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Wetland features and landscape context predict the risk
of wetland habitat loss
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2

1Department of Biology, One Bear Place #97388, Baylor University, Waco, Texas 76798 USA
2USDA Forest Service, Rocky Mountain Research Station, 2150 Centre Avenue, Building A, Fort Collins, Colorado 80526 USA

Abstract. Wetlands generally provide significant ecosystem services and function as
important harbors of biodiversity. To ensure that these habitats are conserved, an efficient
means of identifying wetlands at risk of conversion is needed, especially in the southern United
States where the rate of wetland loss has been highest in recent decades. We used multivariate
adaptive regression splines to develop a model to predict the risk of wetland habitat loss as a
function of wetland features and landscape context. Fates of wetland habitats from 1992 to
1997 were obtained from the National Resources Inventory for the U.S. Forest Service’s
Southern Region, and land-cover data were obtained from the National Land Cover Data. We
randomly selected 70% of our 40 617 observations to build the model (n ¼ 28 432), and
randomly divided the remaining 30% of the data into five Test data sets (n¼ 2437 each). The
wetland and landscape variables that were important in the model, and their relative
contributions to the model’s predictive ability (100 ¼ largest, 0 ¼ smallest), were land-cover/
land-use of the surrounding landscape (100.0), size and proximity of development patches
within 570 m (39.5), land ownership (39.1), road density within 570 m (37.5), percent woody
and herbaceous wetland cover within 570 m (27.8), size and proximity of development patches
within 5130 m (25.7), percent grasslands/herbaceous plants and pasture/hay cover within 5130
m (21.7), wetland type (21.2), and percent woody and herbaceous wetland cover within 1710 m
(16.6). For the five Test data sets, Kappa statistics (0.40, 0.50, 0.52, 0.55, 0.56; P , 0.0001),
area-under-the-receiver-operating-curve (AUC) statistics (0.78, 0.82, 0.83, 0.83, 0.84; P ,
0.0001), and percent correct prediction of wetland habitat loss (69.1, 80.4, 81.7, 82.3, 83.1)
indicated the model generally had substantial predictive ability across the South. Policy
analysts and land-use planners can use the model and associated maps to prioritize at-risk
wetlands for protection, evaluate wetland habitat connectivity, predict future conversion of
wetland habitat based on projected land-use trends, and assess the effectiveness of wetland
conservation programs.

Key words: estuarine and palustrine wetlands; land conservation; landscape context; multivariate
adaptive regression splines; National Resources Inventory; policy and planning; risk of wetland habitat
conversion; southern United States; spatially explicit predictive model; wetland protection.

INTRODUCTION

Wetlands are crucial habitats for many organisms, yet

they continue to be converted to other human land uses.

To ensure efficiency of wetland conservation efforts,

spatially explicit models that predict the risk of wetland

habitat loss are needed to prioritize where limited

conservation resources should be applied. We developed

a spatially explicit model that predicts the risk of

wetland habitat loss throughout the southern United

States. We used a modeling approach that considered

local and global statistical relations, as well as charac-

teristics of wetland sites and their landscape context.

Tests of the model with separate data sets confirmed that

it had strong region-wide predictive ability. The model

can be used to inform management, planning, and

policy decisions that can reduce wetland habitat loss in

the South, and it demonstrates promise for expanding

this modeling effort to other regions.

Wetlands often provide valuable ecosystem services in

the form of flood control, aquifer recharge, water-

quality improvement, and carbon sequestration (Scodari

1997, Mitsch and Gosselink 2007). Furthermore,

wetlands contribute prominently to a region’s biodiver-

sity because their vegetation and other conditions

typically support a diverse biota, many of which are

wetland obligates (Zedler and Kercher 2005, Daniels

and Cumming 2008). The benefits attributed to wetland

habitats are now more important in the United States

than they have ever been before because, of the 89.4

million ha of wetland that were present in the

conterminous United States during Colonial America,

less than 50% remain (Dahl 1990, 2006). Historically,

agricultural development was the most significant

economic force leading to the conversion of wetland

habitats, with up to 87% of wetland losses being
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attributed to agricultural activities (Frayer et al. 1983).

By the early 1990s, agriculture’s role as an agent of

wetland loss was significantly reduced; agriculture

accounted for 20% of wetland conversions while urban

and suburban development was responsible for 57% of

wetland losses (Brady and Flather 1994).

Much of the reduction in agricultural conversion of

wetlands has been attributed to the Wetland

Conservation Provisions of the Food Security Act of

1985, commonly called ‘‘Swampbuster,’’ which withheld

USDA farm program benefits from producers who

converted wetlands to grow commodity crops (Williams

2005). However, Swampbuster is not the only federal

program affecting wetland conservation. As noted by

Mitsch and Gosselink (2007:470), there is no single

comprehensive national wetland law in the United States.

Rather, there is a collection of statutes (e.g., Clean Water

Act, Federal Aid to Wildlife Restoration Act, North

American Wetlands Conservation Act), Executive Orders

(e.g., Protection of Wetlands, Conservation of Aquatic

Systems for Recreational Fisheries), and administrative

policies (e.g., no net loss) that guide wetland conservation

policy, making for a complicated system of protection

and jurisdictional authority.

Nevertheless, wetland conversion continues to occur

as a consequence of permitting systems, exemptions,

mitigation, and enforcement problems (Hansen 2006).

Between 1992 and 1997, just over 204 000 ha of

palustrine and estuarine wetlands were lost in the

United States; 75% of these losses were attributed to

either development (49%) or agriculture (26%; U.S.

Department of Agriculture 2000). The greatest loss of

wetlands during this period occurred in the South (59%
of the national losses), and 78% of the losses in this

region were due to development (58%) and agriculture

(20%; U.S. Department of Agriculture 2000).

If land-use policy and planning are to be efficient in

conserving wetland habitats, it is imperative to identify,

in a geographically explicit fashion, those areas where

the risks of future wetland habitat conversion are

highest. Recent efforts to develop predictive models of

wetland conversion have considered physical and

socioeconomic variables (Douglas and Johnson 1994)

and suites of environmental variables that reflect

wetland type, soil and topographic conditions, land-

use and land-cover characteristics, and the spatial

proximity of roads and cities (Koneff and Royle 2004,

Daniels and Cumming 2008). Variation in wetland loss

rates at the spatial extent of states in the USA was

associated strongly with three variables: land drained

(drainage investment), wetland rural acreage, and

farmland realty value (Douglas and Johnson 1994).

