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a b s t r a c t

In ruminants, prostaglandin F2alpha (PGF2a)-mediated luteolysis is essential prior to estrous cycle
resumption, and is a target for improving fertility. To deduce early PGF2a-provoked changes in the
corpus luteum a short time-course (0.5e4 h) was performed on cows at midcycle. A microarray-
determined transcriptome was established and examined by bioinformatic pathway analysis. Classic
PGF2a effects were evident by changes in early response genes (FOS, JUN, ATF3) and prediction of active
pathways (PKC, MAPK). Several cytokine transcripts were elevated and NF-kB and STAT activation were
predicted by pathway analysis. Self-organizing map analysis grouped differentially expressed transcripts
into ten mRNA expression patterns indicative of temporal signaling cascades. Comparison with two
analogous datasets revealed a conserved group of 124 transcripts similarly altered by PGF2a treatment,
which both, directly and indirectly, indicated cytokine activation. Elevated levels of cytokine transcripts
after PGF2a and predicted activation of cytokine pathways implicate inflammatory reactions early in
PGF2a-mediated luteolysis.

Published by Elsevier Ireland Ltd.

1. Introduction

In mammals, multiple fertile cycles depend on the formation
and regression of a transient endocrine structure in the ovary
termed the corpus luteum (CL) (Meidan, 2017). The CL forms during
each estrous cycle and synthesizes progesterone, a hormone critical

for early embryonic survival during pregnancy (Micks et al., 2015;
Spencer et al., 2016). However, before the next follicle can
develop, the steroidogenic luteal cells of the CL must cease pro-
gesterone productiondcontingent on the absence of a pregnan-
cydand ultimately undergo apoptosis (Aboelenain et al., 2015; Del
Canto et al., 2007). Prostaglandin F2alpha (PGF2a) is a recognized
lipid mediator that triggers luteal regression after an unsuccessful
reproductive cycle or at parturition in mammals (Davis and Rueda,
2002). Thus, PGF2a-mediated luteolysis is a key checkpoint in the
reproductive cycle and is a useful target for controlling the estrous
cycle and fertility.

Signaling by PGF2a has been studied extensively in vitro, and the
classic signaling pathway involves the binding of PGF2a to its G-
protein coupled receptor and activating Gaq/11 (McCann and Flint,
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1993; V€a€an€anen et al., 1998). The early intracellular signaling events
initiated by PGF2a in luteal cells include the activation of phos-
pholipase C (Davis et al., 1987), phospholipase A2 (Kurusu et al.,
2012, 1998), an increase in intracellular Ca2þ (Davis et al., 1987),
activation of protein kinase C (PKC) (Chen et al., 2001) and activa-
tion of mitogen-activated protein kinase (MAPK) signaling cascades
including extracellular signal-regulated kinase (ERK) (Arvisais et al.,
2010; Chen et al., 2001, 1998; Yadav and Medhamurthy, 2006).
These signaling cascades are responsible for the induction of
several early response genes including, Finkel-Biskis-Jinkins mu-
rine osteosarcoma viral oncogene homolog (FOS) (Chen et al.,
2001), Jun proto-oncogene (JUN) (Chen et al., 2001), early growth
response 1 (EGR1) (Hou et al., 2008), and activating transcription
factor 3 (ATF3) (Mao et al., 2013). These initial alterations will
trigger changes in the CL proteome enabling luteolysis to proceed.
For example, EGR1 expression stimulates the synthesis of trans-
forming growth factor beta (TGFb) (Hou et al., 2008), which can
inhibit luteal progesterone secretion (Hou et al., 2008), act on luteal
endothelial cells to disrupt the microvasculature (Maroni and
Davis, 2011), and stimulate the profibrotic activity of luteal fibro-
blasts (Maroni and Davis, 2012).

The luteolytic process is a well-coordinated series of events
similar to an acute inflammatory response consisting of a sequen-
tial time-dependent infiltration of neutrophils, macrophages, and T
lymphocytes (Best et al., 1996; Penny et al., 1999). Accordingly,
there is likely time-dependent secretion of cytokines to recruit and
activate the various leukocytes (Townson and Liptak, 2003). Several
cytokine transcripts are induced by PGF2a in the mid-to late-stage
CL including tumor necrosis factor alpha (TNF) (Shah et al., 2014),
interleukin 1 beta (IL1B) (Atli et al., 2012; Mondal et al., 2011),
TGFB1 (Hou et al., 2008; Mondal et al., 2011; Shah et al., 2014), and
the chemokines; C-C motif chemokine ligand 2 (CCL2, previously
known as MCP1) (Mondal et al., 2011; Penny et al., 1998) and C-X-C
motif 8 (CXCL8, previously known as IL8) (Atli et al., 2012; Mondal

et al., 2011; Shah et al., 2014; Shirasuna et al., 2012b; Talbott et al.,
2014). These cytokines have pleiotropic effects on luteal cells,
including inhibition of progesterone secretion, stimulation of
PGF2a secretion, and stimulation of apoptosis of multiple luteal cell
types (Pate et al., 2010). The production of luteolytic factors,
decrease in progesterone secretion, recruitment of immune cells,
release of pro-inflammatory cytokines, reduction in blood supply
(Shirasuna, 2010), and the creation of a hypoxic environment
(Nishimura and Okuda, 2015) likely act in concert within the CL to
cause the functional and structural regression of the CL.

The purpose of this study was to understand the early PGF2a-
elicited changes in the CL based on temporal patterns of early
transcript expression following in vivo treatment with PGF2a.
While many studies have examined luteolytic alterations both
in vivo and in vitro, most studies have focused on changes 3e24 h
after PGF2a administration (Mondal et al., 2011; Shah et al., 2014)
or used targeted rather than global approaches (Atli et al., 2012;
Shirasuna et al., 2012a, 2010). Therefore, little is known about the
very early temporal changes in global mRNA expression elicited in
response to PGF2a treatment in vivo. In the present study, a systems
biology approach using Affymetrix Bovine microarray was
employed to evaluate gene expression at 0.5e4 h after PGF2a;
followed by bioinformatics analysis of PGF2a-mediated signals. We
hypothesized that the sequence of events after in vivo PGF2a
administration would include early changes of classical targets of
PGF2a signaling pathways followed by fluctuations in targets of
cytokine signaling at later times.

2. Materials and methods

2.1. Animals

Postpubertal multiparous female cattle (n ¼ 15) of composite
breeding (½ Red Angus, Pinzgauer, Red Poll, Hereford and ½ Red

Abbreviations

Protein/Gene
ABCA1 ATP binding cassette subfamily A member 1
ABCG1 ATP binding cassette subfamily G member 1
APOA1 apolipoprotein A1
APOE apolipoprotein E
ATF3/ATF3 activating transcription factor 3
CCL/CCL C-C motif chemokine
CH25H/CH25H cholesterol 25-hydroxylase
CL corpus luteum
CYP11A1 cytochrome P450 family 11 subfamily A member 1
EDN1 endothelin 1
EGR/EGR early growth response protein 1/3/4
ERK extracellular signal-regulated kinase
FOS/FOS Finkel-Biskis-Jinkins murine osteosarcoma viral

oncogene homolog
GEO Gene Expression Omnibus
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HSD3B1 hydroxyl-d-5-steroid dehydrogenase, 3 b and steroid d-

isomerase 1
HSL/LIPE Hormone sensitive lipase, type E
IL-/IL interleukin
INSIG1/INSIG1 insulin induced gene 1
IPA Ingenuity Pathway Analysis

JUN/JUN Jun proto-oncogene
LDLR low density lipoprotein receptor
LDLRAP1/LDLRAP1 low density lipoprotein receptor adaptor

protein 1
LHCGR Luteinizing hormone/chorionic gonadotropin receptor
LLC large luteal cells
MAPK mitogen-activated protein kinase
mRNA messenger RNA
NF-kB/NFKB1 nuclear factor kappa B
NR1H nuclear receptor family 1 subfamily H member 2/3
NR4A/NR4A nuclear receptor subfamily 4 group A member 1/2/

3
PGF2a prostaglandin F2alpha
PKC/PKCD protein kinase C
qPCR quantitative real-time PCR
RMA robust multi-array average
SCARB1 scavenger receptor class B member 1
SEM standard error of the mean
SLC small luteal cells
SOM self-organizing map
StAR/StAR steroidogenic acute regulatory protein
STAT signal transducer and activator of transcription 1/3
TGFb/TGFB transforming growth factor beta 1/2
TNFa/TNF tumor necrosis factor alpha
USF1 upstream transcription factor 1
VEGF vascular endothelial growth factor A
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Angus and Gelbvieh) were synchronized using two intramuscular
injections of PGF2a (25 mg; Lutalyse®, Zoetis Inc., Kalamazoo
Michigan, MI) 11 days apart. At midcycle (days 9e10), cows were
treated with an intra-muscular injection of saline (n ¼ 3) or PGF2a
(n¼ 12). At each of four times post-injection (0.5,1, 2, and 4 h) three
cows per treatment were subjected to a bilateral ovariectomy
through a right flank approach under local anesthesia (Summers
et al., 2014; Youngquist et al., 1995). The CL was dissected from
the ovary, weighed and < 5 mm3 sections were snap-frozen in
liquid N2 for subsequent protein and RNA analysis. Plasma pro-
gesterone concentrations were determined using the ImmuChem
Progesterone DA Coated Tube radioimmunoassay kit (MP Bio-
medicals, Santa Ana, CA) with an intra-assay coefficient of variation
of 9.13% and inter-assay coefficient of variation of 7.99%. The Uni-
versity of Nebraska-Lincoln Institutional Animal Care and Use
Committee approved all procedures and facilities used in this ani-
mal experiment. Statistical differences in animal characteristics
were determined using Kruskal-Wallis test followed by Dunn's
post-test or one-way ANOVA followed by Bonferroni's multiple
comparison test as appropriate (GraphPad Prism, La Jolla, CA).

