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a b s t r a c t

RNA expression analysis was performed on the corpus luteum
tissue at five time points after prostaglandin F2 alpha treatment
of midcycle cows using an Affymetrix Bovine Gene v1 Array. The
normalized linear microarray data was uploaded to the NCBI GEO
repository (GSE94069). Subsequent statistical analysis deter-
mined differentially expressed transcripts 7 1.5-fold change
from saline control with P r 0.05. Gene ontology of differentially
expressed transcripts was annotated by DAVID and Panther.
Physiological characteristics of the study animals are presented in
a figure. Bioinformatic analysis by Ingenuity Pathway Analysis
was curated, compiled, and presented in tables. A dataset com-
parison with similar microarray analyses was performed and
bioinformatics analysis by Ingenuity Pathway Analysis, DAVID,
Panther, and String of differentially expressed genes from each
dataset as well as the differentially expressed genes common to
all three datasets were curated, compiled, and presented in
tables. Finally, a table comparing four bioinformatics tools’ pre-
dictions of functions associated with genes common to all three
datasets is presented. These data have been further analyzed and
interpreted in the companion article “Early transcriptome
responses of the bovine mid-cycle corpus luteum to pros-
taglandin F2 alpha includes cytokine signaling” [1].
Published by Elsevier Inc. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area Biology
More specific
subject area

Reproductive Biology

Type of data Tables, graphs
How data was
acquired

Collected empirical data, RNA microarray, Ingenuity Pathway Analysis, Panther
Database

Data format Raw data; Normalized, analyzed, and filtered data; curated bioinformatics
predictions

Experimental
factors

The estrous cycles of cows were synchronized using two injections of 25 mg
Lutalyse 11 days apart.

Experimental
features

Post-pubertal multiparous female cattle (n ¼ 16) of composite breeding were
treated by intramuscular injection at midcycle (days 9–10) with saline (n ¼ 4) or
PGF2α (n ¼ 12) (25 mg Lutalyse). RNA was isolated from the corpus luteum and
analyzed by microarray. Differentially expressed transcripts were subjected to
bioinformatics pathway analysis.

Data source
location

Lincoln, NE, USA; Omaha, NE, USA

Data accessibility Raw data is in the public NCBI repository GEO (GSE94069), curated bioinformatics
predictions are presented within the article as tables

H. Talbott et al. / Data in Brief 14 (2017) 695–706696



Value of the data

� This study provides the first transcriptomics analysis of the early time-course (0.5–4 h) of the
response to prostaglandin F2 α (PGF2α) and extends previous observations on the global effects of
PGF2α action in the bovine corpus luteum at 3 h and longer [2,3].

� Prediction of upstream regulators and regulation of canonical pathways based on the tran-
scriptome changes during the PGF2α short time-course.

� A complete list of differentially expressed transcripts grouped into self-organizing maps repre-
sentative of signaling waves after PGF2α treatment.

� Canonical pathways and upstream regulators predicted by Ingenuity Pathway Analysis for genes
common to three similar datasets [1–3].

1. Data

� The .cel and .chp files and normalized linear microarray data are available at the NCBI GEO
repository: GSE94069

� Fig. 1 – Functional categorization of differentially expressed transcripts throughout the PGF2α time-
course

� Fig. 2 – Empirical characteristics of the female cattle used in the study
� Table 1 – Ingenuity Pathway Analysis predicted canonical pathways involved during the PGF2α

time-course
� Table 2 – Ingenuity Pathway Analysis predicted canonical pathways for the dataset comparison
� Table 3 – Ingenuity Pathway Analysis predicted canonical pathways for the genes common to all

datasets
� Table 4 – Comparison of bioinformatics tool predictions for the genes common to all datasets
� Supplemental Table 1 – Ingenuity Pathway Analysis predicted upstream regulators involved during

the PGF2α time-course
� Supplemental Table 2 – Ingenuity Pathway Analysis predicted upstream regulators for the SOMs
� Supplemental Table 3 – Ingenuity Pathway Analysis predicted diseases and functional annotations

