated
by CU traits. Reduced responsiveness to animacy information
was also observed within temporal, lateral frontal and parietal
cortices, but not within amygdala. Reduced responsiveness to
animacy information as a function of CU traits was observed
in PCC, though not within the amygdala. Reduced threat re-
sponsiveness may contribute to risk taking and impulsivity in
youth with DBDs, particularly those with high levels of CU
traits. Future work will need to examine the degree to which
this reduced response to animacy is independent of amygdala
dysfunction in youth with DBDs and what role PCC might
play in the dysfunctional social cognition observed in youth
with high levels of CU traits.

Keywords Disruptive behavior disorders - Conduct disorder -
Oppositional defiant disorder - Amygdala - Threat - Animacy

Disruptive Behavior Disorders (DBDs), which include
Conduct Disorder and Oppositional Defiant Disorder, com-
prise a large proportion of referrals to child and adolescent
mental health clinics (Kazdin 2000). Youth with DBDs are
at increased risk for antisocial behavior, including violence
and aggression (Frick et al. 2005). Notably, psychopathology
persists into adulthood for a large proportion of these youth
(Fergusson et al. 2010; Robins 1966) at great expense to so-
ciety (Cohen 1998). Theoretical models of DBDs have impli-
cated amygdala dysfunction in the development of these dis-
orders (see Blair et al. 2014).

The amygdala shows considerable interconnectivity with
many cortical and subcortical structures and is implicated in
a variety of functional processes. A critical role is in stimulus-
reinforcement learning (Davis and Whalen 2001; Everitt et al.
2003). This learning allows an individual to learn the
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“goodness” or “badness” of stimuli and other information
relevant to the salience of different aspects of the environment
(Uddin 2015). In assigning value to stimuli, the amygdala has
been shown to preferentially respond to emotional relative to
non-emotional stimuli (e.g. Davis and Whalen 2001; LeDoux
2012). Through its interactions with other structures it is in-
volved in at least four different functional processes. For ex-
ample, the amygdala has a role in: (i) valence evaluation and
response selection through its interactions with ventromedial
prefrontal cortex (vmPFC; Knutson and Cooper 2005); (ii)
emotional attention through its interactions with temporal
and posterior cingulate cortices (PCC; Pearson et al. 2011,
Pessoa and Ungerleider 2004); (iii) social cognition as a func-
tion of its responsiveness to animacy information (Beauchamp
et al. 2003; Cao et al. 2014; Coker-Appiah et al. 2013; Martin
2007; Wheatley et al. 2007); and (iv) the acute threat response,
through its interaction with periaqueductal gray (PAG; Gregg
and Siegel 2001; Nelson and Trainor 2007; Panksepp 1998).

Amygdala dysfunction has been implicated in the neuropa-
thology of DBD, though the nature of this dysfunction may
vary in association with the individual’s level of callous-
unemotional (CU; e.g. lack of guilt and empathy) traits
(Blair et al. 2014). The amygdala’s role in stimulus-
reinforcement learning has been shown to be compromised
in youth with DBDs in the context of aversive conditioning
paradigms (Cohn et al. 2013, 2016; Fairchild et al. 2010,
2008). Moreover, increased levels of CU traits are associated
with reduced amygdala responsiveness during aversive con-
ditioning (Cohn et al. 2013). With respect to the four function-
al processes mentioned above, youth with DBDs appear com-
promised in valence evaluation and response selection at least
in the context of moral judgment tasks (this is particularly seen
for those with DBDs and heightened CU traits; Harenski et al.
2014; Marsh et al. 2011). In addition, considerable work indi-
cates that youth with DBDs show reduced amygdala re-
sponses to emotional stimuli (Jones et al. 2009; Lozier et al.
2014; Marsh et al. 2008; Passamonti et al. 2010; Viding et al.
2012; White et al. 2012a). This reduced amygdala responsive-
ness to emotional stimuli may be particularly low in youth
with CU traits (Lozier et al. 2014; Viding et al. 2012; White
et al. 2012a). Notably, youth with DBDs show indications of
reduced emotional attention behaviorally (Kimonis et al.
2006; Sharp et al. 2006). In addition, youth with DBDs show
reduced activity within temporal cortex (White et al. 2012a),
attentional regions (lateral frontal, parietal and posterior
cingulate cortices; White et al. 2012b) and response control
regions (alC and iFG; Hwang et al. 2016) during emotion
attention paradigms. In short, previous literature indicates that
amygdala dysfunction impacts valence evaluation/ response
selection and emotion attention in youth with DBDs and is
particularly clear in those with elevated CU traits (for reviews
see Blair 2013; Blair et al. 2014). However, amygdala respon-
siveness during social cognition and the responsiveness of the
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systems making up the acute threat response in youth with
DBDs have been less well-examined (though there has been
one report of reduced amygdala responses as a function of CU
trait level in youth with disruptive behavior during an affective
empathy task; Sebastian et al. 2012).

The processing of animacy information is critical for social
cognition (Cross et al. 2016). The amygdala preferentially
responds to animate relative to inanimate stimuli
(Beauchamp et al. 2003; Cao et al. 2014; Coker-Appiah
et al. 2013; Wheatley et al. 2007). It has been argued that this
preferential amygdala response is critical in the recognition of
social-affective stimuli and engaging social processing net-
works (including lateral temporal cortex, medial prefrontal
cortex and temporal-parietal junction; for a review see
Ochsner 2008). Indeed, patients with Autism, a developmen-
tal disorder associated with impairment in social cognition and
behavior (American Psychiatric Association 2013), show
disrupted connectivity between amygdala and social process-
ing networks (Weisberg et al. 2014). Youth with DBDs, par-
ticularly those with high levels of CU traits, show impaired
social cognition and behavior. Youth with DBDs report friend-
ships characterized by conflict and perceptions about the qual-
ity of relationships that are markedly different from their peers
(Muioz et al. 2008). Youth high on CU traits also report re-
duced caring about long-term friendships and relationships
(Baird 2002) and asocial behaviors, such as failing to endorse
deriving pleasure from emotional connectedness to others
(Foulkes et al. 2014).

The amygdala also plays a critical role in a more hierarchi-
cal system that mediates acute threat response. The mamma-
lian response to threat is graded: mild, distant threats induce
freezing, moderate, somewhat proximal threats induce flight
and intense, highly proximal threats induce a reactive aggres-
sion response (Blanchard et al. 1977). This response is medi-
ated by an acute threat circuitry, initially identified in animals
(Anderson 2012; Falkner and Lin 2014; Gregg and Siegel
2001; Panksepp 1998), running from the amygdala to the
PAG via the hypothalamus. Notably, strong stimulation of
the PAG in rodents elicits reactive aggressive behavior (Mos
etal. 1982). This amygdala-PAG network, responsive to acute
threat, has also been identified in humans (e.g. Coker-Appiah
etal. 2013; Mobbs et al. 2007, 2010). As noted above, there is
ample evidence that the amygdala-vmPFC and amygdala-
temporal cortex networks are disrupted in youth with CD
(cf. Blair 2013). However, there have been no previous inves-
tigations of the amygdala-PAG network. Critically, a core var-
iable for responsiveness of the amygdala-PAG mediated acute
threat response is threat proximity (Blanchard et al. 1977).
This has been confirmed in human fMRI by simulating in-
creasing proximity via increasing a stimulus’ visual angle
(closer stimuli take up a greater amount of visual angle;
Coker-Appiah et al. 2013). Youth with DBDs are at elevated
risk for displaying reactive aggression (Frick and Dickens
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2006; Moffitt et al. 2002). This might reflect suggestions that
some youth with DBDs might show heightened acute threat
responsiveness (leading to an increased probability of
responding to threat with aggression rather than freezing or
avoidance behavior; Crowe and Blair 2008). Indeed, there
have been some reports that youth with DBDs and low CU
traits show increased responses, at least within the amygdala,
to threat stimuli (Hwang et al. 2016; Viding et al. 2012). A
secondary goal of the current paper was to determine the re-
sponsiveness of youth with DBDs within acute threat circuitry
(amygdala and PAG) to core threat variables.

The goal of the current study was to determine, in youth
with DBDs, responsiveness to core threat variables (visual
threats and encroaching stimuli) and animacy information.
In addition, we wished to determine the extent to which this
responsiveness varies with level of CU traits. We predicted
that: First, youth with DBDs, relative to TD youth, would
show reduced responses to negative relative to neutral images,
looming relative to receding stimuli and animate relative to
inanimate stimuli within the amygdala, PAG (negative relative
to neutral/looming relative to receding only) and connected
cortical regions (specifically, temporal, lateral frontal and pa-
rietal cortices). Second, within the youth with DBDs, CU traits
would be inversely associated with responsiveness to
looming, negative and animate stimuli within the amygdala,
PAG (negative relative to neutral/looming relative to receding
only) and connected cortical regions (specifically, temporal,
lateral frontal and parietal cortices).

