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Abstract Vector transmission is an important part of the

viral infection cycle, yet for many viruses little is known

about this process, or how viral sequence variation affects

transmission efficacy. Here we examined the effect of

substituting genes from the highly transmissible FS577

isolate of citrus tristeza virus (CTV) in to the poorly

transmissible T36-based infectious clone. We found that

introducing p65 or p61 sequences from FS577 significantly

increased transmission efficacy. Interestingly, replacement

of both genes produced a greater increase than either gene

alone, suggesting that CTV transmission requires the con-

certed action of co-evolved p65 and p61 proteins.

Over past 30 years, significant progress has been made in

the identification and characterization of virus-vector

interactions [1, 2]. Viruses may be circulative, and move

through the gut lining of the insect, replicating and per-

sisting for the life of the vector, or more commonly, non-

circulative, binding to structures within the insect vector’s

mouthparts or foregut. In some non-circulative virus-vector

systems, the viral coat protein interacts with the cuticular

intima of the hemipteran vector, whilst others use one or

more non-virion helper proteins to bridge virus and vector

[3, 4]. For most plant viruses, the mechanism by which

virus and vector interact is unknown, or is described by

analogy from better studied virus-vector systems.

One area that requires greater attention is the effect of

mutation or variation in viral genes that control transmis-

sion. One of the best characterized systems is cucumber

mosaic virus (CMV), in which it has been shown that

transmission efficacy is determined by polymorphism

within certain codons of the coat protein, and that these

polymorphisms are aphid species-specific [5]. The effect of

mutation in potyvirus transmission has also been described,

where, unlike CMV, motifs in two proteins are crucial to

transmission: the DAG motif in the coat protein [6], and

the PTK and KITC motifs in HcPro [7].

The effect of polymorphism in other viruses is less well

understood. One example is citrus tristeza virus (CTV) an

aphid transmitted member of the family Closteroviridae

with four major vectors: species Aphis gossypii, Aphis

spiraecola, Toxoptera aurantii, and Toxoptera citricida

[8]. CTV is a genetically diverse virus, with seven char-

acterized strains that differ from one another by 10-20 % at

the nucleotide level [9]. It is not presently known how this

diversity, particularly in the p27, p65 and p61 genes,

affects transmission efficacy of individual isolates. It has

recently been demonstrated [10] that this virus uses three

proteins to interact with the lining of the cibarium of the

aphid: (1) p27, the minor coat protein, which has been

reported to be involved in vector interaction in other

characterized closteroviruses [11, 12], (2) p65, a HSP70-

like molecular chaperone, and (3) p61, a HSP90-like

molecular chaperone, both of which are required for virion

assembly [13].

Here we examined the effect of substitution of sequen-

ces into an infectious clone developed from the poorly

transmissible CTV T36 isolate, from a related yet geneti-

cally distinct and highly transmissible isolate, FS577. We
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found that substitution of either p61 or p65 (p27 is iden-

tical) from FS577 into T36 gave a minor increase in

transmission, yet when both sequences were introduced

simultaneously, transmission efficacy increased to near

FS577 wild type levels, suggesting that aphid transmission

of CTV requires not only the minor coat protein but the

concerted action of these two proteins.

We began by examining differences in transmission

efficacy between CTV isolates T36 and FS577, both of

which were from the collection held at the University of

Florida Citrus Research and Education Center. These two

isolates were selected as they are members of the same

strain lineage [9] and were known to be pure, single strains

rather than mixtures of multiple strains [14]. The full

length infectious clone of T36, 947R [15] was also tested to

provide a baseline for subsequent hybrid generation. Six-

month-old Citrus macrophylla were graft-inoculated with

each of the source isolates, and virus presence confirmed

by ELISA 6 weeks post-inoculation [14]. Aphid transmis-

sions were conducted from these plants using T. citricida,

with a 24 hour acquisition period, followed by transfer to

six-week-old C. macrophylla in batches of 10 aphids per

plant, and left to transmit for a further 24 hours. Seedlings

were tested for the presence of CTV by ELISA at eight

weeks post-transmission.