for the SOMs
� Supplemental Table 4 – Ingenuity Pathway Analysis predicted upstream regulators for the dataset

comparison
� Supplemental Table 5 – Ingenuity Pathway Analysis predicted upstream regulators for the genes

common to all datasets

2. Experimental design, materials and methods

2.1. Animals

Post-pubertal multiparous female cattle (n ¼ 16) of composite breeding (½ Red Angus, Pinzgauer,
Red Poll, Hereford and ½ Red Angus and Gelbvieh) were synchronized using two intramuscular
injections of PGF2α (25 mg; Lutalyse®, Zoetis Inc., Kalamazoo Michigan, MI) 11 days apart. At mid-
cycle (days 9–10), cows were treated with an intra-muscular injection of saline (n ¼ 4) and subjected
to a bilateral ovariectomy 0.5 h after the injection.

Cows were also treated with an intra-muscular injection of PGF2α (n ¼ 12) and at each of four
time points post-injection (0.5, 1, 2, and 4 h), three cows per time point were subjected to a bilateral
ovariectomy through a right flank approach under local anesthesia [4,5]. The CL was removed from
each ovary, weighed and o 5 mm3 sections were snap-frozen in liquid N2 for subsequent protein and
RNA analysis. Plasma progesterone concentrations were determined using the ImmuChem Proges-
terone DA Coated Tube radioimmunoassay kit (MP Biomedicals, Santa Ana, CA) with an intra-assay
coefficient of variation of 9.13% and inter-assay coefficient of variation of 7.99%. The University of

H. Talbott et al. / Data in Brief 14 (2017) 695–706 697



Nebraska-Lincoln Institutional Animal Care and Use Committee approved all procedures and facilities
used in this animal experiment and animal procedures were performed in June 2009 (Control, 0.5,
and 1 h) or October 2010 (2 and 4 h) at the University of Nebraska—Lincoln, Animal Sciences
Department. Statistical differences in animal characteristics were determined using Kruskal-Wallis
test followed by Dunn's post-test or one-way ANOVA followed by Bonferroni's multiple comparison
test as appropriate (GraphPad Prism, La Jolla, CA).

Fig. 1. Biological process annotation of differentially expressed genes from each time point. (A) Percent of mapped genes with
“transcription factor activity, RNA polymerase II core promoter proximal region sequence-specific binding” or “protein binding”
annotations based on DAVID molecular function analysis (GOTERM_MF_ALL) of all differentially expressed genes from each
time point. (B) Percent of mapped genes with “transcription factor (PC00218)”, “hydrolase (PC00121)”, or “transferase
(PC00220)” annotations based on Panther Protein Class analysis of differentially expressed genes from each time point.

H. Talbott et al. / Data in Brief 14 (2017) 695–706698



Fig. 2. Physiological characteristics of the study animals. Mid-cycle cows were treated with 25 mg PGF2α for 0.5, 1, 2, and 4 h
(n ¼ 3/time point) or saline (n ¼ 4). Symbols indicate individuals or each ovary, with mean7SD overlaid. (A) Age (in years) of
cows at ovariectomy. (B) Number of antral follicles present on each ovary from study animals. (C) Total weight of each ovary
from study animals. (D) Weight of corpus luteum (CL) from each study animal. (E) Previous number of calves from each study
animal. (F) Serum progesterone concentrations of cows 0.5–4 h post-PGF2α treatment * P r 0.05, ** P r 0.01 compared to
saline-treated animals using one-way ANOVA followed by Bonferroni's multiple comparison test.
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2.2. Affymetrix bovine gene chip microarray

Luteal tissue from saline-treated (n ¼ 3), and PGF2α treated animals [0.5 h (n ¼ 3), 1 h (n ¼ 3), 2 h
(n¼3), and 4 h (n ¼ 3)] were homogenized and RNA was extracted using a Stratagene RNA Isolation

Table 1
Canonical pathways of PGF2α time course ⁎.