Methods
Participants

The final sample included 58 youth: 31 youth with DBDs and
27 typically developing (TD) youth aged 10 to 17 (Table S1).
Data from 3 youth with DBDs were excluded (1 due to move-
ment, 2 for response to less than 75% of trials). Using the
smallest observed effect size from previous work (Cohen’s
d=1.01 to 2.72; Coker-Appiah et al. 2013), a power analysis
was conducted utilizing the G*Power program (Faul et al.
2007). The power analysis revealed that a sample of 58 was
sufficient to detect an effect of Cohen’s d = .43 and that a
sample size of 31 was sufficient to detect an effect of
Cohen’s d = 1.36. Youth were recruited from the community
through advertising and referrals from area mental health prac-
titioners. A statement of informed assent and consent was
obtained from participating children and parents. The
National Institute of Mental Health Combined Neuroscience
Institutional Review Board approved this study.

All youth and parents completed Kiddie Schedule for
Affective Disorders and Schizophrenia (K-SADS; Kaufman
et al. 1997) assessments conducted by a doctoral-level

clinician as part of a comprehensive psychiatric and psycho-
logical assessment. The K-SADS has demonstrated good va-
lidity and inter-rater reliability (kappa >0.75 for all diagnoses;
Kaufman et al. 1997). IQ was assessed with the Wechsler
Abbreviated Scale of Intelligence (two-subtest form).
Exclusion criteria were pervasive developmental disorder,
Tourette’s syndrome, lifetime history of psychosis, depres-
sion, bipolar disorder, generalized, social or separation anxiety
disorder, PTSD, neurologic disorder, history of head trauma,
history of substance dependence, and IQ < 70. In addition,
parents completed the Inventory of Callous-Unemotional
Traits (Frick 2004), a measure of callous-unemotional traits.
Youth meeting K-SADS criteria for Conduct Disorder or
Oppositional Defiant Disorder were included in the DBD
group, while comparison subjects did not meet criteria for
any K-SAD diagnosis. The groups did not differ significantly
on IQ [DBD Mean = 97.87 (SD = 10.86), TD Mean = 101.96
(SD = 12.06); t = .64, p = .53], age [DBD Mean = 14.55
(SD = 2.17), TD Mean = 14.91 (SD = 2.02); t = 1.36,
p =.18], or in terms of racial [x* = 6.03, p = .30] and gender
[x* = 2.24, p = .13] breakdown. Youth with DBDs had signif-
icantly greater levels of CU traits [DBD Mean = 42.81
(SD = 8.50), TD Mean = 12.82 (SD = 23.24); t = 6.70,
p < .01] and reactive aggression compared to TD youth
[DBD Mean = 4.48 (SD = 1.77), TD Mean = 0.47
(SD =.080); 7 = 8.85, p < .01]. Of the youth with DBDs, 16
also met criteria for Attention-Deficit/Hyperactivity Disorder
and 5 youth were taking medication that could not be withheld
during scanning (see Supplementary Table S1 for more
detail).

Study Measures

Inventory of Callous-Unemotional Traits (ICU; Frick
2004) The ICU is a 24-item self-report scale designed to as-
sess CU traits in youth. The ICU was derived from the CU
scale of the Antisocial Process Screening Device (Frick and
Hare 2001) that has been widely used in various youth sam-
ples. The construct validity of the ICU has been supported in
community and juvenile justice samples (Essau et al. 2006;
Kimonis et al. 2008; Lawing et al. 2010).

The Looming Task The looming task involved the presenta-
tion of four different types of images: (i) threatening and an-
imate (e.g. snarling dogs); (ii) threatening and inanimate (e.g.
pointed gun); (iii) neutral and animate (e.g. sitting rabbit); or
neutral and inanimate (e.g. a mug). All animate stimuli were
animals and all inanimate stimuli were objects presented on
their own (i.e., no hand was holding the gun/mug); for image
details, see (Yang et al. 2012). This task has been previous
show to elicit activation from the acute threat circuitry and
interconnected regions in healthy controls (Coker-Appiah
etal. 2013).
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Each trial involved the rapid presentation of the same im-
age 4 times (250 ms per presentation). Each presentation in-
volved the image taking up a greater (or lesser) extent of the
screen. Thus, for looming trials, centered images occupied
25%, then 50%, then 75% and then 100% of the screen. For
receding trials, centered images occupied 100%, then 75%,
then 50% and then 25% of the screen (see Fig. 1). Following
these presentations was a 1250 ms fixation. Participants sim-
ply had to respond via button press as soon as they perceived
the image. The button press had no impact on task presenta-
tion. In short, the task had minimal task demands. The task is
designed to identify neural regions responding to the stimulus
parameters, but to not activate regions involved in response
selection and control. Each image was presented once
looming and once receding. The task involved 4 runs each
consisting of 80 image trials (10 of each of the 8 trial types).

MRI Parameters and Preprocessing

Participants were scanned using a 3-T GE scanner and were
analyzed in Analysis of Functional Neuroimages (AFNI; Cox
1996). Specific parameters have been reported elsewhere
(Coker-Appiah et al. 2013) and are available in the
Supplemental Materials.

General Linear Model Analysis

The model involved six motion regressors and the following
task regressors: (i) looming, threatening, animate; (ii)

Fig. 1 The Looming Task. Each
trial consisted of a serial
presentation of images that either

increased in visual angle ?ﬁéﬁ
(looming trial, depicted in the %

figure) or decreased in visual
angle (receding trial). Images
were looming and animate,
looming and inanimate, receding
and animate or receding and

looming, threatening, inanimate; (iii) looming, neutral, ani-
mate; (iv) looming, neutral, inanimate; (v) receding, threaten-
ing, animate; (vi) receding, threatening, inanimate; (vii) reced-
ing, neutral, animate; (viii) receding, neutral, inanimate. All
regressors were created by convolving the train of stimulus
events with a gamma variate hemodynamic response function
to account for the slow hemodynamic response. The partici-
pants’ anatomical scans were then individually registered to
the Talairach and Tournoux atlas (Talairach and Tournoux
1988) — studies have shown that normalization of brain vol-
umes from age 7-8 years onward does not introduce major
age-related distortions in localization or time course of the
blood-oxygen-level-dependent (BOLD) signal in event-
related fMRI (Burgund et al. 2002; Kang et al. 2003). The
individuals’ functional EPI data were then registered to their
Talairach anatomical scan. Linear regression modeling was
performed using the 8 regressors described above plus regres-
sors to model a first-order baseline drift function. This pro-
duced a 3 coefficient and associated ¢ statistic for each voxel
and regressor.

fMRI Data Analysis

The group analysis of the BOLD data was performed on the
regression coefficients from the individual subject analyses.
First, BOLD response data from TD youth and youth with
DBDs was contrasted using a 2 (diagnosis: DBD, TD) x 2
(direction: looming, receding) X 2 (emotion: threat or neutral)
x 2 (animacy: animate, inanimate) repeated-measures

inanimate. Participants pressed a
button as soon as they saw the
image

@ Springer
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Analysis of Variance (ANOVA). Second, within DBD youth
only, a 2 (diagnosis: DBD, TD) x 2 (direction: looming, re-
ceding) x 2 (emotion: threat or neutral) X 2 (animacy: animate,
inanimate) repeated-measures Analysis of Co-Variance
(ANCOVA) was conducted using CU traits as a covariate.
Given their small size and theoretical importance, ROI analy-
ses were conducted for the amygdala and PAG ROIs. The
amygdala ROIs were drawn from the Eickhoff-Zilles
Architectonic Atlas (50% probability; Amunts et al. 2005).
The PAG ROI was a 10 mm sphere centered on coordinates
(xyz = 3,-23,-4) from Mobbs et al. (2007). The AFNI
3dClustSim program was used to establish a family-wise error
correction for multiple comparisons for the ROIs and for the
whole brain. This yielded a threshold of 6 voxels for the
amygdala and 9 voxels for PAG at an initial threshold of
p = .02 and a threshold of 18 voxels at an initial threshold of
p = .005 for the whole brain. Post-hoc analyses of significant
main effects and interactions for ROI and whole brain analy-
ses were assessed with planned #- tests within SPSS 22.0
(IBM 2012).

Results
Behavioral Results

A 2 (diagnosis: DBD, TD) x 2 (direction: looming, receding)
x 2 (emotion: threat or neutral) X 2 (animacy: animate, inan-
imate) repeated-measures ANOVA was conducted on re-
sponse latencies. A significant main effect of animacy was
observed [F(1,56) = 4.53, p = .04]; participants responded
faster to animate relative to inanimate stimuli. No other sig-
nificant effects or interactions were observed [F’s < 1.31,
p > .26]. A 2 (direction: looming, receding) x 2 (emotion:
threat or neutral) X 2 (animacy: animate, inanimate)
repeated-measures ANCOVA was conducted on response la-
tencies of the DBD youth using CU traits as a covariate. No
significant effects or interactions were observed [F’s < 4.04,
p > .05].

fMRI Results

Hypothesis 1 Youth with DBDs, relative to TD youth, would
show reduced responses to negative relative to neutral images,
looming relative to receding stimuli and animate relative to
inanimate stimuli within the amygdala, PAG (negative relative
to neutral/looming relative to receding only) and connected
cortical regions (specifically, temporal, lateral frontal and pa-
rietal cortices). This was tested via a 2 (diagnosis: DBD or
TD) x 2 (direction: looming, receding) x 2 (emotion: threat or
neutral) X 2 (animacy: animate, inanimate) repeated-measures
ANOVA on the BOLD response data from within the PAG
and bilateral amygdala ROIs and the whole-brain. Predicted

findings with respect to our ROI and whole brain results are
presented below (see also, Table 1). For additional results, see
Supplemental Results.

