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Temporal fluctuation scaling in populations and communities
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Abstract. Taylor’s law, one of the most widely accepted generalizations in ecology, states
that the variance of a population abundance time series scales as a power law of its mean. Here
we reexamine this law and the empirical evidence presented in support of it. Specifically, we
show that the exponent generally depends on the length of the time series, and its value reflects
the combined effect of many underlying mechanisms. Moreover, sampling errors alone, when
presented on a double logarithmic scale, are sufficient to produce an apparent power law. This
raises questions regarding the usefulness of Taylor’s law for understanding ecological
processes. As an alternative approach, we focus on short-term fluctuations and derive a
generic null model for the variance-to-mean ratio in population time series from a
demographic model that incorporates the combined effects of demographic and environmen-
tal stochasticity. After comparing the predictions of the proposed null model with the
fluctuations observed in empirical data sets, we suggest an alternative expression for
fluctuation scaling in population time series. Analyzing population fluctuations as we have
proposed here may provide new applied (e.g., estimation of species persistence times) and
theoretical (e.g., the neutral theory of biodiversity) insights that can be derived from more
generally available short-term monitoring data.

Key words: birds; demographic noise; environmental stochasticity; population abundance variance;
sampling error; Taylor’s law; temporal variance; trees; variance–mean relations.

INTRODUCTION

One of the major challenges in the study of ecological

systems, and complex systems in general, is to charac-

terize and explain patterns of temporal variability and

stability. Understanding such patterns is important for

both basic ecology, where the degrees of population and

community stability are debated, and applied conserva-

tion, where temporal fluctuations affect the likelihood of

species persistence across human-managed landscapes.

A typical scenario where this problem arises is the

analysis of time series showing the abundance of a given

species at a particular location. Such a time series is

usually quite noisy, and one would like to utilize this

noisiness in order to characterize the stability properties

of the population.

In this context, many studies have reported that the

variance (S ) of population size grows as a simple power

of the mean (N )

S ¼ c 3 Nz; 1 � z � 2 ð1Þ

where c and z are constants. This pattern, known as

Taylor’s law (Taylor 1961, Taylor and Woiwod 1980,

1982), is considered one of a few general quantitative

laws in ecology (Keitt et al. 2002, Kilpatrick and Ives

2003) and other complex systems (de Menezes and

Barabasi 2004, Eisler et al. 2008). In fact, this law is used

in two distinct contexts (Kendal 2004): to assess spatial

clustering and patchiness, and to characterize time series

(Taylor and Woiwod 1980, 1982, Kilpatrick and Ives

2003). We consider only Taylor’s law for time series,

which is recognized as a general scaling relation between

a population’s mean abundance and its variance over

time (Anderson et al. 1982).

Observed variations in population abundance are

expected to be caused by a few underlying mechanisms.

The simplest of these is sampling errors. Even if the

actual size of the population is fixed, the survey may

sample different individuals leading to variation in

counts across repeated surveys. The stochastic nature

of the birth–death process provides us with another

source of variation, demographic noise, where individ-

uals vary in their reproductive success in an uncorrelated

manner. If, for example, every individual produces, on

average, one offspring and then dies, the abundance will

fluctuate without an overall trend, and the variation per

generation is proportional to the square root of the

population size (Van Kampen 1981). Environmental

stochasticity, on the other hand, simultaneausly affects
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all the individuals in the population, causing periods

when the growth rate, when averaged over the popula-

tion, grows or is positive or negative. Accordingly,

variation scales linearly with population size (Engen et

al. 1998, Lande et al. 2003). It has been shown that if

dynamics are governed solely by demographic noise,

then the exponent z in Eq. 1 approaches one.

Conversely, if environmental stochasticity is the main

driver of the change, then z ¼ 2 (Ballantyne and

Kerkhoff 2007). Finally, stabilizing forces, like a finite

carrying capacity, may balance the effects of stochas-

ticity and limit the range of possible population sizes.

Our aim is to reevaluate the validity and usefulness of

Taylor’s law (as expressed in Eq. 1) and to suggest an

alternative framework for the analysis of short-term

fluctuations in empirical data sets. Applying our method

to relatively clean (error-free) data sets, we can suggest a

new empirical law. One of the applied benefits of this

approach is that it can be implemented with short-term

data which is more widely available, across many more

species, than long-term data.