0.5 h 1 h 2 h 4 h

Ingenuity Canonical Pathways z-
score

P-value
(B-H)

z-
score

P-value
(B-H)

z-
score

P-value
(B-H)

z-
score

P-value
(B-H)

|Avg.|
z-score

Death Receptor Signaling −2.71 3.23E-01 0.90
Integrin Signaling −2.68 4.69E-01 0.89
UVA-Induced MAPK Signaling 2.51E-02 2.65E-01 7.96E-01 −2.50 1.64E-01 0.83
MIF Regulation of Innate
Immunity

1.58E-02 8.71E-02 6.44E-01 2.45 3.44E-01 0.82

Retinoic acid Mediated Apoptosis
Signaling

4.81E-01 −2.45 1.78E-01 0.82

Melanocyte Development and
Pigmentation Signaling

−2.32 1.64E-01 0.77

TREM1 Signaling 7.89E-01 2.31 1.10E-01 0.77
CREB Signaling in Neurons −2.18 4.61E-01 0.73
Aldosterone Signaling in Epithe-
lial Cells

4.37E-02 7.76E-02 4.89E-01 −2.14 9.55E-02 0.71

NGF Signaling 8.39E-01 −2.13 4.79E-02 0.71
Calcium Signaling −2.11 2.64E-01 0.53
Toll-like Receptor Signaling 2.24E-02 6.61E-02 2.00 2.99E-01 2.14 2.69E-02 1.03
ILK Signaling 5.25E-02 2.45 2.34E-02 1.63 7.31E-01 1.60E-01 1.36
Inflammasome pathway 7.55E-01 2.00 2.98E-01 0.50
MIF-mediated Glucocorticoid
Regulation

2.00 5.16E-01 0.50

JAK/Stat Signaling 2.24E-02 2.45E-02 3.49E-01 −2.00 8.32E-02 0.50
Granzyme B Signaling 7.43E-01 −2.00 2.30E-01 0.50
Dopamine-DARPP32 Feedback in
cAMP Signaling

6.15E-01 −2.00 4.50E-01 0.50

Signaling by Rho Family GTPases 7.59E-02 2.00 1.61E-01 0.67
LPS/IL-1 Mediated Inhibition of
RXR Function

2.57E-01 2.00 7.43E-01 1.90 5.79E-01 0.97

LXR/RXR Activation −1.34 4.99E-01 −2.32 1.61E-01 0.92
Cholecystokinin/Gastrin-medi-
ated Signaling

2.45E-02 2.00 3.89E-02 2.65 2.99E-01 0.69 6.76E-02 1.33

TGF-β Signaling 2.24E-02 7.76E-02 2.00 5.45E-01 1.16 1.66E-01 0.79
Acute Phase Response Signaling 4.37E-02 1.00 7.76E-02 2.12 4.81E-01 1.53 1.23E-01 1.16
HMGB1 Signaling 3.09E-02 2.00 2.45E-02 1.89 3.44E-01 0.69 1.34E-01 1.14
Gαq Signaling 6.41E-01 −0.45 7.46E-01 −2.07 3.13E-01 0.63
Colorectal Cancer Metastasis
Signaling

7.41E-02 2.00 1.61E-01 1.13 7.52E-01 −0.38 2.59E-01 0.69

Endothelin-1 Signaling 4.90E-02 2.00 8.71E-02 −0.66 3.94E-01 0.34
PI3K Signaling in B Lymphocytes 1.41E-02 1.22E-01 1.34 4.81E-01 −0.21 2.69E-02 0.28
Corticotropin Releasing Hormone
Signaling

1.41E-02 3.89E-02 6.43E-01 −0.54 2.00E-01 0.18

IL-8 Signaling 5.62E-02 2.00 1.08E-01 0.45 8.39E-01 −1.09 4.00E-01 0.34
NRF2-mediated Oxidative Stress
Response

1.41E-02 0.45 1.00E-02 0.38 1.75E-01 0.24 1.11E-01 0.27

Cardiac Hypertrophy Signaling 2.86E-01 2.88E-01 1.63 7.99E-01 −2.04 1.71E-01 0.10
IGF-1 Signaling 1.41E-02 1.00 1.91E-02 0.82 2.41E-01 −1.29 8.51E-02 0.13
IL-17A Signaling in Gastric Cells 1.41E-02 6.61E-02 4.99E-01 6.10E-01

⁎ Original file contains pathways that contain at least one timepoint with | z-score| 4 2. Pathways are sorted based on the |
Avg| z-score from all four time points. |Avg| z-score is used solely for sorting of results, only z-scores for individual time points
allow determination of pathway activation or inhibition. (B-H) Benjamini-Hockberg Multiple Testing Correction P-value limit
set to 0.05
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Table 2
Canonical pathways of dataset comparison ⁎.