2.2. Steroidogenic luteal cell culture

Bovine ovaries were collected during midcycle or early preg-
nancy from a local slaughterhouse (JBS® USA, Omaha, NE). Ste-
roidogenic cells were prepared from luteal slices by enzymatic
digestion with type II collagenase (103 IU/mL) as described previ-
ously (Hou et al., 2008). Enriched fractions of small luteal cells (SLC)
and large luteal cells (LLC) were prepared from corpora lutea of
early pregnancy using centrifugal elutriation similar to a previous
study (Mao et al., 2013). The mixed luteal cells were resuspended in
elutriation medium (calcium-free Dulbecco's modified eagle me-
dium (DMEM) [D9800-10 US Biological, Salem, MA], supplemented
with 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES), 3.89 g/L sodium bicarbonate, and 3 mg/mL glucose).
Resuspended mixed luteal cells were subjected to centrifugal
elutriation with continuous flow using a Beckman Coulter Avanti J-
20 XP centrifuge equipped with a Beckman JE-5.0 elutriator rotor.
After removing red blood cells and endothelial cells fractions con-
taining primarily SLC (1200 rpm, 24 mL/min) and LLC (680 rpm,
30mL/min) were collected. The SLC and LLC fractions were pelleted
and resuspended in basal M199 (0.1% bovine serum albumin (BSA),
100 U/ml penicillin, 100 mg/mL streptomycin, and 10 mg/mL gen-
tamycin). The average purity of SLC was ~ 90% and LLC was > 50%.

Cells were seeded at a density of 1 � 105 cells/cm2 for midcycle
mixed luteal cells and SLC and a density of 4� 104 cells/cm2 for LLC.
Cells were allowed to attach in a 5% CO2 incubator at 37 �C in basal
M199 medium containing 5% fetal bovine serum (FBS). The cells
were incubated in serum-free medium for 3 h before applying
treatments as described in the legends to the figures [PGF2a (in
ethanol, #16010, Cayman Chemical, Ann Arbor, MI), TNFa (210-TA,
R&D, Minneapolis, MN), IL-1b (RP0106B), IL-6 (RP0014B), IL-17A
(RP0056B, Kingfisher Biotech, Saint Paul, MN)]. Luteal cell cul-
tures were harvested into lysis buffer (20 mM Tris [pH 7.5], 150 mM
NaCl, 1 mM EDTA, 0.2 mM EGTA, 1% Triton X-100, protease and
phosphatase inhibitor cocktails) and lysed by sonication.

Lysate supernatents were suspended in sodium dodecyl sulfate
(SDS) loading buffer (50mM Tris [pH 6.8], 300 mM glycerol, 25 mM
SDS, 45 mM dithiothreitol, 260 mM 2-mercaptoethanol, bromo-
phenol blue). Proteins were separated by electrophoresis using 10%
SDS-polyacrylamide gels and transferred to nitrocellulose mem-
branes. Membranes were blocked with 5% non-fat milk in 0.1%
Tween 20 in Tris-buffered saline (TBST) and primary and secondary
antibodies were diluted in 1% non-fat milk or BSA in 0.1% TBST.
Signals were visualized on FluorChem M (ProteinSimple, San Jose,

CA) or UVP (UVP, LLC, Upland, CA) systems using SuperSignal West
Femto (Thermo Science, Miami, OK) or Western Lightening (Per-
kinElmer, Waltham, MA). Phosphorylated nuclear factor kappa B
(NF-kB) subunit P65 (phospho-P65, 3031 AB_330559) and phos-
phorylated ERK1/2 P44/P42 (phospho-P44/P42, 9101, AB_331646)
antibodies were from Cell Signaling Technology (Danvers, MA); b-
actin (A5441, AB_476744) and b-tubulin (T4026, AB_477577) anti-
bodies were from Sigma (St. Louis, MO); and anti-mouse (115-035-
205, AB_2338513) and anti-rabbit (111-035-003, AB_2313567)
HRP-conjugated IgG from Jackson (West Grove, PA). Protein band
density was analyzed using UVP software (Version 6.7.4), using area
density of equally sized rectangles encompassing the bands at the
appropriate molecular weight, then normalized to the corre-
sponding b-actin density and compared to control treatment by
fold change.

2.3. Affymetrix Bovine Gene chip microarray

Each CL from the in vivo experiment described in Section 2.1 was
homogenized and RNA was extracted using a Stratagene RNA
Isolation Kit (Santa Clara, CA) following manufacturer's in-
structions. Quality of RNA was assessed by A260/280 ratio, only
samples with ratios � 2 were used for transcriptomics analyses.
Samples were reverse transcribed to cDNA using iScript (Bio-Rad,
Hercules, CA) and subjected to in vitro transcription per manufac-
tures suggestion to generate biotinylated amplified RNA for hy-
bridization using 30 IVT Express (Affymetrix, Santa Clara, CA).
Transcriptional changes were analyzed by hybridization of 500 ng
biotinylated cDNA using Affymetrix (Santa Clara, CA) bovinewhole-
transcript microarray (Bovine Gene v1 Array [BovGene-1_0-v1];
GPL17645) at the University of NebraskaMedical Center Microarray
Core Facility. Validation of target transcripts was performed after
reverse transcription of 1 mg RNA using SuperScript II Reverse
Transcriptase (Invitrogen, Grand Island, NY) followed by quantita-
tive real-time PCR (qPCR) using gene-specific primers
[Supplemental Table 1] on a CFX96 Touch™ Real-Time PCR Cycler
(Bio-Rad, Hercules, CA) with SsoFast™ EvaGreen® Supermix (Bio-
Rad, Hercules, CA). Comprehensive microarray methods and data
are available in the Gene Expression Omnibus (GEO) database un-
der accession GSE94069 and are described in the accompanying
Data in Brief article (Talbott et al., 2017).

2.4. Microarray Statistics

The microarray data were preprocessed using the robust multi-
array average (RMA) method from Affymetrix expression console
software (Affymetrix Inc., Santa Clara, CA) to normalize data at the
exon level. The mean intensities of multiple probe sets of the same
gene were calculated under each array to obtain the corresponding
gene expression intensities. The data was filtered to keep the genes
with a raw expression value after preprocessing to be 10 ormore for
at least three of the 15 samples. Linear Models for Microarray
Analysis (Smyth, 2004) in the Bioconductor suite (Gentleman et al.,
2004) under the statistical program R (R Core Team, 2015) was
applied to compare the log ratio between each of the PGF2a times
and the saline control after adjusting for the box effect. Transcripts
with a fold-change of at least 1.5 and a Benjamini-Hochberg
adjusted P-value of less than 0.05 for each treatment condition
versus control were identified as differentially expressed genes.

2.5. Self-organizing maps and statistics

Microarray data was filtered to keep genes with a raw expres-
sion value after preprocessing to be 30 or more for at least three of
the 15 samples. The log ratio between each of the times and the
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saline control were compared using Linear Models of Microarray
Analysis in the Bioconductor suite in R. The self-organizing map
(SOM) clustering algorithm GeneCluster 2.0 (Tamayo et al., 1999)
was applied to differentially expressed genes that had a greater
than 1.5-fold change in expression and P-value � 0.05 between
PGF2a-treated samples and the saline control. The mean normal-
ized log2 intensity values from each of the five examined biological
conditions were used as transcript expression profiles in the clus-
tering analysis. The number of iterations in SOM clustering was set
to 500,000 to generate SOMs and hierarchical clustering (correla-
tion-based distance, average link).

2.6. Dataset comparisons

Two previously published microarray datasets, GSE23348
(Mondal et al., 2011) and GSE27961 (Shah et al., 2014) examined the
effect of in vivo PGF2a (Lutalyse) or PGF2a analog (Juramate)

treatment on the bovine luteal transcriptome using Affymetrix
BovineWhole Genome Gene Chips (GPL 2112). These datasets were
chosen for comparison to the transcriptome dataset presented
herein based on similarities in the experimental protocol
comparing midcycle control CL expression profiles to CL profiles
after treatment with PGF2a or analog for 4 h (GSE23348) or 6 h
(GSE27961). Original. CEL and. CHP files were downloaded from the
GEO database and processed as described in Section 2.4 Microarray
Statistics. The differentially expressed mRNAs at 4 or 6 h were
compared between the three microarray datasets to determine the
similarities among the datasets.

