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Abstract 

In this appendix, we present a brief overview of the methodologies and methodological issues for 
 detection and attribution of climate change. Attributing an observed change or an event partly to 
 a causal factor (such as anthropogenic climate forcing) normally requires that the change first be 

 detectable (Hegerl et al. 2010). A detectable observed change is one which is determined to be 
 highly unlikely to occur (less than about a 10% chance) due to internal variability alone, without 
 necessarily being ascribed to a causal factor. An attributable change refers to a change in which 

 the relative contribution of causal factors has been evaluated along with an assignment of 
 statistical confidence (e.g., Bindoff et al. 2013; Hegerl et al. 2010). 

 
 As outlined in Bindoff et al. (2013), the conceptual framework for most detection and attribution 
 studies consists of four elements: 1) relevant observations; 2) the estimated time history of 

 relevant climate forcings (such as greenhouse gas concentrations or volcanic activity); 3) a 
 modeled estimate of the impact of the climate forcings on the climate variables of interest; and 4) 
 an estimate of the internal (unforced) variability of the climate variables of interest—that is, the 

 changes that can occur due to natural unforced variations of the ocean, atmosphere, land, 
 cryosphere, and other elements of the climate system in the absence of external forcings. The 

 four elements above can be used together with a detection and attribution framework to assess 
 possible causes of observed changes.   
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Appendix C. Detection and Attribution Methodologies Overview  1 

C.1 Introduction and Conceptual Framework 2 

In this appendix, we present a brief overview of the methodologies and methodological issues for 3 
detection and attribution of climate change. Attributing an observed change or an event partly to 4 
a causal factor (such as anthropogenic climate forcing) normally requires that the change first be 5 
detectable (Hegerl et al. 2010). A detectable observed change is one which is determined to be 6 
highly unlikely to occur (less than about a 10% chance) due to internal variability alone, without 7 
necessarily being ascribed to a causal factor. An attributable change refers to a change in which 8 
the relative contribution of causal factors has been evaluated along with an assignment of 9 
statistical confidence (e.g., Bindoff et al. 2013; Hegerl et al. 2010). 10 

As outlined in Bindoff et al. (2013), the conceptual framework for most detection and attribution 11 
studies consists of four elements: 1) relevant observations; 2) the estimated time history of 12 
relevant climate forcings (such as greenhouse gas concentrations or volcanic activity); 3) a 13 
modeled estimate of the impact of the climate forcings on the climate variables of interest; and 4) 14 
an estimate of the internal (unforced) variability of the climate variables of interest—that is, the 15 
changes that can occur due to natural unforced variations of the ocean, atmosphere, land, 16 
cryosphere, and other elements of the climate system in the absence of external forcings. The 17 
four elements above can be used together with a detection and attribution framework to assess 18 
possible causes of observed changes.  19 

C.2 Fingerprint-Based Methods 20 

A key methodological approach for detection and attribution is the regression-based 21 
“fingerprint” method (e.g., Hasselmann 1997; Allen and Stott 2003; Hegerl et al. 2007; Hegerl 22 
and Zwiers 2011; Bindoff et al. 2013), where observed changes are regressed onto a model-23 
generated response pattern to a particular forcing (or set of forcings), and regression scaling 24 
factors are obtained. When a scaling factor for a forcing pattern is determined to be significantly 25 
different from zero, a detectable change has been identified. If the uncertainty bars on the scaling 26 
factor encompass unity, the observed change is consistent with the modeled response, and the 27 
observed change can be attributed, at least in part, to the associated forcing agent, according this 28 
methodology. Zwiers et al. (2011) showed how detection and attribution methods could be 29 
applied to the problem of changes in daily temperature extremes at the regional scale by using a 30 
generalized extreme value (GEV) approach. In their approach, a time-evolving pattern of GEV 31 
location parameters (i.e., “fingerprint”) from models is fit to the observed extremes as a means of 32 
detecting and attributing changes in the extremes to certain forcing sets (for example, 33 
anthropogenic forcings).  34 

A recent development in detection/attribution methodology (Ribes et al. 2017) uses hypothesis 35 
testing and an additive decomposition approach rather than linear regression of patterns. The new 36 
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approach makes use of the magnitudes of responses from the models rather than using the model 1 
patterns and deriving the scaling factors (magnitudes of responses) from regression. The new 2 
method, in a first application, gives very similar attributable anthropogenic warming estimates to 3 
the earlier methods as reported in Bindoff et al. (2013) and shown in Figure 3.2. Some further 4 
methodological developments for performing optimal fingerprint detection and attribution 5 
studies are proposed in Hannart (2016), who, for example, focuses on the possible use of raw 6 
data in analyses without the use of dimensional reductions, such as projecting the data onto a 7 
limited number of basis functions, such as spherical harmonics, before analysis. 8 