In particular, regarding Taylor’s law, we will point

out the following obstacles: (1) the variance-to-mean

ratio depends strongly on the length of the time series,

(2) the apparent agreement of empirical data sets with

Eq. 1 may be an artifact of sampling errors and the

(mis)use of the double logarithmic scale, and (3) even in

the best-case scenario, when the variance-to-mean ratio

has converged to its long-term value, it reflects a

nontrivial interplay between the noise and the stabilizing

mechanisms, rendering it difficult to interpret.

Given the difficulties associated with evaluating and

interpreting Taylor’s power law, we suggest separating

the question of population variability and stability into

two components: long-term behavior, governed by

stabilizing mechanisms (or lack thereof; Pimm and

Redfearn 1988, Hanski 1990) and short-term fluctua-

tions and their scaling with population size. The latter is

the focus of our analysis.

The question of short-term fluctuation scaling, i.e.,

how are survey-to-survey changes in population size

dependent on population size itself, addresses a funda-

mental aspect of the behavior of the system. Without a

good assessment of these fluctuations, it is very difficult

to interpret the long-term properties of the system and

to extract information about regulating forces (Freckle-

ton et al. 2006). Moreover, population viability analyses

usually depend on the balance between stabilizing

mechanisms and stochasticity, and the latter should be

well characterized if we are to have confidence in

estimated persistence probabilities. Finally, the neutral

theory of community dynamics (Hubbell 2001), a central

(although hotly debated) paradigm in contemporary

ecology, assumes dynamics are driven by pure demo-

graphic stochasticity, an assumption that may be

examined within our framework.

As an alternative to Taylor’s law, we present and solve

a null model for populations under both demographic

and environmental stochasticity and explain how to

present the results in a way that enables an informative

comparison between the model and the data. Compar-

ing the results obtained using high quality data sets and

this null model, we can rule out a simple combination of

demographic and environmental noise and suggest an

alternative nontrivial expression for fluctuation scaling.

Finally, we will discuss the implications of our results,

including its relevance to the debate surrounding the

neutral theory of biodiversity.

SHORT- VS. LONG-TERM DYNAMICS

To consider the relation between time series length

and the variance-to-mean ratio, let us begin with a

qualitative analysis. In general, when a system is affected

by noise and stabilizing mechanisms, the noise is

dominant over short time scales, and the relative

importance of stabilizing forces grows in time, eventu-

ally dominating the dynamics over long time horizons.

As an example, let us consider a local population

fluctuating around an average size n. For simplicity, we

represent the stabilizing forces as reflecting boundaries

at nþ p and n� p as in Stong’s density-vague dynamics

(Strong 1986); see the illustration in Fig. 1. That is to

say, the stochasticity-driven fluctuations are not restrict-

ed as long as the population size remains between the

boundaries. We discuss several alternative versions of

this model in Appendix A. In particular, we consider the

case of a population driven by pure demographic noise,

as well as one driven by both demographic and

environmental noise. Another parameter one can

modify is the band width ( p) of the stabilizing force.

The width may be taken to be proportional to n, and

Appendix A presents cases where p ;
ffiffiffi
n
p

and p ; n are

simulated.

Both demographic and environmental noise cause the

population to perform a random walk between the two

boundaries. Over short time scales, before the typical

trajectory hits one of the boundaries, the exponent z

reflects pure stochastic motion, with z ¼ 1 for

demographic and z ¼ 2 for environmental noise (Van

Kampen 1981, Engen et al. 1998, Lande et al. 2003).

Over longer time series, the typical trajectory uniformly

covers the allowed band of abundances, and the

variance scales with p2. Accordingly, the variance-to-

mean ratio is determined by the relationship between n

and p. If p is proportional to n, then z¼2, and if p ;
ffiffiffi
n
p

,

then z ¼ 1, both results being independent of the

underlying stochastic process. Hence, if the noise is

purely demographic and p ; n, the exponent z

approaches 1 over short time intervals and will increase

to 2 over long time intervals. Conversely, for environ-

mental stochasticity and p ;
ffiffiffi
n
p

, estimates of z will start

at 2 in the short term and relax to z¼ 1 in the long term.

See Appendix A for a summary and a few numerical

demonstrations.