GSE94069 GSE23348 GSE27961

Ingenuity Canonical Pathways z-
score

P-value
(B-H)

z-
score

P-value
(B-H)

z-
score

P-value
(B-H)

|Avg.|
z-score

TREM1 Signaling 2.31 1.90E-01 4.24 3.55E-01 2.24 4.34E-01 2.93
p38 MAPK Signaling 1.34 7.94E-01 3.36 1.66E-01 2.53 1.75E-01 2.41
Acute Phase Response Signaling 1.53 1.19E-01 3.58 2.19E-01 2.12 6.24E-01 2.41
Dendritic Cell Maturation 1.13E-01 3.27 2.90E-01 1.41 5.18E-01 2.34
Inflammasome pathway 2.00 3.20E-01 2.65 5.13E-01 5.10E-01 2.33
MIF Regulation of Innate Immunity 2.45 3.52E-01 2.00 2.67E-01 2.23
CREB Signaling in Neurons −2.18 4.67E-01 2.18
LPS/IL-1 Mediated Inhibition of RXR Function 1.90 5.85E-01 2.45 1.80E-01 2.26E-01 2.18
Role of IL-17F in Allergic Inflammatory Airway
Diseases

1.27 4.68E-01 3.00 1.20E-01 2.24 1.35E-01 2.17

LXR/RXR Activation −2.32 1.17E-01 −2.83 1.35E-01 −1.34 4.28E-01 2.16
Aldosterone Signaling in Epithelial Cells −2.14 9.12E-01 1.75E-01 4.99E-01 2.14
Type I Diabetes Mellitus Signaling 6.11E-01 2.11 4.70E-01 2.11
IL-6 Signaling 1.23 2.57E-01 3.41 2.75E-01 1.67 3.27E-01 2.10
MIF-mediated Glucocorticoid Regulation 2.00 5.18E-01 2.00 1.61E-01 2.00
Granzyme B Signaling −2.00 2.32E-01 6.98E-01 7.60E-01 2.00
Dopamine-DARPP32 Feedback in cAMP Signaling −2.00 4.62E-01 2.00
Role of Wnt/GSK-3β Signaling in the Pathogenesis
of Influenza

2.00 5.10E-01 2.00

Toll-like Receptor Signaling 2.14 2.57E-01 2.71 5.62E-01 1.00 6.24E-01 1.95
PI3K/AKT Signaling 2.13 2.57E-01 1.90 6.92E-01 1.67 3.83E-01 1.90
Actin Nucleation by ARP-WASP Complex 1.63 1.58E-01 2.00 5.10E-01 1.82
ILK Signaling 1.53E-01 2.32 5.25E-01 1.29 1.59E-01 1.81
Retinoic acid Mediated Apoptosis Signaling −2.45 1.74E-01 -1.00 1.61E-01 7.26E-01 1.73
HMGB1 Signaling 0.45 1.90E-01 2.99 2.82E-01 1.67 3.45E-01 1.70
Regulation of Actin-based Motility by Rho 1.34 5.77E-01 2.00 7.60E-01 1.67
Rac Signaling 4.67E-01 2.14 1.70E-01 1.13 5.31E-01 1.64
Cholecystokinin/Gastrin-mediated Signaling 0.69 7.80E-01 2.31 2.57E-01 1.89 4.75E-01 1.63
VDR/RXR Activation 0.82 1.19E-01 1.67 2.34E-01 2.24 2.82E-01 1.58
NF-κB Signaling 0.54 2.57E-01 3.27 2.75E-01 0.91 4.34E-01 1.57
iNOS Signaling 1.00 1.14E-01 2.00 3.21E-01 1.50
Role of Pattern Recognition Receptors in Recognition
of Bacteria and Viruses