Elevation and a wetness index (derived from slope and

location in a watershed) were important predictors of

wetland occurrence in Atlantic Coast states (Koneff and

Royle 2004). In a large watershed in Costa Rica, slope,

elevation, proximity to roads and human settlement,

protection status, and geomorphic configuration were

important predictors of wetland loss (Daniels and

Cumming 2008).
Here we contribute to this growing body of knowl-

edge about predictors of wetland loss by considering the
risk of wetland habitat loss in relation to characteristics

of wetlands, of areas immediately adjacent to wetlands,
and of landscapes surrounding wetlands. By ‘‘risk’’ we

mean the tendency for wetland habitat loss given that a
particular inventory point is classified as a wetland. We
make this distinction to emphasize that our model does

not predict the area of wetland habitat loss (e.g.,
hectares converted), but rather the likelihood that a

particular wetland inventory point will be converted.
Development of effective policy will require knowledge

about factors associated with wetland habitat conver-
sion in high-risk areas, and a predictive model of the risk

of wetland habitat loss is especially necessary for
decision making. By focusing on risk we also avoided

noted problems associated with wetland area estimation
(Government Accounting Office 1998).

Our specific objectives were to (1) develop a predictive
model for the risk of wetland habitat loss for the

southern United States, where the rate of wetland loss
has been highest in recent decades; (2) test the model’s

predictive performance using separate data sets; (3)
produce a predictive map of the risk of wetland habitat

loss for the southern United States; (4) construct
companion maps of prediction errors to show spatial

variation in prediction accuracy; (5) explain how
relations embodied in the model can be used to improve
understanding about possible drivers of wetland con-

version; and (6) indicate how the model and maps can
be used to inform policy and land-use planning for

conservation of wetland habitats.

METHODS

Study area

Wetland trend analyses based on the National

Resources Inventory (NRI; Nusser and Goebel 1997,
Nusser et al. 1998) revealed a relatively rapid decline in

nonfederal wetlands across a 2.24 million km2 region
corresponding to the southern United States during the
1990s. This region also supports nearly 48% of the 45

million ha of nonfederal wetland habitats occurring
across the conterminous United States (U.S.

Department of Agriculture 2000). For these reasons we
focused our analysis of wetland habitat conversion

across the South.

Data collection

We used data from the NRI to identify individual

inventory points (Fig. 1) that were classified as wetland
habitat in 1992 and that, by 1997, either remained

wetland habitat or were converted to a non-wetland
status. We used this period of years because land-cover

data available for 1992 made it possible for us to study
landscape influences on wetland habitat loss by 1997.

The NRI was used to determine the geographic
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locations of wetland habitat for the purpose of

determining elevation of each NRI point and the

landscape context surrounding each NRI point.

Elevation for NRI inventory points was obtained from

the U.S. Geological Survey National Elevation Dataset

(Gesch et al. 2002), land-use and land-cover data were

extracted from the National Land Cover Data (NLCD,

Vogelmann et al. 2001), and road data were obtained

from the U.S. Bureau of Transportation Statistics as

summarized by Watts et al. (2007). Details about

resolution, datum, and accuracy for these data sources

are provided in Appendix A.

We used the 1992 and 1997 point-based NRI

databases to gather data for wetland habitat. Wetland

habitat loss (WLOSS), our binary response variable,

was an indicator of whether wetland habitat at a NRI

sampling point persisted between 1992 and 1997. If

wetland habitat did not persist during this period, the

response for that point was coded 1 (wetland habitat

lost); if wetland habitat did persist, the response for that

point was coded 0 (wetland habitat retained).

Wetlands are thought to be influenced by both

proximate and landscape-level processes (Daniels and

Cumming 2008). We therefore defined two sets of

candidate predictors (local and landscape, Table 1) of

wetland habitat loss to capture the multi-scale nature of

the conversion process. Local variables (inventory-point

variables) were derived directly from the NRI, or from

the geographic location of the inventory point, and

included variables like wetland type (we expected

forested wetlands would be more resistant to conversion

than herbaceous wetlands), the broad land-use activities

at the point (we expected a wetland habitat would be

more prone to conversion if it occurred at a site under

intensive land use), and elevation (we expected higher-

elevation wetland habitats would be less prone to

conversion).

Landscape variables were derived primarily from 30-

m land-cover data for the entire United States from the

U.S. Geological Survey’s NLCD (circa 1992). Although

landscape context is thought to influence the likelihood

that a particular wetland will be converted, the spatial

extent over which a landscape may influence wetland

habitat persistence is unknown. We therefore measured

landscape variables at three spatial extents that were

based on the size of the NRI’s primary sample unit

(PSU) under the Public Land Survey (one-quarter

section [;64.7 ha]; Nusser and Goebel 1997:187).

Three circular buffers were centered on each NRI point

that was classified as a wetland in 1992. The fine-extent

buffer (570 m radius) encompassed the PSU; the meso-

(intermediate-) extent buffer (1710 m radius) encom-

passed the PSU and the eight adjacent PSU cells that

defined its first-order neighborhood; and the macro-

extent buffer (5130 m radius) enclosed the PSU and the

80 adjacent PSU cells that defined its fourth-order

neighborhood. To measure landscape variables (Table

1) within each of these nested spatial extents, we used

ArcGIS 9.2 software (ESRI 2006) to extract NLCD data

for each buffer; custom computer code to calculate

FIG. 1. The distribution of National Resources Inventory (NRI) points (gray dots) that were wetland in 1992 across the
Southern Region. Dark gray polygons are federal lands, which were not sampled by the NRI.
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GI_20, GI_80, and RD_DEN; and FRAGSTATS 3.3

(Build 3; McGarigal et al. 2002) to compute the

remaining variables. We chose landscape variables that

we hypothesized would either increase conversion

pressure (e.g., the amount, edge density, and proximity

of land uses responsible for wetland conversion [agri-

culture, developed land, and roads]) or resist conversion

(e.g., the amount of the landscape remaining in natural

vegetation [forest, shrubland, grassland, and wetland]).

Statistical analyses

Overview of model construction and evaluation.—We

randomly selected observations to create separate data

sets for building and testing a predictive model. We used

multivariate adaptive regression splines (MARS;

Friedman 1991) to relate our binary response variable

(WLOSS) to features of wetland sites and the surround-

ing landscape. Among several candidate models with

comparable mean square error, we identified as our best

model the candidate with the fewest number of

predictors and the highest prediction accuracy. The

potential for effects of spatial autocorrelation on

prediction accuracy was addressed using residual inter-

polation (Koneff and Royle 2004, Miller 2005). Percent

correct classification, Kappa statistics, and area-under-

the-receiver-operating-curve (AUC) statistics were used

to evaluate the predictive performance of the best model.

We assessed the relative predictive ability of each

predictor, as well as the degree of multicollinearity

among predictors. Spatial patterns in the model’s

predictions and prediction errors were examined

through the use of maps. Additional details about

MARS and the methods we used to develop the model

are in Appendix B.

Allocation of Train and Test data.—Using k-fold data

partitioning, we used a heuristic to randomly select 70%

TABLE 1. Local (inventory-point) and landscape variables recorded or measured for 1992 NRI wetland habitat points in the
southern United States.