Regions of Interest

Amygdala: Diagnosis-by-Direction-by-Emotion Interaction
TD youth, relative to youth with DBDs, showed, relative to
receding neutral stimuli, significantly increased responding in
bilateral amygdala during looming threats [right only; £ =2.63,
p = .01], receding threats [t = 2.13 & 2.96, p < .04]
and looming neutral stimuli [f = 2.53 & 3.44, p < .01]
(see Fig. 2A/S1A). The groups did not differ in responsiveness
to receding neutral stimuli [ = 1.55 & 0.15, p > .13].

Diagnosis-by-Emotion Interaction TD youth, relative to
youth with DBDs, showed significantly increased responding
(albeit k = 5 voxels) during threats relative to neutral trials
[right only; # = 2.66, p = .01].

PAG: Diagnosis-by-Direction-by-Emotion Interaction TD
youth, relative to youth with DBDs, showed significantly in-
creased responding during receding threats [z = 2.06, p = .04],
though not during looming threats or looming neutral stimuli
[t=0.64 & 1.32, p > .19], relative to receding neutral stimuli
(see Fig. 2B/S1B). The groups did not differ in responsiveness
to receding neutral stimuli [ = 0.21, p = .83].

Diagnosis-by-Direction Interaction In the diagnosis-by-
direction interaction, youth with DBDs showed a greater re-
duction in PAG response to receding relative to looming stim-
uli [# =2.37, p =.021] compared to TD youth.

No significant interactions between diagnosis and animacy
were observed in either region.

Whole-Brain Findings

Diagnosis-by-Direction-by-Emotion Interaction A signifi-
cant diagnosis-by-direction-by-emotion interaction was ob-
served in regions including left insula cortex, thalamus and
right middle temporal/occipital cortex. In insula cortex, TD
youth, relative to youth with DBDs, showed a significantly
greater increase in BOLD response to looming threats relative
to receding threats [z = 2.76, p < .01], but there were no group
differences to looming neutral relative to receding neutral
stimuli [£=1.96, p = .06]. In middle temporal/occipital cortex
and thalamus, TD youth, relative to youth with DBDs, showed
significantly greater BOLD responses to receding threats
[t =3.63 & 2.34, p < .03] and looming neutral stimuli
[t =298 & 2.16, p < .04], though not looming threats
[t=1.82 & 0.06, p > .07], relative to receding neutral stimuli
to which the groups did not differ in responsiveness [¢ = 0.64
& 0.54, p > .53].
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Table 1  Differential BOLD Response from an Analysis of Variance in Amygdala and Periaqueductal Gray Regions of Interest and Brain Regions
Demonstrating Key Significant Effects and Interactions from an Analysis of Variance on BOLD Response during the Looming Task in 31 Youths with
DBDs and 27 Typically Developing Youth

Coordinates of Peak Activation °

Region® Left/Right  BA X y z F P nzpanial Voxels

Region of Interest Results

Diagnosis-by-Direction-by-Emotion Interaction

amygdala Left =255 -1.5 215 10.59 0.0019  0.160 14
amygdala Right 28.5 1.5 245 13.00 0.0006  0.152 16
periaqueductal gray Right 1.5 —22.5 -0.5 9.71 0.0028 0.104 15
Diagnosis-by-Emotion Interaction
amygdala Right 34.5 -1.5 -185 12.24 0.0009  0.148 5
Diagnosis-by-Direction Interaction
periaqueductal gray Left —4.5 —25.5 -0.5 8.73 0.0045 0.091 9
Whole Brain Results
Diagnosis-by-Direction-by-Emotion Interaction
insula cortex Left 13 —40.5 —4.5 5.5 16.17 0.0002  0.188 30
thalamus Right 165 -10.5 5.5 18.01 <0.0001 0.178 18
middle temporal/occipital cortex Right 19/37 255 645 5.5 15.40 0.0002  0.192 176
Diagnosis-by-Emotion-by-Animacy Interaction
middle frontal gyrus Left 9 —25.5 43.5 38.5 14.45 0.0003  0.226 58
inferior frontal gyrus Right 46 315 28.5 11.5 14.65 0.0003  0.136 23
inferior parietal cortex Right 2/40 46.5 255 29.5 13.07 0.0006  0.063 41
lentiform nucleus Left =315 -10.5 -0.5 17.02 0.0001 0.144 30
middle cingulate gyrus Right 24 1.5 -135 385 11.78 0.0011 0.095 33
precentral gyrus Right 4 28.5 —28.5 47.5 11.00 0.0016 0.091 22
inferior occipital gyrus Right 18 46.5 =76.5 -0.5 16.97 0.0001 0.186 33
cuneus Right 17 16.5  —94.5 -0.5 15.66 0.0002  0.256 18
Diagnosis-by-Direction Interaction
temporal pole/uncus Right 38 31.5 13.5 —24.5 15.65 0.0002 0.110 21
lentiform nucleus/putamen Left -19.5 7.5 =35 14.40 0.0035 0.118 21
precentral Right 4 285 285 56.5 12.39 0.0008  0.087 57
precentral Left 6 -195 —-16.5 65.5 11.90 0.0010  0.105 26
cuneus Right 31 19.5 =70.5 17.5 17.79 <0.0001 0.139 137
culmen Left 19 -13.5 525 =35 14.02 0.0004  0.148 48
Diagnosis-by-Emotion Interaction
superior frontal gyrus Right 6 10.5 19.5 56.5 13.62 0.0005 0.109 28
anterior insula cortex/inferior frontal gyrus ~ Left 13/44  —43.5 13.5 17.5 18.45 <0.0001 0.197 18
middle temporal gyrus Right 22 55.5 -34.5 5.5 12.17 0.0009 0.110 29
supramarginal gyrus Right 40 58.5 —49.5 29.5 13.41 0.0005 0.091 18
caudate Left —-13.5 10.5 2.5 15.54 0.0002  0.159 45
caudate Right 13.5 16.5 25 12.58 0.0008  0.119 33
putamen Right 19.5 —4.5 17.5 14.91 0.0003  0.144 32
precuneus Left 7 -13.5 =76.5 44.5 2229  <0.0001 0.213 28
Diagnosis-by-Animacy Interaction
superior temporal gyrus Right 13 46.5 -19.5 8.5 13.97 0.0004  0.111 57
supramarginal gyrus Left 39 —49.5 —58.5 325 15.05 0.0003 0.127 26
parahippocampal gyrus Left 35 —225 255 —185 16.83 0.0001 0.232 58
Main Effect of Diagnosis
ventromedial prefrontal cortex Right 10/32 1.5 40.5 -35 19.75  <0.0001 0.220 56
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Table 1 (continued)

Coordinates of Peak Activation °

Region® Left/Right BA X y z F p nzpmﬁa] Voxels
dorsomedial frontal cortex Right 1.5 49.5 20.5 18.17 <0.0001 0.187 46
posterior cingulate cortex Left 31 -13.5 —49.5 355 13.57 0.0005 0.220 30
caudate Right 16.5 22.5 25  21.05  <0.0001 0.211 19
temporal pole/uncus Left 28 -22.5 7.5 —24.5 20.16  <0.0001 0.294 52
superior temporal gyrus Right 21 58.5 —22.5 2.5 11.64 0.0012 0.100 20
inferior parietal cortex Left 40 —49.5  —40.5 325 15.65 0.0002  0.111 18
precentral gyrus Right 6 46.5 =75 8.5 15.67 0.0002  0.179 63
paracentral lobule Right 31 45 255 44.5 16.88 0.0001 0.284 334
lingual gyrus Right 18 285 585 25 12.80 0.0007  0.189 33

 According to the Talairach Daemon Atlas (http://www.nitrc.org/projects/tal-daemon/)

®Based on the Tournoux & Talairach standard brain template, BA = Brodmann’s Area

Diagnosis-by-Direction Interaction A diagnosis-by-direction
interaction was observed in regions including right temporal
pole/uncus and left lentiform nucleus/putamen. In both re-
gions, TD youth, relative to youth with DBDs, showed a
greater difference in BOLD response to looming relative to
receding stimuli [ = 2.63 & 2.73, p < .011].

Diagnosis-by-Emotion Interaction A diagnosis-by-emotion
interaction was observed in regions including superior frontal
gyrus, left alC/iFG, right middle temporal, right
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Fig. 2 Regions of Interest Showing a Significant Diagnosis-by-
Direction-by-Emotion Interaction. A Significant activations within the
right amygdala region of interest where increased BOLD responses to
[looming threat — receding neutral], [looming neutral —receding neutral]
and [receding threat — receding neutral] were observed in typically

looming threat -
receding neutral

looming threat -
receding neutral

supramarginal gyrus, bilateral caudate and right putamen. In
all regions, TD youth, relative to youth with DBDs, showed a
greater increase in BOLD response to threat relative to neutral
stimuli [z =2.37 to 3.71, p < .021].