C.3 Non-Fingerprint Based Methods 9 

A simpler detection/attribution/consistency calculation, which does not involve regression and 10 
pattern scaling, compares observed and simulated time series to assess whether observations are 11 
consistent with natural variability simulations or with simulations forced by both natural and 12 
anthropogenic forcing agents (Knutson et al. 2013; van Oldenborgh et al. 2013). Cases where 13 
observations are inconsistent with model simulations using natural forcing only (a detectable 14 
change), while also being consistent with models that incorporate both anthropogenic and natural 15 
forcings, are interpreted as having an attributable anthropogenic contribution, subject to caveats 16 
regarding uncertainties in observations, climate forcings, modeled responses, and simulated 17 
internal climate variability. This simpler method is useful for assessing trends over smaller 18 
regions such as sub-regions of the United States (see the example given in Figure 6.5 for regional 19 
surface temperature trends). 20 

Delsole et al. (2011) introduced a method of identifying internal (unforced) variability in climate 21 
data by decomposing variables by timescale, using a measure of their predictability. They found 22 
that while such internal variability could contribute to surface temperature trends of 30-years’ 23 
duration or less, and could be responsible for the accelerated global warming during 1977–2008 24 
compared to earlier decades, the strong (approximately 0.8°C, or 1.4°F) warming trend seen in 25 
observations over the past century was not explainable by such internal variability. Constructed 26 
circulation analogs (van den Dool et al. 2003; Deser et al. 2016) is a method used to identify the 27 
part of observed surface temperature changes that is due to atmospheric circulation changes 28 
alone.  29 

The timescale by which climate change signals will become detectable in various regions is a 30 
question of interest in detection and attribution studies, and methods of estimating this have been 31 
developed and applied (e.g., Mahlstein et al. 2011; Deser et al. 2012b). These studies illustrate 32 
how natural variability can obscure forced climate signals for decades, particularly for smaller 33 
(less than continental) space scales. 34 

Other examples of detection and attribution methods include the use of multiple linear regression 35 
with energy balance models (e.g., Canty et al. 2013) and Granger causality tests (e.g., Stern and 36 
Kaufmann 2014). These are typically attempting to relate forcing time series, such as the 37 
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historical record of atmospheric CO2 since 1860, to a climate response measure, such as global 1 
mean temperature or ocean heat content, but without using a full coupled climate model to 2 
explicitly estimate the response of the climate system to forcing (or the spatial pattern of the 3 
response to forcing). Granger causality, for example, explores the lead–lag relationships between 4 
different variables to infer causal relationships between them, and attempts to control for any 5 
influence of a third variable that may be linked to the other two variables in question.  6 

C.4. Multistep Attribution and Attribution without Detection 7 

A growing number of climate change and extreme event attribution studies use a multistep 8 
attribution approach (Hegerl et al. 2010), based on attribution of a change in climate conditions 9 
that are closely related to the variable or event of interest. In the multistep approach, an observed 10 
change in the variable of interest is attributed to a change in climate or other environmental 11 
conditions, and then the changes in the climate or environmental conditions are separately 12 
attributed to an external forcing, such as anthropogenic emissions of greenhouse gases. As an 13 
example, some attribution statements for phenomena such as droughts or hurricane activity—14 
where there are not necessarily detectable trends in occurrence of the phenomenon itself—are 15 
based on models and on detected changes in related variables such as surface temperature, as 16 
well as an understanding of the relevant physical processes linking surface temperatures to 17 
hurricanes or drought. For example, some studies of the recent California drought (e.g., Mao et 18 
al. 2015; Williams et al. 2015) attribute a fraction of the event to anthropogenic warming or to 19 
long-term warming based on modeling or statistical analysis, although without claiming that 20 
there was a detectable change in the drought frequency or magnitude.  21 

