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ABSTRACT: Cracking in asphaltic pavement layers causes primary failure of the roadway structure, and the fracture resistance and characteris-
tics of asphalt mixtures significantly influence the service life of asphaltic roadways. A better understanding of the fracture process is considered a
necessary step to the proper development of design-analysis procedures for asphaltic mixtures and pavement structures. However, such effort
involves many challenges because of the complex nature of asphaltic materials. In this study, experiments were conducted using uniaxial compres-
sive specimens to characterize the linear viscoelastic properties and semi-circular bending (SCB) specimens to characterize fracture behavior of a
typical dense-graded asphalt paving mixture subjected to various loading rates and at different temperatures. The SCB fracture test was also incor-
porated with a digital image correlation (DIC) system and finite-element model simulations including material viscoelasticity and cohesive-zone
fracture to effectively capture local fracture processes and resulting fracture properties. The test results and model simulations clearly demonstrate
that: (1) the rate- and temperature-dependent fracture characteristics need to be identified at the local fracture process zone, and (2) the rate- and
temperature-dependent fracture properties are necessary in the structural design of asphaltic pavements with which a wide range of strain rates and
service temperatures is usually associated.
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Introduction

Various asphalt-pavement distresses are related to fracture, includ-
ing fatigue cracking (both top-down and bottom-up), thermal
(transverse) cracking, and reflective cracking of the asphalt layer.
Cracking in asphaltic pavement layers causes primary failure of
the roadway structure and leads to long-term durability issues that
are often related to moisture damage. The fracture resistance and
characteristics of asphalt materials significantly influence the serv-
ice life of asphalt pavements and, consequently, the maintenance
and management of the pavement network. In spite of the signifi-
cance, proper characterization of the fracture process and funda-
mental fracture properties of the asphaltic materials have not been
adopted in the current pavement design-analysis procedures,
which are generally phenomenological.

Cracking is probably the most challenging issue to predict and
control. This is because of the complex geometric characteristics
and inelastic mechanical behavior of the asphalt mixtures, which
are temperature sensitive and rate dependent. These characteristics

make any solution to the cracking problem in asphalt mixtures
almost impossible to achieve with the aid of the theory of linear
elastic fracture mechanics (LEFM). LEFM is only able to predict
the stress state close to the crack tips of damaged bodies if the
fracture process zone (FPZ) around the crack tip is very small.
The FPZ in asphaltic materials might be large, as typical quasi-
brittle materials are [1].

Some studies have evaluated the fracture toughness of asphalt
mixtures using the J-integral concept or the stress intensity
approach [2–4]. Others have conducted fracture tests and numeri-
cal analyses by means of a cohesive-zone model to study the frac-
ture behavior of asphalt mixtures [5–8]. The cohesive-zone
modeling approach has recently received increased attention from
the asphaltic materials and pavement mechanics community to
model crack initiation and growth. This is because the cohesive-
zone approach can properly model both brittle and ductile frac-
ture, which is frequently observed in asphaltic roadways because
of the wide range of service temperatures and traffic speeds.
Moreover, it can provide an efficient tool that can be easily imple-
mented in various computational methods, such as finite-element
and discrete-element methods, so that fracture events in extremely
complicated mixture microstructure can also be simulated.

Most of the fracture tests have usually used conventional
extensometers or clip-on gauges that are far from the actual FPZ
to monitor averaged deformations or displacements of specimens
for the characterization of fracture properties of asphalt mixtures.
However, the true fracture properties of asphalt mixtures could be
misled by as much as an order of magnitude because the material
responses captured by the extensometers or clip-on gauges are
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limited to accurately represent material behavior at the actual
FPZ. This discrepancy can become worse if the material is highly
heterogeneous and inelastic [9,10], which is typical in asphaltic
paving materials. In addition, most of the studies have adopted
low-temperature testing conditions in which the type of fracture is
much more brittle than it should be to accurately characterize frac-
ture behavior such as fatigue cracking observed at intermediate
service temperatures.

A better understanding of FPZ at realistic service conditions is
considered a critical step to the development of mechanistic
design-analysis procedures for asphaltic mixtures and pavement
structures. This is because the characteristics of the FPZ represent
the true material behavior related to the fracture damage, which
consequently leads to the selection of proper testing methods and
modeling-analysis techniques that are appropriate to address the
complex local fracture process. However, such careful efforts to
characterize the FPZ in asphalt concrete mixtures have not yet suf-
ficiently been made. To the authors’ best knowledge, only limited
attempts [10–13] have been carried out because of many
experimental–analytical complexities.

