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Abstract  
Understanding of Sandhills prairie, the most expan-
sive sand dune region stabilized by perennial grasses 
in the Western Hemisphere, is limited by lack of 
long-term vegetation data. We used a 26-year data-
set to evaluate Sandhills prairie responses to year-
to-year variation in precipitation, temperature, and 
cattle stocking rate. Basal cover, a measurement that 
is constant seasonally and used to detect long-term 
changes in bunchgrass vegetation, was measured in 
38–40 permanent plots positioned along four tran-
sects spanning 769 ha from 1979 to 2007. Across this 
period, total basal cover averaged 2.4 % and was dom-
inated by warm-season grasses (81.1 %). Schizachy-
rium scoparium (little bluestem), the dominant warm-
season bunchgrass, consisted of 60.0 % relative basal 
cover. Warm-season grass and total basal cover re-
sponded positively to lag 3-year growing season pre-
cipitation indicating delayed responses to improved 
growing season conditions, but these variables also 
were positively associated with stocking rate. The pos-
itive responses may be due to slow spread of warm-
season grasses by vegetative structures in response to 
favorable growing conditions in light to moderately 
stocked rangeland. Despite its dominance, however, 
warm-season grass cover had no influence on cover 
of other functional groups providing weak support for 

competition as regulator of Sandhills prairie composi-
tion. Forb cover was best related in a negative manner 
to 3-year running mean total precipitation, a surpris-
ing result that maybe signaling factors governing basal 
responses in prairie remain largely unresolved. Woody 
species cover, however, was positively associated with 
mean growing season temperatures indicating poten-
tial of these to spread under warming scenarios. 

Keywords: Basal cover, Climate change, Cool-season 
grasses, Grasslands, Great plains, Warm-season 
grasses 

Introduction 

Climate variability and change is expected to alter eco-
system structure and function (Easterling et al. 2000; 
Weltzin et al. 2003; Smith et al. 2009; Cleland et al. 
2013; Hoover et al. 2014). A hierarchy of responses 
from changes in plant growth and function, to simpli-
fication of plant communities, and invasion of exotic 
species are possible (Tilman and El Haddi 1992; Smith 
et al. 2009). These responses by the plant community 
are dependent on the magnitude, duration, and tim-
ing of the climatic stress (Hoover et al. 2014). Peri-
ods of below average precipitation or drought in the 
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past have led to a decrease in basal cover of domi-
nant warm-season bunchgrasses (Weaver and Albert-
son 1936; Herbel et al. 1972; Fuhlendorf and Smeins 
1997; Biondini et al. 1998). Resilience, i.e., capac-
ity for recovery of ecosystem function (Hoover et al. 
2014), however, was demonstrated when subsequent 
increases in growing season rainfall returned basal 
cover of the dominant warm-season grass species to 
near pre-drought levels despite changes in plant com-
munity composition (Herbel et al. 1972; Fuhlendorf 
and Smeins 1997; Biondini et al. 1998). 

In the central U.S., the presence of dominant pe-
rennial warm-season grasses enhances resilience to 
climatic extremes (Hoover et al. 2014) through in-
vestment in traits such as belowground reserves that 
supply carbohydrate when photosynthesis and growth 
is limited and basal meristems that remain protected 
from disturbances such as grazing (Coughenour 1985; 
Ott and Hartnett 2011). Warm-season grasses also ad-
just osmotically, fold or roll leaves, and modify sto-
matal conductance to maintain photosynthetic and 
metabolic activities during low moisture stress (Sala 
et al. 1982; Knapp 1985). Deeply penetrating, widely 
branching, and depth-segregated rooting systems also 
help perennial warm-season grasses tolerate drought 
(Weaver and Albertson 1936), and spread of vegeta-
tive structures contributes to population recovery af-
ter drought (Hendrickson and Briske 1997; Benson et 
al. 2004). 

Although there has been much focus on evaluat-
ing grassland responses to extreme climatic events 
in recent years (Fay et al. 2002, 2003, 2008; Knapp 
et al. 2002; Heisler-White et al. 2008; Hoover et al. 
2014), the presence of long-term datasets also can be 
valuable in assessing plant community responses to 
climate variability (Sherry et al. 2012), but these re-
sponses have not been examined in Nebraska Sand-
hills prairie. The Sandhills, a ≈ 4.8 million ha region 
in north central Nebraska, is the most expansive sand 
dune region in the Western Hemisphere currently sta-
bilized by perennial warm-season grasses and sup-
ported by soils that rapidly absorb precipitation (Bleed 
and Flowerday 1998; Schacht et al. 2000). The Sand-
hills supports about 720 vascular plant species, in-
cluding 670 native species and 50 introduced spe-
cies (Kaul 1998), and is one of the largest, contiguous 
grasslands remaining in the Great Plains region of 
North America (Samson et al. 2004). Although prai-
rie vegetation currently provides stability, wide-scale 

wind erosion occurred during the Holocene, and it has 
been projected that a shift toward a warmer climate 
may cause grassland death and allow dunes to move 
(Mangan et al. 2004). 