The multistep approach and model simulations are both methods that, in principle, can allow for 22 
attribution of a climate change or a change in the likelihood of occurrence of an event to a causal 23 
factor without necessarily detecting a significant change in the occurrence rate of the 24 
phenomenon or event itself (though in some cases, there may also be a detectable change in the 25 
variable of interest). For example, Murakami et al. (2015) used model simulations to conclude 26 
that the very active hurricane season observed near Hawai‘i in 2014 was at least partially 27 
attributable to anthropogenic influence; they also show that there is no clear long-term detectable 28 
trend in historical hurricane occurrence near Hawai‘i in available observations. If an attribution 29 
statement is made where there is not a detectable change in the phenomenon itself (for example, 30 
hurricane frequency or drought frequency) then this statement is an example of attribution 31 
without detection. Such an attribution without detection can be distinguished from a conventional 32 
single-step attribution (for example, global mean surface temperature) where in the latter case 33 
there is a detectable change in the variable of interest (or the scaling factor for a forcing pattern is 34 
significantly different from zero in observations) and attribution of the changes in that variable to 35 
specific external forcing agents. Regardless of whether a single-step or multistep attribution 36 
approach is used, or whether there is a detectable change in the variable of interest, attribution 37 
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statements with relatively higher levels of confidence are underpinned by a thorough 1 
understanding of the physical processes involved.  2 

There are reasons why attribution without detection statements can be appropriate, despite the 3 
lower confidence typically associated with such statements as compared to attribution statements 4 
that are supported by detection of a change in the phenomenon itself. For example, an event of 5 
interest may be so rare that a trend analysis for similar events is not practical. Including 6 
attribution without detection events in the analysis of climate change impacts reduces the 7 
chances of a false negative, that is, incorrectly concluding that climate change had no influence 8 
on a given extreme events (Anderegg et al. 2014) in a case where it did have an influence. 9 
However, avoiding this type of error through attribution without detection comes at the risk of 10 
increasing the rate of false positives, where one incorrectly concludes that anthropogenic climate 11 
change had a certain type of influence on an extreme event when in fact it did not have such an 12 
influence (see Box 3.1). 13 

C.5 Extreme Event Attribution Methodologies 14 

Since the release of the Intergovernmental Panel on Climate Change’s Fifth Assessment Report 15 
(IPCC AR5) and the Third National Climate Assessment (NCA3; Melillo et al. 2014), there have 16 
been further advances in the science of detection and attribution of climate change. An emerging 17 
area in the science of detection and attribution is the attribution of extreme weather and climate 18 
events (NAS 2016; Stott 2016; Easterling et al. 2016). According to Hulme (2014), there are four 19 
general types of attribution methods that are applied in practice: physical reasoning, statistical 20 
analysis of time series, fraction of attributable risk (FAR) estimation, and the philosophical 21 
argument that there are no longer any purely natural weather events. As discussed in a recent 22 
National Academy of Sciences report (NAS 2016), possible anthropogenic influence on an 23 
extreme event can be assessed using a risk-based approach, which examines whether the odds of 24 
occurrence of a type of extreme event have changed, or through an ingredients-based or 25 
conditional attribution approach.  26 

In the risk-based approach (Stott et al. 2004; Hulme 2014; NAS 2016), one typically uses a 27 
model to estimate the probability (p) of occurrence of a weather or climate event within two 28 
climate states: one state with anthropogenic influence (where the probability is p1) and the other 29 
state without anthropogenic influence (where the probability is p0). Then the ratio (p1/p0) 30 
describes how much more or less likely the event is in the modeled climate with anthropogenic 31 
influence compared to a modeled hypothetical climate without anthropogenic influences. 32 
Another common metric used with this approach is the fraction of attributable risk (FAR), 33 
defined as FAR = 1–(p0/p1). Further refinements on such an approach using causal theory are 34 
discussed in Hannart et al. (2016b).  35 

In the conditional or ingredients-based approach (Trenberth et al. 2015; Shepherd 2016; Horton 36 
et al. 2016; NAS 2016), an investigator may look for changes in occurrence of atmospheric 37 
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1 circulation and weather pattems relevant to the extreme event, or at the impact of certain 

2 environmental changes (for example, greater atmospheric moisture) 0 11 the character of an 
3 extreme event. Conditional or ingredients-based attribution can be applied to extreme events or 

4 to climate changes in general. An example of dIe ingredients-based approach and more 

5 discussion of this type of attribution method is given in Box C.2. 

6 Hannart et al. (20 16b) have discussed how causal dleory can also be applied to attribution studies 

7 in order to distinguish between necessary and sufficient causation. Hannart et al. (2016a) further 

8 propose methodologies to use data assimilation systems, which are now used operationally to 

9 update short-tenn numerical weadler prediction models, for detection and attribution. They 
10 envision how such systems could be used in the future to implement near-real time systematic 

11 causal attribution of weadler and climate-related events . 

12 ART BOX C. 

13 Box C.l. On the Use of Significance Levels and Significance Tests in Attribution Studies 

14 In detection/attribution studies, a detectable observed change is one which is detennined to be 

15 highly unlikely to occur (less than about a 10% chance) due to intemal variability alone. Some 

16 frequently asked questions concem the use of such a high statistical threshold (significance level) 

17 in attribution studies. In tIus box, we respond to several such questions received in the public 

18 review period. 