Diagnosis-by-Emotion-by-Animacy Interaction A signifi-
cant diagnosis-by-emotion-by-animacy interaction was ob-
served in regions including left middle frontal gyrus, right
iFG and right inferior parietal cortex. In all regions, TD youth
showed a significantly greater increase in BOLD response to

| R
B osD

[ —

*

looming neutral -
receding neutral

=

receding threat -
receding neutral

looming neutral -
receding neutral

receding threat -
receding neutral

developing youth (TD; N = 27) compared to youth with disruptive be-
havior disorders (DBDs; N = 31); B Significant activations within the
periaqueductal gray region of interest where increased BOLD responses
to [receding threat — receding neutral] were observed in TD youth com-
pared to youth with DBDs
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threat relative to neutral animate stimuli [# = 2.44 to 3.44,
p < .02], but not threat relative to neutral inanimate stimuli
[t = .42 to 1.87, p > .07] relative to youth with DBDs.

Diagnosis-by-Animacy Interaction A diagnosis-by-animacy
interaction was observed in regions including left fusiform/
parahippocampal gyrus, left inferior parietal/supramarginal
gyrus and right postcentral/superior temporal gyrus. In
fusiform/parahippocampal gyrus and inferior parietal/
supramarginal gyrus, TD youth, relative to youth with
DBDs, showed a significantly greater increase in BOLD re-
sponse to animate relative to inanimate stimuli [z = 4.11 &
2.86, p < .01]. In right postcentral/superior temporal gyrus
gyrus, TD youth, relative to youth with DBDs, showed a
significantly greater decrease in BOLD response to animate
relative to inanimate stimuli [ = 2.64, p = .01].

Hypothesis 2 Within the youth with DBDs, CU traits would
be inversely associated with responsiveness to looming, neg-
ative and animate stimuli within the amygdala, PAG (negative
relative to neutral/looming relative to receding only) and con-
nected cortical regions (specifically, temporal, lateral frontal
and parietal cortices). This was tested via a 2 (direction:
looming, receding) x 2 (emotion: threat or neutral) x 2
(animacy: animate, inanimate) repeated-measures ANCOVA
on the BOLD response data from only the youth with DBDs
using CU traits as a covariate (see Table 2).

Regions of Interest

No significant key interactions were identified within these
regions.

Whole-Brain Findings

CU Traits-by-Direction-by-Emotion A significant CU
traits-by-direction-by-emotion interaction was observed in re-
gions including medial superior frontal cortex and right supe-
rior frontal cortex. In both regions, CU traits were more in-
versely related to BOLD responses to receding threats
[Steiger’s Z = 2.18 & 2.36, p < .03] and looming neutral
stimuli [Steiger’s Z = 2.50 & 2.26, p < .03] than receding
neutral stimuli. No difference in the magnitude of relationship
between CU traits and BOLD response was observed to
looming threats relative to receding neutral stimuli [Steiger’s
Z=0.07 & 0.93, p > .35].

CU Traits-by-Direction A significant CU traits-by-direction
interaction was observed in regions including left middle fron-
tal cortex, left iFG, left STG and two regions of left inferior
parietal cortex (see Fig. 3). In all regions, CU traits were more
inversely related to BOLD responses in looming trials
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[ = —.05 to —.44] relative to receding trails [ = —.02 to .28;
Steiger’s Z =2.19 to 2.68, p < .02].

CU Traits-by-Animacy A significant CU traits-by-animacy
interaction was observed in regions including PCC and left
lingual gyrus. In both regions, a stronger negative association
between CU traits and animate stimuli [r = —.39 & -.45] rel-
ative to inanimate stimuli [» = .08 & -.2, Steiger’s Z = 2.40 &
2.04, p < .04] was observed.

Potential Confounds

As over half of the youth with DBDs were either taking a
medication that could not be withheld during scanning or
met criteria for attention-deficit/hyperactivity disorder
(ADHD), the ANOVA was re-conducted removing these
youth from the analysis. When removing youth taking medi-
cations, the effects of interest were replicated with proximal
activations in the same brain regions for all contrasts except in
supramarginal gyrus in the diagnosis-by-emotion interaction.
Some regions were significant, however, only at more lenient
thresholds (see Supplemental Materials/Table S3). When re-
moving youth with ADHD, the effects of interest were repli-
cated with proximal activations in the same brain regions for
all contrasts except in supramarginal gyrus in the diagnosis-
by-emotion interaction. Some regions were significant, how-
ever, only at more lenient thresholds (see Supplemental
Materials/Tables S4).

Discussion

The goal of the current study was to examine responsive-
ness to core threat variables (visual threats and encroaching
stimuli) and animacy information in youth with DBDs and
to determine the extent to which this responsiveness varies
with level of CU traits. There were three main findings:
First, evidence of reduced responsiveness to threat vari-
ables, including both visual threats and encroaching stim-
uli, was observed within both acute threat circuitry (amyg-
dala and PAG) and temporal, lateral frontal and parietal
cortices in youth with DBDs. Second, youth with DBDs
also showed reduced responsiveness to animacy informa-
tion within temporal, lateral frontal and parietal cortices,
but not acute threat circuitry. Third, within the youth with
DBDs increasing CU traits were associated with decreased
responsiveness in cortical regions to both core threat vari-
ables and animacy information.

Our first hypothesis was that youth with DBDs, relative
to TD youth, would show reduced responses to negative
relative to neutral images, looming relative to receding
stimuli and animate relative to inanimate stimuli within
the amygdala, PAG (negative relative to neutral/looming
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Table 2 Brain Regions Demonstrating Key Significant Effects and Interactions from an Analysis of Covariance on BOLD Response during the
Looming Task Utilizing Callous-Unemotional Traits as a Covariate in 31 Youths with DBDs

Coordinates of Peak Activation ®

Region® Left/Right BA X y z F )4 N partial Voxels

Callous-Unemotional Traits-by-Direction-by-Emotion Interaction

superior frontal cortex Right 9 1.5 55.5 32.5 1791 0.0002 0.349 29
superior frontal cortex Right 9 34.5 46.5 29.5 20.67 <0.0001 0.442 20
Callous-Unemotional Traits-by-Direction Interaction
middle frontal cortex Left 9 —34.5 7.5 38.5 18.67 0.0002 0.162 32
inferior frontal gyrus Left 44/13 —46.5 4.5 2.5 14.82 0.0006 0.206 28
superior temporal gyrus Left 21 —61.5 -37.5 =35 18.04 0.0002 0.230 27
inferior parietal cortex Left 7 -31.5 —46.5 56.5 13.95 0.0008 0.249 39
inferior parietal cortex Left 40 —40.5 —46.5 44.5 14.92 0.0006 0.450 19
precuneus Left 7 -25.5 —67.5 325 14.71 0.0006 0.191 21
cuneus Right 18 7.5 —82.5 17.5 16.70 0.0003 0.216 33
lingual gyrus Left 18 -16.5 —82.5 -12.5 14.01 0.0008 0.227 46
Callous-Unemotional Traits-by-Animacy Interaction
posterior cingulate cortex Left 29 -1.5 —40.5 8.5 16.34 0.0004 0.238 27
lingual gyrus Left 18 =75 -79.5 —-15.5 20.49 <0.0001 0.235 43
precentral gyrus Left 4 —58.5 -19.5 38.5 18.81 0.0002 0.232 38
middle temporal gyrus Right 37 55.5 —55.5 2.5 17.28 0.0003 0.263 33
precentral gyrus Left 9 —43.5 4.5 355 14.60 0.0007 0.350 22
culmen Right 45 —58.5 =35 21.18 <0.0001 0.363 34

 According to the Talairach Daemon Atlas (http://www.nitrc.org/projects/tal-daemon/)
°Based on the Tournoux & Talairach standard brain template, BA = Brodmann’s Area
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Fig. 3 Regions Showing a Significant Callous-Unemotional Traits-by- CU traits showed a significantly larger inverse association with BOLD
Emotion Interaction within the 31 youth with disruptive behavior disor- responses in looming trials relative to receding trails

ders. In left middle frontal gyrus (A) and left inferior parietal cortex (B),
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relative to receding only) and connected cortical regions
(specifically, temporal, lateral frontal and parietal cortices).
With respect to negative relative to neutral images, this
hypothesis was largely confirmed. Youth with DBDs
showed reduced responses, relative to TD youth, to nega-
tive relative to neutral images within the amygdala and
right middle temporal, lateral frontal, left alC/iFG and right
supramarginal gyrus. In short, youth with DBDs showed a
reduced response to visual threats both with core emotion
circuitry (amygdala; cf. LeDoux 2012), regions highly in-
terconnected with the amygdala implicated in stimulus rep-
resentation (middle temporal cortex; Caramazza and
Shelton 1998; Martin 2007) and regions implicated in at-
tention (supramarginal/parietal cortex; Behrmann et al.
2004; lateral frontal; Bishop et al. 2004; aIC/iFG; Peters
et al. 2016). With respect to looming relative to receding
stimuli, our hypothesis was somewhat supported. In con-
trast to predictions, only within the amygdala was the con-
dition hypothesized to be most associated with group dif-
ferences (looming threats) associated with greater re-
sponses in TD youth relative to youth with DBDs.
Indeed, within PAG and middle temporal/occipital cortex,
group differences were only seen in response to receding
threat or looming neutral stimuli (middle temporal/
occipital cortex only). In addition, youth with DBDs, rela-
tive to TD youth, showed reduced responses to looming
stimuli generally within right temporal pole.