In 1926, a long-term study was established at the 
Nebraska National Forest to investigate Sandhills 
prairie responses to cattle grazing. At the time, graz-
ing was being used to shift prairie vegetation from a 
taller, S. scoparium, to a shorter, Bouteloua hirsuta 
(hairy grama), dominated bunchgrass community to 
create a natural firebreak and protect adjacent forest 
from wildfire. Frequency of occurrence of plant spe-
cies among permanent plots was evaluated across a 
period spanning from 1926 to 2004 and reported in 
Stubbendieck and Tunnell (2008). However, data col-
lected on plant basal cover from 1979 to 2007 have not 
been summarized, analyzed, or reported. Basal cover, 
a measure of ground area covered by crowns and 
shoots, has often been evaluated in long-term stud-
ies (Albertson and Tomanek 1965; Herbel et al. 1972; 
Fuhlendorf and Smeins 1997; Fuhlendorf et al. 2001; 
Gillen and Sims 2006) and is considered an appropri-
ate metric to evaluate disturbances related to weather 
functions in bunchgrass-dominated communities be-
cause of its stability within and across growing sea-
sons (Herbel et al. 1972; Havstad and Herrick 2003) 
and power to detect ecologically significant changes 
(Brady et al. 1995). 

Our objectives were to use the long-term data on 
basal cover to describe relative species composition 
and examine responses of most abundant plant spe-
cies and functional groups in Sandhills prairie to year-
to-year variation in precipitation, temperature, and 
cattle stocking rate. We hypothesized that (1) total 
basal cover would increase with greater temperature 
and precipitation due to positive responses of warm-
season grasses (e.g., Knapp 1985); (2) perennial forb 
cover would be resistant to precipitation and temper-
ature variability because forbs can obtain water from 
different soil depths (e.g., Nippert and Knapp 2007); 
(3) an increase in cattle stocking rate would reduce 
warm-season grass cover due to negative grazing ef-
fects on S. scoparium (e.g., Butler and Briske 1988; 
Derner et al. 1994); and (4) an increase in S. scopar-
ium would negatively affect cover of other species 
due to greater competition as bunchgrasses concen-
trate soil resources and occupy space (e.g., Derner and 
Briske 2001). 
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Methods 

Study area 

The study was located in Sandhills prairie on sands 
ecological sites at the Nebraska National Forest Bessey 
Ranger District—Bessey Unit (41°52’N; 100°21’W), 1.6 
km west of Halsey in Thomas County, NE (Fig. 1). The 
Bessey Unit encompassed 36,638 ha including 7913 
ha of the largest plantation forests of Pinus ponder-
osa (ponderosa pine) and Juniperus virginiana (east-
ern red cedar) in the United States (US Forest Service 

2009). Grassland consisted of 28,139 ha of the Bessey 
Unit and was characterized historically as a mixture 
of tallgrass and mixed-grass prairie (Pool 1913; Tol-
stead 1942; Schacht et al. 2000). Soils were Valen-
tine fine sands with a parent material of quartz sand 
(Keech and Bentall 1971). 

Established in 1926, the permanently marked plots 
in this study were originally used to evaluate the fea-
sibility of using heavy grazing (i.e., a cattle stocking 
rate of 2.2 animal unit months (AUM) ha-1, where one 
AU = 450 kg live weight) to establish a firebreak near 
the forest. After being monitored through 1938 and 

Figure 1 Location of long-term monitoring plots in Sandhills prairie at the Nebraska National Forest in Thomas County, Ne-
braska. The extent of Sandhills prairie in Nebraska is indicated by the light gray shading in the statewide map
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briefly by the US Forest Service in the 1940s, data 
were not collected from the plots until 1979 when 
this study was initiated. The 48 plots established in 
1926 were arranged along four transects covering a 
range of topographic positions (dune tops, slopes, 
and interdunes/terraces) and slope directions (Fig. 
2). By 1979, eight plots could no longer be located, 
and some of the remaining plots were difficult to find 
consistently. Of the remaining 40 plots, twenty-nine 
had data collected every year, eight were missing 
data from either 1 or 2 years, and three were miss-
ing data from more than 2 years. Most of the plots 
were in Valentine fine sand with rolling and hilly, 
9–60 % slopes with the exception of half of transect 
4 which was in Valentine fine sand with rolling, 9–24 
% slopes (Fig. 2). Heavy grazing following establish-
ment of the plots in 1926 was successful in shifting 
botanical composition, but due to increased weed in-
vasion and improvements in fire control equipment, 
a moderate grazing regime was implemented and S. 
scoparium was again the dominant species by 1979 

(Stubbendieck and Tunnell 2008). From 1979 to 
2007, all plots experienced the same cattle stocking 
rate each year (mean = 0.85 AUM ha-1), but this var-
ied with grazing allotments established annually be-
tween ranchers and the U.S. Forest Service and was 
not closely associated with climatic variables (Ap-
pendix in Table 5). 