Abbreviation Description

Inventory-point variables

BAIL_DIV Bailey ecoregion division (Bailey 1995) for location of the NRI point (1 ¼ hot continental [division code ¼
220], 2 ¼ hot continental regime mountains [M220], 3 ¼ subtropical [230], 4 ¼ prairie [250], 5 ¼ tropical/
subtropical steppe [310], 6 ¼ savanna [410]).

BROAD_92 Land-cover and land-use category at the NRI point in 1992 (1 ¼ cultivated and non-cultivated cropland, 2 ¼
pastureland, 3 ¼ rangeland, 4 ¼ forestland, 5 ¼ other rural land, 6 ¼ urban, built-up, and rural
transportation land, 7 ¼ census water [water bodies . 16.2 ha and perennial streams . 0.2 km wide] and
small water areas [water bodies , 16.2 ha and perennial streams , 0.2 km wide]).

COW_92 Cowardin et al. (1979) wetland type for NRI point in 1992 (1 ¼ estuarine, emergent [including open or
shallow wetlands with nonpersistent emergents]; 2 ¼ estuarine, scrub-shrub, and forested; 3 ¼ palustrine,
emergent [including open or shallow wetlands with nonpersistent emergents]; 4 ¼ palustrine, scrub-shrub,
and forested).

EI92 Soil erodibility index (unitless) for the NRI point in 1992 measured as the ratio of potential soil erodibility
(based on rainfall and runoff, wind speed, surface soil moisture, susceptibility of the soil to water or wind
erosion, and the combined effect of slope length and steepness), and the soil loss tolerance (the maximum
annual rate of soil erosion that could occur without causing a decline in long-term productivity).

L_CAP_92 Land capability class at the NRI point in 1992 (0 ¼ not applicable, 1 ¼ low restrictions for agriculture, 2 ¼
moderate restrictions for agriculture, 3 ¼ high restrictions for agriculture).

OWN_92 Land ownership class for the NRI point in 1992 (1 ¼ private, 2 ¼ municipal, 3 ¼ state, county/parish, or
tribal/trust, 4 ¼ large water bodies with undetermined ownership).

ELEV Elevation (m) at the NRI point.

Landscape variables�
9020D Density (m/ha) of edge between wetlands (woody and herbaceous) and developed land (residential,

commercial, industrial, mined, transportation).
9080D Density (m/ha) of edge between wetland and agricultural land (orchards, row crops, small grains, fallow, plus

grass areas in parks, golf courses, and cemeteries).
AW_20 Area-weighted mean patch size (m2) for developed land.
AW_80 Area-weighted mean patch size (m2) for agricultural land.
GI_20 Gravity index (Kline et al. 2001:Eq. 11) for developed land. All patches of developed land within a buffer

were used to compute the gravity index (unitless) relative to the NRI wetland point. The center of each
patch was used to determine the distance between each patch and the NRI wetland point.

GI_80 Gravity index (Kline et al. 2001:Eq. 11) for agricultural land. All patches of agricultural land within a buffer
were used to compute the gravity index (unitless) relative to the NRI wetland point. The center of each
patch was used to determine the distance between each patch and the NRI wetland point.

PR1090 Proportion of land area covered by open water, and woody and herbaceous wetlands.
PR4051 Proportion of land area covered by forest and shrubland.
PR7181 Proportion of land area covered by grasslands/herbaceous plants and pasture/hay.
PR20 Proportion of land area covered by developed land.
PR80 Proportion of land area covered by agricultural land.
PR90 Proportion of land area covered by woody and herbaceous wetlands.
RD_DEN Road density measured as the length of roads in km per square km of area.

Note: Additional details about these variables are provided in Appendix A.
� Each of these variables was measured within the fine (F), meso (M), and macro (L) extents.
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of our 40 617 observations to build the model (Train

data set; n ¼ 28 432) and 30% of the observations (n ¼
12 185) to test the model (Fielding and Bell 1997:39–40).

To assess variability in the predictive model’s perfor-

mance, we randomly divided the Test data into five

separate sets (Test 1, Test 2, . . . , Test 5; n¼ 2437 each).

Model development.—We used software for multivar-

iate adaptive regression splines (MARS2.0, Salford

Systems 2001) to develop our model. For predictive

modeling and predictive mapping, MARS can provide

important advantages (Muñoz and Felicı́simo 2004)

over standard logistic regression, classification and

regression trees, and other similar methods. MARS is

a nonparametric multivariate method that simulta-

neously permits robust assessment of linear and

nonlinear influences, simple relations and complex

interaction effects, and both local and global statistical

relations. MARS derives functions (basis functions) of

the original variables that maximize fit and, during a

final stage of analysis, retains them in a manner that

minimizes the generalized cross-validated mean square

error (MSE) for the model. The minimum-MSE model

is identified by MARS as its optimal model.

We allowed MARS to fit up to 75 basis functions, and

to fit both main (linear) effects and two-way interaction

effects. Default settings were used for all other MARS

options, except for the assessment of effective degrees of

freedom (see Appendix B). Because unequal prevalence

of the values of a binary response variable can adversely

affect a model’s predictive accuracy and stability, we

weighted observations to ensure equal prevalence (0.5)

of each group (Maggini et al. 2006, Elith and Leathwick

2007, Parviainen et al. 2008).

MARS often provides several candidate models with

MSEs that are comparable to that of the optimal model,

and the modeler has the option of choosing one of these

models for prediction purposes. In our analysis, the

model that MARS identified as optimal had 19 basis

functions, 13 variables, and MSE ¼ 0.161. Because

simpler models (those with fewer predictors) tend to be

more generalizable (less overfitted), we examined similar

candidate models to identify a model that provided

prediction performance that approximated that of the

MARS optimal model but that had fewer basis

functions and variables. In this analysis, our a priori

model-selection criteria were parsimony and prediction

accuracy. We identified our best prediction model by

assessing how well the optimal model and similar

candidate models (having 5–18 basis functions, 5–13

variables, and MSEs ¼ 0.161–0.171) predicted wetland

loss for the five Test data sets. For prediction purposes,

we identified the optimal binary classification threshold

(T ) based primarily on the criterion that prediction

accuracy for the wetland-loss group should be at least

approximately 80%; given that condition, we also

wanted a threshold that maximized prediction accuracy

for the wetland-retained group and overall (both

response groups combined).

We addressed potential effects of spatial autocorrela-

tion on prediction accuracy by using residual interpo-

lation (Koneff and Royle 2004, Miller 2005). This

approach can improve prediction accuracy by account-

ing for spatial patterns in responses that are not

captured by the explanatory variables in the model. To

implement residual interpolation, we estimated a semi-

variance function for spatial autocorrelation for our best

model’s residuals based on the Train data. Then, for

each location in a Test data set, we computed an

adjusted prediction as the sum of the model’s prediction

plus the kriged residual (based on the semivariance

function). The adjusted prediction reflected the effects of

the explanatory variables in our best model, plus any

spatial influences represented by the semivariance

function.