Study Objectives and Scope

This study presents experimental efforts and numerical simula-
tions to characterize the FPZ and fracture properties of typical as-
phaltic paving mixtures subjected to various loading rates at
different temperatures. To that end, two laboratory tests—uniaxial
compressive cyclic tests to identify the linear viscoelastic proper-
ties and semi-circular bending (SCB) fracture tests to characterize
the fracture properties—of a dense-graded asphalt concrete mix-
ture are conducted at various loading rates and testing tempera-
tures. The SCB fracture test is also incorporated with a digital
image correlation (DIC) system and the finite-element model sim-
ulations, including material viscoelasticity and cohesive-zone
fracture to effectively capture local fracture processes. The spe-
cific objectives of this paper are as follows:

• To explore a testing program that can characterize fracture
behavior at the FPZ of asphaltic paving materials;

• To identify fracture properties of the asphalt mixture at a
wide range of loading rates (i.e., 1, 5, 10, and 50 mm/min)
and service temperatures (i.e., �10, 0, 21, and 30�C); and

• To seek better insights into the temperature-sensitive and
rate-dependent fracture behavior of the asphaltic paving
mixtures, which is to eventually advance the current
pavement-design practices.

Materials and Mixture

For the fabrication and testing of the dense-graded asphalt mixture,
three aggregates were selected and blended: 16-mm limestone,
6.4-mm limestone, and screenings. All three aggregates are lime-
stone with the same mineralogical origin. The nominal maximum
aggregate size (NMAS) of the final aggregate blend was 12.5 mm.
Table 1 illustrates gradation, bulk specific gravity (Gsb), and consen-
sus properties [i.e., fine aggregate angularity (FAA), coarse aggre-
gate angularity (CAA), flat and elongated (F&E) particles] of the
aggregates used in this study. The asphalt binder used in this study
was Superpave performance graded binder PG 64-28. With the
limestone aggregate blend and the binder, volumetric design of the
mixture was performed; this resulted in a binder content of 6.0 % by
weight of the total mixture to meet the 4.0 % target air voids and
other necessary volumetric requirements.

Experimental Program

Figure 1 briefly illustrates the process of sample fabrication and
laboratory tests performed for this study. Laboratory tests were
conducted to obtain linear viscoelastic properties and to character-
ize the fracture properties of the mixture. As shown, cylindrical
mixture samples were fabricated using a Superpave gyratory com-
pactor (SGC). Two different specimen geometries were extracted
from the SGC samples: (a) cylindrical cores (150 mm in height
and 100 mm in diameter) to be used for determining the linear
viscoelastic properties of the mixture, and (b) semi-circular bend-
ing (SCB) specimens (150 mm in diameter and 25 mm thick, with
a 2.5-mm-wide and 25-mm-deep mechanical notch) to be used for
fracture tests of the mixture.

TABLE 1—Gradation and properties of aggregates used.

Sieve analysis (wash) for gradation

Aggregate sources 19 mm 12.7 mm 9.5 mm #4 #8 #16 #30 #50 #100 #200

16-mm limestone 100 95 89 – – – – – – –

6.4-mm limestone 100 100 100 72 – – – – – –

Screenings 100 100 100 100 36 21 14 10 7 3.5

Combined gradation 100 95 89 72 36 21 14 10 7 3.5

Physical and geometrical properties

Combined properties Gsb¼ 2.577, FAA( %)¼ 45.0, CAA ( %)¼ 89.0, F&E ( %)¼ 0.0

FIG. 1—Specimen fabrication and laboratory tests performed for this study.
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Uniaxial Compressive Cyclic Tests for Linear
Viscoelastic Properties

Uniaxial compressive cyclic tests were performed for the linear
viscoelastic stiffness of the mixture. The loading levels were care-
fully adjusted until the strain levels were within the range of
0.00005–0.000075. Three linear variable differential transformers
(LVDTs) were mounted onto the surface of the specimen at 120�

radial intervals with a 100-mm gauge length. As suggested in the
AASHTO TP62 [14], five temperatures (�10, 4.4, 21.1, 37.8, and
54.4�C) and six loading frequencies (25, 10, 5, 1.0, 0.5, and
0.1 Hz) were used, and the frequency–temperature superposition
concept was applied to obtain the linear viscoelastic master curves
of the storage modulus in the frequency domain for a target refer-
ence temperature. The testing results of the storage modulus as a
function of angular frequency were then fitted with a mathematical
function (i.e., Prony series) based on the generalized Maxwell
model as follows:

E0ðxÞ ¼ E1 þ
Xn

i¼1

Eix2q2
i

x2q2
i þ 1

(1)

where:
E0(x)¼ storage modulus,
x¼ angular frequency,
E1¼ long-time equilibrium modulus,
Ei¼ spring constants in the generalized Maxwell model,
qi¼ relaxation time, and
n¼ number of Maxwell units in the generalized Maxwell

model.
If the storage moduli at a reference temperature To are known,

the storage moduli at any given arbitrary temperature T can be
obtained by using a frequency–temperature shift factor aT as
follows:

aT ¼
xTo

xT
(2)

Using the Prony series parameters (E1, Ei, and qi) obtained by fit-
ting the experimental data with storage modulus, the relaxation
modulus can be expressed in the time domain as follows:

EðtÞ ¼ E1 þ
Xn

i¼1

Eie
� t

qi (3)

where:
E(t)¼ relaxation modulus in time domain and
t¼ loading time.