Data collection and analysis 

Basal cover was measured annually in August or 
September 1979–2007, except from 2000 to 2002 
(Appendix in Table 4). Each plot had two perma-
nent markers that allowed square frames to be con-
sistently placed on the same 1-m2 area. After plac-
ing a 1-m2 square frame in the designated position, 
basal cover was measured using the line intercept 
method. A ruler was placed across the frame at nine 
pre-determined locations for a maximum basal cover 
of 9000 mm. Basal cover was recorded by measur-
ing the distance (mm) in which the basal part of the 

Figure 2 Distribution of long-term monitoring plots along four transects traversing dune top (1), slope (2), and interdunal/
terrace (3) topographic positions in Sandhills prairie at the Nebraska National Forest in Thomas County, Nebraska
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plant intersected the ruler. Through the study pe-
riod, 92 plant species were recorded, but most of 
these species were absent from plots across several 
years. The 14 species that made up 95 % of the total 
cover and present in nearly all 25 years of the study 
(Appendix in Table 4) were used in analyses to de-
scribe relative species composition and examine re-
lationships of mean plot basal cover to climatic and 
stocking rate variables (Appendix in Table 5). Rela-
tionships of mean plot basal cover to climatic and 
stocking rate variables also were examined by func-
tional groups which included warm season grasses, 
cool-season grasses, sedges, succulents, forbs, and 
woody species computed from the 92 species re-
corded in the 26 years of the study. 

A series of stepwise multiple regression analyses 
were used to examine relationships of actual basal 
cover of the 14 most abundant species, their func-
tional groups, and total basal cover with climate 
data, cattle stocking rates, and basal cover of S. sco-
parium and warm-season grasses as a whole based on 
a priori knowledge of their dominance in Sandhills 
prairie (Pool 1913; Schacht et al. 2000; Stubbendi-
eck and Tunnell 2008). The use of stepwise regres-
sions helped eliminate multicollinearity issues with 
the climate data by adding independent variables one 
at a time. The model with the lowest Akaike’s Infor-
mation Criteria value was selected as the most suit-
able model out of all the models generated. Annual 
and monthly climate data were obtained from the 
National Climatic Data Center (2013) and the High 
Plains Regional Climate Center (2012). Weather sta-
tions were located at or within 48 km of Halsey, NE. 
Climatic variables included total precipitation (Total 
PPT), mean annual temperature (Mean Ann Temp), 
minimum temperature (Min Temp), maximum tem-
perature (Max Temp), and the Palmer drought se-
verity index (PDSI) which combines precipitation 
and temperature and produces a number that is ei-
ther negative or positive relating to dry or wet peri-
ods, respectively (Heddinghaus and Sabol 1991). The 
growing season (April–September) means of most 
variables were separated from the data, and total 
precipitation was also divided into early growing sea-
son (April–June) and late growing season (July–Sept). 
Total precipitation during the growing season of the 
previous year (Lag 1-year PPT), a 3 year lag (Lag 
3-year PPT), and a three-year running mean (3-year 
running mean PPT), as well as a three-year lag late 
growing season (July–Sept) were also added. All sta-
tistical analyses were conducted with SPSS statistical 

package (version 22.0, SPSS Incorporated, Chicago, 
IL). Normal distribution of data was assessed by a 
Kolmogorov–Smirnov goodness of fit test. Statistical 
significance was declared at P ≤ 0.05. 

Results 

Relative species composition 

Total basal cover had a mean ± SD of 2.4 ± 1.0 % 
across the study period of 1979–2007. Of this cover, 
81.1 ± 9.6 and 8.9 ± 7.3 % consisted of warm- and 
cool-season grasses, respectively. Schizachyrium sco-
parium and B. hirsuta were the most abundant warm 
season grasses, and Dichanthelium oligosanthes (Scrib-
ners panicum) and Hesperostipa comata (needle- and-
thread) were the most abundant cool-season grasses 
(Table 1). A total of 45 species of forbs were recorded 
with a combined basal cover of 1.9 ± 1.5 %, and woody 
species, which included subshrubs, shrubs, and a tree, 
had a combined basal cover of 1.6 ± 1.2 %. Ambrosia 
psilostachya (western ragweed) comprised approxi-
mately half of the forb cover, while Rosa arkansana 
(prairie rose) and Amorpha canescens (leadplant) were 
the most abundant woody plants (Table 1). Two genera 
of sedges, Carex and Cyperus, comprised 4.5 ± 2.7 % 
of basal cover while succulents, represented by three 
species in the Opuntia genus, had a basal cover of 2.1 ± 
2.5 %. Opuntia fragilis  (little prickly pear) accounted 
for over half of the succulent cover. 