All of the above is true for the case of sharp, perfectly

reflecting boundaries. If we relax this constraint and let
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the strength of the stabilizing force behave more

generally (e.g., proportional to the distance from n, as

in logistic or Gompertz population growth models), then

interpretations of z become more complicated. In this

case, the nature and strength of the noise affects the

width of the allowed band. Accordingly, when the

empirical Taylor’s exponent z is estimated for time series

of arbitrary length (as is usually the case), its magnitude

reflects a balance between stochastic fluctuations and the

restoring forces in a nontrivial way.

This poses a serious problem for the interpretation of

empirical variance–mean relations. Based on the above

considerations, we generally expect the scaling to depend

on the length of the time series in a manner that depends

on the (unknown) properties of the stabilizing force,

rendering unequivocal understanding of underlying

mechanisms difficult. Furthermore, these difficulties

arise even when the empirical measurements of popula-

tion size are exact and free of errors. We now point out

another problem: sampling errors alone may produce

almost any exponent.

TAYLOR’S POWER LAW AS AN ARTIFACT

Sampling noise associated with surveys of population

abundance over time poses an often unrecognized

obstacle to the assessment of Taylor’s law. McArdle et

al. (1990) have already noted that sampling causes a bias

in the estimate of population variability. We stress

another difficulty, arising from the fact that population

surveys are subject to two types of sampling errors.

When superimposed on each other, these errors may

yield any value of z in the appropriate range.

The first type of sampling noise is binomial. If there is

a fixed chance to sample each individual animal or plant,

two surveys of a population of size n will yield results

that typically differ proportionally to
ffiffiffi
n
p

, hence

mimicking the z ¼ 1 behavior associated with real

demographic fluctuations. A second type of sampling

noise is proportional. The observer may miss a whole

cluster (flock, patch) leading to an error that scales with

population size n (thus z ¼ 2) that could be mistakenly

interpreted as evidence for environmental noise. The

lognormal sampling errors reported in the literature

(Dennis et al. 2006, Knape et al. 2011, Knape and de

Valpine 2012) also belong to this second class of

proportional inaccuracies.

Accordingly, even if the actual population is fixed,

sampling errors of both types can yield any ratio

between z ¼ 1 (only errors of the first kind) and z ¼ 2

(mainly errors of the second kind). In Appendix B, we

give examples of these artifacts. An analogous problem

with the estimation of the exponent in the spatial version

of Taylor’s law was already pointed out by Titmus

(1983).

Given the ubiquity of sampling errors, we argue that

the evidence provided thus far in the literature

supporting the power law (Eq. 1) is inconclusive. A

reliable analysis of fluctuation scaling must start with

highly accurate data, for which the sampling errors are

negligible, or with data that were corrected for the

potential effects of sampling errors.

A related issue (see Appendix B), is the problematic

use of the double logarithmic scale. The use of these

plots seems to be a natural choice when dealing with

power laws like Eq. 1, since a power law appears as a

straight line and the log scale allows one to present data

that spans many orders of magnitude in the same plot.

However, the compression involved in the logarithmic

transformation leads to a typical misrepresentation of

the results (Avnir et al. 1998): a data set that shows

widely scattered points on an arithmetic scale may

appear almost as a straight line on a double logarithmic

scale.

FIG. 1. An illustration showing typical density-vague dynamics with population size n¼ 500 (gray line, middle) and bandwidth
p¼ 100 (black dotted lines). A logarithmic scale is used for the x-axis (time), to emphasize the distinction between the free random
walk in the short-term and the effects of stabilizing mechanism at the long-term.
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All in all, we claim that the empirical support for

Taylor’s power law is questionable, and even if the law is

valid, the z exponent carries little information about the

underlying forces that govern population dynamics. We

wish to propose an alternative methodology for the

analysis of population monitoring data. Long-term

monitoring data are expensive and therefore not

generally available for many species. To address this

data limitation, we focus on presenting an approach that

can identify underlying forces contributing to observed

population dynamics with short-term data. In those

cases where data on long-term dynamics are available,

one may implement the variance–time lag technique as

presented in Pimm and Redfearn (1988), Hanski (1990),

and Keitt and Stanley (1998).

SHORT-TERM FLUCTUATION SCALING: A NULL MODEL

Let us present a generic and simple null model for

population fluctuations that are caused by any combi-

nation of demographic and environmental stochasticity.

The model is solvable and designed to produce

predictions that can be easily tested using empirical

data. The outcome of the model is a prediction about the

ratio between fluctuation strength and abundance. This

provides many technical benefits.