SCB Tests for Fracture Properties

To characterize the fracture properties of asphalt mixtures, four geo-
metries have typically been pursued by researchers in the asphaltic
materials and pavement mechanics field. These are: (i) single-edge
notched beam, SE(B), specimen [2,15,16]; (ii) disc-shaped compact
tension, DC(T), specimen [17–19]; (iii) semi-circular bending,
SCB, specimen [11,20–23]; and (iv) double-edged notched tension,
DENT, specimen [12]. Among the various options, SCB testing
was selected in this study because it has several benefits compared
to other fracture test methods. Even if it has some limitations [18],
SCB testing is practically attractive in that it is very repeatable,

simple to perform, and that multiple testing specimens can be easily
prepared through a routine process of mixing and Superpave gyra-
tory compacting of asphalt mixtures. Furthermore, the SCB geome-
try is even more attractive considering the fracture characteristics of
field cores, which are usually circular. Based on these practical ben-
efits, the SCB testing configuration has become a popular geometry
for evaluating the fracture behavior of bituminous mixtures.

Before testing, individual SCB specimens were placed inside
the environmental chamber of a mechanical testing machine for
temperature equilibrium targeting the four different testing tem-
peratures (�10, 0, 21, and 30�C). Following the temperature con-
ditioning step, specimens were subjected to a simple three-point
bending configuration with four different monotonic displacement
rates (1, 5, 10, and 50 mm/min) applied to the top center line of
the SCB specimens at each testing temperature. Metallic rollers
separated by a distance of 122 mm (14 mm from the edges of the
specimen) were used to support the specimen. Reaction force at
the loading point and vertical crosshead displacements were moni-
tored by the data-acquisition system installed in the mechanical
testing machine.

As mentioned earlier, the SCB fracture test was incorporated
with the DIC system to effectively capture time-dependent defor-
mations, such as the local fracture process of the mixture during
testing. The DIC recognizes the surface structure of the specimen
in digital video images and allocates coordinates to the image pix-
els. The first image represents the undeformed state, and further
images are recorded during the deformation of the specimen.
Then, the DIC compares the digital images and calculates the dis-
placement and deformation of the specimen. To facilitate the DIC
process more efficiently, the specimen was painted in white and
then was stamped to create numerous black dots on the white
background. The black dots act as material points for the full-field
deformation characteristics such as formation and movement of
the FPZ as cracks grow because of loading. Two pairs of dot
gauges were additionally attached to the surface of the specimen
to more accurately capture the opening displacements at the
mouth (denoted as notch mouth opening displacements, NMOD)
and at the tip (denoted as notch tip opening displacements,
NTOD) of the initial notch. Moreover, vertical displacements at a
material point close to the loading zone were also monitored by
DIC to provide load point displacements (LPD). A clip-on gauge
was also used to capture the NMOD to compare measurements
from DIC. The DIC system used in this study incorporated a high-
speed video camera that can accurately monitor specimen defor-
mation in strains from 0.05 % up to 500 %. Figure 2 shows the
SCB testing setup, black dot image pattern and the additional two-
pair gauge points attached on the specimen surface for DIC analy-
sis, and the clip-on gauge installed at the bottom of the specimen.

Uniaxial Compressive Cyclic Test Results

A total of four replicates were tested and values of storage modu-
lus at each different testing temperature over the range of loading
frequencies were obtained. The test results from replicates were
then averaged to produce 30 individual storage moduli at all levels
of temperature and frequency to produce a stiffness master curve
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constructed at a reference temperature. Figure 3 exemplifies mas-
ter curves of four replicates and their average at a reference tem-
perature of 21�C. The test results among the replicates were
generally repeatable without large discrepancies.

The reference temperature is �10, 0, 21, or 30�C for this study,
because they are the temperatures used to conduct the SCB frac-
ture tests, which are simulated through the finite-element model to
characterize local fracture properties of the mixture as discussed
in later sections. The master curve represents the stiffness of the
mixture in a wide range of loading frequencies (or loading times,
equivalently). Master curves are constructed using the frequency
(or time)–temperature superposition by shifting data at various
temperatures with respect to loading frequency until the curves
merge into a single smooth function. After the shifting is com-
pleted, the master curve at an arbitrary reference temperature was
then fitted with the Prony series (shown in Eq 1) to determine lin-
ear viscoelastic material parameters. Table 2 presents shift factors
and Prony series parameters determined for each different target
temperature.