−0.28 1.66E-01 3.21 4.37E-01 4.84E-01 1.47

Ephrin Receptor Signaling 0.82 3.93E-01 2.00 5.85E-01 1.41
Agrin Interactions at Neuromuscular Junction 0.38 5.27E-01 2.00 5.86E-01 1.63 1.59E-01 1.34
Tec Kinase Signaling −1.21 5.31E-01 3.50 7.80E-01 1.41 6.59E-01 1.23
ERK5 Signaling 0.28 8.32E-01 1.41 5.75E-01 2.00 5.51E-01 1.23
Production of Nitric Oxide and Reactive Oxygen
Species in Macrophages

−0.76 1.90E-01 3.15 3.39E-01 1.20

UVA-Induced MAPK Signaling −2.67 1.19E-01 1.90E-01 0.45 5.51E-01 1.11
PI3K Signaling in B Lymphocytes −0.21 2.57E-01 2.36 5.13E-01 1.08
Colorectal Cancer Metastasis Signaling −0.56 2.18E-01 2.70 7.80E-01 1.00 3.70E-01 1.05
Basal Cell Carcinoma Signaling −0.45 6.34E-01 2.45 3.70E-01 1.00
B Cell Receptor Signaling −0.58 9.77E-01 2.83 8.71E-01 0.71 6.50E-01 0.99
Phospholipase C Signaling −1.41 4.62E-01 3.32 5.32E-01 1.00 5.10E-01 0.97
Glioma Invasiveness Signaling −0.30 2.69E-01 2.11 8.32E-01 1.00 1.38E-01 0.94
Oncostatin M Signaling −0.45 4.23E-01 2.24 9.12E-01 4.95E-01 0.90
Neuregulin Signaling −0.30 3.13E-01 2.00 5.81E-01 7.60E-01 0.85
JAK/Stat Signaling −2.00 7.94E-01 0.33 8.32E-01 0.84
Calcium Signaling −2.11 2.77E-01 0.45 1.38E-01 0.83
Role of RIG1-like Receptors in Antiviral Innate
Immunity

−0.45 1.90E-01 2.00 5.75E-01 0.78

Type II Diabetes Mellitus Signaling −0.58 3.36E-01 2.12 2.23E-01 0.77
PKCθ Signaling in T Lymphocytes −1.41 1.66E-01 2.50 3.72E-01 0.55
NGF Signaling −2.13 5.10E-01 2.33 2.85E-01 1.34 6.32E-01 0.51
Fcγ Receptor-mediated Phagocytosis in Macrophages
and Monocytes

−1.73 3.97E-01 2.12 2.31E-01 1.13 4.28E-01 0.51
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Table 2 (continued )

GSE94069 GSE23348 GSE27961

Ingenuity Canonical Pathways z-
score

P-value
(B-H)

z-
score

P-value
(B-H)

z-
score

P-value
(B-H)

|Avg.|
z-score

Role of NFAT in Regulation of the Immune Response −1.50 3.75E-01 2.50 6.92E-01 0.50
Cardiac Hypertrophy Signaling −2.40 1.69E-01 1.70 4.00E-01 2.14 4.34E-01 0.48
Death Receptor Signaling −2.71 3.36E-01 0.28 3.89E-01 1.00 7.24E-01 0.48
Wnt/Caþ pathway −1.13 4.67E-01 0.45 2.92E-01 2.00 5.10E-01 0.44
Gαq Signaling −2.36 4.40E-01 1.51 2.39E-01 0.43
CNTF Signaling −2.11 1.33E-01 1.34 3.51E-01 5.26E-01 0.39
IL-8 Signaling −1.90 4.19E-01 2.00 5.10E-01 0.58 4.70E-01 0.23
Integrin Signaling −2.68 4.88E-01 1.51 4.99E-01 1.39 4.34E-01 0.07
Melanocyte Development and Pigmentation Signaling −2.32 1.56E-01 1.34 4.90E-01 0.82 4.34E-01 0.05

⁎ Original file contains pathways that contain at least dataset with | z-score| 4 2. Pathways are sorted based on the |Avg|
z-score from all three datasets. |Avg| z-score is used solely for sorting of results, only z-scores for individual time points allow
determination of pathway activation or inhibition. (B-H) Benjamini-Hockberg Multiple Testing Correction P-value limit set to
0.05

Table 3
Canonical pathways of common genes ⁎.