2.7. Pathway analysis

Pathway analysis was evaluated using Ingenuity Pathway
Analysis (IPA) [Application: Build: 430520M Copyright 2017 QIA-
GEN (Redwood City, CA)]. Transcripts found to be differentially

Fig. 1. Time-course of the transcriptomic response to PGF2a.
Midcycle cows (n ¼ 3/time-point) were treated with 25 mg PGF2a for 0.5, 1, 2, and 4 h and control saline injections (n ¼ 3). Samples were analyzed by Affymetrix bovine whole
transcript microarray (Bovine Gene v1 Array [BovGene-1_0-v1]; GPL17645) and differentially expressed transcripts were identified based on fold change � j1.5j and Benjamini-
Hochberg adjusted P-value � 0.05 compared to saline controls (n ¼ 3). (A) Number of upregulated and downregulated differentially expressed transcripts at each time-point
graphed on a log scale, upregulated transcripts appear in red above the central axis, and downregulated transcripts appear in green below the axis. (B) Venn diagram of the
number of differentially expressed genes that overlapped between the four times examined. Each oval is labeled with the time-point and the total number of differentially
expressed genes in the time-point. Overlapping parts of the ovals are labeled with the number of transcripts that were differentially expressed at the corresponding times. (C & D).
Quantitative PCR (qPCR) analysis of target genes normalized to ACTB and GAPDH expression and compared to saline controls using fold-change are displayed using bar graphs to
represent mean ± SEM and plotted on the left Y-axis. Microarray determined fold-change of the target genes compared to control are overlayed using filled circles � to represent the
mean (n ¼ 3) and plotted on the right Y-axis. (C) Selected transcription factor genes (ATF3, FOS, JUN, and JUNB) were significantly different from control values (P < 0.0001) as
determined by qPCR and determined as differentially expressed in the microarray (except JUN at 4 h). (D). Target chemokine transcripts (CCL2, CCL8, CXCL2, and CXCL8) were all
upregulated at 4 h (P < 0.01). Additionally, CXCL8 was significantly upregulated at 1 and 2 h (P < 0.0001, P < 0.05, respectively) as determined by qPCR. Determination of
differentially expressed transcripts by microarray indicated significant upregulation of CXCL2 and CXCL8 at 4 h and CCL8 at both 2 and 4 h. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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expressed compared to saline-injected controls with � 1.5-fold
change and P � 0.05 were input into IPA for core analysis using
Entrez gene IDs for evaluations of the time-course and comparison
datasets. Unmapped genes ranged from 6.5 to 20.7% per individual
times or datasets. Datasets were assessed for prediction of up-
stream regulators and signaling pathways. Additional pathway
analysis was completed using DAVID (Version 6.8, released: Oct
2016) (Huang et al., 2009a, 2009b), Panther Database (Version 11.1,
released: Oct 2016) (Mi et al., 2016, 2013; Thomas et al., 2006), and
STRING Database (Version 10.0, released: Apr 16, 2016) (Szklarczyk
et al., 2015) to validate IPA findings. Functional categorization of
genes common to all three datasets examined was done by manual
annotation of a single major functional category for each gene
based on National Center for Biotechnology Information (NCBI),
GeneCardsSuite descriptions and gene ontology (GO) annotations
of genes.

3. Results

3.1. Bovine microarray

The analysis of the Affymetrix gene arrays revealed a total of
1654 differentially expressed gene transcripts. The number of
differentially expressed genes increased during the time-course

(Fig. 1A). Upregulated transcripts predominated at early times in
response to PGF2a (89.6% and 97.1% upregulated, 0.5 and 1 h,
respectively). Similar numbers of upregulated and downregulated
transcripts were observed at 2 h after PGF2a (53.4% upregulated
genes). Conversely, at 4 h after PGF2a, 58.2% of differentially
regulated transcripts were downregulated. The overlap of altered
transcripts among times is shown in a Venn diagram in Fig. 1B. Of
note, 14 of the 29 differentially expressed mRNAs detected at 0.5 h
after PGF2a were differentially expressed at all 4 times
(Supplemental Table 2). Additionally, at 4 h after PGF2a, there were
1507 differentially expressed transcripts unique to that time-point.
A full list of differentially expressed genes, fold changes and P-
values is provided in Supplemental Table 2. Comprehensive
microarray data can be found in the GEO database under accession
GSE94069.

The top 10 upregulated and downregulated transcripts (by fold-
change) at each time-point along with their fold change and P-
values are listed in Tables 1 and 2, respectively. Transcription fac-
tors were particularly prominent early in the time-course response
to PGF2a and although the number of transcription factors
continued to increase, they made up a lower proportion of differ-
entially expressed genes as the time-course proceeded [Fig. 1 in
(Talbott et al., 2017)]. One-half hour after PGF2a treatment, 34.5% of
the mapped differentially expressed genes had a transcription

Table 1
Top ten upregulated genes at each time-pointa.

Gene Symbol Entrez ID Gene Name Fold Change P-value

0.5 h FOS 280795 Fos proto-oncogene, AP-1 transcription factor subunit 14.94 8.22E-04
NR4A1 528390 nuclear receptor subfamily 4 group A member 1 8.56 1.30E-05
NR4A2 540245 nuclear receptor subfamily 4 group A member 2 7.34 4.94E-06
NR4A3 528877 nuclear receptor subfamily 4 group A member 3 7.15 2.67E-04
FOSB 540819 FosB proto-oncogene, AP-1 transcription factor subunit 6.74 2.40E-04
APOLD1 538827 apolipoprotein L domain containing 1 6.57 8.33E-04
IER2 525380 immediate early response 2 6.04 4.50E-05
EGR1 407125 early growth response 1 5.57 2.40E-04
JUNB 514246 JunB proto-oncogene, AP-1 transcription factor subunit 4.86 1.79E-06
CYR61 508941 cysteine rich angiogenic inducer 61 4.61 3.03E-03

1 h NR4A3 528877 nuclear receptor subfamily 4 group A member 3 27.85 7.81E-07
FOSB 540819 FosB proto-oncogene, AP-1 transcription factor subunit 16.65 1.38E-06
DUSP2 539140 dual specificity phosphatase 2 13.06 7.27E-05
NR4A1 528390 nuclear receptor subfamily 4 group A member 1 11.36 1.38E-06
EGR4 407155 early growth response 4 10.81 1.26E-04
FOS 280795 Fos proto-oncogene, AP-1 transcription factor subunit 10.50 1.38E-03
ATF3 515266 activating transcription factor 3 9.00 1.22E-05
NR4A2 540245 nuclear receptor subfamily 4 group A member 2 8.84 9.30E-07
ARC 519403 activity regulated cytoskeleton associated protein 7.06 4.02E-04
DUSP5 507061 dual specificity phosphatase 5 6.55 9.51E-06

2 h EGR4 407155 early growth response 4 20.38 1.44E-05
FOSB 540819 FosB proto-oncogene, AP-1 transcription factor subunit 15.13 2.80E-06
SERPINB2 505184 serpin peptidase inhibitor, clade B (ovalbumin), member 2 14.42 1.74E-04
ARC 519403 activity regulated cytoskeleton associated protein 13.90 1.79E-05
DUSP5 507061 dual specificity phosphatase 5 12.31 4.85E-07
NR4A3 528877 nuclear receptor subfamily 4 group A member 3 11.77 1.49E-05
F3 280686 coagulation factor III, tissue factor 11.10 1.89E-02
ATF3 515266 activating transcription factor 3 11.09 4.85E-06
INA 532236 internexin neuronal intermediate filament protein alpha 10.41 2.25E-03
MMP12 526981 matrix metallopeptidase 12 10.26 2.11E-03

4 h MMP12 526981 matrix metallopeptidase 12 41.71 1.06E-05
SERPINB2 505184 serpin peptidase inhibitor, clade B (ovalbumin), member 2 25.49 1.31E-05
SERPINE1 281375 serpin family E member 1 17.87 1.01E-06
CSRP3 540407 cysteine and glycine rich protein 3 17.82 2.31E-04
SERPINA14 286871 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 14 17.57 2.58E-04
IL33 507054 interleukin 33 17.46 1.76E-07
IL1A 281250 interleukin 1 alpha 16.65 1.77E-05
TNFSF18 768081 tumor necrosis factor superfamily member 18 15.38 1.60E-06
DUSP5 507061 dual specificity phosphatase 5 14.52 1.23E-07
INHBA 281867 inhibin beta A subunit 13.57 1.23E-07

a Top ten upregulated transcripts at each time examined, P-value � 0.05, sorted from largest to smallest based on average fold change.
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factor classification using DAVID molecular function analysis and at
4 h after PGF2a, only 1.9% of the differentially expressed genes were
classified as transcription factors [Fig. 1 in (Talbott et al., 2017)].
Transcription factors that were upregulated at all times investi-
gated included ATF3, BTG2, FOS, FOSB, EGR3, JUNB, NR4A1, NR4A2,
NR4A3, and ZFP36 (Supplemental Table 2). Verification of micro-
array results was completed using qPCR to verify the stimulation of
several immediate-early response genes (ATF3, FOS, JUN, JUNB)
which peaked between 1 and 2 h (Fig. 1C).