SCB Fracture Test Results and Discussion

A total of 48 SCB specimens were prepared to complete three rep-
licates per test case of the 16 test cases in total (four loading rates
at four temperatures). Figure 4 exemplifies the SCB test results

from a test case at 5 mm/min and 30�C and a test case at 50 mm/
min. and �10�C by plotting the reaction forces at the point of
load application as the opening displacements increased. As pre-
sented in the figure, the test results among the replicates at the
same testing conditions were generally repeatable without large
discrepancies. The coefficient of variation in the peak force from
each testing case was between 2.6 % and 19.2 %.

In an attempt to illustrate the effects of testing conditions on
the mixture’s fracture behavior, Fig. 5 presents the SCB test
results by plotting the average values between the reaction forces
and opening displacements at different loading rates by the differ-
ent testing temperatures [i.e., 5(a) for �10�C, 5(b) for 0�C, 5(c)
for 21�C, and 5(d) for 30�C]. Clearly, the figure reveals the
temperature-related global mechanical behavior of the asphalt
mixture. At �10�C, although the peak force slightly increases as
the loading rate becomes higher, it appears that the fracture behav-
ior is relatively rate independent, which is typically observed from
a linear elastic fracture state. However, the rate-dependent behav-
ior is obvious and becomes more evident when the testing temper-
ature is higher. Slower loading speeds produce more compliant
responses than faster cases. Loading rates clearly affect both the
peak force and the material softening, which is represented by the
shape of the post-peak tailing. The trends presented in Fig. 5 sug-
gest that the rate- and temperature-dependent nature of the fracture
characteristics needs to be considered when modeling the mechan-
ical performance of typical asphalt mixtures and pavements with
which a wide range of strain rates and service temperatures is usu-
ally associated.

As mentioned earlier, to measure various deformation character-
istics simultaneously, the DIC was incorporated in this study with
two other displacements measuring methods: (i) a clip-on gauge
attached to capture the NMOD, and (ii) crosshead displacements to
provide vertical LPD. This is to evaluate any differences and/or
compatibility between the two strain-measuring approaches: the
conventional gauge method and the DIC technique. Furthermore,
as discussed below in the section Fracture-Energy Characterization,
fracture energy can be estimated by several different measurements
and analysis approaches. Any similarities and/or compatibility
between different fracture-energy values estimated from different
measurements and approaches can be examined.

Figure 6 shows the force–displacement curves of specimen
No. 3 in Fig. 4. It plots the opening displacements measured from

FIG. 2—SCB fracture testing setup incorporated with DIC used in this study.

FIG. 3—Uniaxial compressive cyclic test results at a reference temperature of
21�C.
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TABLE 2—Prony series parameters determined for each different reference temperature.

Reference Temperature �10�C 0�C 21�C 30�C

Prony Series Parameters Ei (MPa) qi (s) Ei (MPa) qi (s) Ei (MPa) qi (s) Ei (MPa) qi (s)

1 7391.7 1.0� 100 8095.7 1.0� 10�1 9095.4 1.0� 10�5 9028.5 1.0� 10�5

2 5931.0 1.0� 101 5312.2 1.0� 100 6778.9 1.0� 10�4 4721.3 1.0� 10�4

3 6561.0 1.0� 102 4754.5 1.0� 101 7001.4 1.0� 10�3 4216.1 1.0� 10�3

4 4526.6 1.0� 103 2243.3 1.0� 102 4250.9 1.0� 10�2 1879.0 1.0� 10�2

5 2679.8 1.0� 104 1089.9 1.0� 103 2286.2 1.0� 10�1 999.9 1.0� 10�1

6 1238.2 1.0� 105 423.5 1.0� 104 962.4 1.0� 100 397.9 1.0� 100

7 566.9 1.0� 106 203.6 1.0� 105 430.7 1.0� 101 205.7 1.0� 101

8 252.6 1.0� 107 89.8 1.0� 106 186.8 1.0� 102 93.2 1.0� 102

9 124.1 1.0� 108 47.3 1.0� 107 92.8 1.0� 103 52.0 1.0� 103

10 61.0 1.0� 109 23.5 1.0� 108 45.3 1.0� 104 26.2 1.0� 104

11 72.6 1.0� 1010 9.1 1.0� 109 53.8 1.0� 105 34.0 1.0� 105

1 236.1 – 323.7 – 215.3 – 229.5 –

Shift factor log aT 5.26 2.44 0 �1.25

FIG. 4—SCB test results (force–NMOD): (a) at 5 mm/min and 30�C, and (b) at 50 mm/min and �10�C.