Ingenuity Canonical Pathways z-score P-value Molecules

Glioma Invasiveness Signaling 2.00 1.74E-03 PIK3CA, ITGAV, PLAUR, CD44
IL-6 Signaling 2.00 2.00E-03 IL18, PIK3CA, SRF, CD14, IL33
Acute Phase Response Signaling 2.00 2.57E-02 IL18, PIK3CA, SERPINE1, IL33
NF-κB Signaling 2.00 3.16E-02 IL18, PIK3CA, BMP2, IL33
PDGF Signaling 1.00 3.63E-03 PIK3CA, SRF, SPHK1, PDGFC
LXR/RXR Activation −1.00 7.41E-03 IL18, CD14, ARG2, IL33
Atherosclerosis Signaling 1.05E-03 IL18, TNFRSF12A, MMP1, IL33, PDGFC
HIF1α Signaling 1.07E-03 PIK3CA, LDHA, SLC2A1, MMP1, PDGFC
GDP-glucose Biosynthesis 1.10E-03 HK2, PGM5
IL-10 Signaling 1.23E-03 IL18, CD14, ARG2, IL33
Hepatic Fibrosis / Hepatic Stellate Cell Activation 1.29E-03 BAMBI, CD14, SERPINE1, AGTR1, MMP1, PDGFC
Glucose and Glucose-1-phosphate Degradation 1.45E-03 HK2, PGM5
Bladder Cancer Signaling 2.34E-03 CDKN1A, THBS1, MMP1, PDGFC
Human Embryonic Stem Cell Pluripotency 2.57E-03 INHBA, PIK3CA, SPHK1, BMP2, PDGFC
TGF-β Signaling 3.24E-03 INHBA, TGIF1, SERPINE1, BMP2
Granulocyte Adhesion and Diapedesis 3.80E-03 IL18, SDC4, CLDN1, MMP1, IL33
Agranulocyte Adhesion and Diapedesis 4.79E-03 IL18, SDC4, CLDN1, MMP1, IL33
Role of Osteoblasts, Osteoclasts and Chondrocytes
in Rheumatoid Arthritis

4.79E-03 IL18, PIK3CA, BMP2, SPP1, MMP1, IL33

Role of Tissue Factor in Cancer 1.07E-02 PIK3CA, ITGAV, PLAUR, MMP1
LPS/IL-1 Mediated Inhibition of RXR Function 1.12E-02 IL18, CD14, HS3ST5, NR5A2, IL33
VDR/RXR Activation 1.41E-02 CD14, CDKN1A, SPP1
Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 1.41E-02 IL18, SPP1, IL33
Palmitate Biosynthesis I (Animals) 1.45E-02 OXSM
Fatty Acid Biosynthesis Initiation II 1.45E-02 OXSM
Toll-like Receptor Signaling 1.48E-02 IL18, CD14, IL33
Role of Hypercytokinemia/hyperchemokinemia in the
Pathogenesis of Influenza

1.78E-02 IL18, IL33

Graft-versus-Host Disease Signaling 1.91E-02 IL18, IL33
Macropinocytosis Signaling 1.95E-02 PIK3CA, CD14, PDGFC
Hepatic Cholestasis 2.00E-02 IL18, CD14, NR5A2, IL33

⁎ Original file has pathways with P-value 4 0.02 and sorted from largest to smallest based on z-score then smallest to
largest P-value, Fisher's exact test P-value limit set to 0.05
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Table 4
Comparison of bioinformatic tools ⁎.