There has been relatively little fMRI work examining re-
sponsiveness to non-social threat stimuli in youth with DBDs.
The preponderance of previous fMRI work has considered
distress cues, as opposed to threat responsiveness, in youth
with DBDs and reported reduced amygdala (and to a lesser
extent connected cortical region) responsiveness to fearful ex-
pressions (Jones et al. 2009; Lozier et al. 2014; Marsh et al.
2008; Passamonti et al. 2010; Viding et al. 2012; White et al.
2012a). However, there have been reports of reduced amyg-
dala responses to threat stimuli in youth with DBDs (Stadler
et al. 2007), particularly for those with low anxiety [Sterzer
et al. 2005; see also Hwang et al. 2016 and, for a non-replica-
tion, Herpertz et al. 2008]. In line with this earlier work, youth
with DBDs in the current study showed reduced responsive-
ness within amygdala and associated cortical regions to visual
threats. They also showed reduced responsiveness within to
receding threats and looming neutral stimuli within amygdala,
PAG and temporal cortical regions. Reduced threat respon-
siveness may contribute to risk taking and impulsivity; the
individual may be more likely to engage in risky behaviors,
as they are less afraid of the consequences. However, it is
possible that reduced threat responsiveness contributes little
to the behavioral profile of youth with behavioral problems.
The systems engaged by threat stimuli are also those engaged
by distress cues (particularly the amygdala; Blair 1995, 2007,
2013). As such, reduced threat responsiveness may simply
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reflect dysfunction in the neural systems that respond to dis-
tress cues, as these systems also process threat.

With respect to animate relative to inanimate stimuli, our
first hypothesis was partly supported. Youth with DBDs
showed reduced responses to animate relative to inanimate
stimuli in fusiform gyrus and inferior parietal gyrus. In addi-
tion, youth with DBDs showed reduced responses to animate
relative to inanimate stimuli within left middle frontal gyrus,
right iFG and right inferior parietal cortex, to threatening, and
not neutral, animate stimuli. It should be noted that all these
regions have been shown to be responsive to animacy infor-
mation, including point light and shape animation displays of
biological motion (Bi et al. 2016; Lu et al. 2016; Osaka et al.
2012; Shultz and McCarthy 2014; Shultz et al. 2015). The
amygdala is also highly sensitive to animacy information
(Beauchamp et al. 2003; Cao et al. 2014; Coker-Appiah
et al. 2013; Wheatley et al. 2007). Indeed, there have been
suggestions that during social cognition, the amygdala signals
the presence of socially relevant information to these other
regions involved in social cognition (Ochsner 2008). As such,
it remains unclear whether i) youth with DBDs show intact
amygdala response to animacy information, but either fail to
propagate this information to cortical regions or these cortical
regions themselves are dysfunctional or ii) the failure to ob-
serve amygdala dysfunction in the current study is the result of
type II error. Future work will need to differentiate between
these hypotheses.

Our second hypothesis was that, within the youth with
DBDs, CU traits would be inversely associated with respon-
siveness to looming, negative and animate stimuli within the
amygdala, PAG (negative relative to neutral/looming relative
to receding only) and connected cortical regions (specifically,
temporal, lateral frontal and parietal cortices). With respect to
responsiveness to looming stimuli, our second hypothesis was
partly confirmed. Indeed, the moderating effects of CU traits
within the youth with DBDs partly echoed the differences
between youth with DBDs and typically developing youth.
CU traits were more inversely related to BOLD responses to
receding threat or looming neutral stimuli rather than looming
threats within medial and lateral superior frontal cortex.
Moreover, increased CU traits were associated with relatively
suppressed responding to looming stimuli in a series of re-
gions (left middle frontal cortex, left iFG, left STG and two
regions of left inferior parietal cortex). As such, our data ap-
pear to offer some support for the suggestion that within the
youth with DBDs, CU traits are inversely associated with
responsiveness to threat stimuli (cf. Hwang et al. 2016).
However, this support is driven by findings relating to the
looming manipulation. In this study, CU traits had no signif-
icant impact on responsiveness to visual threats. Moreover,
CU traits were only inversely associated with responsiveness
to threat stimuli in cortical regions, not the amygdala. Previous
work has reported reduced responsiveness to visual threat
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stimuli as a function of level of CU traits within vmPFC in
youth with DBDs (Hwang et al. 2016). However, that result
was not replicated here (albeit in a very different paradigm).

With respect to responsiveness to animate stimuli, our sec-
ond hypothesis was not confirmed. Levels of CU traits were
not related to responsiveness within the amygdala or temporal,
lateral frontal and parietal cortices to animacy information in
this study. However, they were related to animacy responsive-
ness within PCC and a proximal region of lingual gyrus. PCC
is critically implicated in social cognition. However, it has
been attributed a role in high-level mental state inference
(Ochsner 2008). The current task did not incorporate any ele-
ment of high-level mental state inference. It is possible that the
dysfunction seen in the current study relates to one of the other
functions that PCC is implicated in, such as providing the
functional linkage of motivational and oculomotor informa-
tion (McCoy and Platt 2005). Alternatively, PCC may have a
role in lower level social cognition processing that is not yet
well defined. Future work will need to examine these possi-
bilities, as well as examine whether the PCC dysfunction ob-
served here accounts for the asociality observed in youth with
high levels of CU traits.

The current data need to be interpreted in light of six ca-
veats. First, the current study did not include an ADHD-only
comparison group, nor were symptom levels available for
examination. However, this caveat is mitigated by a secondary
analysis, which excluded youth with ADHD and revealed
fundamentally similar results (see Supplemental Materials).
Second, five youth with DBDs were taking medication that
could not be withheld during scanning. Again, this caveat is
mitigated by a secondary analysis excluding these youth,
which did not reveal fundamentally different results (see
Supplemental Materials). Third, while adequately powered
to detect the hypothesized group differences, the current study
was possibly under-powered to detect differences across all
contrasts reported. Replication in larger samples will be im-
portant. Fourth, the sample encompassed a relatively broad
developmental range. Future work closely examining both
age and pubertal development will be needed to more accu-
rately interpret the current data. Fifth, the current study was
under-powered to investigate the role of gender, despite there
being some evidence of gender differences in the neural un-
derpinnings of DBDs (Baker et al. 2015). Future work will
need to focus on this issue. Sixth, the current sample had
relatively fewer comorbid psychiatric disorders than would
be expected in a typical clinic. Strict inclusion criteria allow
for increased specificity regarding which symptom sets might
be underpinned by the neural dysfunction observed in the
current study. However, this approach limits the generalizabil-
ity of the findings.

In summary, the current study found evidence of reduced
responsiveness to threat variables, including both visual
threats and encroaching stimuli, within both acute threat

circuitry (amygdala and PAG) and temporal, lateral frontal
and parietal cortices in youth with DBDs. This reduced re-
sponsiveness, at least with respect to the looming variable,
was modulated by CU traits. Reduced threat responsiveness
may contribute to risk taking and impulsivity in youth with
DBDs, particularly those with high levels of CU traits.
Second, youth with DBDs also showed reduced responsive-
ness to animacy information within temporal, lateral frontal
and parietal cortices, but not within amygdala. Within the
youth with DBD, reduced responsiveness to animacy infor-
mation was observed in PCC as a function of CU trait level.
Future work will need to examine responsiveness to animacy
information in youth with DBD, the potential role of PCC and
the extent to which any dysfunction might relate to the social
difficulties shown by many of these youth.

Acknowledgements This work was supported by the Intramural
Research Program of the National Institute of Mental Health, National
Institutes of Health (1-ZIA-MH002860), Dr. Blair principle investigator,
with ClinicalTrials.gov Identifier NCT00104039. Further support was
provided by the National Institute of Mental Health, National Institutes
of Health in grants to R.J.R. Blair (1-K22-MH109558) and S.F. White
(1-K01-MH110643).

Compliance with Ethical Standards

Conflict of Interest No authors have any conflicts of interest to
disclose.

Ethical Approval This study was approved by the National Institutes
of Health Combined Neurosciences Institutional Review Board (protocol
number 05-M-0105). All research procedures were compliant with rele-
vant U.S. and National Institutes of Health ethics policies and regulations.

Informed Consent Written informed consent was obtained from the
legal guardians of all participants and written assent was obtained from all
participants.

References

American Psychiatric Association. (2013). Diagnostic and statistical
manual of mental disorders (5th ed.). Washington, DC: American
Psychiatric Association.

Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah,
N.J., & Zilles, K. (2005). Cytoarchitectonic mapping of the human
amygdala, hippocampal region and entorhinal cortex: Intersubject
variability and probability maps. Anatomy and Embryology (Berlin),
210(5-6), 343-352. doi:10.1007/s00429-005-0025-5.

Anderson, D. J. (2012). Optogenetics, sex, and violence in the brain:
Implications for psychiatry. Biological Psychiatry, 71(12), 1081—
1089. doi:10.1016/j.biopsych.2011.11.012.