FIG. 5—SCB test results (force–NMOD) at different loading rates and testing temperature.
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the DIC (i.e., NMOD-DIC and NTOD-DIC), opening displace-
ments captured by the clip-on gauge (i.e., NMOD-COG), and load
point displacements measured by the DIC (i.e., LPD-DIC), and
cross-head (i.e., LPD-CH). As shown, the DIC results agree well
with these measurements. From the result, it can be inferred that
DIC measurements (both NMOD-DIC and LPD-DIC) are quite
compatible with measurements obtained from the clip-on gauge
(NMOD-COG) and the cross-head (LPD-CH) throughout the
SCB fracture test. This seems to be an attractive finding for practi-
cal reasons, because the DIC process is time-consuming, expen-
sive, and requires additional techniques for data analysis
compared to the use of the conventional displacement measuring
systems. In contrast, it is also obvious that DIC is preferred to
investigate the deformation characteristics of time-dependent, het-
erogeneous media, such as asphalt mixtures, because it is versatile
in terms of providing detailed information on both full-field sur-
face displacements and local material behavior. This feature is
particularly important for fracture investigation, because fracture

is local behavior that needs to be characterized with local meas-
urements such as the NTOD.

Figure 7 presents visual observation of SCB specimens after
testing at the four different temperatures. The cracking pattern is
presented in 7(a), and the fracture surfaces of individual speci-
mens are shown in 7(b). It appears that cracks propagated straight
from the crack tip and traveled through aggregates at low tempera-
tures, whereas the crack trajectory was significantly affected by
the mixture microstructure at ambient temperatures (21�C and
30�C). As expected, the fracture process at ambient temperatures
without moisture damage occurred within the black matrix phase,
which resulted in a deflected crack path around coarse aggregates
and the black fracture surface, as demonstrated in the figure.

Fracture-Energy Characterization

Using SCB test results, the average fracture energy was obtained
for each test case. There were several methods [10,18,23–25]
found in the open literature to calculate the fracture energy.
Among them, this study attempted two approaches: one is based
on the concept of the critical energy release rate and the other is
by modeling the SCB fracture tests with cohesive-zone elements.
The first approach is relatively simple to characterize the fracture
energy by merely calculating an area under the load–displacement
curve that is normalized by the area of the fractured surface, i.e.,
the initial ligament length multiplied by the specimen thickness.
However, the fracture energies obtained from the first approach
may mislead true fracture characteristics of the material, because
the force–displacement curves are global measurements that are
dependent on the choice of displacement measurements, testing
specimen geometry and applied boundary conditions. Further-
more, the viscoelastic nature of the asphaltic material creates a fur-
ther complication in identifying fracture properties. Some parts of
the total energy monitored by calculating the area below the

FIG. 6—Force versus displacements measured using different methods.

FIG. 7—Visual observation of SCB specimens after testing.
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force–displacement curves are related to the energy dissipated
because of material viscoelasticity. Fracture characteristics along
the fracture process zone should be examined locally, not by the
global force–displacement test results. Based on this fact, the sec-
ond approach, finite-element simulations of the SCB tests with
cohesive-zone model, were conducted to determine the fracture
properties that are locally associated to initiate and propagate
cracks through the specimens.

Fracture Energy from Force–Displacement Curve

For comparison purposes, the fracture energy was calculated using
the five different sets of load–displacement data: force–NMOD-
DIC, force–NTOD-DIC, force–LPD-DIC, force–NMOD-COG,
and force–LPD-CH. Table 3 summarizes the average fracture
energy and its sample-to-sample variation, which is represented
by the coefficient of variation (COV), of each test case from the
five different displacement measurements.

Most test cases showed low COV values, usually less than
20 %, from three replicates; exceptions were some cases where
relatively high COV values up to 30 % were determined. The
COV values obtained in this study were in a similar range,
between 15 % and 34 %, to those found in a recent study that
investigated the low-temperature fracture characteristics of asphalt
concrete mixtures using the SCB geometry [25].

As exemplified in Fig. 6, and as Table 3 confirms, fracture
energies obtained from DIC data (NMOD-DIC and LPD-DIC) are
very similar to the fracture energies estimated, respectively, by the
clip-on gauge measurements (NMOD-COG) and the cross-head
displacements (LPD-CH), regardless of loading rates and testing
temperatures.