Climatic conditions and cattle stocking rate 

Climatic variables that had the greatest influence on 
basal cover included mean growing season (April– 
September) temperature and precipitation, mean 
growing season maximum temperature, mean dor-
mant season (October–March) temperature, mean late 
growing season (July–September) precipitation, and 
total annual precipitation (Fig. 3). From 1979 to 2007, 
mean ± SD growing season temperature was 17.5 ± 1.0 
_C while mean ± SD growing season maximum tem-
perature was 25.2 ± 1.3 °C. Meanwhile, growing sea-
son precipitation accounted for the majority of total 
annual precipitation (Fig. 3), which averaged 440 ± 
90 and 578 ± 116 mm, respectively. Most precipita-
tion fell early in the growing season (April–June) but 
late growing season precipitation had more impact 
on basal cover responses. Across the study, PDSI had 
a mean ± SD of 1.9 ± 2.7 indicating a slightly wetter 
period overall (Appendix in Table 5). 
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Basal cover responses 

Climatic variables explained basal cover responses of 
10 of 14 species (Table 2). For these ten species, the 
variation explained (adjusted R2) ranged from 18.1 to 
68.1 %. Basal cover of S. scoparium, despite being the 
dominant species and highly competitive for soil re-
sources (Derner and Briske 2001), did not show a sig-
nificant response to climatic variables. Schizachyrium 
scoparium only explained basal cover responses of two 
species; S. scoparium was positively correlated with 
Paspalum setaceum (sand paspalum) basal cover and 
negatively correlated with R. arkansana basal cover. 
Meanwhile, growing season and total precipitation 
were negatively related to basal cover responses of 
several species including A. psilostachya, B. hirsuta, 
Calamovilfa longifolia (prairie sandreed), Eragrostis 

trichodes (sand lovegrass), and H. comata as dem-
onstrated by significant b coefficients for the 3-year 
running means for April–September, July– September, 
and total precipitation, as well as simply total precip-
itation (Table 2). Late growing season precipitation, 
both in terms of lag 3-year and total precipitation, 
also contributed to improved understanding of B. hir-
suta responses. 

Either current year mean April–September temper-
ature or mean April–September maximum tempera-
ture were strong positive predictors of Andropogon 
hallii (sand bluestem), B. hirsuta, R. arkansana, and 
Sporobolus cryptandrus (sand dropseed) basal cover. 
Opuntia fragilis  was the only species that had a neg-
ative response to growing season maximum tempera-
ture. However, as PDSI decreased, meaning the com-
bination of precipitation and temperature was having 
a drying effect, O. fragilis and P. virgatum increased in  

Table 1 Relative basal cover of plant species that occurred in C50 % of plots in Sandhills prairie at the Nebraska National Forest Bessey Ranger District 
near Halsey, Nebraska from 1979 to 2007

Scientific name and authority 	 Common name 	 Functional group 	 Relative basal cover (%)

Ambrosia psilostachya DC. 	 Western ragweed 	 Forb 	 0.7
Andropogon hallii Hack 	 Sand bluestem 	 Warm-season grass 	 2.0
Artemisia ludoviciana Nutt. 	 Cudweed sagewort 	 Forb 	 0.1
Bouteloua hirsuta Lag. 	 Hairy grama 	 Warm-season grass 	 8.3
Calamovilfa longifolia (Hook.) Scribn. 	 Prairie sandreed 	 Warm-season grass 	 1.8
Carex and Cyperus spp. 	 Sedges 	 Sedge 	 4.6
Dichanthelium oligosanthes (Schult.) Gould 	 Scribners panicum 	 Cool-season grass 	 2.8
Dichanthelium wilcoxianum (Vasey) Freckmann 	 Wilcox panicum 	 Cool-season grass 	 0.3
Eragrostis spectabilis (Pursh) Steud. 	 Purple lovegrass 	 Warm-season grass 	 0.7
Eragrostis trichodes (Nutt.) A.W. Wood 	 Sand lovegrass 	 Warm-season grass 	 4.0
Helianthus annuus L./Helianthus petiolaris Nutt. 	 Annual/Plains sunflower 	 Forb 	 0.1
Hesperostipa comata (Trin. & Rupr.) Barkworth 	 Needle-and-thread 	 Cool-season grass 	 3.1
Koeleria macrantha (Ledeb.) Schult. 	 Prairie junegrass 	 Cool-season grass 	 0.6
Opuntia fragilis (Nutt.) Haw. 	 Little prickly pear 	 Succulent 	 1.3
Paspalum setaceum Michx. 	 Sand paspalum 	 Warm-season grass 	 0.7
Panicum virgatum L. 	 Switchgrass 	 Warm-season grass 	 2.2
Poa pratensis L. 	 Kentucky bluegrass 	 Cool-season grass 	 0.4
Rosa arkansana Porter ex Porter & J.M. Coult. 	 Prairie rose 	 Woody 	 1.2
Schizachyrium scoparium (Michx.) Nash 	 Little bluestem 	 Warm-season grass 	 60.0
Sorghastrum nutans (L.) Nash 	 Indiangrass 	 Warm-season grass 	 0.3
Sporobolus cryptandrus (Torr.) A. Gray 	 Sand dropseed 	 Warm-season grass 	 1.8
Vulpia octoflora (Walter) Rydb. 	 Sixweeks fescue 	 Cool-season grass 	 0.1
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basal cover, while H. comata decreased. In two mod-
els, stocking rate was found to be a strong predictor 
variable (Table 2). Stocking rate was negatively cor-
related with O. fragilis cover but positively correlated 
with A. psilostachya cover. 