Several cytokine and chemokine-related transcripts were
upregulated in response to PGF2a. At 2 h after PGF2a, upregulated
cytokine and chemokine transcripts included CCL8, IL1A, IL1B, and
IL33 (Supplemental Table 2). Lastly, at 4 h, 25 cytokine and
chemokine-related transcripts were upregulated including all of
the upregulated cytokines and chemokines at 2 h and additionally
including, CCL2, CCL3, CCL4, CXCL2, CXCL5 CXCL8, CXCL13, and IL18
(Supplemental Table 2). Validation of selected cytokine and che-
mokines transcripts was performed by qPCR (Fig.1D) and described
by (Talbott et al., 2014). Suppressor of cytokine signaling 3 (SOCS3),
which encodes a protein important in preventing over-activation of
inflammatory conditions, was the first inflammatory/cytokine
related transcript significantly upregulated at 1 h. At the 2 and 4 h
times, both SOCS3 and SOCS1 were upregulated (Supplemental
Table 2).

Downregulated genes included NR5A2 (also known as LRH1)
(Supplemental Table 2); however, many of the downregulated
genes have no known role in luteal function or luteolysis. Analysis
by IPA of downregulated genes indicated activation of ‘decreased
size of body’ (z-scores; �4.029 and �8.795 at 2 and 4 h, respec-
tively). Upstream regulators included activation of NUPR1 (z-
scores; 2.53, 4.01 at 2 and 4 h, respectively) and inhibition of
vascular endothelial growth factor (VEGF), upstream transcription
factor 1 (USF1), and endothelin 1 (EDN1) (z-scores at
4 h; �4.55, �2.58, �2.43, respectively). Functional analysis by
DAVID of downregulated genes at 4 h indicated an enrichment in

insulin signaling and cyclic adenosine monophosphate signaling
and metabolic processes.

3.2. Functional luteolysis

Serum progesterone was significantly decreased by PGF2a
treatment at 2 and 4 h (51% and 54%, respectively) compared to
saline-treated midcycle cows (Fig. 2A). Cows from different treat-
ment groups were not different in age, weight or number of calves
produced. There were no significant differences among groups in
CL weight, ovary dimensions, and antral follicle counts [Fig. 2 in
(Talbott et al., 2017)]. Despite the decrease in progesterone secre-
tion by 2 h after PGF2a, there were no changes within our study in
transcripts of proteins that directly control progesterone synthesis
(Fig. 2B). The proteins encoded by StAR, CYP11A1, and HSD3B1
(steroidogenic acute regulatory protein, cytochrome P450 family 11
subfamily A member 1, and hydroxyl-d-5-steroid dehydrogenase, 3
b and steroid d-isomerase 1, respectively) are directly responsible
for the modification of cholesterol to progesterone, but the abun-
dance of the transcripts were not changed following PGF2a treat-
ment. Additionally, no changes were observed in the luteinizing
hormone/chorionic gonadotropin receptor (LHCGR) or lipoprotein
receptors: SCARB1, and LDLR (scavenger receptor class B member 1,
and low density lipoprotein receptor) (Fig. 2B).

Conversely, several transcripts associated with cholesterol
availability were differentially regulated (Fig. 2B). Transcript
abundance of lipase E, hormone sensitive type (LIPE), which en-
codes the cholesteryl esterase hormone sensitive lipase (HSL) was
decreased at 2 and 4 h. As well, the LDLR adaptor protein (LDLRAP1)
transcript abundance decreased beginning at 2 h. Other genes with
products influencing cholesterol availability that increased during
the time-course included insulin induced gene 1 (INSIG1) and
cholesterol 25-hydroxylase (CH25H) transcripts. Finally, there were
no changes observed in transcript abundance of genes for reverse
cholesterol transport proteins (ABCA1, ABCG1, NR1H2, NF1H3,

Table 2
Top ten downregulated genes at each time-point.

Gene Symbol Entrez ID Gene Name Fold Change P-value

0.5 h LOC100337120 100337120 T-cell activation Rho GTPase-activating protein-like �3.81 4.47E-03
LOC783362 783362 uncharacterized LOC783362 �3.81 3.25E-03
MIR2450B 100313224 microRNA 2450b �3.46 8.13E-03

1 h GBP4 100298387 guanylate binding protein 4 �2.56 3.74E-02
ARHGAP25 534994 Rho GTPase activating protein 25 �2.06 8.59E-03
CARD6 520291 caspase recruitment domain family member 6 �1.75 3.74E-02

2 h GRIA1 529618 glutamate ionotropic receptor AMPA type subunit 1 �4.57 3.26E-02
LOC783362 783362 uncharacterized LOC783362 �4.24 7.48E-04
CEP295NL 100125412 CEP295 N-terminal like �3.95 3.30E-02
CALB2 513947 calbindin 2 �3.57 1.63E-02
LOC510193 527460 apolipoprotein L3 �3.41 4.43E-02
LOC100337457 100337457 solute carrier family 23 member 2 �3.23 3.33E-02
FAM13C 540918 family with sequence similarity 13 member C �3.20 2.88E-03
LOC100337120 100337120 T-cell activation Rho GTPase-activating protein-like �3.04 6.89E-03
RUNDC3B 525116 RUN domain containing 3B �2.82 7.69E-03
SDPR 532333 serum deprivation response �2.78 7.24E-03

4 h LOC783362 783362 uncharacterized LOC783362 �4.77 1.44E-04
APLNR 615435 apelin receptor �4.20 5.10E-04
FOXL2 281770 forkhead box L2 �4.16 3.35E-06
ARHGAP20 515501 Rho GTPase activating protein 20 �4.05 3.06E-04
PIEZO2 522631 piezo type mechanosensitive ion channel component 2 �3.80 2.39E-04
NPNT 513362 nephronectin �3.69 8.59E-04
GPAM 497202 glycerol-3-phosphate acyltransferase, mitochondrial �3.55 7.42E-03
LRIG3 506574 leucine rich repeats and immunoglobulin like domains 3 �3.50 5.31E-04
MAMSTR 505540 MEF2 activating motif and SAP domain containing transcriptional regulator �3.38 9.54E-04
TNS3 516555 tensin 3 �3.31 8.60E-05

*Top ten downregulated transcripts at each time examined, P-value � 0.05, sorted from largest to smallest decrease compared to control based on average fold change.
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APOA1, and APOE) except ABCA1,which was reduced at 4 h (Fig. 2B).

3.3. Pathway analysis of the response to PGF2a

Ingenuity Pathway Analysis identified known PGF2a mediators
including PGF2a itself (identified in IPA as the synthetic PGF2a,
dinoprost), PKC group (Chen et al., 2001), ERK/MAPK (Arvisais et al.,
2010; Chen et al., 2001, 1998; Yadav et al., 2002), and Ca2þ (Davis
et al., 1987). All of these known PGF2a signaling intermediates
were predicted as activated by IPA and the activation z-scores for
each of these mediators are graphically represented in Fig. 3A. Most
of these upstream regulators were predicted to have the greatest
effect at 2 h. A curated list of upstream regulators predicted by IPA
to be involved during the PGF2a time-course is available in Sup-
plemental Table 1 in (Talbott et al., 2017).

Upstream regulator analysis predicted TNFa, IL-1b, IL-6 and IL-
17A as active upstream regulators during the short time-course.
Fig. 3B displays the activation z-scores of several inflammatory
cytokines during the 4-h time-course demonstrating that activa-
tion scores for these inflammatory cytokines increased throughout
the study. Both NF-kB and signal transducer and activator of tran-
scription 3 (STAT3) were predicted to be activated during PGF2a
einduced luteal regression (Fig. 3C). Additionally, inhibitors of
cytokine signaling, SOCS1 and SOCS3 were predicted to be inhibi-
ted (Fig. 3C).

To test whether PGF2a or the predicted cytokines were capable
of activating NF-kB, dispersed luteal cells from midcycle CL or
enriched preparations of SLCs and LLCs were treated with PGF2a or
select cytokines and acute activation of NF-kB and ERK pathways
were examined. Treatment with PGF2a did not alter phosphory-
lation of the NF-kB subunit P65 but rapidly stimulated ERK phos-
phorylation in midcycle luteal cells (Fig. 3D). Fig. 3E illustrates that
TNFa, IL-1b, and IL-17A consistently stimulated the phosphoryla-
tion of NF-kB P65 in dispersed mid-cycle luteal cells. The cytokines,
TNFa, IL-1b, and IL-17A stimulated phosphorylation of P65 in both
SLC and LLC, and PGF2a selectively stimulated ERK phosphorylation
in LLC but had no effect on P65 (Fig. 3F). Interleukin-6 did not
stimulate phosphorylation of ERK or P65 NF-kB as it is known to
activate the JAK/STAT signaling pathway (Schaper and Rose-John,
2015).