Moreover, as previously observed in Fig. 6, the fracture-
energy values obtained from force–NMOD curves were always
greater than those from the force–NTOD curves. This is because
the tip opening displacements are naturally smaller than the mouth
opening displacements when the specimen is subjected to a bend-
ing mode fracture such as SCB. Because the fracture process is
locally initiated at the notch tip, the fracture energy characterized
using NTOD data is more representative than the value obtained
from the NMOD measurements. The fracture energy estimated
from NMOD data clearly overestimates the true material fracture
toughness, and the deviation in the fracture energy between the
NTOD and NMOD measurements becomes greater as temperature
increases. At �10�C, the fracture energy from force–NTOD
curves was about 30 % less than that from force–NMOD curves,
whereas the level of deviation increased to 37 % at 0�C and up to
50 % at 21�C and 30�C depending on the loading rate. A similar
finding was also observed in other studies [10,23]. This clearly
indicates that, although it has been widely adopted because of its
simple and practical aspects, the use of NMOD measurements in
the fracture characterization of asphaltic materials needs great care
and is even more cautious at elevated temperatures when the
materials present several sources of energy dissipation, such as
material viscoelasticity/plasticity and crack growth.

Another interesting observation from the table is that average
fracture energies calculated from the LPD data are smaller than,
but similar to the fracture-energy values estimated from the
NTOD data, although the LPD measurements have nothing to do
with the local fracture process. This seems to be an attractive ob-
servation for practical purposes, because the LPD measurements
from the SCB test are easy to take by simply monitoring vertical
displacements (for instance the cross-head movements), whereas

TABLE 3—Summary of average fracture energy (J/m2) and COV ( %).

From Clip-On Gage From Cross-Head From DIC

Force–NMOD Force–LPD Force–NTOD Force–NMOD Force–LPD

Temperature
(�C)

Rates
(mm /min)

Mean
(J/m2)

COV
( %)

Mean
(J/m2)

COV
(%)

Mean
(J/m2)

COV
(%)

Mean
(J/m2)

COV
(%)

Mean
(J/m2)

COV
(%)

�10 1 787.1 25.6 453.5 26.4 DIC was not used

5 808.6 2.8 406.8 19.6 564.8 0.5 813.2 0.8 390.7 0.1

10 767.0 15.3 393.2 26.2 DIC was not used

50 770.7 16.7 370.7 7.3 DIC was not used

0 1 1750.2 15.6 1076.7 12.0 DIC was not used

5 1789.4 30.8 1080.5 30.2 1117.2 32.4 1779.2 34.0 N/A

10 1169.4 5.4 690.4 7.3 DIC was not used

50 980.4 8.1 531.4 4.4 DIC was not used

21 1 395.9 17.4 186.2 16.6 240.7 25.4 413.1 24.6 190.5 20.3

5 1082.2 11.1 539.5 9.2 551.8 7.7 1043.1 14.5 525.5 11.3

10 1200.6 8.4 636.4 10.6 555.6 10.1 1112.0 1.5 618.3 5.0

50 2670.5 4.1 1462.3 4.0 1468.4 6.7 2624.1 2.4 1421.5 2.8

30 1 216.6 13.3 111.8 15.5 114.0 15.9 209.6 14.4 113.4 18.4

5 664.5 4.8 335.4 4.0 379.1 10.3 651.1 5.7 357.3 4.0

10 1025.7 19.5 536.4 20.2 574.7 26.4 1021.8 21.6 521.6 13.5

50 1851.3 11.8 967.9 17.0 1081.3 13.8 1798.5 15.8 927.0 14.6
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the NTOD data are relatively hard to obtain because it needs spe-
cial measuring devices such as the video cameras and DIC system
as pursued in this study.

Fracture Energy from Finite-Element Modeling
with Cohesive Zone

The FPZ is a nonlinear zone characterized by progressive soften-
ing, for which the stress decreases at increasing deformation. The
nonlinear softening zone is surrounded by a non-softening nonlin-
ear zone, which represents material inelasticity. Bazant and Planas
[1] skillfully classified the fracture process behavior in certain
materials into three types: brittle, ductile, and quasi-brittle. Each
type presents different relative sizes of those two nonlinear zones
(i.e., softening and non-softening nonlinear zones). Figure 8
presents the third type of behavior, so-called quasi-brittle fracture.
It includes situations in which a major part of the nonlinear zone
undergoes progressive damage with material softening caused by
microcracking, void formation, interface breakages, frictional
slips, and others. The softening zone is then surrounded by the
inelastic material yielding zone, which is much smaller than the
softening zone. This behavior includes a relatively large FPZ, as
shown in the figure. Asphaltic paving mixtures are usually classi-
fied as quasi-brittle materials [1,26,27].