A basic feature of the model is the focus on within-

generation fluctuations in abundance, i.e., on time series

where the interval between consecutive observations is

smaller than the generation time. Such time series are

typical for many types of organisms (e.g., time series of

tropical trees (Condit 1995) and annual breeding bird

surveys (Sauer et al. 2011). Under these conditions, one

can safely assume that an offspring born during the

survey interval did not itself give birth within this

period, i.e., that the contribution of grandchildren to the

variations between survey periods is negligible. More-

over, on such short time scales, one may hope that the

effect of stochasticity is more pronounced than the effect

of stabilizing forces.

We will present the model using trees as the example

taxon, but the concepts are also relevant to surveys of

other kinds of organisms, with appropriate modifica-

tions of the generation time and survey-to-survey

intervals. The model has three parameters: a is related

to the ratio between the survey interval and the

generation time, b is the strength of demographic

stochasticity, and a random variable c is taken from a

distribution of variance D that is proportional to the

environmental noise. Fig. 2 illustrates the model

dynamics.

Let us assume that within a single interval (say, five

years), the chance of a tree to be inactive is a. An

inactive tree just stays there, does not reproduce and

does not die. When the time interval between two

consecutive surveys approaches zero, a approaches 1

and decreases as the time interval increases, reaching

zero around the generation time. This parameter links

the generation time to the time interval between surveys.

If the tree is active (with probability 1� a), it either dies
with probability (1 � b) or produces a random number

of offspring, taken from a Poisson distribution with

mean (1 þ c)/b.
For D ¼ 0 (hence c ¼ 0), the average size of the

population is fixed over time. Only a fraction b(1� a) of
the individuals are reproducing, but each of them

produces 1/b offspring. Therefore, in this model b
controls the strength of demographic stochasticity. For

example, if a ¼ 0.5, b ¼ 0.2, and the initial population

size is 100, half of the individuals stay inactive, 40 die,

and the remaining 10 produce five offspring and die (or

produce four offspring and stay alive), so the overall

population is kept fixed.

If b ¼ 1 then one observes standard (Poissonian)

demographic noise. If b ,, 1, only a few active trees

reproduce, each one of them producing many offspring.

For such a Genghis Khan scenario, the demographic

noise is huge but still z¼ 1 in Eq. 1 (only the coefficient c

in Eq. 1 is larger). Finally, the value of c reflects the

strength of environmental noise. In the simplest case,

one may pick c at random for every species between any

two surveys from some distribution with zero mean.

This model is solvable (see Appendix C and Supple-

ment 2 for the software used to verify the results). In

particular, it is useful to look at the quantity

Y ¼ nt � n0ffiffiffiffiffi
n0
p ð2Þ

where n0 is the size of the population at t¼0 and nt is the

abundance at time t. Y is the size of the population

variation normalized by the square root of the

FIG. 2. The alpha-beta-gamma model, a dictates the
generation time, b sets the scale of demographic stochasticity,
and c reflects environmental noise. The growth rate is
fluctuating in time, at any given time the population is either
decreasing or increasing deterministically. The parameter c(t)
defines the instantaneous growth rate of a population (or its
relative fitness) at time t and so characterizes the environmental
stochasticity. The parameter c(t) is picked independently for
every period of time and every species, from a distribution of
zero mean and variance D. Between censuses a tree may remain
inactive with probability a. If it is active, it dies with probability
b or produces (1þ c)/b offspring.
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population size, i.e., by the scale of the variation if the

stochasticity is purely demographic. Therefore, for

populations that are subject to purely demographic

noise, Var(Y ) is independent of the population size.

Accordingly, when calculating the variance of Y using

many pairs of data points with the same n0, it is

independent of n0. Since, for large populations, one can

rarely find multiple measurement with the same n0, we

calculate Var(Y ) over bins of population size, denoting

the average in every bin as m. If environmental noise is

dominant, nt – n0 scales with n0 and Var(Y ) grows

linearly with m. For populations satisfying the a–b–c
dynamics, we show in Appendix C that Var(Y ) is the

sum of two terms, an m-independent constant and a

linear term

VarðY jmÞ ¼ 1� a
b

� �
ð1þ DÞ � Dð1� aÞ2

� �

þ Dð1� aÞ2m: ð3Þ

Here D ¼ Var(c) reflects the strength of the

environmental noise. When D ¼ 0 (no environmental

stochasticity) Var(Y ) is independent of the mean m as

expected. Even if D . 0, the effect of demographic noise

appears in Eq. 3 only in the intercept, and the

dependence of Var(Y ) on m reflects only the environ-

mental noise. Therefore, plotting Var(Y ) vs. m should

give us a horizontal straight line if the stochasticity is

purely demographic (even if it is very strong, b ,, 1).