DAVID (124/
124)

IPA (116/
124)

Panther (94/
124)

String (93/124)

Canonical Pathways P-value P-value P-value False Discovery
Rate

TGF-beta signaling pathway 5.20E-03 3.24E-03 2.21E-02 2.94E-02
p53 signaling pathway 2.20E-02 3.89E-02 2.26E-02
Proteoglycans in cancer 1.50E-03 8.24E-03
HIF-1 signaling pathway 9.50E-03 1.07E-03
ECM-receptor interaction 6.10E-03 8.24E-03
Bladder cancer 4.50E-02 2.34E-03
Atherosclerosis Signaling 1.05E-03
GDP-glucose Biosynthesis 1.10E-03
IL-10 Signaling 1.23E-03
Hepatic Fibrosis/Hepatic Stellate Cell Activation 1.29E-03
Glucose and Glucose-1-phosphate Degradation 1.45E-03
Glioma Invasiveness Signaling 1.74E-03
Human Embryonic Stem Cell Pluripotency 2.57E-03
PDGF Signaling 3.63E-03
Granulocyte Adhesion and Diapedesis 3.80E-03
Agranulocyte Adhesion and Diapedesis 4.79E-03
Role of Osteoblasts, Osteoclasts and Chondrocytes in
Rheumatoid Arthritis

4.79E-03

Plasminogen activating cascade 7.05E-03
LXR/RXR Activation 7.41E-03
Role of Tissue Factor in Cancer 1.07E-02
LPS/IL-1 Mediated Inhibition of RXR Function 1.12E-02
VDR/RXR Activation 1.41E-02
Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 1.41E-02
Palmitate Biosynthesis I (Animals) 1.45E-02
Fatty Acid Biosynthesis Initiation II 1.45E-02
Toll-like Receptor Signaling 1.48E-02
Role of Hypercytokinemia/hyperchemokinemia in the
Pathogenesis of Influenza

1.78E-02

Graft-versus-Host Disease Signaling 1.91E-02
Macropinocytosis Signaling 1.95E-02
Hepatic Cholestasis 2.00E-02
Coagulation System 2.40E-02
LPS-stimulated MAPK Signaling 2.45E-02
PPAR Signaling 2.45E-02
Acute Phase Response Signaling 2.57E-02
HER-2 Signaling in Breast Cancer 2.57E-02
RNA degradation 2.60E-02
Role of Cytokines in Mediating Communication between
Immune Cells

2.69E-02

Prostate Cancer Signaling 2.75E-02
Aldosterone Signaling in Epithelial Cells 2.75E-02
Trehalose Degradation II (Trehalase) 2.88E-02
Pyruvate Fermentation to Lactate 2.88E-02
Arginine Degradation I (Arginase Pathway) 2.88E-02
NF-κB Signaling 3.16E-02
tRNA Splicing 3.16E-02
Cholecystokinin/Gastrin-mediated Signaling 3.31E-02
Role of Oct4 in Mammalian Embryonic Stem Cell
Pluripotency

3.80E-02

Glucocorticoid Receptor Signaling 3.98E-02
Nitric Oxide Signaling in the Cardiovascular System 3.98E-02
Glioma Signaling 4.27E-02
Urea Cycle 4.27E-02
Arginine Degradation VI (Arginase 2 Pathway) 4.27E-02
Pentose Phosphate Pathway (Non-oxidative Branch) 4.27E-02
p38 MAPK Signaling 4.47E-02
FXR/RXR Activation 4.68E-02
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Kit (Santa Clara, CA) following manufacturer's instructions. Transcriptional changes were analyzed by
hybridization of 500 ng biotinylated cDNA using Affymetrix (Santa Clara, CA) bovine whole-transcript
microarray (Bovine Gene v1 Array [BovGene-1_0-v1]; GPL17645) at the University of Nebraska
Medical Center Microarray Core Facility. Comprehensive microarray methods and data was deposited
in GEO database under accession GSE94069.