The FPZ can be modeled in many different ways, and one of
the well-known approaches is to use a cohesive zone. At the crack
tip, the cohesive-zone constitutive behavior reflects the change in
the cohesive-zone material properties because of microscopic
damage accumulation ahead of the crack tip. This behavior can be
expressed by the general traction–displacement cohesive-zone
relationship as follows:

Tiðxm; tÞ ¼ Ti Diðxm; sÞf g (4)

where:
Ti¼ cohesive-zone traction (Tn for normal and Tt for tangential

traction),
Di¼ cohesive-zone displacement (Dn for normal and Dt for tan-

gential displacement),
xm¼ spatial coordinates, and
t¼ time of interest.
Cohesive-zone models regard fracture as a gradual phenomenon

in which separation (D) takes place across an extended crack tip (or
cohesive zone) and where fracture is resisted by cohesive tractions
(T). The cohesive zone effectively describes the material resistance
when material elements are being displaced. Equations relating nor-

mal and tangential displacement jumps across the cohesive surfaces
with the proper tractions define a cohesive-zone model. Among
numerous cohesive-zone models developed for different specific
purposes, this study used an intrinsic bilinear cohesive-zone model
[6,28,29]. As shown in Fig. 8, the model assumes that there is a
recoverable linear elastic behavior until the traction (T) reaches a
peak value, or cohesive strength (Tmax) at a corresponding separa-
tion in the traction–separation curve. At that point, a non-
dimensional displacement (k) can be identified and used to adjust
the initial slope in the recoverable linear elastic part of the cohesive
law. This capability of the bilinear model to adjust the initial slope
is significant because it can alleviate the artificial compliance inher-
ent to intrinsic cohesive-zone models. The k value has been deter-
mined through a convergence study designed to find a sufficiently
small value to guarantee a level of initial stiffness that renders insig-
nificant artificial compliance of the cohesive-zone model. It was
observed that a numerical convergence can be met when the effec-
tive displacement is smaller than 0.0005 [30], which has been used
for simulations in this study. Upon damage initiation, T varies from
Tmax to 0, when a critical displacement (dc) is reached and the faces
of the cohesive element are fully and irreversibly separated. The
cohesive-zone fracture energy (Cc), which is the locally estimated
fracture toughness, can then be calculated by computing the area
below the bilinear traction–separation curve with peak traction
(Tmax)and critical displacement (dc) as follows:

Cc ¼
1

2
dcTmax (5)

Figure 9 presents a finite-element mesh, which was finally chosen
after conducting a mesh convergence study [30]. The specimen
was discretized using two-dimensional (plane stress), three-node
triangular linear elements for the bulk specimen and zero thick-
ness, four-node cohesive-zone elements were inserted along the
center of the mesh to permit mode I crack growth in the simula-
tion of SCB testing. The Prony series parameters (shown in Table
2) determined from the uniaxial compressive cyclic tests were
used and a constant Poisson’s ratio of 0.35 was assumed for the
viscoelastic elements, and the bilinear cohesive-zone model illus-
trated in Fig. 8 was used to simulate fracture in the middle of the
SCB specimen as the opening displacements increased. It should
be noted that the simulation conducted herein involves several
limitations at this stage by assuming the mixture as homogeneous
and isotropic with only mode I crack growth, which may not rep-
resent the true fracture process of specimens particularly tested
at the ambient temperatures where mixture heterogeneity

FIG. 8—Schematic illustration of FPZ of typical quasi-brittle materials.
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(i.e., microstructural characteristics) and mixed-mode fracture is
not trivial as demonstrated in Fig. 7.

The cohesive-zone fracture properties (two independent values
of the three: Tmax, dc, and Cc) in the bilinear model were determined
for each case through the calibration process until a good match
between test results and numerical simulations was observed. Fig-
ure 10 presents a strong agreement between the test results (average
of the three SCB specimens) and finite-element simulations. Result-
ing fracture properties (Tmax and Cc) at each different loading rate
and testing temperature are presented in Table 4.

Discussion of Test-Analysis Results

In an attempt to further investigate the fracture characteristics of
asphalt mixtures when they are subjected to different loading
rates, different temperatures, and analysis methods, Fig. 11 was
produced using fracture-energy values from the force–NMOD-
COG curves, force–NTOD-DIC curves, and cohesive-zone mod-
eling at different loading rates and temperatures. The fracture
energy obtained at �10�C does not seem to be affected by the
loading rate, whereas the fracture energies at 0�C to 30�C clearly
change as the loading rates vary. The negligible rate-dependency
at �10�C is considered reasonable because the mixture at low-
temperature conditions, such as �10�C, is in the linear elastic
fracture domain, where the rate-dependent fracture characteristics
of viscoelastic materials usually disappear. As temperature
increases to 0�C, the mixture becomes viscoelastic so that it can
dissipate more energy to fracture. Therefore, the magnitude of
fracture energy at 0�C is greater than the fracture energy at �10�C
over all the loading rates applied in this study. Regarding the trend
of fracture energy to the loading rate, it decreases as the loading
speed is faster, which agrees with observations in other studies
[18,25]. At ambient temperatures (21�C and 30�C), the rate-
dependent fracture behavior is obvious, and the fracture energy
increases as the loading rates become higher. The trend is in ac-
cordance with what has been reported in several studies that have
attempted to characterize the rate-related fracture behavior of ad-
hesive and polymeric materials [31–33]. In those studies, fracture
energy tends to be constant when cracks propagate at lower
speeds, whereas it increases with crack velocity for an intermedi-
ate level of crack velocity.