Any form of m dependence indicates that the noise is not

purely demographic, and in particular, a linear relation

between Var(Y ) and m suggests environmental stochas-

ticity.

For a comparison with empirical data, the represen-

tation of Var(Y ) against m possesses other advantages.

It avoids the use of a double logarithmic scale that

obscures the details of the plot, clearly separates the

demographic component from other types of noise, and

may be used to estimate the strength of environmental

stochasticity by the slope of the curve. Moreover, it

allows for identification of other types of stochasticity

that are neither demographic nor environmental, a

feature that turns out to be quite important.

Accordingly, we consider the Var(Y )–m plot the most

appropriate tool to identify the nature of short time

fluctuations.

EMPIRICAL ANALYSIS

We applied our approach to two data sets. One is the

result of consecutive large-scale censuses of trees in

different tropical forests provided by the Center of

Tropical Forest Science (CTFS; Condit 1995) the other

consists of time series obtained from the North

American Breeding Bird Survey (NABBS; Sauer et al.

2011). The tree censuses are carried out every five years

and are nearly free of sampling noise. The BBS data are

very noisy, but we can filter out measurement noise

using the variance through time plots as explained in

Appendix D and the software used is presented in

Supplement 3.

The Var(Y )–m diagrams are presented in Fig. 3 (for

three tropical forests, Barro Colorado Island [BCI],

Pasoh, and Lambir) and in Fig. 4 (for fluctuations in

bird communities, extracted from the NABBS data). In

both figures, the value of Var(Y ) is clearly growing with

the mean, so the noise must have a nondemographic

component.

Does Eq. 3 fit the empirical findings? It seems that the

growth of Var(Y ) with m in Figs. 3 and 4 is sublinear,

but it is hard to determine its precise functional form.

This sublinearity may reflect an internal structure within

the population (Ballantyne and Kerkhoff 2007, Violle et

al. 2012) as would be the case if individuals of a

population are not all exposed to the same environmen-

tal stressor (c), but are divided into groups that are

exposed to independent random c. Alternatively, sub-

linearity may result from modifications of the scale of

fluctuations resulting from interspecific competition

(Kilpatrick and Ives 2003, Mellin et al. 2010).

While it is hard to extract an exact functional form

from Figs. 3 and 4, and one may wonder if there is a

simple and general law that relates the Var(Y ) to the

mean, we can still propose a possible relation. First, as

demographic noise appears in any population dynamics

system, any suggested law must include a term (e.g., the

constant term for Var(Y ) plots) that reflects it. Such a

term corresponds to the pronounced intercept in Fig. 3

(see inset). The superposition of environmental stochas-

ticity, competition, and other possible forces yields the m

dependence in Var(Y ) plots. In the empirical systems,

this term grows more slowly than expected for pure

environmental noise. Accordingly, we believe that if

there is a simple law connecting fluctuations to the

mean, it perhaps takes the form

VarðYÞ ¼ aþ bmz�1; 1 � z � 2: ð4Þ

In Appendix E (see supplementary Fig. E2), we

present the fit of the BCI data set to Eq. 4, and it shows

good agreement with intercept a ¼ 1 and z ’ 3/2. The

other data sets, although cleaned from sampling errors,

are still too noisy to allow for a reliable fit. Indeed, even

the BCI fit should be taken with a grain of salt, as

different binning methods may yield different exponents.

Therefore, we do not argue that the empirical results

presented here provide unequivocal support for Eq. 4,

but that this expression cannot be ruled out, unlike Eqs.

1 or 3.

DISCUSSION

The growth in fluctuation amplitude with the mean of

a time series is a well-established fact (Eisler et al. 2008).

Quantifying this ratio and providing a mathematical

expression that describes the variance-to-mean relation-

ship is much harder. Based on his empirical data, Taylor

(Taylor and Woiwod 1980) suggested that the ratio is a

simple power law (Eq. 1). Given the analysis we
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presented, we feel that this proposal is problematic from

a few perspectives. First, Taylor’s exponent z depends

on many underlying parameters, from the length of the

time series to the interplay between stabilizing and

destabilizing forces, it is difficult to connect it directly to

the mechanisms driving the system. Second, demograph-

ic noise affects all ecological population, for every

system with z . 1, the fluctuation must have at least two

sources: demographic and something else, where the

extra noise is perhaps related to a superposition of

environmental stochasticity and some kind of restoring

force. If the net result of these multiple mechanisms is a

single power law like Eq. 1, then they must balance each

other in a nontrivial and precise way. Fine tuning of this

type is extremely rare in nature and to find it in complex

systems like those considered here is very unlikely.