We used robust estimates of semivariance (SAS

Institute 1999, Proc Variogram; Curriero et al. 2002)

to fit the semivariance function. This approach

assumes stationarity, meaning in the present analysis

that there were no substantive broad-scale trends in

the residual surface. We confirmed that this assump-

tion was satisfied by examining scatter plots and

regressions (SAS Institute 1999, Proc Reg) involving

first-, second-, and third-degree polynomial terms for

the geographic coordinates of our observations; such

terms are often used to adjust for broad-scale spatial

trends and to establish stationarity (Legendre 1993).

We used ordinary local kriging (SAS Institute, 1999,

Proc Krige2d; Schabenberger and Gotway 2005) and

the semivariance function to predict residuals for all

Test data sets.

Evaluation of predictive performance.—We used SAS

software (SAS Institute 1999, Proc Freq) to compute the

simple Kappa statistic to determine whether the best

model predicted the Test observations better than what

would be expected by chance. We used the weighting

approach described above (but tailored to the sample sizes

of WLOSS categories for each Test data set) to adjust the

frequencies of observations before calculating Kappa.

This step reduced the chance for adverse effects of

disparate sample sizes on Kappa (Fielding and Bell

1997). All predictions of WLOSS were based on the

optimal binary threshold (T ) for our best model. Values

of predicted wetland habitat loss (PRWLOSS) . T were

classified as predicted wetland-loss observations, and

PRWLOSS values , T were classified as predicted

wetland-retained observations. To complement Kappa,

we computed the AUC statistic, a threshold-independent

measure of model predictive ability (Fielding and Bell

1997). We used MedCalc 9.4.2.0 software (MedCalc

Software, Mariakerke, Belgium) and SAS Proc Freq (SAS

Institute 1999) to compute and compare AUC statistics.

Predictive ability of variables.—We calculated each

explanatory variable’s relative contribution to the

model’s predictive ability using importance values

estimated by MARS2.0. An importance value indicated

the degree to which the fit of the model (based on MSE)

KEVIN J. GUTZWILLER AND CURTIS H. FLATHER972 Ecological Applications
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would be degraded if all basis functions involving a

variable were dropped from the model (Salford Systems

2001). Importance values ranged from 0% to 100%;

higher values indicated greater predictive ability.

Assessment of multicollinearity.—To assess the degree

to which one may interpret the independent influence of

each variable on the risk of wetland habitat loss, we

computed variance inflation factors (VIFs) for the basis

functions in the best model using the vif () function from

the R statistical environment (R Development Core

Team 2009). The calculations were based on the Test

data sets rather than the Train data because using the

data from which the basis functions were originally

derived can result in exaggerated estimates of associa-

tions among variables (J. H. Friedman, personal

communication).

Maps of predictions and prediction errors.—We

developed a map of the predicted risk of wetland habitat

loss (PRWLOSS) for the southern United States. For

binary response variables, predicted values from MARS

are not constrained to vary from 0 to 1 (Salford Systems

2001). For the map of PRWLOSS, we wanted to use

values that would be more common for risk data and

hence easier to understand. We therefore plotted a

normalized index of PRWLOSS that ranged from 0 to 1,

derived from the following formula:

PRWLOSSnorm ¼
ðPRWLOSS� PRWLOSSminÞ
ðPRWLOSSmax � PRWLOSSminÞ

:

To map prediction errors, we estimated the absolute

error (AE) for each observation (see Kanevski and

Maignan 2004:50) in our Test data sets using the

following rules, where T is the binary threshold selected

to optimize classification accuracy:

1) If PRWLOSS . T and WLOSS ¼ 1, then AE ¼ 0;

2) If PRWLOSS , T and WLOSS ¼ 0, then AE ¼ 0;

3) Otherwise, AE ¼ j PRWLOSS – T j.

The optimal binary threshold was applied to the range

of the predicted values, not to the range of the observed

values. We assessed model error relative to T rather than

WLOSS because we wanted to quantify the distance

between PRWLOSS for misclassified observations and

the binary decision point defined by T.

To geographically visualize the predicted risk of

wetland habitat loss and absolute error of model

prediction, we used inverse distance weighting interpo-

lation (Isaaks and Srivastava 1989:257) to generate risk

and error maps. Because wetland occurrence across the

landscape was rare, we used a relatively coarse search

neighborhood, r, of 50 km; maps were generally

insensitive to our choice of r over the range of 10–150

km. All of the observations (n¼ 40 617) in our data set

were used to develop the map for the risk of wetland

habitat loss; the maps of prediction errors were based on

the set of pooled observations from our five Test data

sets (n ¼ 12 185). Federal areas, which are not sampled

by the NRI, were masked out for these maps.

Because absolute error does not indicate the direction

of the error, we classified incorrectly predicted observa-

tions (see rule 3 above) as either errors of omission

(failure to predict actual wetland habitat loss) or errors

of commission (prediction of wetland habitat loss when

no actual loss occurred). An error of omission occurred

when WLOSS ¼ 1 and PRWLOSS , T; an error of

commission occurred when WLOSS¼ 0 and PRWLOSS

. T. We mapped the locations of NRI wetland points in

the Test data sets that were classified as omission and

commission errors.

RESULTS

Predictive model

The best model that emerged from among the MARS

optimal model and similar candidate models had 10

basis functions, nine variables, MSE ¼ 0.164, and an

optimal binary classification threshold (T ) of 0.48.

Summary statistics for variables involved in the model

(Appendix C) indicated that a wide range of environ-

mental conditions were represented in the data.

Formulas for the basis functions (BFs) involved in the

best model are provided in Table 2. The regression

equation for the best model was

WLOSS ¼ 0:774� ð0:229 3 BF2Þ þ ð0:164 3 BF3Þ

� ð127:824 3 BF8Þ þ ð140:246 3 BF9Þ

� ð0:574 3 BF29Þ þ ð0:500 3 BF32Þ

þ ð0:714 3 BF42Þ þ ð0:013 3 BF51Þ

� ð0:133 3 BF55Þ � ð0:024 3 BF68Þ: ð1Þ

In Discussion: Understanding statistical relations, we

illustrate how one can develop a more intuitive

understanding of the basis functions. The wetland and

landscape variables that were involved in the model, and

their relative contributions to the model’s predictive

ability as indicated by MARS importance values, were

BROAD_92, the land-cover/land-use of the surrounding

landscape (100.0); F_GI_20, the size and proximity of

development patches within 570 m (39.5); OWN_92,

land ownership (39.1); F_RD_DEN, road density within

570 m (37.5); F_PR90, percent woody and herbaceous

wetland cover within 570 m (27.8); L_GI_20, the size

and proximity of development patches within 5130 m

(25.7); L_PR7181, percent grasslands/herbaceous plants

and pasture/hay cover within 5130 m (21.7); COW_92,

wetland type (21.2); and M_PR90, percent woody and

herbaceous wetland cover within 1710 m (16.6).