FIG. 9—A finite-element mesh constructed after convergence study to model
the SCB testing.

FIG. 10—SCB test results versus cohesive-zone model simulation results.
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Regarding the fracture characteristics by different approaches,
Fig. 11 shows that the fracture energies obtained from the area
under the force–NMOD (or force–NTOD) curve are always larger
than the fracture energy identified from the cohesive-zone model-
ing, and the deviation between the two approaches usually
decreases as the loading rates are higher. Furthermore, it is clear
that fracture-energy values obtained from the force–NTOD curve
are closer to the values characterized at the local FPZ through the
cohesive-zone modeling than those obtained from the force–-
NMOD curve. This observation was expected because, as noted
previously, the energy obtained from NMOD measurements over-
estimates the true fracture toughness.

Concluding Remarks

This study presented experimental-numerical efforts to character-
ize the FPZ and fracture property of typical asphaltic paving mix-
tures. To do that, two laboratory tests—uniaxial compressive
cyclic tests to identify the linear viscoelastic properties and semi-
circular bending (SCB) fracture tests to characterize the fracture
properties—of a dense-graded asphalt concrete mixture were con-
ducted at various loading rates and testing temperatures. The SCB
fracture test was also incorporated with the DIC system and the
finite-element model simulations including material viscoelasticity
and cohesive-zone fracture to effectively capture local fracture
processes. Based on the results and findings, the following conclu-
sions can be made.

• The SCB fracture test presented reasonable and repeatable
results. The coefficient of variation between replicates was
acceptable, and the test was successfully suited to various
strain measuring systems. Fracture behavior at the process
zone presented sensitive responses to the loading rates and
testing temperatures.

• The DIC results (NMOD and LPD) were quite compatible
with conventional measurements obtained from the clip-on
gauge and the cross-head. The DIC could also provide full-
field surface displacements and local fracture process. This
feature was not quite intensively used for this study at this
time, but can be used to more accurately characterize the
time-varying local FPZ of the mixture as some recent stud-
ies [34,35] attempted for different materials.

• The fracture energies obtained from force–NMOD (or
force–NTOD) curves were always greater than those from
the cohesive-zone modeling. The deviation in the fracture
energy between the two approaches was greater as the tem-
perature increased and loading rates were lower. This indi-
cates that fracture process is a local phenomenon that needs
to be identified at the tip of FPZ. The fracture characteristics
obtained from NMOD measurements overestimate the true
fracture toughness, as it includes other sources of energy
dissipation, such as material viscoelasticity, which is not
related to the fracture process.

• At low temperatures, such as �10�C, the fracture process
was not rate-dependent, whereas the fracture energy at
0�C to 30�C clearly presented rate-related behavior. Frac-
ture energy dropped as the loading speed became faster at
0�C; however, the trend was the opposite at ambient tem-
peratures. The findings from this study remains further
investigation to explain relevant mechanisms which seem
to be related to the material’s response at intermediate tem-
peratures (and at slower loading rates) where plastic and/or
viscoplastic behavior may be significant. The non-
viscoelastic material behavior has not been considered in
this study.

• The test and analysis results in this paper suggest that the
rate- and temperature-dependent fracture properties are nec-
essary in the structural design of asphaltic pavements with
which a wide range of strain rates and service temperatures
is usually associated.

TABLE 4—Cohesive-zone fracture parameters determined.

Cohesive-Zone Fracture Parameters

Temperature
(�C)

Loading Rate
(mm/min)

Tmax

(kPa)
Cc

(J/m2)

�10 1 3.2� 103 350

5 3.4� 103 350

10 3.6� 103 350

50 4.0� 103 350

0 1 2.7� 103 750

5 2.7� 103 700

10 3.2� 103 450

50 3.6� 103 400

21 1 9.0� 101 250

5 2.5� 102 500

10 3.0� 102 700

50 7.0� 102 1200

30 1 8.0� 101 220

5 2.5� 102 400

10 3.2� 102 550

50 6.5� 102 900

FIG. 11—Comparison of fracture energies.
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