Ingenuity Pathway Analysis highlighted canonical pathways
predicted to be activated or inhibited within this dataset based on
the downstream targets' differential expression (P-value) and di-
rection of change (z-score). The top five canonical pathways (by z-
score then P-value) identified from each time-point are listed in
Table 3 and a more extensive list can be seen in Table 1 in (Talbott
et al., 2017). At 0.5 h after PGF2a, no pathways had a z-score � j2j,
likely due to the small number of differentially expressed genes.
However, several pathways had P-values � 0.05, including ‘NRF2-
mediated Oxidative Stress Response’. Seven pathways were pre-
dicted as activated at the 1 h time-point. At 2 h after PGF2a, five
pathways were predicted as activated and at 4 h after PGF2a, 20
pathways were identified (5 activated and 15 inhibited). Two ca-
nonical pathways were predicted to be activated in 2 of the 4 times
examined, ‘cholecystokinin/gastrin-mediated signaling’, and ‘Toll-
like receptor signaling’. Several additional canonical pathways
including, ‘Acute Phase Response Signaling’, ‘ILK Signaling’, and
‘TGF-b Signaling’ were identified that had z-scores � j1j in at least
two times [Table 1 in (Talbott et al., 2017)].

3.4. PGF2a activates well-organized transcriptional cascades

Ten self-organizing maps (SOMs) were generated based on
transcripts that had similar changes in their expression profiles
relative to control throughout all four times. The differentially

expressed transcripts included in each SOM are found in
Supplemental Table 3. Of these, two SOMs reflected the expression
patterns of immediate-early response genes (Fig. 4A & F) and
reached peak levels in 1e2 h and then returned toward baseline.
Four SOMS corresponded to early and delayed-early responsive
transcripts with changes in mRNA abundance early in the time-

Fig. 2. PGF2a induced reductions in serum progesterone are correlated with re-
ductions in the expression of genes that control intracellular cholesterol avail-
ability.
(A) Serum progesterone concentrations of cows 0.5e4 h after PGF2a treatment (n ¼ 3/
time-point). *P � 0.05, **P � 0.01 compared to saline-treated animals. (B) Heat map of
genes that regulate cholesterol availability, progesterone synthesis, and reverse
cholesterol transport. Green indicates decreased and red indicates increased tran-
scripts over control. Yellow boxes indicate times that were significantly altered from
saline controls and fold changes from saline controls are indicated in the respective
boxes. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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course (but less rapid than the immediate early-response genes)
which either plateaued (Fig. 4B and G) or continued to change

throughout the examined time frame (Fig. 4C and H). Finally, there
were two SOMs where changes in transcript abundance did not

Fig. 3. In vivo treatment with PGF2a predicts classical PGF2a and cytokine signaling.
(A, B & C) The activation z-score of specific upstream regulators, determined by IPA, graphed against time. (A) Classic mediators of PGF2a signaling including, PGF2a itself
(dinoprost, black), protein kinase C (PKC group, blue), ERK (red), and Ca2þ (green). (B) Cytokine activation scores including, TNFa (black), IL-1b (blue), IL-6 (red), and IL-17 (green).
(C) Cytokine signaling molecules: NF-kB (black), STAT3 (blue), and suppressors of cytokine signaling, SOCS1 (red) and SOCS3 (green). (D) Phospho-P65 quantification (mean ± SEM)
of non-pregnant midcycle luteal cells (n ¼ 3) treated with TNFa, IL-1b, IL-17A and PGF2a for 30 min followed by Western blot analysis, normalized to b-actin and compared to
untreated controls, representative immunoblots are shown below the bar graph. *P � 0.05 compared to control. (E) Western blot of non-pregnant midcycle luteal cells treated with
PGF2a for the indicated times immunoblotted for phospho-P65, phospho-ERK1/2, b-tubulin, and b-actin. (F) Western blot of small luteal cells (SLC) and large luteal cells (LLC)
treated with TNFa, IL-1b, IL-6, IL-17A (10 ng/mL each) and PGF2a (100 nM) for 30 min and immunoblotted for phospho-P65, phospho-ERK1/2, b-tubulin, and b-actin. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

H. Talbott et al. / Molecular and Cellular Endocrinology 452 (2017) 93e109100



begin until the 2-h time-point indicative of late-response genes
(Fig. 4D and I). Two additional SOMs had biphasic transcript pro-
files, which changed early (either up- or downregulated), returned
to baseline and then rebounded at later times (Fig. 4E and J).

Upregulated SOMs had several common IPA-predicted up-
stream regulators such as TNFa, TGFb, IL-1b, and NF-kB (Fig. 4 and
Supplemental Table 2 in (Talbott et al., 2017)). Downregulated
SOMs had common inhibition predictions of VEGF, PPAR ligands,
and T3 (the thyroid hormone, triiodothyronine) (Fig. 4 and Sup-
plemental Table 2 in (Talbott et al., 2017)). Functional analysis by
IPA of the genes in each SOM predicted activation of ‘migration of
cells’ and inhibition of organismal death in immediately-early
upregulated genes (Supplemental Table 3 in (Talbott et al., 2017)).
Early and delayed-early upregulated gene patterns had functional
predictions of ‘cell survival’ (Supplemental Table 3 in (Talbott et al.,
2017)). Late upregulated gene patterns were consistent with in-
creases in ‘migration of cells’ and biphasic upregulated genes had
functional predictions of inhibited ‘organismal death’ (Supple-
mental Table 3 in (Talbott et al., 2017)). Downregulated SOMs had
functional predictions of ‘organismal death’ for immediate-early
and downregulated gene patterns (Supplemental Table 3 in
(Talbott et al., 2017)). Functional annotations predicted activation of
‘organismal death’ in delayed-early downregulated SOM, increased
‘morbidity or mortality’ in late downregulated genes, and death
and increased ‘organismal death’ in biphasic downregulated genes
(Supplemental Table 3 in (Talbott et al., 2017)). Upstream regulators
and functions of individual SOMs derived from IPA are available in
Supplemental Table 2 and 3 in (Talbott et al., 2017).

Functional annotations of each SOM revealed that SOMs, which
peaked early, had a greater proportion of genes with a ‘regulation of
gene expression’ biological process annotation by DAVID;
including, within the immediate early categories 47.2% of up- and
18.2% of downregulated genes. In the early responses, ‘regulation of
gene expression’ composed of 31.4% of upregulated and 22.9% of
downregulated genes. Within the delayed-early SOMs, 19.2% of up-
and 22.3% of downregulated genes were also annotated with
‘regulation of gene expression’. Whereas, late response gene pat-
terns had fewer genes classified as ‘regulation of gene expression’

compared to earlier gene profiles (18.2% up- and 19.6% down-
regulated). Instead, delayed-early and late upregulated SOMs had
7.1% of genes associated with “inflammatory reactions” (P-values:
1.50E-05, 9.50E-08, DAVID). Biphasic upregulated genes had bio-
logical process annotations including immune response-activating
signal transduction. Finally, biphasic downregulated genes had
annotations related to fibrosis. Of the downregulated SOMs, several
contained components of PPAR signaling and VEGF signaling.

3.5. Dataset comparisons

Two previously published microarray datasets GSE23348
(Mondal et al., 2011) and GSE27961 (Shah et al., 2014) examined the
effect of in vivo PGF2a treatment on midcycle bovine CL and simi-
larities in the experimental design allowed direct comparison of
the present study with the previous two microarray datasets.
Mondal et al. collected luteal tissue from Angus crossbred heifers
4 h after giving an intramuscular injection of 25 mg Lutalyse at day
11 of the estrous cycle. Shah et al. treated non-lactating Bubalus
bubalis (water buffalo) cows with a 500 mg dose of Juramate
(equivalent to 25 mg of Lutalyse (Salverson et al., 2002)) and
collected luteal tissue at 6 h after PGF2a. The overlap of differen-
tially expressed transcripts between the three datasets is visually
represented in a Venn diagram in Fig. 5A. Comparison of the three
datasets revealed 515 genes found by at least 2 of the 3 studies
(Supplemental Table 4), and 124 genes that were similarly altered
in all the datasets including 43 upregulated genes and 81 down-
regulated genes (Table 4).

Independent bioinformatics analysis of each dataset revealed
common regulatory elements. First, IPA predicted similar upstream
regulators in each dataset such as PKC, MAPK/ERK, TNFa, IL-1a/b,
and IL-17 [Table 3 in (Talbott et al., 2017)]. Canonical pathway
analysis of each of the three datasets commonly predicted activa-
tion of triggering receptor expressed on myeloid cells 1 (TREM1)
signaling, an important pathway for activation of macrophages and
neutrophils (Arts et al., 2013) [Supplemental Table 4 in (Talbott
et al., 2017)]. Bioinformatic analysis of the 124 genes common to
all 3 datasets indicated activation of FOS, JUNB, MAPK/ERK, IL-1b,

Table 3
Predicted canonical pathways activated during the early response to PGF2a treatment.