Multicollinearity among predictors

Across the five Test data sets, VIF values for all of the

basis functions (predictors) in the best model were well

below 10 (Table 2). VIF values for six of the 10

predictors (BF29, BF32, BF42, BF51, BF55, BF68) were
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small (mean ¼ 1.7, range ¼ 1.1–2.3). The other four

predictors (BF2, BF3, BF8, BF9) had small to moderate

VIF magnitudes (mean ¼ 3.8, range¼ 2.2–6.1).

Model performance

For the Test data sets, the best model met our

threshold criterion that the prediction accuracy for

converted wetland habitats (WLOSS ¼ 1) should be at

least approximately 80%. In addition, compared to

MARS candidate models with more basis functions and

variables, the best model had higher prediction accura-

cies for converted wetland habitats and overall, and

compared to candidate models with fewer basis func-

tions and variables, the best model had higher prediction

accuracies for retained wetland habitats (WLOSS ¼ 0)

and overall. AUCs for the MARS optimal model (19

basis functions, 13 variables) and our best model (10

basis functions, nine variables) did not differ signif-

icantly for any of the five Test data sets (P ¼ 0.141–

0.935); for P ¼ 0.141, the absolute difference in AUC

statistics was only 1.9%.

Performance statistics for the best model were

remarkably robust between the Train and Test data sets

(Table 3). The means for percent correct classification

(of retained wetlands, converted wetlands, and overall)

for the Test data sets exhibited little decline (range ¼
1.1–1.4%) compared to the accuracies of these classifi-

cations estimated from the Train data. Kappa statistics

for the Test data sets indicated that the best model

correctly predicted wetland fates at a rate that far

exceeded that expected by chance (P , 0.0001), and the

difference between mean Kappa for the Test data sets

TABLE 2. Formulas for basis functions associated with the best model for the risk of wetland
habitat loss, and variance-inflation-factor statistics for basis functions that were predictors in the
model.

Basis function Formula

Variance inflation factors�

Mean Range

BF2 max (0, 1.587 � F_GI_20)� 3.0 2.5–4.0
BF3 (BROAD_92 ¼ 2, 6, or 7) 3 BF2 5.2 3.8–6.1
BF8 max (0, 0.003 � F_RD_DEN) 2.7 2.2–3.3
BF9 (BROAD_92 ¼ 6 or 7) 3 BF8 4.2 3.4–5.0
BF12 max (0, 12.978 � L_GI_20) § §
BF26 COW_92 ¼ 2, 3, or 4 § §
BF27 BROAD_92 ¼ 6 or 7 § §
BF28 BROAD_92 ¼ 1, 2, 3, 4, or 5 § §
BF29 (OWN_92 ¼ 1 or 2) 3 BF27 1.3 1.1–1.4
BF32 max (0, 0.422 � L_PR7181) 3 BF27 2.1 1.8–2.3
BF42 max (0, 0.284 � F_PR90) 3 BF28 1.6 1.5–1.7
BF51 (BROAD_92 ¼ 2, 3, 5, or 6) 3 BF12 1.3 1.2–1.3
BF55 (BROAD_92 ¼ 2, 3, 5, or 7) 3 BF26 1.9 1.6–2.1
BF68 max (0, 0.515 � M_PR90) 3 BF12 1.9 1.6–2.1

� Statistics for variance inflation factors are for the five Test data sets.
� Variable definitions are in Table 1. F, M, and L at the beginning of variable names refer to fine

(570 m radius), meso (1710 m radius), and macro (5130 m radius) extents, respectively.
§ Basis functions 12, 26, 27, and 28 were not involved in the best model as predictors (see Eq. 1),

but MARS used them to estimate other basis functions that were involved as predictors. Because
these four basis functions were not predictors, variance inflation factors were not computed for
them.

TABLE 3. Predictive performance statistics for the best model of the risk of wetland habitat loss for the Test data sets and the Train
data.

Performance statistics

Test data sets

Train dataIndividual values (rank order) Mean

Correct 0s (wetland retained, %) 69.3 70.1 71.1 72.8 73.6 71.4 72.5
Correct 1s (wetland converted, %) 69.1 80.4 81.7 82.3 83.1 79.3 80.7
Correct overall (%) 70.1 74.8 76.2 77.6 78.0 75.3 76.6
Kappa� 0.40 0.50 0.52 0.55 0.56 0.51 0.53
AUC� 0.78 0.82 0.83 0.83 0.84 0.82 0.85
AUC (adjusted prediction)§ 0.70 0.71 0.71 0.73 0.75 0.72 }

� Kappa . 0 indicates that agreement between observed and predicted values (for wetland loss here) is better than chance
agreement, and 0.4 , Kappa , 0.75 indicates good agreement (Fleiss 1981).

� When 0.7 � AUC , 0.8, discrimination between groups (converted and retained wetlands here) is considered acceptable; when
0.8 � AUC , 0.9, discrimination is considered excellent (Hosmer and Lemeshow 2000).

§ AUC for adjusted prediction (model predictionþ kriged residual).
} AUC (adjusted prediction) was not computed for the Train data because assessment of whether residual interpolation

improved the prediction accuracy of the model involved comparison of AUCs (for standard vs. adjusted predictions) for Test data
sets only.
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and Kappa for the Train data was just 0.02. Threshold-

independent AUC statistics also indicated strong pre-

dictive ability (P , 0.0001), and that the agreement

between observed and predicted wetland fate implied by

Kappa was insensitive to our selection of the binary

threshold. Relative to the AUC for the Train data, mean

AUC for the Test data sets declined by only 0.03.

Residual interpolation did not improve model predic-

tions. For the Test data sets, mean AUC (adjusted

prediction) (based on model predictions þ kriged

residuals) declined by 0.10 relative to mean AUC (based

on model predictions alone), and the differences between

AUC (adjusted prediction) and AUC were significant

for all Test data sets (P ¼,0.001–0.006).