2.3. Microarray statistics

The microarray data were preprocessed using the robust multi-array average (RMA) method from
Affymetrix expression console software (Affymetrix Inc., Santa Clara, CA) to normalize data at the
exon level. The mean intensities of multiple probe sets of the same gene were calculated under each
array to obtain the corresponding gene expression intensities. The data was filtered to keep the genes
with a raw expression value after preprocessing to be 10 or more for at least three samples. Linear
Models for Microarray Analysis (LIMMA) [6] in the Bioconductor suite [7] under the statistical pro-
gram R [8] was applied to compare the log ratio between each of the PGF2α time points and the saline
control after adjusting for the box effect. LIMMA applies a linear model and empirical Bayes method
for assessing differential expression of the microarray data. Transcripts with a fold-change of at least
1.5 and a Benjamini-Hochberg adjusted P-value of less than 0.05 for each treatment condition versus
control were identified as differentially expressed genes.

2.4. Self-organizing maps and statistics

Microarray data was filtered to keep genes with a raw expression value after preprocessing to be
30 or more for at least three samples. The log ratio between each of the time points and the saline
control were compared using Linear Models of Microarray Analysis in the Bioconductor suite in R. The
self-organizing map (SOM) clustering algorithm GeneCluster 2.0 [9] was applied to differentially
expressed genes that had a greater than 1.5-fold change in expression and P-value r 0.05 between
PGF2α-treated samples and the saline control. The mean normalized log2 intensity values from each
of the five examined biological conditions were used as transcript expression profiles in the clustering
analysis. The number of iterations in SOM clustering was set to 500,000 to generate SOMs and
hierarchical clustering (correlation-based distance, average link).

2.5. Dataset comparisons

Two previously published microarray datasets GSE23348 [2] and GSE27961 [3] examined the
effect of in vivo PGF2α or analog treatment on the bovine luteal transcriptome using Affymetrix
Bovine Whole Genome Gene Chips (GPL 2112). The datasets were chosen for comparison to the
transcriptome dataset presented herein based on the use of a similar bovine gene array platform and
similarities in the experimental protocol comparing mid-cycle control CL expression profiles to CL
profiles after treatment with PGF2α analog for 4 h (GSE23348) or 6 h (GSE27961). Original.CEL and.
CHP files were downloaded from the GEO database and processed as described above in the Statistical
Methods. The differentially expressed mRNAs at 4 or 6 h were compared between the three micro-
array datasets to determine the similarities among the datasets.

2.6. Pathway analysis

Pathway analysis was evaluated using Ingenuity Pathway Analysis (IPA) [Application: Build:
430520M Copyright 2017 QIAGEN (Redwood City, CA)]. Transcripts found to be differentially
expressed compared to saline-injected controls with 4 1.5-fold change and P o 0.05 were input into
IPA, DAVID, Panther, or STRING for bioinformatics analysis using Entrez gene IDs. Differentially
expressed transcripts were analyzed in IPA using core analysis followed by comparison analysis
between time points, or datasets. Unmapped genes in IPA were as follows: 0.5 h (20.6%), 1 h (8.7%),
2 h (11.7%), 4 h (13.3%), GSE94069 (12.6%, [1]), GSE23348 (9.8%, [2]), GSE27961 (8.0%, [3]) and com-
mon genes (6.5%). Data sets were assessed for prediction of upstream regulators and signaling
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pathways. Additional pathway analysis was completed using DAVID (Version 6.8, released: Oct 2016)
[10,11]; unmapped genes in DAVID were as follows: 0.5 h (0%), 1 h (1%), 2 h (1.7%), 4 h (1.2%),
GSE94069 (0.7%, [1]), GSE23348 (0.8%, [2]), GSE27961 (0.7%, [3]) and common genes (no unmapped
genes). The Panther database was used for gene annotations and comparison to other bioinformatics
tools (Version 11.1, released: Oct 2016) [12–14]; unmapped genes in Panther were as follows: 0.5 h
(34.5%), 1 h (28.2%), 2 h (35.5%), 4 h (38.9%), GSE94069 (39.5%, [1]), GSE23348 (31.6%, [2]), GSE27961
(29%, [3]) and common genes (24.2%). Finally, the STRING Database (Version 10.0, released: Apr 16,
2016) [15] was used to validate IPA findings and provide unique perspectives based on each tool's
functionality.

Description of the methods are derived from the companion article [1] in Molecular and Cellular
Endocrinology.
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