Adding the demographic term to the additional mech-

anisms is a more plausible formulation as in Eq. 4. A

third line of criticism has to do with the empirical

variance–mean graphs. We have shown that the effect of

sampling noise, when superimposed on the data

compression associated with log-log plots, can lead to

a misinterpretation of the simple power law even when

the system has no dynamics at all (see Appendix B: Fig.

B1).

Accordingly, we put forward two methodological

suggestions. The first is either use high quality data

coming from full sampling of populations (like in the

CTFS censuses) or to filter out the measurement errors

like what was done here for the NABBS. The second is

to focus on short-term analysis and to replace the plots

of variance vs. mean on a double logarithmic scale by

Var(Y )–mean diagrams using an arithmetic scale. These

diagrams allow for a direct comparison with the result of

a simple null model (Eq. 3) and make a sharp distinction

FIG. 3. Var(Y )–m plot for tropical tree communities, where Y is the size of the population variation normalized by the square
root of the population size. The value of Var(Y ) was extracted for .1 cm trees in three 50-ha Center of Tropical Forest Science
(CTFS) plots: the Barro Colorado Island (BCI, five censuses, 320 species), Pasoh (three censuses, 823 species), and Lambir (two
censuses, 1202 species). Only censuses that are five years apart were considered. Every two consecutive records of population size
provide one value of Y for a specific n0 (size of the population at t¼ 0). These values were collected into logarithmic bins, where all
values of Y attained from n0 between 5n and 5nþ1 are collected into the (nþ 1)th bin. Finally, we have calculated Var(Y ) for every
bin and plotted it against m, the average value of n0 in that bin. The main panel depicts the results on an arithmetic scale, in which
the small m behavior is blurred because of the logarithmic binning; the inset shows the same results using a logarithmic scale for the
x-axis, emphasizing the intercept associated with the constant a in Eq. 4. The growth of Var(Y ) with m is clear, indicating the effect
of nondemographic stochastic events. Sublinearity is also self-evident. We have omitted the last point for the BCI forest (n0 . 13
104) to keep the scale the same for all three cases. The figure with this extra point is shown in Appendix E.

FIG. 4. Normalized variance, Var(Y ), against population
size m, plotted for bird communities. The value of Y is extracted
from the differences between consecutive years in the North
American Breeding Bird Survey (NABBS), after filtering the
sampling noise as explained in Appendix D. The analysis
technique is the same as in Fig. 3, but the binning is linear since
in the NABBS data set there are many more species with a
smaller range of population sizes.
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between the effect of demographic noise, which appears

only in the intercept, and other effects that lead to the

growth of Var(Y ) with m.

The two sets of empirical time series that we have used

show a sublinear growth of Var(Y ) with the average

abundance, thus they may fit Eq. 4. However, in both

cases we do not have enough data points for any specific

species; to implement our technique we had to adopt a

macroecological approach (Keitt and Stanley 1998,

Keitt et al. 2002), assuming that different species and

different populations all share the same characteristic

dynamics.

Our theoretical and empirical analyses have direct

implications for the debate over Hubbell’s neutral

theory of biodiversity (NTB; Hubbell 2001, Volkov et

al. 2003). The NTB assumes that all species in a

community have the same fitness, and the dynamics

are governed solely by demographic noise and (relatively

rare) migration events. Accordingly, the NTB (for a

metacommunity, without spatial structure) has a very

strong prediction about the fluctuation scaling: the

variance of a time series must grow linearly with the

mean, independent of species identity, and the variance

of Y is independent of m. This property is depicted in

Fig. 5, where a simulation of Hubbell’s zero-sum

dynamics provides the time series for the analysis (see

Supplement 1 for the software we have used). Fig. 5

provides also the expected magnitude of the variance in

this Y vs. mean population plot due to the use of a finite

number of relatively short time series. Substantial

deviations from this pattern imply nondemographic

processes and rule out a purely demographic theory.