Predictive maps

The predicted risk of wetland habitat loss (conversion

risk, Fig. 2) was higher in and near the Appalachian

Mountains, Boston and Ouachita Mountains (in

Arkansas and Oklahoma), and in western parts of the

study area, including the Hill Country, Trans-Pecos, and

Llano Estacado areas of Texas. The risk of wetland

habitat loss was typically lower in much of the Coastal

Plain, Piedmont, and Mississippi Basin. Throughout the

study area, higher predicted risks of wetland habitat loss

occurred in and near large urban areas, as illustrated by

specific sites in Florida (Fig. 3). Absolute prediction

error was slightly higher in and near the Appalachian

Mountains, large parts of southwest Texas, and in and

near major cities, whereas absolute error was generally

lower elsewhere (Fig. 4). Omission errors (n¼ 77; 20.9%

of 369 wetland sites that were converted) were more

dense in the lower Mississippi Basin but less dense or

absent in and near the Appalachian Mountains and

western parts of the study area (Fig. 5a). Commission

errors (n¼ 3382; 28.6% of 11 816 wetland sites that were

not converted) generally occurred in higher densities in

the Coastal Plain, Piedmont, and Mississippi Basin, and

in lower densities in the western and northwestern parts

of the study area (Fig. 5b).

DISCUSSION

Multicollinearity among predictors

Appropriate interpretation of multiple regression coef-

ficients requires that there be little multicollinearity among

predictors. A VIF � 10 is commonly used as evidence of

severe multicollinearity (Neter et al. 1989, Hair et al.

1998), but VIFs � 2 can indicate multicollinearity that

may make interpretation of coefficients difficult (Graham

2003). The magnitudes of VIFs we observed indicated that

multicollinearity was weak for most of the predictors.

This result indicates that interpretations and inferences

about the regression coefficients for most of the predictors

FIG. 2. Predicted risk of wetland habitat loss from 1992 to 1997 for all NRI points that were wetland in 1992 for the southern
United States. Gray polygons are federal lands, which were not sampled by the NRI.
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would not be compromised appreciably by correlations

among the predictors. Though none of the predictors

exhibited multicollinearity that would be considered

severe, some caution should be exercised in interpretations

and inferences about predictors with moderate VIF

magnitudes.

Relative predictive ability of variables

Based on importance values for variables in the best

model, variables derived from the NRI inventory points

for wetland sites (local predictors) and variables for all

three spatial extents (landscape predictors) were impor-

tant, but their relative predictive ability differed.

Variables for the wetland site and for the fine extent

generally had greater predictive ability than did vari-

ables for the meso and macro extents, and variables for

the macro extent had greater predictive ability than did

those for the meso extent. These results imply that the

risk of wetland habitat loss was most strongly associated

with conditions at or within 570 m of a wetland site, less

associated with conditions within the macro (5130 m

radius) extent, and least associated with conditions

within the meso (1710 m radius) extent.

Among the variables that characterized site and fine-

extent conditions, the land-cover/land-use type that the

wetland point occurred in (BROAD_92) was by far the

most important predictor. Formulas for basis functions

revealed interaction effects between BROAD_92 and

seven other variables (Table 2), indicating that associ-

ations between BROAD_92 and wetland habitat loss

varied extensively with the values of other site, fine-

extent, and macro-extent variables. The complexity of

these relations makes it difficult to provide simple

explanations for how broad land-use activities affected

wetland conversion risk. However, for an example of

how to interpret the statistical relations in general, and

an interaction effect in particular, see Understanding

statistical relations, below. Five of the seven variables

involved in interactions with BROAD_92 were site or

fine-extent variables, indicating again that the associa-

tion between wetland habitat loss and environmental

conditions was dominated by local or fine-extent

conditions.

Of the nine variables involved in the model, the size

and proximity of development patches within the fine

extent (F_GI_20), road density within the fine extent

(F_RD_DEN), and the size and proximity of develop-

ment patches within the macro extent (L_GI_20), were,

respectively, the second-, fourth-, and sixth-most im-

portant predictors. Considering coefficient signs (see Eq.

1) and basis-function formulas (Table 2), WLOSS was

positively associated with F_GI_20 (in BF2),

F_RD_DEN (in BF8), and L_GI_20 (in BF68);

however, WLOSS also was negatively associated with

F_GI_20 (in BF3), F_RD_DEN (in BF9), and L_GI_20

(in BF51). The positive associations between WLOSS

and the three variables are consistent with our observa-

tion that areas with high risks of wetland habitat loss

occurred in and around urban areas (e.g., Fig. 3). These

results also were consistent with earlier research that has

documented an increasing incidence of human develop-

ment as an agent of wetland conversion (Brady and

Flather 1994, Dahl 2006, Hansen 2006). Negative

associations between WLOSS and the three variables

were manifested only for certain categories of

BROAD_92 (see basis-function formulas), and this

information may be valuable for guiding subsequent

research that would explore possible reasons for the

negative relations. Importantly, our approach permits a

geographically explicit assessment of where conversion

risks are predicted to be the highest. Our results also

support previous studies that have shown that proximity

to human development and accessibility (via roads) are

important predictors of the probability of converting

FIG. 3. Spatial correspondence between areas with high predicted risk of wetland habitat loss and urban areas in Florida. Gray
polygons are federal lands, which were not sampled by the NRI.
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natural vegetation to an intensive land use, whether the

focal habitat is forest (Kline et al. 2001) or wetland

(Daniels and Cumming 2008).

Associations with topographic conditions (slope,

position within a watershed, elevation) have been

important in recent predictive models of wetland

conversion (Koneff and Royle 2004, Daniels and

Cumming 2008), yet neither slope (incorporated into

EI92, the soil erodibility index, Table 1) nor elevation

were important predictors of wetland habitat loss in the

present analysis. It is possible that the proportion of

area covered by woody and herbaceous wetland

(reflected in basis functions involving F_PR90 and

M_PR90 in the model) integrated important topograph-

ic conditions as well as development costs and flooding

risks (see Improving knowledge about possible causal

factors, below) and was therefore a more robust

predictor for our study region than were slope and

elevation per se. Recent studies of wetland conversion

involved measures of topography that were computed

for 10.4-km2 grid cells (Koneff and Royle 2004) and 30-

m pixels (Daniels and Cumming 2008), whereas in the

present study, topographic variables were evaluated at a

much finer spatial scale (wetland inventory point). Thus,

their comparative unimportance here may also merely

reflect these differences in scale.

The patchiness of wetland conversion processes across

large landscapes has the potential to reduce the broad-

scale predictive accuracy of a model of wetland habitat

loss (see Daniels and Cumming 2008). Given the spatial

extent of our study area, we thought that socio-

economic drivers of wetland conversion and their

interaction with ecological conditions would manifest

as regionally conditioned patterns of association, and we

were surprised that we found no direct evidence for such

relations. An important main effect of BAIL_DIV

(variable for ecological region) would have indicated

that wetland habitat loss differed among two or more of

the Bailey (1995) divisions in the study area. An

important two-way interaction effect involving

BAIL_DIV would have indicated that the relation

between wetland habitat loss and another predictor

differed among two or more of the Bailey divisions. The

modeling approach we used was robust: it made use of

the entire sample, which would tend to provide better

statistical power compared to fitting separate regional

models, each with smaller sample sizes; our approach

also involved a quantitative assessment of predictive

importance of interactions involving BAIL_DIV.