Baird, S. A. (2002). The links bewteen primary and secondary psychop-
athy and social adaptation. Colgate University Journal of the
Sciences, 34, 61-82.

Baker, R. H., Clanton, R. L., Rogers, J. C., & De Brito, S. A. (2015).
Neuroimaging findings in disruptive behavior disorders. CNS
Spectrums, 20(4), 369-381. doi:10.1017/S1092852914000789.

@ Springer


http://dx.doi.org/10.1007/s00429-005-0025-5
http://dx.doi.org/10.1016/j.biopsych.2011.11.012
http://dx.doi.org/10.1017/S1092852914000789

J Abnorm Child Psychol

Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2003). FMRI
responses to video and point-light displays of moving humans and
manipulable objects. Journal of Cognitive Neuroscience, 15(7),
991-1001. doi:10.1162/089892903770007380.

Behrmann, M., Geng, J. J., & Shomstein, S. (2004). Parietal cortex and
attention. Current Opinion in Neurobiology, 14(2),212-217. doi:10.
1016/j.conb.2004.03.012.

Bi, Y., Wang, X., & Caramazza, A. (2016). Object domain and modality
in the ventral visual pathway. Trends in Cognitive Sciences, 20(4),
282-290. doi:10.1016/j.tics.2016.02.002.

Bishop, S., Duncan, J., Brett, M., & Lawrence, A. D. (2004). Prefrontal
cortical function and anxiety: Controlling attention to threat-related
stimuli. Nature Neuroscience, 7(2), 184—188. doi:10.1038/nn1173.

Blair, R. J. R. (1995). A cognitive developmental approach to mortality:
Investigating the psychopath. Cognition, 57(1), 1-29.

Blair, R. J. R. (2007). The amygdala and ventromedial prefrontal cortex in
morality and psychopathy. Trends in Cognitive Sciences, 11(9),
387-392. doi:10.1016/j.tics.2007.07.003.

Blair, R. J. R. (2013). The neurobiology of psychopathic traits in youths.
Nature Reviews. Neuroscience, 14(11), 786-799. doi:10.1038/
nrn3577.

Blair, R. J. R., Leibenluft, E., & Pine, D. S. (2014). Conduct disorder and
callous-unemotional traits in youth. The New England Journal of
Medicine, 371(23), 2207-2216. doi:10.1056/NEJMral315612.

Blanchard, R. J., Blanchard, D. C., Takahashi, T., & Kelley, M. J. (1977).
Attack and defensive behaviour in the albino rat. Animal Behavior,
25(3), 622-634.

Burgund, E. D., Kang, H. C., Kelly, J. E., Buckner, R. L., Snyder, A. Z.,
Petersen, S. E., & Schlaggar, B. L. (2002). The feasibility of a
common stereotactic space for children and adults in fMRI studies
of development. Neurolmage, 17(1), 184-200.

Cao, Z., Zhao, Y., Tan, T., Chen, G., Ning, X., Zhan, L., & Yang, J.
(2014). Distinct brain activity in processing negative pictures of
animals and objects - the role of human contexts. Neurolmage, 84,
901-910. doi:10.1016/j.neuroimage.2013.09.064.

Caramazza, A., & Shelton, J. R. (1998). Domain-specific knowledge
systems in the brain the animate-inanimate distinction. Journal of’
Cognitive Neuroscience, 10(1), 1-34.

Cohen, M. A. (1998). The monetary value of saving a high-risk youth.
Journal of Quantitative Criminology, 14(1), 5-33. doi:10.1023/A:
1023092324459.

Cohn, M. D., Popma, A., van den Brink, W., Pape, L. E., Kindt, M., van
Domburgh, L., & Veltman, D. J. (2013). Fear conditioning, persis-
tence of disruptive behavior and psychopathic traits: An fMRI study.
Translational Psychiatry, 3, €319. doi:10.1038/tp.2013.89.

Cohn, M. D., van Lith, K., Kindt, M., Pape, L. E., Doreleijers, T. A. H.,
van den Brink, W., et al. (2016). Fear extinction, persistent disrup-
tive behavior and psychopathic traits: fMRI in late adolescence.
Social Cognitive and Affective Neuroscience, 11(7), 1027-1035.
doi:10.1093/scan/nsv067.

Coker-Appiah, D. S., White, S. F., Clanton, R., Yang, J., Martin, A., &
Blair, R. J. R. (2013). Looming animate and inanimate threats: The
response of the amygdala and periaqueductal gray. Social
Neuroscience, 8(6), 621-630. doi:10.1080/17470919.2013.839480.

Cox, R. W. (1996). AFNI: Software for analysis and visualization of
functional magnetic resonance neuroimages. Computers and
Biomedical Research, 29(3), 162—173.

Cross, E. S., Ramsey, R., Liepelt, R., Prinz, W., & de C. Hamilton, A. F.
(2016). The shaping of social perception by stimulus and knowledge
cues to human animacy. Philosophical Transactions of the Royal
Society of London. Series B, Biological Sciences, 371(1686),
20150075. doi:10.1098/rstb.2015.0075.

Crowe, S. L., & Blair, R. J. R. (2008). The development of antisocial
behavior: What can we learn from functional neuroimaging studies?
Development and Psychopathology, 20(4), 1145-1159. doi:10.
1017/50954579408000540.

@ Springer

Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion.
Molecular Psychiatry, 6(1), 13-34.

Essau, C. A., Sasagawa, S., & Frick, P. J. (2006). Callous-unemotional
traits in a community sample of adolescents. Assessment, 13(4),
454-469. doi:10.1177/1073191106287354.

Everitt, B. J., Cardinal, R. N., Parkinson, J. A., & Robbins, T. W. (2003).
Appetitive behavior: Impact of amygdala-dependent mechanisms of
emotional learning. Annals of the New York Academy of Sciences,
985, 233-250.

Fairchild, G., Van Goozen, S. H., Stollery, S. J., & Goodyer, 1. M. (2008).
Fear conditioning and affective modulation of the startle reflex in
male adolescents with early-onset or adolescence-onset conduct dis-
order and healthy control subjects. Biological Psychiatry, 63(3),
279-285. doi:10.1016/j.biopsych.2007.06.019.

Fairchild, G., Stobbe, Y., van Goozen, S. H. M., Calder, A. J., & Goodyer,
I. M. (2010). Facial expression recognition, fear conditioning, and
startle modulation in female subjects with conduct disorder.
Biological Psychiatry, 68(3), 272-279. doi:10.1016/j.biopsych.
2010.02.019.

Falkner, A. L., & Lin, D. (2014). Recent advances in understanding the
role of the hypothalamic circuit during aggression. Frontiers in
Systems Neuroscience, 8, 168. doi:10.3389/fnsys.2014.00168.

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G¥*power 3: A
flexible statistical power analysis program for the social, behavioral,
and biomedical sciences. Behavior Research Methods, 39(2), 175~
191.

Fergusson, D. M., Boden, J. M., & Horwood, L. J. (2010). Classification
of behavior disorders in adolescence: Scaling methods, predictive
validity, and gender differences. Journal of Abnormal
Psychology;Journal of Abnormal Psychology, 119(4), 699-712.
doi:10.1037/a0018610.

Foulkes, L., McCrory, E. J., Neumann, C. S., & Viding, E. (2014).
Inverted social reward: Associations between psychopathic traits
and self-report and experimental measures of social reward. PloS
One, 9(8), €106000. doi:10.1371/journal.pone.0106000.

Frick. (2004). The inventory of callous-unemotional traits. Unpublished
rating scale. New Orleans: University of New Orleans.

Frick, & Dickens. (2006). Current perspectives on conduct disorder.
Current Psychiatry Reports, 8(1), 59-72.

Frick, & Hare. (2001). The antisocial process screening device. Toronto:
Multi-Health Systems.

Frick, P. J., Stickle, T. R., Dandreaux, D. M., Farrell, J. M., & Kimonis, E.
R. (2005). Callous-unemotional traits in predicting the severity and
stability of conduct problems and delinquency. Journal of Abnormal
Child Psychology, 33(4), 471-487.

Gregg, T. R., & Siegel, A. (2001). Brain structures and neurotransmitters
regulating aggression in cats: Implications for human aggression.
Progress in Neuro-Psychopharmacology & Biological Psychiatry,
25(1), 91-140.

Harenski, C. L., Harenski, K. A., & Kiehl, K. A. (2014). Neural process-
ing of moral violations among incarcerated adolescents with psy-
chopathic traits. Developmental Cognitive Neuroscience, 10, 181—
189. doi:10.1016/j.den.2014.09.002.

Herpertz, S. C., Huebner, T., Marx, 1., Vloet, T. D., Fink, G. R., Stoecker,
T., et al. (2008). Emotional processing in male adolescents with
childhood-onset conduct disorder. Journal of Child Psychology
and Psychiatry, 49(7), 781-791. doi:10.1111/j.1469-7610.2008.
01905.x.

Hwang, S., Nolan, Z. T., White, S. F., Williams, W. C., Sinclair, S., &
Blair, R. J. R. (2016). Dual neurocircuitry dysfunctions in disruptive
behavior disorders: Emotional responding and response inhibition.
Psychological Medicine, 46(7), 1485—-1496. doi:10.1017/
S0033291716000118.