Having determined that FS577 was transmitted at sig-

nificantly greater frequency than T36, or its infectious

clone, we constructed a series of hybrid infectious clones

between the two isolates. As previous research had shown

that the p65, p61, and p27 genes are involved in the

interaction between virus and aphid [10], we focused on

these genes. First, a single replacement from within p6 to

within p18 (bases 11661 to 17300) was constructed through

amplification (Table 1) of a fragment from FS577-1-8

cDNA, and substituted into the T36 infectious clone [15]

using PmeI-PstI restriction sites. Three hybrids, replacing

the p61, p65, and both p61 and p65 genes, were constructed

through the amplification of three fragments: (a) from base

11647 to the 5’ end of the gene being replaced, (b) the gene

being replaced, and (c) from the 3’ end of the gene of

interest to base 17681 (Table 1). These amplicons were

assembled into a contiguous fragment by overlap PCR, and

substituted into the T36 vector via the PmeI-PstI restriction

sites, as above. No hybrid was constructed for the

replacement of p27 as the sequence of this gene in both

FS577 and T36 is identical . All hybrids were inoculated

into C. macrophylla seedlings as previously described [16],

and successful inoculation confirmed by ELISA. To ensure

sufficient source plants for transmission studies, hybrids

were then sub-propagated into additional C. macrophylla

and virus presence confirmed by ELISA. Plants were then

cut back to force new flush growth suitable for aphid

feeding. Aphid transmission assays were conducted as

described above. Finally, to determine whether differences

in transmission efficacy of the hybrids were attributable to

differences in viral load in the source plants, we tested the

CTV titer in the donor plants used in the aphid transmission

assays using real time RT-qPCR, as previously described

[14]. To support this we also used ELISA to approximate

virion titer.

To examine the effect of sequence variation on trans-

missibility we compared the transmission efficacy of two

CTV isolates, T36 and FS577. We found that T36, the

eponymous type member of the strain transmitted at a fre-

quency of 0.5 % (2 positive from 380 transmissions) using

batches of 10 T. citricida, whereas FS577, a member of the

same sequence group as T36 [9], was transmitted at a fre-

quency of 24 % (95 of 394 transmissions). While these two

isolates differ by only *2 % at the nucleotide level, these

genetic differences translate into phenotypic differences.

Most importantly, T36 contains nine amino acid substitu-

tions in p61 and seven in p65, two genes previously shown

to be involved in aphid transmission of CTV [10] that are

not found in FS577 or other extant members of that strain.

We examined the effect of these mutations on aphid

transmission efficacy through a construction of a series of

T36-FS577 hybrid infectious clones (Figure 1). We first

compared a T36-based hybrid with replacement of the

Table 1 Primers used to

amplify products for the

substitution of FS577 fragments

into the full-length T36

infectious clone

Gene/region Sense Sequence (50-30) Binding site

Outer primers ? ACTAGTTAGTGCTGTCTCTCCGTA 11647-11670

- GTAGACTCTAGTTATCGCAAGGTAAG 17656-17681

Start of P65 ? GACTGTCTAAGCGGTATGGTGCTTTT 12020-12045

- CGAAGTCTAAACCCAAAAGCACCATA 12034-12059

End of p65 / Start of P61 ? TGGAAAGAATACCTCTCTGAATCAAC 13800-13825

- CATCGAAATTTCGAGTTGATTCAGAG 13814-13839

End of P61 ? CCTTATCATGGCAGGTTATACAGTAC 15318-15343

- CATCGGTTTTAGGAAGTACTGTATAA 15333-15358

Primer binding sites are given as per the sequence of isolate FS577 (NCBI GenBank Accession No.

KC517488)
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partial p6 through partial p18 ORFs (bases 11661 to 17300)

from FS577, to the unmodified T36 clone and found that

substitution of genes within this region resulted in a

marked increase in transmission efficacy from 0.6 (1 pos-

itive from 172 transmissions) to 21 % (52/253 transmis-

sions). Of the genes previously identified as being involved

in aphid transmission within this region, only p61 and p65

differ between T36 and FS577; the sequence of p27 is

identical when comparing both isolates. Therefore, the p61

and p65 genes of FS577 were both separately and simul-

taneously inserted into the T36 infectious clone. Trans-

mission with T. citricida revealed that substitution of p61

increased transmission efficacy from 0.6 to 4 % (11/273),

while substitution of p65 gave an increase to 2 % (5/258),

confirming that the sequence of these genes controls

transmission efficacy. Interestingly, simultaneous substi-

tution of both genes increased transmission efficacy to

18 % (35/196), which suggests that aphid transmission

requires the concerted action of these two genes through an

unknown mechanism, and further, that this requires com-

patible sequences in these two genes.