Climatic variables and stocking rate explained from 
0 to 31.4 % of functional group variation (Table 3). 
The 3-year running mean total precipitation had a neg-
ative relationship with forb basal cover, while growing 
season temperature was positively related to woody 
species basal cover. Meanwhile, as PDSI decreased, 

succulent basal cover increased. Basal cover of warm-
season grasses had the same predictor variables as to-
tal cover, responding positively to stocking rate and 
lag 3-year growing season precipitation. Basal cover 
of cool-season grasses was negatively influenced by 
an increase in total precipitation, but basal cover of 
sedges showed no response to climatic variables or 
stocking rate. 

Discussion 

Relative species composition
 
Relative species composition compared well with 
historical vegetation composition on sands ecologi-
cal sites, indicating the prairie was in good to excel-
lent condition (Pool 1913; Tolstead 1942; Schacht et 
al. 2000; Stubbendieck and Tunnell 2008). Principal 
dominants historically included tall and mid-height 
warm-season grasses including A. hallii, C. longifo-
lia, and S. scoparium. Subdominant grass species in-
cluded Achnatherum hymenoides (Indian ricegrass), 
D. oligosanthes, H. comata, H. spartea (porcupine-
grass), P. virgatum, S. cryptandrus, and either B. hir-
suta or B. gracilis (blue grama). With exception of A. 
hymenoides and B. gracilis, all of these species were 
found in the prairie. Areas where the prairie differed 
from the historical vegetation composition was in 
terms of warm-season grass and forb cover. Histori-
cally, the plant community consisted of 85 % grasses 
and grasslike plants, 10 % forbs, and 5 % shrubs (in-
cluding succulents) by weight (USDA-NRCS 2016). In 
contrast, average basal cover in this Sandhills prai-
rie consisted of 95 % grasses and grass-like plants, 
2 % forbs, and 4 % shrubs (including succulents). Of 
warm-season grasses, 60 %of relative basal cover was 
S. scoparium compared to 2 % each for A. hallii and C. 
longifolia, which may be artifacts of sampling meth-
ods that elevate measures of crown-forming bunch-
grasses such as S. scoparium relative to rhizomatous 
species with widely dispersed tiller populations (Cul-
lan et al. 1999). With regard to forbs, Artemisia dra-
cunculus (tarragon) and Cirsium sp. (thistle) were not 
found in the prairie but were there historically (USDA-
NRCS 2016). 

Topography as it relates to soil depth and mois-
ture availability also can influence Sandhills prairie 
composition (Schacht et al. 2000). Vegetation sur-
veys have found the presence of S. scoparium and cool 

Figure 3 Temperature and precipitation variables that in-
fluenced plant species and functional group composition 
in Sandhills prairie at the Nebraska National Forest Bessey 
Ranger District near Halsey, Nebraska from 1979 to 2007
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Table 2 Stepwise multiple regressions for basal cover of plant species in Sandhills prairie from 1979 to 2007 relative to variables including Schizachy-
rium scoparium (SCSC) cover, precipitation (PPT), temperature (Temp), and the Palmer drought severity index (PDSI)

Species 	 Adjusted R2 	 F value 	 P value 	 Independent variable 	                            B                   P value 	 β

Ambrosia psilostachya 	 0.542 	 10.86 	 <0.001 	 Constant 	 -313.427 	 0.168

				    3-year running mean total PPT 	 -9.938 	 <0.001 	 -0.602
				    Mean Apr–Sept max temp 	 6.996 	 0.020 	 0.342
				    Stocking rate 	 152.453 	 0.027 	 0.323

Andropogon hallii 	 0.28 	 10.714 	 0.003 	 Constant 	 -1749.833 	 0.006
				    Mean Apr–Sept temp 	 29.868 	 0.003 	 0.556

Bouteloua hirsuta 	 0.681 	 11.679 	 <0.001 	 Constant 	 -7166.763 	 0.017
				    Mean Apr–Sept max temp 	 192.235 	 <0.001 	 0.787
				    3-year running mean PPT	 -187.918 	 <0.001 	 -0.732
				      Apr–Sept
				    Mean Oct–Mar temp 	 -147.778 	 <0.001 	 -0.720
				    Lag 3-year PPT July–Sept 	 92.783 	 0.004 	 0.447
				    Total PPT July–Sept 	 61.446 	 0.050 	 0.285