IBM. (2012). IBM SPSS statistics for MacOSX (version 21.0). Armonk,
NY: IBM Corp.


http://dx.doi.org/10.1162/089892903770007380
http://dx.doi.org/10.1016/j.conb.2004.03.012
http://dx.doi.org/10.1016/j.conb.2004.03.012
http://dx.doi.org/10.1016/j.tics.2016.02.002
http://dx.doi.org/10.1038/nn1173
http://dx.doi.org/10.1016/j.tics.2007.07.003
http://dx.doi.org/10.1038/nrn3577
http://dx.doi.org/10.1038/nrn3577
http://dx.doi.org/10.1056/NEJMra1315612
http://dx.doi.org/10.1016/j.neuroimage.2013.09.064
http://dx.doi.org/10.1023/A:1023092324459
http://dx.doi.org/10.1023/A:1023092324459
http://dx.doi.org/10.1038/tp.2013.89
http://dx.doi.org/10.1093/scan/nsv067
http://dx.doi.org/10.1080/17470919.2013.839480
http://dx.doi.org/10.1098/rstb.2015.0075
http://dx.doi.org/10.1017/s0954579408000540
http://dx.doi.org/10.1017/s0954579408000540
http://dx.doi.org/10.1177/1073191106287354
http://dx.doi.org/10.1016/j.biopsych.2007.06.019
http://dx.doi.org/10.1016/j.biopsych.2010.02.019
http://dx.doi.org/10.1016/j.biopsych.2010.02.019
http://dx.doi.org/10.3389/fnsys.2014.00168
http://dx.doi.org/10.1037/a0018610
http://dx.doi.org/10.1371/journal.pone.0106000
http://dx.doi.org/10.1016/j.dcn.2014.09.002
http://dx.doi.org/10.1111/j.1469-7610.2008.01905.x
http://dx.doi.org/10.1111/j.1469-7610.2008.01905.x
http://dx.doi.org/10.1017/S0033291716000118
http://dx.doi.org/10.1017/S0033291716000118

J Abnorm Child Psychol

Jones, A. P., Laurens, K. R., Herba, C. M., Barker, G. J., & Viding, E.
(2009). Amygdala hypoactivity to fearful faces in boys with con-
duct problems and callous-unemotional traits. The American
Journal of Psychiatry, 166(1), 95-102. doi:10.1176/appi.ajp.2008.
07071050.

Kang, H. C., Burgund, E. D., Lugar, H. M., Petersen, S. E., & Schlaggar,
B. L. (2003). Comparison of functional activation foci in children
and adults using a common stereotactic space. Neurolmage, 19(1),
16-28.

Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., &
Ryan, N. (1997). Schedule for affective disorders and schizophrenia
for school-age children-present and lifetime version (K-SADS-PL):
Initial reliability and validity data. Journal of the American Academy
of Child and Adolescent Psychiatry, 36(7), 980-988. doi:10.1097/
00004583-199707000-00021.

Kazdin, A. E. (2000). Treatments for aggressive and antisocial children.
Child and Adolescent Psychiatric Clinics of North America, 9(4),
841-858.

Kimonis, E. R., Frick, P. J., Fazekas, H., & Loney, B. R. (2006).
Psychopathy, aggression, and the processing of emotional stimuli
in non-referred girls and boys. Behavioral Sciences & the Law,
24(1), 21-37. doi:10.1002/bsl.668.

Kimonis, E. R., Frick, P. J., Skeem, J. L., Marsee, M. A., Cruise, K.,
Munoz, L. C., & Morris, A. S. (2008). Assessing callous-
unemotional traits in adolescent offenders: Validation of the inven-
tory of callous-unemotional traits. International Journal of Law and
Psychiatry, 31(3), 241-252. doi:10.1016/}.ij1p.2008.04.002.

Knutson, B., & Cooper, J. C. (2005). Functional magnetic resonance
imaging of reward prediction. Current Opinion in Neurology,
18(4), 411-417.

Lawing, K., Frick, P. J., & Cruise, K. R. (2010). Differences in offending
patterns between adolescent sex offenders high or low in callous-
unemotional traits. Psychological Assessment, 22(2), 298-305. doi:
10.1037/a0018707.

LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73(4), 653—
676. doi:10.1016/j.neuron.2012.02.004.

Lozier, L. M., Cardinale, E. M., VanMeter, J. W., & Marsh, A. A. (2014).
Mediation of the relationship between callous-unemotional traits
and proactive aggression by amygdala response to fear among chil-
dren with conduct problems. JAMA Psychiatry, 71(6), 627-636. doi:
10.1001/jamapsychiatry.2013.4540.

Lu, X., Huang, J., Yi, Y., Shen, M., Weng, X., & Gao, Z. (2016). Holding
biological motion in working memory: An fMRI study. Frontiers in
Human Neuroscience, 10, 251. doi:10.3389/fnhum.2016.00251.

Marsh, A. A., Finger, E. C., Mitchell, D. G., Reid, M. E., Sims, C.,
Kosson, D. S., et al. (2008). Reduced amygdala response to fearful
expressions in children and adolescents with callous-unemotional
traits and disruptive behavior disorders. The American Journal of
Psychiatry, 165(6), 712—720. doi:10.1176/appi.ajp.2007.07071145.

Marsh, A. A., Finger, E. C., Fowler, K. A., Jurkowitz, I. T. N., Schechter,
J. C., Yu, H. H., & Blair, R. J. R. (2011). Reduced amygdala/
orbitofrontal connectivity during moral judgments in youths with
disruptive behavior disorders and psychopathic traits. Psychiatry
Research: Neuroimaging, 194(3), 279-286. doi:10.1016/j.
pscychresns.2011.07.008.

Martin, A. (2007). The representation of object concepts in the brain.
Annual Review of Psychology, 58(1), 25-45. doi:10.1146/annurev.
psych.57.102904.190143.

McCoy, A. N., & Platt, M. L. (2005). Expectations and outcomes:
Decision-making in the primate brain. Journal of Comparative
Physiology. A, Neuroethology, Sensory, Neural, and Behavioral
Physiology, 191(3), 201-211. doi:10.1007/s00359-004-0565-9.

Mobbs, D., Petrovic, P., Marchant, J. L., Hassabis, D., Weiskopf, N.,
Seymour, B., et al. (2007). When fear is near: Threat imminence
elicits prefrontal-periaqueductal gray shifts in humans. Science,
317(5841), 1079-1083. doi:10.1126/science.1144298.

Mobbs, D., Yu, R., Rowe, J. B., Eich, H., FeldmanHall, O., & Dalgleish,
T. (2010). Neural activity associated with monitoring the oscillating
threat value of a tarantula. Proceedings of the National Academy of
Sciences of the United States of America, 107(47), 20582-20586.
doi:10.1073/pnas.1009076107.

Mofftitt, T. E., Caspi, A., Harrington, H., & Milne, B. J. (2002). Males on
the life-course-persistent and adolescence-limited antisocial path-
ways: Follow-up at age 26 years. Development and
Psychopathology, 14(1), 179-207.

Mos, J., Kruk, M. R., Van Poel, A. M. D., & Meelis, W. (1982).
Aggressive behavior induced by electrical stimulation in the mid-
brain central gray of male rats. Aggressive Behavior, 8(3), 261-284.
doi:10.1002/1098-2337(1982)8:3<261::AID-AB2480080304>3.0.
CO;2-N.

Muiioz, L. C., Kerr, M., & Besi¢, N. (2008). The peer relationships of
youths with psychopathic personality traits: A matter of perspective.
Criminal Justice and Behavior, 35(2), 212-227. doi:10.1177/
0093854807310159.

Nelson, R. J., & Trainor, B. C. (2007). Neural mechanisms of aggression.
Nature Reviews. Neuroscience, 8(7), 536-546. doi:10.1038/
nrn2174.

Ochsner, K. N. (2008). The social-emotional processing stream: Five core
constructs and their translational potential for schizophrenia and
beyond. Biological Psychiatry, 64(1), 48—61. doi:10.1016/j.
biopsych.2008.04.024.

Osaka, N., Ikeda, T., & Osaka, M. (2012). Effect of intentional bias on
agency attribution of animated motion: An event-related fMRI
study. PloS One, 7(11), €49053. doi:10.1371/journal.pone.0049053.

Panksepp, J. (1998). Affective neuroscience: The foundations of human
and animal emotions. New York: Oxford University Press.

Passamonti, L., Fairchild, G., Goodyer, 1. M., Hurford, G., Hagan, C. C.,
Rowe, J. B., & Calder, A. J. (2010). Neural abnormalities in early-
onset and adolescence-onset conduct disorder. Archives of General
Psychiatry, 67(7), 729-738. doi:10.1001/archgenpsychiatry.2010.
75.

Pearson, J. M., Heilbronner, S. R., Barack, D. L., Hayden, B. Y., & Platt,
M. L. (2011). Posterior cingulate cortex: Adapting behavior to a
changing world. Trends in Cognitive Sciences, 15(4), 143—151.
doi:10.1016/j.tics.2011.02.002.