19 Why is such a lugh degree of confidence (for example , statistical sigluficance at p level 
20 ofO.o5) typically required before concluding that an attributable andrropogeluc 

21 component to a climate change or event has been detected? For example, could 

22 attribution studies be reframed to ask whedler there is a 5% or more chance dlat 

23 andrropogeluc climate change contributed to the event? 

24 This question is pardy related to the issue of risk avoidance . For example, if there is a particular 

25 climate change outcome that we wish to avoid (for example , global wanning of 3°e, or lOoC , or 
26 a runaway greenhouse) dlen one can use the upper ranges of confidence intervals of climate 

27 model projections as guidance , based on available science , for avoiding such outcomes. 
28 Detection/attribution studies typically deal widl smaller changes than climate projections over 

29 the next century or more . For detection/attribution studies, researchers are confronting models 
30 with historical data to explore whedler or not observed climate change signals are emerging from 

31 the background of natmal variability. Typically the emergent signal is just a small fraction of 

32 what is predicted by the models for dIe conung century under continued strong greenhouse gas 

33 enussion scenarios. Detecting that a change has emerged from nanrral variability is not the same 

34 as approaclung a tIrreshold to be avoided, unless the goal is to ensure no detectable 
35 andrropogeluc influence on climate. Consequently, use of a relative strong confidence level (or 

36 p-value of 0.05) for detenniIung climate change detection seems justified for the particular case 

37 of climate change detection , since one can also separately use risk-avoidance strategies or 
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probability criteria to avoid reaching certain defined thresholds (for example, a 2°C global 1 
warming threshold). 2 

A related question concerns ascribing blame for causing an extreme event. For example, if a 3 
damaging hurricane or typhoon strikes an area and causes much damage, affected residents may 4 
ask whether human-caused climate change was at least partially to blame for the event. In this 5 
case, climate scientists sometimes use the “Fraction of Attributable Risk” framework, where they 6 
examine whether the odds of some threshold event occurring have been increased due to 7 
anthropogenic climate change. This is typically a model-based calculation, where the probability 8 
distribution related to the event in question is modeled under preindustrial and present-day 9 
climate conditions, and the occurrence rates are compared for the two modeled distributions. 10 
Note that such an analysis can be done with or without the detection of a climate change signal 11 
for the occurrence of the event in question. In general, cases where there has been a detection 12 
and attribution of changes in the event in question to human causes, then the attribution of 13 
increased risk to anthropogenic forcing will be relatively more confident.  14 

The question of whether it is more appropriate to use approaches that incorporate a high burden 15 
of statistical evidence before concluding that anthropogenic forcings contributed significantly (as 16 
in traditional detection/attribution studies) versus using models to estimate anthropogenic 17 
contributions when there may not even be a detectable signal present in the observations (as in 18 
some Fraction of Attributable Risk studies) may depend on what type of error or scenario one 19 
most wants to avoid. In the former case, one is attempting to avoid the error of concluding that 20 
anthropogenic forcing has contributed to some observed climate change, when in fact, it later 21 
turns out that anthropogenic forcing has not contributed to the change. In the second case, one is 22 
attempting to avoid the “error” of concluding that anthropogenic forcing has not contributed 23 
significantly to an observed climate change or event when (as it later comes to be known) 24 
anthropogenic forcing had evidently contributed to the change, just not at a level that was 25 
detectable at the time compared to natural variability.  26 

- What is the tradeoff between false positives and false negatives in attribution statistical 27 
testing, and how is it decided which type of error one should focus on avoiding? 28 

As discussed above, there are different types of errors or scenarios that we would ideally like to 29 
avoid. However, the decision of what type of analysis to do may involve a tradeoff where one 30 
decides that it is more important to avoid either falsely concluding that anthropogenic forcing 31 
has contributed, or to avoid falsely concluding that anthropogenic forcing had not made a 32 
detectable contribution to the event. Since there is no correct answer that can apply in all cases, it 33 
would be helpful if, in requesting scientific assessments, policymakers provide some guidance 34 
about which type of error or scenario they would most desire be avoided in the analyses and 35 
assessments in question. 36 
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1 Since substantial andrropogellic climate change (increased surface temperatures, 
2 increased atmospheric water vapor, etc.) has already occurred, aren't all extreme events 

3 affected to some degree by anthropogenic climate change? 