Ingenuity Canonical Pathways z-score P-value Molecules

0.5 h NRF2-mediated Oxidative Stress Response 1.41E-02 FOS, JUN, DNAJB1, JUNB
Corticotropin Releasing Hormone Signaling 1.41E-02 FOS, JUN, NR4A1
IGF-1 Signaling 1.41E-02 FOS, JUN, CYR61
IL-17A Signaling in Gastric Cells 1.41E-02 FOS, JUN
PI3K Signaling in B Lymphocytes 1.41E-02 FOS, JUN, ATF3

1 h ILK Signaling 2.449 2.34E-02 FOS, JUN, SNAI1, MYC, SNAI2, RND3
Cholecystokinin/Gastrin-mediated Signaling 2 3.89E-02 FOS, JUN, SRF, RND3
HMGB1 Signaling 2 2.45E-02 FOS, JUN, SERPINE1, PLAT, RND3
Endothelin-1 Signaling 2 8.71E-02 FOS, JUN, MYC, EDNRB
IL-8 Signaling 2 1.08E-01 FOS, JUN, ANGPT2, RND3

2 h Cholecystokinin/Gastrin-mediated Signaling 2.646 2.99E-01 FOS, JUN, SRF, IL1B, IL1A, RND3, IL33
Acute Phase Response Signaling 2.121 4.81E-01 FOS, JUN, IL1B, JAK2, SOCS3, IL1A, SERPINE1, IL33
Toll-like Receptor Signaling 2 2.99E-01 FOS, JUN, IL1B, IL1A, TRAF1, IL33
TGF-b Signaling 2 5.45E-01 FOS, JUN, INHBA, SERPINE1
LPS/IL-1 Mediated Inhibition of RXR Function 2 7.43E-01 JUN, IL1B, PPARGC1B, IL1A, NR5A2, IL33

4 h Death Receptor Signaling �2.714 3.23E-01 IKBKG, TANK, CFLAR, NFKB1, PARP1, PARP4, CASP9, NFKBIA, ACIN1,
TNKS, BIRC3, SPTAN1

Integrin Signaling �2.683 4.69E-01 ASAP1, TLN1, RRAS2, ITGAV, ITGA2, CAPN1, TSPAN4, PXN, PIK3C2B, MYL9,
PIK3R1, GAB1, ITGA9, SOS1, PIK3CG, RHOG, PIK3CA, ARHGEF7, MAP2K2,
TSPAN5, PPP1CB, PLCG1, ACTN4

UVA-Induced MAPK Signaling �2.496 1.64E-01 SMPD2, MTOR, PARP4, RRAS2, CASP9, PIK3C2B, PIK3R1, GAB1, TP53, TNKS,
PIK3CG, FOS, RPS6KA5, PARP1, PIK3CA, PLCG1

Retinoic acid Mediated Apoptosis Signaling �2.449 1.78E-01 CFLAR, PARP1, PARP4, CASP9, RXRB, CRABP2, RARG, TNKS
MIF Regulation of Innate Immunity 2.449 3.44E-01 FOS, LY96, NFKB1, CD14, NFKBIA, TP53
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TNFa, TGFb, IL-6 (Fig. 5B) as well as canonical pathways like IL-6
Signaling, Acute Phase Response Signaling, and NF-kB Signaling
Table 3 in (Talbott et al., 2017). Curated lists of canonical pathway
and upstream regulator predictions by IPA from the 124 genes
common to all 3 datasets are available in Table 3 and Supplemental
Table 5 in (Talbott et al., 2017). Pathway analysis of the 124 common
genes by IPA, DAVID, Panther, and String consistently reported
enrichment of TGFb signaling (4 of 4) and p53 signaling (3 of 4)
[Table 4 in (Talbott et al., 2017)]. Finally, functional analysis indi-
cated groups of genes involved in cell-cell interaction (12.9%),
cytokine signaling (8.9%), and transcriptional regulation (8.1%) in
Fig. 5C. The genes in each functional category are listed in Table 4.

4. Discussion

4.1. Overview of study

This study uses a systems biology approach to provide a detailed
understanding of the early (0.5e4 h) transcriptional effects that
occur during PGF2a-induced luteolysis in vivo. Our analysis predicts
activation of cytokines (TNFa, IL-1b, IL-6, IL-17A, & IL-33) and
cytokine signaling intermediates (NF-kB, STAT) early in the time-
course. However, changes in cytokine transcripts are not apparent
until 2e4 h after PGF2a. The effects of PGF2a in vivomay require the
activation of secondary mediators, such as cytokines, which acti-
vate NF-kB and STAT signaling because PGF2a is unable stimulate of
NF-kB P65 phosphorylation in isolated luteal cells. The rapid influx
of various immune cells in response to the initiation of luteolysis
(Penny et al., 1999; Shirasuna et al., 2012b) and the release of pre-
formed cytokines could explain the prediction of cytokine signaling
effects very early in the PGF2a response. As well, the activation of
NF-kB signaling could contribute to later responses seen after
PGF2a administration.

Analysis of gene expression changes confirms changes in the
transcriptome that are consistent with PGF2a signaling, including
the rapid induction of immediate-early response genes (ATF3, EGR1,
FOS, JUN, and NR4A2) (Atli et al., 2012; Chen et al., 2001; Mao et al.,
2013). Bioinformatics analysis also identifies upstream regulators
consistent with known PGF2a signaling mediators such as dino-
prost (PGF2a), PKC, Ca2þ, and ERK. The bioinformatics findings
indicating activation of classical PGF2a signaling pathways after
in vivo treatment are an important validation of the predictive
power of the bioinformatics tools used in this study. Comparison
with similar datasets (Mondal et al., 2011; Shah et al., 2014) yields
comparable results, predicting both PGF2a signaling and cytokine
signaling in the CL after PGF2a treatment.

4.2. Induction of functional luteolysis

In this study, in vivo administration of PGF2a decreases serum
progesterone within 2 h of treatment. Though, serum progesterone
concentrations did not fall below 1 ng/mL, a cutoff that indicates
irreversible functional regression, which typically occurs 18e24 h
after the onset of luteolysis (Acosta et al., 2002; Levy et al., 2000).

Additionally, there are no changes in CL weight, indicating that
structural regression of the CL has not yet begun. The reduction in
serum progesterone concentrations is not accompanied by re-
ductions in the expression of the steroidogenic enzymes: StAR,
CYP11A1, and HSD3B1. Furthermore, transcripts for key receptors
(LHCGR, SCARB1, or LDLR) intimately involved in progesterone
synthesis are also unchanged. These findings showing a marked
reduction in serum progesterone prior to changes in steroidogenic
gene transcript abundance are similar to other studies (Atli et al.,
2012; Mondal et al., 2011; Shah et al., 2014). However, it is
possible that changes in abundance or function of specific proteins
may occur prior to down-regulation of the corresponding mRNA
(Shah et al., 2014).

These observations suggest that alternate pathways could
contribute to the early reduction in luteal progesterone synthesis.
Based on our findings, it seems possible that the decrease in LIPE
could contribute to the decrease in progesterone production
because its protein product, HSL, interacts directly with lipid
droplets to hydrolyze cholesteryl esters to liberate cholesterol for
steroidogenesis (Manna et al., 2013). Decreases in LDLRAP1 could
inhibit progesterone production by reducing the cholesterol avail-
able for use in the cell since endocytosis of LDL particles requires
the LDLRAP1 cofactor (Sirinian et al., 2005). An increase in INSIG1
concentrations could affect steroidogenesis through suppressing
transcription of de novo cholesterol synthesis and uptake proteins,
(Sun et al., 2005); however, de novo synthesis is not a primary
source of cholesterol for steroidogenesis in the CL (O'Shaughnessy
and Wathes, 1985). Finally, increases in CH25H could catalyze the
hydroxylation of cholesterol to 25-hydroxycholesterol which is a
potent inhibitor of de novo cholesterol synthesis (Lund et al., 1998).
However, 25-hydroxycholesterol can also act as a substrate for
steroidogenesis (Toaff et al., 1982) although it is unclear how
physiological concentrations of this oxysterol would act on bovine
luteal cells or neighboring cells. The reduction in LIPE expression
together with alterations in LDLRAP1, INSIG1, and CH25H transcript
abundance could have a combined negative effect on intracellular
cholesterol availability.

Activation of reverse cholesterol transport could also effectively
reduce intracellular cholesterol availability for progesterone syn-
thesis. Other studies have reported an increase in reverse choles-
terol transport transcripts such as ABCA1, ABCG1, NR1H2, NF1H3,
APOA1, and APOE during luteolysis (Bogan and Hennebold, 2010;
Seto and Bogan, 2015). However, in this dataset, only a single
transcript of the reverse cholesterol transport process, ABCA1,
changes compared to control, and it decreases. Thus, changes in
transcript abundance that contribute to increases in reverse
cholesterol transport do not appear to contribute to the early re-
ductions in circulating progesterone, but may play important roles
later in luteal regression.