Calamovilfa longifolia 	 0.523 	 10.141 	 <0.001 	 Constant 	 1290.623 	 <0.001
				    3-year running mean PPT	 -39.602 	 0.001 	 -0.554
				      Apr–Sept
				    Total PPT 	 -13.798 	 0.018 	 -0.402
				    Total PPT July–Sept 	 -19.327 	 0.047 	 -0.322

Carex spp. 	 NS

Dichanthelium oligosanthes 	 NS

Eragrostis trichodes 	 0.435 	 10.635 	 0.001 	 Constant 	 965.001 	 0.001
				    3-year running mean PPT	 -58.401 	 0.001 	 -0.627
				      July–Sept
				    Lag 3-year PPT Apr–Jun 	 34.196 	 0.001 	 0.610
Hesperostipa comata 	 0.582 	 9.701 	 <0.001 	 Constant 	 2421.465 	 <0.001

				    Total PPT 	 -39.860 	 <0.001 	 -0.892	
				    Mean PDSI 	 56.296 	 0.001 	 0.750
				    3-year running mean total PPT 	 -45.471 	 0.001 	 -0.637
				    Lag 1-year PPT Apr–Sept 	 -19.385 	 0.016 	 -0.393

Opuntia fragilis 	 0.613 	 14.191 	 <0.001 	 Constant 	 1311.688 	 0.004
				    Mean PDSI 	 -21.493 	 <0.001 	 -0.662
				    Stocking rate 	 -528.273 	 <0.001 	 -0.597
				    Mean Apr–Sept max temp 	 -13.022 	 0.021 	 -0.340

Panicum virgatum 	 0.181 	 6.527 	 0.017 	 Constant 	 214.141 	 <0.001
				    Mean PDSI 	 -22.007 	 0.017 	 -0.462

Paspalum setaceum 	 0.141 	 5.114 	 0.033 	 Constant 	 20.494 	 0.344
				    SCSC cover 	 0.008 	 0.033 	 0.419

Rosa arkansana 	 0.402 	 9.420 	 0.001 	 Constant 	 -960.023 	 0.007
				    Mean Apr–Sept temp 	 17.054 	 0.003 	 0.523
				    SCSC cover 	 -0.006 	 0.034 	 -0.353

Schizachyrium scoparium 	 NS

Sporobolus cryptandrus 	 0.201 	 7.279 	 0.013 	 Constant 	 -2726.764 	 0.018
				    Mean Apr–Sept max temp 	 37.272 	 0.013 	 0.482

In these regressions, the adjusted R2 described fit of the model to the data, the first P value indicated significance of the model, B was the 
unstandardized coefficient, the second P value indicated significance of independent variable in the model, and β was the standardized coefficient.
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season grasses such as H. comata and Koeleria macran-
tha (prairie junegrass) to be positively associated with 
north-facing slopes, while warm-season grasses such 
as C. longifolia and A. hallii were positively associated 
with south-facing slopes (Schacht et al. 2000). While 
some of our species were aligned with the same top-
ographic positions [e.g., B. hirsuta and dunetops; Poa 
pratensis (Kentucky bluegrass) and interdunes] as in 
Schacht et al. (2000), limitations on plot numbers as-
signed to various topographic positions prevented a 
robust analysis of plant species-topographic associa-
tions in our study (data not shown). 

Basal cover responses to precipitation and 
temperature 

Seasonal or total precipitation variables influenced 
basal cover responses of 5 of the 14 species we an-
alyzed, as well as total basal cover, but for the most 
part, species responses were individualistic and noisy 
as observed in other long-term studies (e.g., Fuhlen-
dorf and Smeins 1997; Gillen and Sims 2006; Tilman 
et al. 2006; Adler and HilleRisLambers 2008). Arid 
and semi-arid grasslands often contain a large num-
ber of annual species that are particularly responsive 

Table 3 Stepwise multiple regression results for basal cover of functional groups in Sandhills prairie from 1979 to 2007 relative to variables including 
warm-season grass cover, precipitation (PPT), temperature (temp), and the Palmer drought severity index (PDSI)

Functional group 	 Adjusted R2 	 F value 	 P value 	 Independent variable 	 B 	 P value 	 β

Forbs 	 0.244 	 9.074 	 0.006 	 Constant 	 524.826 	 0.001
				    3-year running mean total PPT 	 -17.361 	 0.006 	 -0.524

Woody plants 	 0.260 	 9.768 	 0.005 	 Constant 	 -1331.052 	 0.008
				    Mean Apr–Sept temp 	 22.831 	 0.005 	 0.538

Succulents 	 0.314 	 6.73 	 0.005 	 Constant 	 352.432 	 <0.001
				    Stocking rate 	 -539.215 	 0.011 	 -0.461
				    Mean PDSI Apr–Sept 	 -16.499 	 0.018 	 -0.423