4 Climate scientists are aware from modeling experiments that very tiny changes to initial 

5 conditions in model simulations lead to very different realizations of intemal climate variability 

6 "noise" in dIe model simulations. Comparing large samples of this random background noise 

7 from models against observed changes is one way to test whedler the observed changes are 
8 statistically distinguishable from intemal climate variability. In any case, this experience also 

9 teaches us that any anthropogenic influence 0 11 climate, no matter how tiny, has some effect on 
10 the future trajectory of climate variability, and dms could affect dIe timing and occurrence of 
11 extreme events. More meaningful questions are: 1) Has andrropogenic forcing produced a 

12 statistically significant change in the probability of occurrence of some class of extreme event? 
13 2) Can we detemune widl confidence dIe net sign of influence of anthropogenic climate change 

14 on the frequency , intensity , etc. , of a type of extreme event? 3) Can climate scientists quantify 

15 (with credible confidence intervals) the effect of climate change on the occurrence frequency , the 

16 intensity , or some other aspect of an observed extreme event? 

17 

18 

19 Box C.2 Illustration ofIngredients-based Event Attribution: The Case of Hurricane Sandy 

20 To illustrate some aspects of dIe conditional or ingredients-based attribution approach, the case 

21 of Hurricane Sandy can be considered. If one considers Hurricane Sandy's surge event , dlere is 

22 strong evidence that sea level rise, at least partly antlrropogenic in origin (see Ch. 12: Sea Level 

23 Rise), made Sandy's surge event worse, all other factors being equal (Reed et al. 20 15) . The 

24 related question of whether andrropogeluc climate change increased dIe risk of an event like 
25 Sandy involves not just the sea level ingredient to surge risk but also whedler the frequency 

26 and/or intensity of Sandy-like stonns has increased or decreased as a result of anthropogeluc 
27 climate change. TIus latter question is more difficult and is briefly reviewed here . 

28 A conditional or ingredients-based attribution approach , as applied to a hurricane event such as 

29 Sandy, may assume that the weather pattems in wluch dIe stann was embedded-and the stoml 

30 itself -could have occurred in a preindustrial climate, and dIe event is re-simulated wlule 

31 changing only some aspects of dIe large-scale environment (for example , sea surface 

32 temperatmes, atmospheric temperanrres, and moisnrre) by an estimated anthropogenic climate 

33 change signal. Such an approach thus explores whether antlrropogenic climate change to date has 
34 altered the odds of occurrence or intensity of a Hurricane Sandy-like event. Modeling studies 
35 show, as expected, that the anomalously wann sea surface temperatures off dIe U.S . East Coast 

36 during Sandy led to a substantially more intense simulated stann than under present-day 

37 climatological conditions (Magnusson et al. 2014) . However , dlese anomalous sea surface 
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1 temperatures and adler environmental changes are a mixture of anthropogenic and natural 

2 influences, and so it is not generally possible to infer dIe andrropogenic component from such 
3 experiments . Anodler study (Lackmann 2015) modeled the influence of just the anthropogenic 

4 changes to the themlodynamic environment (including sea surface temperatures, atmospheric 

5 temperatures, and moisture perturbations) and concluded dlat anthropogenic climate change to 
6 date had caused Hurricane Sandy to be about 5 hPa more intense, but dlat dus modeled change 
7 was not statistically significant at the 95% confidence level. A dlird study used a statistical-

8 dynamical model to compare simulated New York City-area tropical cyclones in pre-
9 andrropogellic and andrropogenic time periods (Reed et al. 2015). It concluded that there have 

10 been anthropogenically induced increases in the types of tropical cyclones dlat cause extreme 

11 surge events in the region , apart from the effects of sea level rise, such as increased radius of 
12 maximum winds in dIe anthropogenic era. However , the statistical-dynamical model used in the 

13 study simulates an unusually large increase in global tropical cyclone activity in 21 st century 
14 projections (Emanuel 2013) compared to other tropical cyclone modeling studies using 

15 dynamical models-a number of which simulate future decreases in late 21st century tropical 

16 stann frequency in the Atlantic basin (e .g. , Christensen et al. 2013). This range of uncertainty 

17 among various model simulations of Atlantic tropical cyclone activity changes under climate 

18 change imply that there is low confidence in detennining the net impact to date of anthropogenic 

19 climate change on dIe risk of Sandy-like events, though andrropogenic sea level rise, all other 

20 things equal, has increased the surge risk . 

21 In summary , while dlere is agreement dlat sea level rise alone has caused greater stoml surge risk 
22 in dIe New York City area , there is low confidence on whether a number of adler important 

23 detenninants of stann surge climate risk , such as the frequency , size , or intensity of Sandy-like 

24 stonns in the New York region , have increased or decreased due to andrropogenic wanning to 

25 date. 

26 

27 
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