4.3. Cytokine signaling

The present study implicates IL-33 and IL-17 cytokines as po-
tential regulators of luteal regression, although neither have

Fig. 4. Temporal response waves to PGF2a.
Self-organizing maps (SOMs) graphs were generated as detailed in Methods. Each graph shows the average log2 transcript expression intensity ± SEM of the transcripts grouped
into each SOM. Red dashed lines demonstrate the average transcript expression intensity at baseline. Numbers in the upper right of the individual graphs represent the number of
transcripts within each SOM. Groups of transcripts that were upregulated during the PGF2a time-course are shown on the left (A, B, C, D,& E) and downregulated transcripts on the
right (F, G, H, I, & J). (A & F) SOMs showed responses typical of immediate-early response genes, peaked between 1 and 2 h and returned to baseline. (B & G) SOMs demonstrated
early response genes, peaked at 2 h and maintained through the 4-h time-point. (C & H) SOMs demonstrated delayed-early response genes, which gradually moved away from
baseline throughout the time-course. (D& I) SOMs showed late-response genes, which stayed near the baseline and then began changing at 2e4 h (E& J) Biphasic SOMs, which had
an early change in transcript expression, returned to baseline and then had a second change in transcription levels. Boxes to the right of the graphs include the top upstream
regulators predicted to be involved using IPA at the peak of change from controls, along with their corresponding IPA determined activation z-score. Data points in each SOM are
labeled to indicate the percentage of transcripts that are differentially expressed at each time-point: ***** 99e100%; **** 76e98%; *** 51e75%, ** 26e50%, * 1e25%. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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previously been proposed to have a role in luteolysis. Nevertheless,
IL33 transcripts increase 17-fold over controls and is upregulated in
all three datasets. Two recent reports indicate that IL-33 may play a
role in follicular atresia (Carlock et al., 2014;Wu et al., 2015) and we

propose that IL-33 could play a similar role in luteal regression.
Preliminary data in our laboratory indicates that IL-33 does not
have a direct effect on in vitro primary luteal cell cultures (not
shown), presumably because luteal cells lack or have a low

Fig. 5. Common gene alterations in response to PGF2a.
(A) Venn diagrams demonstrate the number of differentially expressed genes that overlapped between the three examined datasets GSE94069 (blue, Talbott et al., 2017), GSE23348
(red, Mondal et al., 2011), and GSE27961 (green, Shah et al., 2014). The legend indicates the numbers of total differentially expressed genes in parentheses for each dataset.
Overlapping parts of the circles are labeled with the corresponding number of transcripts that are differentially expressed in that situation. (B) The top 15 IPA-predicted upstream
regulators based on the 124 common genes with corresponding IPA molecule type designations and z-scores. (C) Functional categorization of the 124 common genes common to all
three datasets, sections are labeled with both the category and the number of genes in each category. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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representation of components of the IL-33 receptor complex
(Romereim et al., 2017; Talbott et al., 2017). In the regressing CL, IL-
33 could play a role in macrophage recruitment (Carlock et al.,

Table 4
Common transcripts differentially expressed in response to PGF2a treatment.

Fold Change

Gene Entrez Gene ID GSE94069 GSE23348 GSE27961

Cell-cell interaction
SERPINB2 505184 25.49 5.27 5.10
SERPINE1 281375 17.87 28.96 31.00
AMIGO2 514273 8.27 8.65 8.09
PLAUR 281983 6.83 5.92 7.39
SDC4 508133 6.59 8.44 19.13
HS3ST5 540355 4.77 7.73 9.33
MMP1 281308 4.11 12.26 6.44
THBS1 281530 2.89 2.02 3.90
CLDN1 414922 2.65 3.52 3.23
CD44 281057 2.49 3.44 8.22
CLDND1 515537 2.45 1.55 1.79
ITGAV 281875 1.75 1.93 2.79
EMCN 616367 �2.05 �1.55 �2.74
CLIC5 281696 �2.41 �1.69 �2.19
TMEM204 615464 �2.83 �1.72 �1.89
NPNT 513362 �3.69 �2.33 �2.51
Cytokine signaling
IL33 507054 17.46 6.92 2.96
INHBA 281867 13.57 19.69 27.25
SPP1 281499 5.73 7.55 4.65
MT2A 404070 3.56 4.65 3.99
BAMBI 530147 3.41 1.57 2.99
NRG1 281361 3.14 2.15 8.78
IL18 281249 3.08 2.53 2.50
BMP2 615037 3.02 5.47 3.92
STAMBP 532672 1.82 1.98 3.19
CD14 281048 1.81 2.48 3.68
PDGFC 613787 1.70 1.77 1.78
Transcriptional Regulation
ELL2 782605 2.30 2.15 4.06
HMGA1 618849 1.86 4.11 3.71
AGO2 404130 1.75 2.03 2.41
RPF2 511294 1.59 1.62 1.50
EIF4A1 504958 1.56 1.53 1.71
CPEB2 538880 �1.63 �1.95 �1.67
POLR1E 511587 �1.65 �1.90 �2.53
DCP1B 514548 �1.71 �1.54 �1.95
HEXIM1 539696 �2.88 �2.24 �2.37
ZMYM3 522721 �3.11 �2.18 �2.62
Metabolism
ARG2 518752 5.95 2.56 3.95
GCNT4 782825 4.47 2.84 3.18
HK2 788926 3.50 3.61 4.24
LDHA 281274 1.77 1.54 2.32
PDP1 280891 1.64 1.50 2.02
RPIA 613376 1.52 1.68 2.04
METRNL 534297 1.52 1.89 2.11
PGM5 785045 �1.68 �1.73 �2.02
MPPED2 540914 �2.35 �1.60 �2.33
Transcription factor
FOSL1 531389 2.85 2.80 3.19
BCL6 539020 2.69 3.49 2.23
SRF 533039 2.58 2.42 2.75
TGIF1 510050 2.29 2.50 1.90
BZW2 326579 2.11 1.85 2.19
NR5A2 541305 �1.79 �2.27 �2.58
ZNF22 768051 �2.29 �1.68 �1.73
ZNF827 104974573 �2.30 �1.53 �1.67
Signaling
PDE8A 506787 1.97 2.31 4.12
PDE4B 100124505 1.76 2.22 3.60
PPP4R4 537521 1.72 3.59 10.10
TMEM64 536822 1.62 1.70 1.69
PIK3CA 282306 1.54 1.57 1.80
EVC2 280834 �1.70 �1.52 �1.78
DACT1 538778 �2.18 �1.90 �1.75
TMEM88 507172 �2.76 �1.78 �2.75
Lipid metabolism
OLR1 281368 9.18 14.54 15.84
SRD5A1 614612 2.43 2.31 4.57
SPHK1 618605 2.18 2.27 2.04
PITPNC1 782067 1.53 1.57 1.55

Table 4 (continued )

Fold Change

Gene Entrez Gene ID GSE94069 GSE23348 GSE27961

ABCD4 515848 �1.80 �1.80 �1.80
OXSM 513530 �1.86 �2.40 �2.14
MID1IP1 615572 �1.90 �1.89 �2.68
GPAM 497202 �3.55 �2.86 �2.34
Cell cycle/apoptosis
CDKN1A 513497 4.16 3.67 2.55
TNFRSF12A 617439 2.63 2.45 4.22
BTG1 281032 2.58 1.80 2.29
CCNG2 512960 2.18 1.59 1.90
STK17A 513665 2.05 1.81 1.90
BTG3 541054 1.89 1.53 2.11
CCNYL1 538167 1.70 1.69 1.97
IFT122 536731 �1.53 �1.71 �1.64
Small G-protein regulation
RASA2 533491 3.21 1.74 1.70
TIAM1 536517 2.28 3.43 2.38
RHOBTB1 540513 �1.85 �1.57 �2.49
WIPF3 786606 �1.90 �1.55 �2.13
AGFG2 510361 �2.08 �2.01 �1.93
RGL1 522344 �2.23 �1.58 �1.73
ARHGAP19 526945 �2.34 �2.02 �2.08
Neuron function
GAL 280799 10.15 55.44 11.39
CA8 515918 2.97 3.60 6.36
STK38L 514787 2.05 1.54 1.85
SLITRK2 540117 2.01 4.08 6.64
PNMA1 538718 �1.98 �3.18 �1.83
SEMA6D 518458 �2.28 �2.05 �1.95
PTHLH 286767 �2.49 �3.91 �4.55
Cytoskeleton regulation
Cnn1 534583 5.19 6.55 5.80
MICAL2 534041 3.39 3.45 7.05
TPM4 535277 2.63 1.66 2.56
MARCKSL1 539555 2.19 2.84 1.95
RAI14 525869 1.89 2.24 2.24
MYO18A 519634 �1.98 �1.51 �1.61
TNS3 516555 �3.31 �3.03 �3.13
Post-translational modification
UFM1 530547 2.63 1.72 1.92
DPH3 511579 2.62 1.84 1.57
RWDD3 614557 �1.62 �2.22 �2.16
KBTBD4 617482 �1.74 �1.52 �1.59
TRIM68 538657 �2.30 �1.64 �1.54
Membrane transporter
TRPC4 282102 4.33 3.33 3.50
SLC39A8 508193 2.86 2.58 3.73
SLC20A2 518905 2.79 1.89 1.53
SLC2A1 282356 2.44 2.43 4.71
SLC12A2 286845 1.78 2.69 1.57
DNA regulation and repair
RBBP8 512977 4.08 1.99 3.10
H2AFZ 287016 1.61 1.54 1.55
PAPD7 523016 1.50 1.86 3.36
ZRANB3 529922 �1.88 �1.82 �1.53
MUM1 513471 �2.16 �1.71 �1.55
G-protein coupled receptor
F2RL2 512581 2.17 1.82 3.34
AGTR1 281607 �2.16 �2.07 �1.95
APLNR 615435 �4.20 �2.76 �1.83
Chaperone
DNAJA1 528862 2.31 1.60 1.51
HSPA2 281827 �1.96 �1.65 �1.57
Unknown
C23H6orf141 100271839 2.45 1.98 6.27
LHFPL2 616131 2.35 3.32 2.16
LOC540312 540312 �1.81 �1.84 �4.54
CYYR1 768230 �1.98 �1.51 �2.08
LOC511229 511229 �2.33 �2.08 �1.77
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2014; Wu et al., 2015) and mast cell activation (Lott et al., 2015);
and is likely derived from the endothelial cells rather than the
steroidogenic cells of the CL (Carlock et al., 2014).