Warm-season grasses 	 0.313 	 6.708 	 0.005 	 Constant 	 -4380.236 	 0.199
				    Stocking rate 	 17,762.878 	 0.006 	 0.515
				    Lag 3-year PPT Apr–Sept 	 331.338 	 0.019 	 0.423

Cool-season grasses 	 0.154 	 5.545 	 0.027 	 Constant 	 1397.363 	 <0.001
				    Total PPT 	 -33.246 	 0.027 	 -0.433

Sedges 	 NS

Total basal cover 	 0.289 	 6.091 	 0.008 	 Constant 	 -0.009 	 0.396
				    Stocking rate 	 0.051 	 0.007 	 0.506
				    Lag 3-year PPT Apr–Sept 	 0.001 	 0.028 	 0.401

In these regressions, the adjusted R2 described fit of the model to the data, the first P value indicated significance of the model, B was the 
unstandardized coefficient, the second P value indicated significance of independent variable in the model, and β was the standardized coefficient.
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to changes in precipitation (O’Connor and Roux 1995; 
Hobbs et al. 2007; Cleland et al. 2013). Of the 9 spe-
cies that did not respond to year-to-year fluctuations 
in seasonal or total precipitation, 7 of these were 
grasses or sedges and their basal responses were 
likely delayed by slow spread and contraction of veg-
etative structures and crowns in response to current 
climatic conditions. As a group, warm-season grass 
and total basal cover responded positively to 3-year 
lag growing season precipitation, results supportive 
of our first hypothesis and other long-term studies 
that have found basal cover of perennial warm-sea-
son grasses to be responsive to changes in precipi-
tation (Albertson and Tomanek 1965; Fuhlendorf et 
al. 2001), though responses depended on a lag period 
(e.g., Sherry et al. 2012). 

Temperature variability influenced basal cover re-
sponses of 6 of the 14 species but not total basal cover. 
The warm-season grasses, A. hallii, B. hirsuta, and 
S. cryptandrus, responded positively to mean grow-
ing season temperatures (Table 2), responses consis-
tent with our first hypothesis and the four carbon 
photosynthetic pathway (C4) of these species (Knapp 
1985). Indeed, warm-season rhizomatous grasses re-
sponded positively to growing season temperatures 
(Table 3). Positive responses of R. arkansana and 
woody species to mean growing season temperature 
also were observed. Woody species exhibit plastic-
ity in depth of water uptake relative to warm-sea-
son grasses during drought (Eggemeyer et al. 2008), 
which may contribute to tolerance of higher growing 
season temperatures. 

Although the majority of forbs did not respond to 
temperature variables, the increase of A. psilostachya 
to increasing mean growing season maximum temper-
atures is partially supported by Alward et al. (1999) 
who found forbs increased with increasing minimum 
growing season temperatures and by Adler and Hill-
eRisLambers (2008) who observed population growth 
of prairie forbs to be more responsive to changes in 
mean temperatures than either precipitation or spe-
cies composition. The increase of A. psilostachya with 
stocking rate also was consistent with previous re-
ports about grazing responses in Sandhills prairie (Re-
ece et al. 2004). On the other hand, we also found forb 
basal cover to have a negative relationship with the 
3-year running mean for total annual precipitation, a 
result not easily explained. The mechanisms and de-
terminants for why forbs would respond negatively 
to precipitation amount or not at all as observed by 

others remain unresolved (Briggs and Knapp 2001), 
though it is interesting to note that forb basal cover 
responses were not as closely associated with mean 
growing season precipitation as the 3-year running 
mean total precipitation. 

Depending on greenhouse gas emission scenar-
ios, recent projections have average temperatures 
increasing from 1 to 3 _C and winter to spring pre-
cipitation increasing 5 to 15 % by 2099 in the cen-
tral U.S. (US Global Change Research Program 2009; 
Polley et al. 2013). With increased temperatures, we 
might expect to find S. scoparium and warm-season 
grasses as a whole continue to account for the ma-
jority of basal cover in Sandhills prairie but also ob-
serve increased basal cover of woody species such 
as R. arkansana and forbs such as A. psilostachya. 
Changes in precipitation patterns, on the other hand, 
would most likely impact basal cover of forbs, warm-
season grasses, and cool season grasses as a whole. 
Nonetheless, despite having long-term observations 
on basal cover, extrapolating results to predict cli-
matic responses of Sandhills prairie remains difficult 
due in part to uncertainties associated with future 
climatic changes and to species-specific responses to 
climatic and management conditions (Weltzin et al. 
2003; Mangan et al. 2004; Adler and HilleRisLam-
bers 2008). 