Despite our expectations and the rigor of our analysis,

the MARS importance value for BAIL_DIV was 0. This

result suggested that, at least at the Bailey division level,

whatever differences there may have been in conversion

FIG. 4. Absolute errors in predicted risk of wetland habitat loss for the southern United States. Gray polygons are federal
lands, which were not sampled by the NRI.
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processes or associated ecological conditions among

regions, these differences were not large enough for this
variable to be a strong predictor of wetland habitat loss.
An alternative explanation for our results may be that,
because MARS considers local (in addition to global)

statistical relations, it may have implicitly captured
regional variation in drivers of wetland conversion
through its specification of basis functions that did not

involve BAIL_DIV.

Model performance

The principle of parsimony states that all other things
being equal, simpler models should be favored over
more complex models (Box and Jenkins 1970).

Comparisons of AUCs indicated that the predictive
performance of the simpler model we chose (10 basis
functions, nine original variables) did not differ signif-

icantly from that for the more complex MARS optimal
model (19 basis functions, 13 original variables). Correct
classification, Kappa, and AUC statistics indicated that

our model had real predictive power based on test set

validation across a broad geographic region. And the
predictive ability of our model (mean AUC¼0.82, Table

3) compared favorably with that of recent predictive
models for wetland conversion (Daniels and Cumming
2008; AUC ¼ 0.81) and grassland conversion (Stephens

et al. 2008; AUC ¼ 0.79 and 0.77).
AUC statistics were higher for the unadjusted

predictions than they were for the adjusted predictions,

indicating that residual interpolation decreased rather
than increased prediction accuracy. As noted by Miller
(2005), the effectiveness of residual interpolation can be

reduced when the proportion of events (typically coded
as 1s) for a binary response variable is too low for
adequate variogram fitting. In Miller’s analyses, event

proportions ¼ 0.006–0.011 were generally associated
with a loss or no improvement in accuracy, and event
proportions . 0.028 were generally associated with

accuracy improvement. In our data set, the proportion
of events (WLOSS¼ 1) was 0.032, and our sample sizes
were large, so it seems unlikely that the event proportion

led to the decrease in accuracy we observed. A more

FIG. 5. Geographic distribution (dots) of (a) omission errors (wetland site was converted but predicted to be retained) and (b)
commission errors (wetland site was retained but predicted to be converted) in the predicted risk of wetland habitat loss for the
southern United States.
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reasonable explanation for our results may be that any

spatial patterns in wetland conversion risk were

accounted for by the variables in the model, that the

model’s residuals contained little if any remaining

predictive information derivable from their spatial

relations, and that addition of the kriged residuals may

have added noise to the predictions. The flexibility of

MARS to fit linear, nonlinear, global, and local relations

between WLOSS and our set of environmental predic-

tors may have contributed to the absence of prediction

improvement via residual interpolation.

Predictive maps

Predicted risks of wetland habitat loss (Fig. 2) were

generally greater for highlands (Appalachian region and

western parts of the study area) than they were for

lowlands (Coastal Plains, Piedmont, Mississippi Basin).

Because of their topographic and edaphic characteris-

tics, highlands are likely to be better drained than are

lowlands; in addition, the highland areas had fewer

wetland points (Fig. 1). Wetlands situated in highlands

may therefore be less extensive and more isolated than

are wetlands situated in lowlands. Indeed, based on the

NLCD for the macro-extent buffer, wetlands in

highlands (BAIL_DIV ¼ 1, 2, 4, 5) were smaller (mean

wetland patch size ¼ 6.8 ha) and farther apart (mean

nearest neighbor distance ¼ 332 m) than were wetlands

in lowlands (BAIL_DIV¼ 3, 6; mean wetland patch size

¼ 21.1 ha; mean nearest neighbor distance ¼ 103 m).

Compared to altering a wetland in a generally wet

landscape (lowlands), there may be fewer financial costs

and risks associated with converting a wetland in a

better-drained or dry landscape (see Improving knowl-

edge about possible causal factors, below).

Differences in the density of NRI wetland points

across the study region may have influenced geographic

variation in absolute prediction error. One would expect

the magnitude of prediction error for a given area to be

inversely proportional to the number of observations

involved because smaller sample sizes for an area would

result in less information about the wetland features and

landscape context that influenced wetland habitat loss in

that area. Our results support this idea. In the Coastal

Plain, Piedmont, and Mississippi Basin, absolute pre-

diction error was usually relatively low (Fig. 4) and

densities of wetland points tended to be higher (Fig. 1),

whereas in the Appalachian area, southwest Texas, and

in and near major urban areas, prediction error was

usually relatively high and the density of wetland points

tended to be lower.

The map of commission errors (Fig. 5b) may do more

than simply indicate the location of false positives—it

also may indicate wetland habitats that may be

predisposed to future conversion. These sites share

characteristics with wetland habitats that were converted

during the 1992–1997 period, but that for a number of

reasons (e.g., regulations, development schedules, eco-

nomic incentives, and lag effects) were not converted.

Whether commission errors do foreshadow future

wetland habitat loss can be tested with the next cycle

of NRI data. Wetland sites converted post-1997 would

be expected to be disproportionately represented among

those identified with commission errors in the present

study.

Understanding statistical relations

To apply the model, it is important to understand the

nature of the basis functions and their contributions to

predicting the risk of wetland habitat loss. Many of the

statistical associations are complex. Space does not

permit us to examine the relations for all of the variables

in the model, but we consider relations for one

complicated predictor here to illustrate how interpreta-

tion of the model’s statistical relations can be used to

help understand how WLOSS was associated with

environmental conditions. The statistical associations

do not necessarily reflect causal relations.

WLOSS was positively associated with BF42 (regres-

sion coefficient ¼ 0.714). The equation for BF42 was

BF42 ¼ maxð0; 0:284� F�PR90Þ3 BF28

where BF28 was an indicator variable:

BF28 ¼ 1 ðif BROAD�92 ¼ 1; 2; 3; 4; or 5Þ
0 ðotherwiseÞ:

�

BF42 therefore represented an interaction involving

the proportion of woody and herbaceous wetland within

the fine extent (F_PR90) and the broad land-cover/land-

use type surrounding the wetland site (BROAD_92).

The regression coefficient for BF42 represented the

influence of BF42 on WLOSS after the influences of all

of the other variables in the predictive model were taken

into account.

When BF28 was 1, the contribution to WLOSS at

F_PR90 ¼ 0.0 was 0.20 because for F_PR90 ¼ 0.0 and

FIG. 6. Contribution to the non-normalized predicted risk
of wetland habitat loss (WLOSS) in relation to the proportion
of the fine extent covered by woody and herbaceous wetland
(F_PR90) when the land cover and land use surrounding the
wetland site was cropland, pastureland, rangeland, forestland,
or other rural land (when BROAD_92 ¼ 1, 2, 3, 4, or 5).
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BF28 ¼ 1, BF42 ¼ 0.284, and the regression coefficient

(0.714) multiplied times BF42 (0.284) was 0.20 (Fig. 6).