Although the results shown in Fig. 5 were generated for

some set of specific values assigned to the total

population and migration/mutation rates, the pattern

observed is general; in particular, the value of Var(Y ) is

independent of m and the fluctuations (confidence

intervals) are smaller than one unit. Clearly, this feature

of a purely demographic process is inconsistent with the

empirical results presented in Figs. 3 and 4.

The fact that the size of fluctuations is larger than the

prediction of the NTB was already noted by several

authors (Leigh 2007, Seri et al. 2012). In particular,

Feeley et al. (2011) considered these large changes

(which they call directional changes) in the BCI forest as

resulting from specific nonstationary dynamics (e.g., el

Nino events, carbon fertilization), in either the short- or

long-term.

Another possible explanation to this puzzle was

suggested recently in Keil et al. (2010). The authors

showed that a nontrivial variances–mean pattern may

appear when a neutral dynamic is simulated on a set of

local communities (archipelago model) connected by

migration.

We would like to suggest a third possibility within the

neutral theory framework: the directional changes are

not the exception but rather the rule. That is, the

stochasticity affecting ecological communities is mainly

environmental, or at least nondemographic (one can

argue here about terminology, claiming that once the

model allows for differential response to exogenous

factors it is not neutral anymore, but see Alonso et al.

[2006]). This implies that at any given moment different

species have different fitnesses, but the relative fitness

fluctuates in time and all species are equal on average,

like in the a–b–c model considered above.

If this is the case, the deviations from the prediction of

the null model (Eq. 3) should be related to the effects of

stabilizing mechanisms like restoring forces or to the

effect of competition considered in Kilpatrick and Ives

(2003). We hope to present a detailed analysis of this

possibility in a subsequent publication.

Finally, we would like to stress that any community

model that admits a stable equilibrium state (including

those based on generalized Lotka-Volterra equations

and interaction matrices) and includes only demograph-

ic noise should be dismissed (given empirical data sets

akin to those presented in Figs. 3 and 4). Fluctuations in

such models will be smaller than in the (marginally

stable) NTB, and there is a restoring force that limits the

amplitude of populations’ variations, while the neutral

dynamics are free of such stabilizing mechanisms.

Community models that are able to fit the data

presented here must include either substantial environ-

FIG. 5. The variance-to-mean ratio in Hubbell’s neutral
theory of biodiversity metacommunity dynamics. Time series
were gathered from a simulation of a zero sum dynamics for a
community (forest) of N¼25 000 trees. At every time step a tree
is chosen at random to die, and the vacancy is filled with the
descendent of another, randomly chosen tree. The vacancy is
replaced by a new species, reflecting the effect of migration (or
mutations in a metacommunity) with probability l¼ 1 3 10�5.
A generation is defined as the number of time steps for which a
tree has a chance 1/e to survive. Species’ populations were
monitored every 1/10th generation (in the tropical forest, the
generation time is about 50 years) and the fluctuations
monitored along the run to give the variance-to-mean ratio.
The figure shows Var(Y ) vs. m with logarithmic binning based
on powers of five (this is the binning used for the real data in
Fig. 3). The main panel uses logarithmic scaling of the x-axis to
show clearly the small m data, the inset is the same in arithmetic
scale. Error bars stand for 95% (2r) confidence intervals.
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mental noise or an intrinsic mechanism that generates
strong population variations, such as chaotic dynamics

(Huisman and Weissing 1999).
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SUPPLEMENTAL MATERIAL

Appendix A

The dependence of the exponent z on the width of the time window (Ecological Archives E095-148-A1).
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Appendix B

Artifacts of sampling errors and the double logarithmic scale (Ecological Archives E095-148-A2).

Appendix C

The alpha-beta-gamma model (see Fig. 2) (Ecological Archives E095-148-A3).

Appendix D

Cleaning the Breeding Bird Survey (BBS) data from sampling errors (Ecological Archives E095-148-A4).

Appendix E

Fluctuation scaling in the tropical forest—a supplement to Fig. 3 (Ecological Archives E095-148-A5).

Supplement 1

Fortran code simulating a neutral community with demographic noise, used to generate Fig. 5 (Ecological Archives
E095-148-S1).

Supplement 2

Matlab code simulating the alpha-beta-gamma model to check Eq. 3 (Ecological Archives E095-148-S2).

Supplement 3

Matlab code calculating the variance of Y for different time lags, used to analyze the BBS data (Ecological Archives
E095-148-S3).
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