Pessoa, L., & Ungerleider, L. G. (2004). Neuroimaging studies of atten-
tion and the processing of emotion-laden stimuli. Progress in Brain
Research, 144, 171-182. doi:10.1016/S0079-6123(03)14412-3.

Peters, S. K., Dunlop, K., & Downar, J. (2016). Cortico-striatal-thalamic
loop circuits of the salience network: A central pathway in psychi-
atric disease and treatment. Frontiers in Systems Neuroscience, 10,
104. doi:10.3389/fnsys.2016.00104.

Robins, L. (1966). Deviant children grown up. Baltimore, MD: Williams
& Wilkins.

Sebastian, C. L., McCrory, E. J., Cecil, C. A., Lockwood, P. L., De Brito,
S. A., Fontaine, N. M., & Viding, E. (2012). Neural responses to
affective and cognitive theory of mind in children with conduct
problems and varying levels of callous-unemotional traits.
Archives of General Psychiatry, 69(8), 814-822. doi:10.1001/
archgenpsychiatry.2011.2070.

Sharp, C., van Goozen, S., & Goodyer, 1. (2006). Children’s subjective
emotional reactivity to affective pictures: Gender differences and
their antisocial correlates in an unselected sample of 7-11-year-olds.
Journal of Child Psychology and Psychiatry, 47(2), 143—150. doi:
10.1111/4.1469-7610.2005.01464 x.

Shultz, S., & McCarthy, G. (2014). Perceived animacy influences the
processing of human-like surface features in the fusiform gyrus.
Neuropsychologia, 60, 115-120. doi:10.1016/j.neuropsychologia.
2014.05.019.

Shultz, S., van den Honert, R. N., Engell, A. D., & McCarthy, G. (2015).
Stimulus-induced reversal of information flow through a cortical

@ Springer


http://dx.doi.org/10.1176/appi.ajp.2008.07071050
http://dx.doi.org/10.1176/appi.ajp.2008.07071050
http://dx.doi.org/10.1097/00004583-199707000-00021
http://dx.doi.org/10.1097/00004583-199707000-00021
http://dx.doi.org/10.1002/bsl.668
http://dx.doi.org/10.1016/j.ijlp.2008.04.002
http://dx.doi.org/10.1037/a0018707
http://dx.doi.org/10.1016/j.neuron.2012.02.004
http://dx.doi.org/10.1001/jamapsychiatry.2013.4540
http://dx.doi.org/10.3389/fnhum.2016.00251
http://dx.doi.org/10.1176/appi.ajp.2007.07071145
http://dx.doi.org/10.1016/j.pscychresns.2011.07.008
http://dx.doi.org/10.1016/j.pscychresns.2011.07.008
http://dx.doi.org/10.1146/annurev.psych.57.102904.190143
http://dx.doi.org/10.1146/annurev.psych.57.102904.190143
http://dx.doi.org/10.1007/s00359-004-0565-9
http://dx.doi.org/10.1126/science.1144298
http://dx.doi.org/10.1073/pnas.1009076107
http://dx.doi.org/10.1002/1098-2337(1982)8:3%3C261::AID-AB2480080304%3E3.0.CO;2-N
http://dx.doi.org/10.1002/1098-2337(1982)8:3%3C261::AID-AB2480080304%3E3.0.CO;2-N
http://dx.doi.org/10.1177/0093854807310159
http://dx.doi.org/10.1177/0093854807310159
http://dx.doi.org/10.1038/nrn2174
http://dx.doi.org/10.1038/nrn2174
http://dx.doi.org/10.1016/j.biopsych.2008.04.024
http://dx.doi.org/10.1016/j.biopsych.2008.04.024
http://dx.doi.org/10.1371/journal.pone.0049053
http://dx.doi.org/10.1001/archgenpsychiatry.2010.75
http://dx.doi.org/10.1001/archgenpsychiatry.2010.75
http://dx.doi.org/10.1016/j.tics.2011.02.002
http://dx.doi.org/10.1016/S0079-6123(03)14412-3
http://dx.doi.org/10.3389/fnsys.2016.00104
http://dx.doi.org/10.1001/archgenpsychiatry.2011.2070
http://dx.doi.org/10.1001/archgenpsychiatry.2011.2070
http://dx.doi.org/10.1111/j.1469-7610.2005.01464.x
http://dx.doi.org/10.1016/j.neuropsychologia.2014.05.019
http://dx.doi.org/10.1016/j.neuropsychologia.2014.05.019

J Abnorm Child Psychol

network for animacy perception. Social Cognitive and Affective
Neuroscience, 10(1), 129-135. doi:10.1093/scan/nsu028.

Stadler, C., Sterzer, P., Schmeck, K., Krebs, A., Kleinschmidt, A., &
Poustka, F. (2007). Reduced anterior cingulate activation in aggres-
sive children and adolescents during affective stimulation:
Association with temperament traits. Journal of Psychiatric
Research, 41(5), 410-417. doi:10.1016/j.jpsychires.2006.01.006.

Sterzer, P., Stadler, C., Krebs, A., Kleinschmidt, A., & Poustka, F. (2005).
Abnormal neural responses to emotional visual stimuli in adoles-
cents with conduct disorder. Biological Psychiatry, 57(1), 7-15. doi:
10.1016/j.biopsych.2004.10.008.

Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the
human brain. Stuttgart: Thieme.

Uddin, L. Q. (2015). Salience processing and insular cortical function and
dysfunction. Nature Reviews. Neuroscience, 16(1), 55-61. doi:10.
1038/nrn3857.

Viding, E., Sebastian, C. L., Dadds, M. R., Lockwood, P. L., Cecil, C. A.,
De Brito, S. A., & McCrory, E. J. (2012). Amygdala response to
preattentive masked fear in children with conduct problems: The

role of callous-unemotional traits. The American Journal of

Psychiatry, 169(10), 1109-1116. doi:10.1176/appi.ajp.2012.
12020191.

Weisberg, J., Milleville, S. C., Kenworthy, L., Wallace, G. L., Gotts, S. J.,
Beauchamp, M. S., & Martin, A. (2014). Social perception in autism

@ Springer

spectrum disorders: Impaired category selectivity for dynamic but
not static images in ventral temporal cortex. Cerebral Cortex (New
York, N.Y.: 1991), 24(1), 37-48. doi:10.1093/cercor/bhs276.

Wheatley, T., Milleville, S. C., & Martin, A. (2007). Understanding ani-
mate agents: Distinct roles for the social network and mirror system.
Psychological Science, 18(6), 469—474. doi:10.1111/j.1467-9280.
2007.01923 x.

White, S. F., Marsh, A. A., Fowler, K. A., Schechter, J. C., Adalio, C.,
Pope, K., et al. (2012a). Reduced amygdala response in youths with
disruptive behavior disorders and psychopathic traits: Decreased
emotional response versus increased top-down attention to nonemo-
tional features. The American Journal of Psychiatry, 169(7), 750—
758. doi:10.1176/appi.ajp.2012.11081270.

White, S. F., Williams, W. C., Brislin, S. J., Sinclair, S., Blair, K. S.,
Fowler, K. A., et al. (2012b). Reduced activity within the dorsal
endogenous orienting of attention network to fearful expressions
in youth with disruptive behavior disorders and psychopathic traits.
Development and Psychopathology, 24(3), 1105-1116. doi:10.
1017/30954579412000569.

Yang, J., Bellgowan, P. S., & Martin, A. (2012). Threat, domain-
specificity and the human amygdala. Neuropsychologia, 50(11),
2566-2572. doi:10.1016/j.neuropsychologia.2012.07.001.


http://dx.doi.org/10.1093/scan/nsu028
http://dx.doi.org/10.1016/j.jpsychires.2006.01.006
http://dx.doi.org/10.1016/j.biopsych.2004.10.008
http://dx.doi.org/10.1038/nrn3857
http://dx.doi.org/10.1038/nrn3857
http://dx.doi.org/10.1176/appi.ajp.2012.12020191
http://dx.doi.org/10.1176/appi.ajp.2012.12020191
http://dx.doi.org/10.1093/cercor/bhs276
http://dx.doi.org/10.1111/j.1467-9280.2007.01923.x
http://dx.doi.org/10.1111/j.1467-9280.2007.01923.x
http://dx.doi.org/10.1176/appi.ajp.2012.11081270
http://dx.doi.org/10.1017/s0954579412000569
http://dx.doi.org/10.1017/s0954579412000569
http://dx.doi.org/10.1016/j.neuropsychologia.2012.07.001

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2017

	Looming Threats and Animacy: Reduced Responsiveness in Youth with Disrupted Behavior Disorders
	Stuart F. White
	Laura C. Thornton
	Joseph Leshin
	Roberta Clanton
	Stephen Sinclair
	See next page for additional authors
	Authors


	Looming Threats and Animacy: Reduced Responsiveness in Youth with Disrupted Behavior Disorders
	Abstract
	Methods
	Participants
	Study Measures
	MRI Parameters and Preprocessing
	General Linear Model Analysis
	fMRI Data Analysis

	Results
	Behavioral Results
	fMRI Results
	Regions of Interest
	Whole-Brain Findings
	Regions of Interest
	Whole-Brain Findings
	Potential Confounds


	Discussion
	References