For BF28 ¼ 1, the contribution to WLOSS from

F_PR90 declined from 0.20 to 0.00 as F_PR90 increased

from 0.00 to 0.284, and for values of F_PR90 . 0.284,

the contribution of F_PR90 to WLOSS was 0 (Fig. 6).

However, when BF28 was 0 (i.e., when BROAD_92¼ 6

or 7), BF42 was 0, and this interaction effect did not

contribute to WLOSS. That is, the relation between

WLOSS and F_PR90 (Fig. 6) existed only when BF28¼
1. Thus, the influence of F_PR90 depended on

BROAD_92, and F_PR90 contributed nonlinearly to

WLOSS. The ecological significance of these relations is

considered in the next section.

Improving knowledge about possible causal factors

Multicollinearity among predictors was not strong,

and lack of improvement in prediction accuracy via

residual interpolation indicated there were no missing or

misspecified predictors that induced spatial dependence

(see Miller 2005). These results provided confidence that

the statistical relations embodied in the model can

reasonably be used to posit hypotheses about causal

agents of wetland habitat loss.

For instance, one explanation for the statistical

relations involving WLOSS, BROAD_92, and F_PR90

examined in the previous section may be that, for

wetland habitats situated in cropland, pastureland,

rangeland, forestland, or other rural land, conversion

was not economical once wetland coverage within the

fine extent exceeded 28.4%, and conversion became

increasingly economical (risk of wetland habitat loss

became increasingly higher) as wetland coverage within

the fine extent decreased from 28.4% to 0%. If much of

the area around a given site was covered by wetlands,

conversion may have been too expensive, or the chance

of future flooding problems at the converted site may

have been too high. At sites surrounded by low amounts

of wetland within the fine extent, fewer modifications

(draining, filling, levees) may have been necessary for

conversion of the site and the adjoining area, or the

chance of subsequent flooding at the converted site may

have been lower. Thus, F_PR90 may have functioned as

a proxy for economic costs and risks, suggesting that

economic factors per se deserve explicit examination as

possible causal agents.

A series of such interpretations and follow-up

analyses for a given variable can be used to refine

hypotheses about the factors that actually drive wetland

habitat conversion in the South. The 10 basis functions

and associated regression coefficients for our model

provide a rich source of information for this refinement

process.

Potential applications to conservation policy and planning

Because conservation resources are scarce, it is

essential to focus on geographic areas where the risks

for further wetland habitat loss are greatest. Our model

and associated predictive map of conversion risk can be

used to inform the planning of protection efforts by

helping to prioritize wetland areas for conservation.

Wetland habitats with the highest conservation value

and risk of conversion would receive the highest priority

for acquisition or some other form of long-term

protection, as Stephens et al. (2008) suggested for the

conservation of grasslands. However, this approach

would need to incorporate information about acquisi-

tion or protection cost to optimize conservation benefits

from limited funds (Newburn et al. 2005). The maps of

prediction errors can be used to incorporate prediction

accuracy about wetland habitat loss into the decision

process. A focus on areas where prediction errors were

relatively low would help to reduce the chance of

spending precious resources for minimal conservation

benefit.

The risk of wetland habitat conversion can be used in

broad-scale evaluations of wetland habitat connectivity.

Wetland obligates, including many plants, amphibians,

birds, and mammals, may benefit from landscapes in

which wetland connectivity is high. A set of wetland sites

may be functionally connected by being within the

dispersal distance of a species. However, functional

connectivity may be eroded over time as wetlands with a

high risk of conversion get transformed into some other

land use or land cover. Graph-theoretic methods (see

Minor and Urban 2007) can be used to identify wetland

habitats that are essential for maintaining connectivity

while also accounting for differential conversion risk. In

this context, the quality of wetland sites for maintaining

connectivity would be inversely related to their conver-

sion risk. Such analyses would provide conservationists

with fundamental information needed to rank the value

of individual wetlands or wetland complexes for

maintaining wetland habitat linkages.

The model can be used to aid planning decisions

concerning projected development. In our study region,

and especially in Florida, urbanization and housing

development increased at a greater rate than they did in

any other region in the country from the early 1980s into

the late 1990s, a pattern that is expected to continue well

into the 21st century (Milesi et al. 2003, Alig et al. 2004,

Crossett et al. 2004). Such land-use trends can be used to

project future development. Our model included three

variables that involved development (BROAD_92,

F_GI_20, and L_GI_20). Planners can use our model

in conjunction with land-development forecasts to

anticipate where wetland conversion pressures may be

increasing (or decreasing), and then use this information

to guide development designs that may lessen wetland

conversion pressures and ultimately reduce wetland loss.

Finally, our model can be used to assess the

effectiveness of wetland conservation programs. The

Wetland Reserve Program is an example of an

important land-retirement program that authorizes the

U.S. Department of Agriculture to purchase conserva-

tion easements to restore and protect wetlands (Williams
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2005). But are the wetlands that landowners voluntarily

enroll in this program those that face the greatest

conversion risk? Characteristics of enrolled wetlands,

including their location, can be used to estimate our

model predictor variables, enabling prediction of wet-

land conversion risk for enrolled wetland habitats. If the

land-retirement program was actually targeting at-risk

wetlands, the average risk for enrolled wetland habitats

would be expected to be higher than the average risk for
unenrolled wetland habitats. In other words, our model

can provide a means to test explicitly for what ecological

economists call ‘‘additionality’’—that conservation

should target high-risk areas (e.g., wetland habitats with

a high conversion risk) as opposed to areas exposed to

limited threats (Naidoo and Ricketts 2006). Although

such an exercise does not attain the ideal specified by

Scodari (1997), who called for incorporating ecological

values of a particular wetland, this analysis would

objectively inform evaluations of wetland protection

programs from the perspective of conversion risk.

Model improvement

At spatiotemporal resolutions that were relevant to

the wetland systems we studied, we did not have access

to data for other potentially important predictors of

wetland habitat loss, such as zoning and the value of

alternative land uses (Newburn et al. 2005), agricultural

commodity prices (see Stephens et al. 2008), land prices,

financial lending rates, cultural values that affect land-

use decisions, or costs of construction equipment,

materials, and labor. If such socioeconomic data become

broadly accessible in a form that can be tied to specific
geographic locales, a potentially important class of

predictors that are absent from the present analysis

would be available to wetland conservationists.

Whenever feasible, we recommend inclusion of such

predictors in analyses because they may improve the

model’s predictive ability and provide new insights

about possible drivers of wetland conversion.
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