Given the role of these two proteins in virion assembly,

we tested whether this increase was due to a difference in

viral titer of the hybrids relative to each other or the con-

trols by using both real time RT-qPCR and ELISA.

Quantification of viral RNA by RT-qPCR (Figure 2a)

showed that there was no significant difference (Tukey

HSD P[ 0.05) in virus replication and accumulation

caused by the insertions. Examination by ELISA gave

similar results (Figure 2b); while this method is non-linear,

and at best can be an approximation of virion copy number,

it does indicate that there is little difference in virus titer

between the hybrids and their parental isolates. Cumula-

tively, this suggests the substitutions did not affect virus

accumulation, therefore we propose that the increase in

efficacy is due to the polymorphisms contained within the

substituted p61 and p65 genes.

The interaction between viruses and their vectors is

highly specific, involving the precise interaction of viral

coat or helper proteins to receptors in the vector’s mouth-

parts or foregut [4, 17]. Mutation of key motifs within the

viral vector-binding proteins has been shown to reduce or

Fig. 1 Diagrammatic representation of genes substituted from isolate FS577-1-8 (grey) into the full-length T36-based infectious clone (white),

and their effect on the rate of aphid transmission by T. citricida
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abolish transmission [7, 18]. Unsurprisingly, viral proteins

involved in transmission are under strong selective pressure

[19], and although in the absence of transmission, such as

repeated mechanical propagation, non-transmissible iso-

lates have been noted to emerge [20].

Following the recent discovery that CTV uses three

proteins, p27, p65, and p61, to interact with its aphid vector

[10], we asked what effect polymorphism within these

genes has on transmissibility. We focused on the poorly

transmissible T36 isolate, which has been graft-propagated

in greenhouse conditions for over 30 years (S. Garnsey,

personal communication), and compared it to FS577, a

highly transmissible member of the same genetic lineage.

While the sequence of p27 is identical between the two

isolates, there are seven and five nonsynonymous substi-

tutions present in the p61 and p65 proteins of isolate T36,

respectively, that are not found in either FS577 or other

T36-like isolates obtained from field trees in Florida [9].

Interestingly, the sequence of these two proteins in field

isolates are much more conserved, and differ from one

another by between 2-6 and 0-2 nonsynonymous

substitutions respectively. It is likely that the absence of

selection for transmission has allowed T36 to accumulate

mutations not found in other isolates. We found that

replacement of the p65 or p61 sequences of the T36

infectious clone gave a minor increase in transmission, but

when both were replaced simultaneously, transmission

efficacy increased significantly. This suggests that aphid

transmission requires the concerted activity of compatible

p61 and p65 proteins.

The marked increase of CTV transmission by T. citri-

cida observed after simultaneous substitution of p61 and

p65 suggests co-evolution between these proteins, and

potential interaction during transmission. It has previously

been shown that these two proteins are essential for virion

assembly, and will only restrict the minor coat protein to

the 5’ end of the virion when both are present [13]. It is

plausible that they interact in a similar manner to effect

aphid transmission by an unknown mechanism, and the

requirement for co-evolved sequences is a requirement for

compatible protein-protein binding sites. Interestingly, the

polymorphisms in these two genes, between isolates T36

Fig. 2 The approximate titer of

CTV T36-FS577 hybrid

infectious clones, determined by

a real time RT-qPCR, and

b ELISA, in flush tissue of C.

macrophylla seedlings used as

aphid transmission sources, as

compared to the unmodified

T36 infectious clone, and FS577

parental isolate
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and FS577, do not appear to affect virion assembly; all

hybrids infected C. macrophylla systemically and accu-

mulated to similar titers.

How the p65 and p61 proteins interact with one another,

and with the aphid vector requires further research,

although it is interesting to note that homologues of these

proteins are present in all extant members of the family

Closteroviridae [21], and have reported to be components

of virions of lettuce infectious yellow virus [11] and beet

yellows virus [22]. Are p65 and p61 part of the virion? Do

they, with p27, form a structure for binding to the aphid?

Many questions remain to be answered about how mem-

bers of the family Closteroviridae are transmitted by their

hemipteran vectors.
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