Another novel cytokine highlighted in this dataset is IL-17A,
which is identified as an activated upstream regulator in three of
the times examined. There are no reports of a role for IL-17 in the
CL, however, a recent study by Ozkan et al. demonstrated that
elevated serum IL-17 concentrations predicted infertility and poor
responsiveness to in vitro fertilization (Ozkan et al., 2014). Analysis
of this dataset using a more robust method of calling differentially
expressed transcripts increased z-score predicted activation of IL-
17 signaling (Yu et al., 2015), and our data indicate that IL-17 can
directly activate NF-kB and ERK1/2 signaling in luteal cell cultures.
How IL-33 and IL-17 contribute to luteal regressionwill be a subject
of future investigations.

Cytokine signaling intermediates such as NF-kB and STAT3 are
predicted by IPA to be activated in response to PGF2a throughout
the time-course. Activation of NF-kB or prediction of NF-kB acti-
vation is consistently reported after PGF2a treatment in vivo
(Mondal et al., 2011; Shah et al., 2014). However, in vitro PGF2a does
not phosphorylate NF-kB in luteal cells (present study) or endo-
metrial adenocarcinoma cells (Sales et al., 2009). Thus, in vivo
PGF2a may use secondary mediators, such as cytokines, which
would activate NF-kB and STAT signaling. Of interest, IPA also
predicts the inhibition of SOCS1 and SOCS3 during the PGF2a time-
course. This prediction is supported by significant increases in
expression of SOCS3 transcripts within 1 h (4-fold) and SOCS1 at 4 h
(1.7-fold), findings consistent with a well-controlled tissue-specific
inflammatory response. This expands on work by ourselves and
others that previously proposed a role for cytokines and immune
cells in PGF2a-induced luteolysis after PGF2a treatment (Mondal
et al., 2011; Shah et al., 2014; Shirasuna et al., 2012b; Talbott
et al., 2014).

We found both direct and indirect evidence for increases in
expression of pro-inflammatory cytokines and signaling during the
early responses to PGF2a. Changes in cytokine-related transcripts
do not occur until 2e4 h after PGF2a treatment; although, IPA
predicts upstream cytokine activation and signaling at all 4 times
examined. Secretion of cytokines (TNFa, TGFb, and CXCL8) can be
stimulated by PGF2a treatment in the ovary (Hou et al., 2008; Shaw
and Britt, 1995), and other tissues (Sales et al., 2009). For example,
PGF2a treatment in vivo and in vitro induces CXCL8, a chemokine
which potentially serves to recruit neutrophils and macrophages to
the CL (Atli et al., 2012; Shirasuna et al., 2012b; Talbott et al., 2014).
The recruitment and activation of immune cells along with the
actions of pre-formed cytokines could be responsible for the very
early gene expression changes that are indicative of cytokine
signaling. Both neutrophils and mast cells can store and release
large amounts of cytokines and other bioactive proteins immedi-
ately after activation without the need for de novo synthesis of
proteins (Sheshachalam et al., 2014; Wernersson and Pejler, 2014).
This would allow for immediate responses without requiring
transcription or translation; therefore, these genes would not be
identified in transcriptome-based studies.

4.4. PGF2a activates well-organized signaling cascades

Analysis of SOMs demonstrates that a coordinated cascade of
transcription occurs after PGF2a administration and includes
immediate-early, early, delayed-early, late, and biphasic transcrip-
tional responses. This suggests that a carefully orchestrated suc-
cession of gene expression changes occurs during PGF2a-induced
luteolysis. As expected, the immediate-early upregulated and early
downregulated responses are composed primarily of transcription
factors. Later signaling waves contain a greater proportion of genes

that are non-transcription factors suggesting that genes with an
immediate-early expression profile could trigger transcription of
early, and delayed-early type genes which could then alter tran-
scription of late-type genes in a transcriptional cascade (Jothi et al.,
2009).

Upregulated gene patterns are consistent with inflammatory
response and activation of immune cells. The common upstream
regulators TNFa, TGFb, IL-1b, and NF-kB support this prediction.
Downregulated SOMs correspond with the activation of death
pathways and inhibition of cellular proliferation. Interestingly,
upregulated SOMs had functional annotations such as decreased
organismal death whereas downregulated SOMs noted increased
organismal death, which highlights that during a complex event
such as luteolysis, there are populations of cells, which are activated
and proliferating (potentially immune cells), and other cell types
that will be inhibited and primed for apoptosis such as endothelial
and steroidogenic luteal cells. Notably, the common upstream
regulators EDN1 and VEGF support the idea that luteal regression
involves early changes in the vasculature, which has been previ-
ously suggested (Davis and Rueda, 2002). Moreover, several studies
indicate that biphasic transcriptional responses are correlated with
fluctuations in activation of NF-kB in response to cytokines like
TNFa (Zambrano et al., 2016). These biphasic, oscillatory responses
that can activate both acute and chronic changes within the target
tissues are characteristic of cytokine and NF-kB signaling
(Zambrano et al., 2016). In accordance, the cytokines IL-1b, and
TNFa are predicted as upstream regulators of the upregulated
biphasic response SOM. Additionally, Mondal et al., 2011 proposed
that sustained activation of NF-kB signaling only occurred in
PGF2a-sensitive luteal tissues, and the biphasic patterns of gene
expression could reflect both acute activation and the beginning of
a chronic activation of target genes. Together these SOMS indicate a
cascade of events, whereby immediate-early response genes,
composed mostly of transcription factors alters early and delayed-
early gene expressions, which contribute to changes in the
expression of late-response genes.

4.5. Dataset comparison and relationship to previous studies

Comparison of our dataset to two similar bovine luteal tran-
scriptome studies, GSE23348 (Mondal et al., 2011) and GSE27961
(Shah et al., 2014) reveals 124 differentially expressed transcripts
common to all three datasets, including BCL6, BMP2, FOSL1, IL33,
INHBA, and NR5A2. Bioinformatics analysis of the common tran-
scripts predicts activation of cytokine signaling and includes the
upstream regulators IL-1b, TNFa, and TGFb. This comparison pro-
vides several high confidence transcriptome changes that occur in
the bovine CL after PGF2a treatment, which vary minimally across
study sites and investigation groups, providing an important
resource for future studies. Importantly, our analysis of the differ-
entially expressed genes common to all three datasets as well as
each independent dataset are consistent with the activation of both
PGF2a and cytokine signaling. Additionally, functional annotations
of common genes indicate a large proportion of gene products
function in cytokine signaling and cell-cell interaction, which both
play critical roles in luteolysis. These findings validate the pre-
dictions based on the short time-course and support a growing
body of literature that suggests that immune cells and cytokines
play a key role in luteal regression.

4.6. Conclusions from the study

Shortly after PGF2a administration, phospholipase C, PKC, Ca2þ,
and ERK trigger a variety of signaling cascades to begin the luteo-
lytic process. Our data suggests that in vivo, PGF2a administration
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stimulates a series of transcriptional waves likely as a result of
classical PGF2a and cytokine signaling events, as early as 30 min
after PGF2a treatment. This is the beginning of a cascade of events
that will initiate decreases in progesterone secretion (2e12 h after
PGF2a) and result in the structural regression of the CL 12e18 h
after PGF2a (Meidan, 2017; Yadav et al., 2002). The earliest de-
creases in progesterone secretion during luteolysis may be due to
changes in transcriptional abundance of LIPE/HSL and other tran-
scripts which regulate cholesterol availability rather than direct
changes in the expression of mRNA encoding the primary ste-
roidogenic enzymes. We propose that during the early stages of
functional regression in combination with PGF2a, the reduction in
progesterone, and increase in inflammatory cytokines (potentially
including IL-33 and IL-17) contribute to luteal regression. As the
intra-luteal concentrations of PGF2a and inflammatory cytokines
increase they may act within an auto-amplification loop eventually
reaching a critical point from which there is no rescue from the
luteolytic cascade (Niswender et al., 2007). Future studies to
identify the cell-specific transcriptional changes occurring in ste-
roidogenic cells, endothelial cells, immune cells, and fibroblasts are
needed to better understand the dynamic network of changes that
enable functional and structural luteal regression.
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