Basal cover, stocking rate, and warm-season grass 
competition 

With regard to our third hypothesis, we found stocking 
rate influenced warm-season grass responses, but re-
sults were opposite to that which we predicted. We hy-
pothesized basal cover of warm season grasses would 
decrease with increased stocking rate as heavy graz-
ing intensities have been known to negatively impact 
basal cover of S. scoparium (Butler and Briske 1988; 
Derner et al. 1994). The use of conservative stock-
ing rates to achieve 50 % rangeland utilization an-
nually in all plots, however, likely did not produce 
strong enough defoliation intensities to have a nega-
tive influence on S. scoparium basal cover and, indeed, 
likely produced defoliation intensities that encourage 
spread, and therefore, overall greater basal cover of 
warm season grasses. Increases in basal cover, tiller 
densities, and frequency of occurrence of perennial 
warm-season grasses have been observed with light 
to moderate grazing intensities in the Sandhills (Reece 
et al. 1988; Stephenson et al. 2013). Implementation 
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of heavier grazing intensities where utilization ap-
proaches 75 % or more may reduce basal cover of 
warm-season grasses and contribute to shifting of 
grassland vegetation from taller to shorter species 
(Fuhlendorf and Smeins 1997; Fuhlendorf et al. 2001). 
Indeed, the latter was observed during early years of 
this study with the shift from S. scoparium to B. hir-
suta dominance (Stubbendieck and Tunnell 2008) 
when stocking rates averaged 2.2 AUM ha-1 compared 
to an average of 0.85 AUM ha-1 from 1979 to 2007. As 
stocking rate increases, both the percentage of tillers 
defoliated and the number of tillers defoliated multi-
ple times per growing season increase, thereby weak-
ening S. scoparium (Derner et al. 1994). 

Lastly, we hypothesized that an increase in basal 
cover of S. scoparium and warm-season grasses as a 
whole would have a negative effect on basal cover of 
other species and functional groups. This hypothesis 
was based on the view that biotic and abiotic pro-
cesses can regulate population responses to climatic 
variability (Symstad and Tilman 2001; Adler and Hill-
eRisLambers 2008; Levine et al. 2010). The decline in 
forb basal cover with the 3-year running mean for to-
tal annual precipitation, a response opposite of those 
grasses, also suggests a potential role of competitive 
interactions in regulating their dynamics (Briggs and 
Knapp 2001). Despite their dominance, however, basal 
cover of S. scoparium and warm season grasses as a 
whole had minimal influence on basal cover of other 
species and functional groups. This might have been 
different if species and functional groups responses to 
S. scoparium and warm-season grasses were evaluated 
in terms of foliar cover and herbage production; how-
ever, current results suggest competition has a weak 
influence on basal cover in Sandhills prairie. Inter-
estingly, Symstad and Tilman (2001) found S. scopar-
ium increased reproductive output and aboveground 
biomass but did not respond in terms of recruitment 
in an experiment in which its competitors were re-
moved suggesting it may itself have minimal influence 
on other species. Root systems that facilitate water 
uptake from different depths may be a mechanism by 
which forbs avoid competition and coexist with dom-
inant warm-season grasses such as S. scoparium (Nip-
pert and Knapp 2007). Forb interactions with warm-
season grasses also may be more important in terms 
of recruitment of propagules than in regulating cover 
of existing plants (Adler and HilleRisLambers 2008). 

Conclusions 

Across the 26-year study, results showed that grow-
ing season precipitation and temperature, as well as 
cattle stocking rate, explained the most variability in 
basal cover responses of individual plant species and 
functional groups in Sandhills prairie. Stocking rate 
and lag 3-year growing season precipitation was par-
ticularly important to explaining variability of warm-
season grasses, which consisted of the majority of to-
tal basal cover. The use of light to moderate stocking 
rates combined with greater precipitation across a 
few growing seasons would contribute to increased 
warm season grass and total basal cover, presumably 
through spread of vegetative structures and enlarg-
ing of crowns of bunchgrasses. With regard to forbs 
and woody plants, subtle deviations from the use of 
light to moderate stocking rates and growing season 
precipitation are not likely to have an impact on basal 
cover of these functional groups, although an increase 
in stocking rate would promote greater cover of A. psi-
lostachya. As a whole, however, understanding of fac-
tors that explain forb basal cover in Sandhills prairie 
remain largely unresolved. Woody species basal cover, 
on the other hand, would be expected to increase with 
greater warming in Sandhills prairie. With regard to 
cool season grasses, they were a smaller component 
of basal cover in this Sandhills prairie, and similar 
to that of forbs, we do not have strong conclusions 
about factors governing their responses, although to-
tal precipitation may have a role. Improvement in un-
derstanding of variability of cool-season grass basal 
cover would need further investigation. Lastly, despite 
their dominance, we found S. scoparium and warm-
season grass cover as a whole did not explain basal 
cover responses of most other species and functional 
groups, providing weak support for competition as a 
factor that regulates plant community composition in 
Sandhills prairie. 

Appendix – See Tables 4 and 5. 
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