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Actuarial Model Assumptions for Australian 
Inflation, Equity Returns, and Interest Rates 

Michael Sherris* 

Abstract t 

Though actuaries have developed several types of stochastic investment 
models for inflation, stock market returns, and interest rates, there are two 
commonly used in practice: autoregressive time series models with normally 
distributed errors, and autoregressive conditional heteroscedasticity (ARCH) 
models. ARCH models are particularly suited when there is heteroscedastic
ity in inflation and interest rate series. In such cases nonnormal residuals 
are found in the empirical data. This paper examines whether Australian uni
variate inflation and interest rate data are consistent with autoregressive time 
series and ARCH model assumptions. 
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roots, ARCH, inflation, interest rates 
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1 Introduction to ARCH Models 

In recent years actuaries have developed and applied time series 
models of inflation, interest rates, and stock market returns to assist 
with pension and insurance financial management. Some of the earliest 
work in developing models for actuarial applications was performed 
by Wilkie (1986, refined in 1995). Carter (1991) develops an Australian 
version of the Wilkie model using traditional time series analysis of 
Australian time series data for inflation, equity markets, and interest 
rates. See Geoghegan et al., (1992), Daykin and Hey (1989, 1990), and 
Boyle et al., (1998, Chapter 9) for a discussion of these and other models 
and their actuarial applications. 

The standard assumption in actuarial models is that the model er
rors are independent and identically distributed (Li.d.) normal random 
variables. Inflation rates and interest rates are then modeled using 
autoregressive time series. A discrete time st'Jchastic process {Yt , t = 

0,1, ... , n, ... }, where Yt is a real valued random variable at time t, is 
called an autoregressive process of order p, AR(p), if it can be repre
sented as 

p 

Yt = fJ + L cf>I<Yt-k - fJ) + ft (1) 
k=l 

where fJ = E[Yt], P is a positive integer, and cf>l, ... ,cf>p are constants 
with cf>p =1= o. In addition, the ftS form a sequence of uncorrelated nor
mal random variables with mean 0 and variance (J"2. The time series 
in equation (1) is stationary in the sense that it has a constant uncon
ditional mean and variance. In practice the series used in actuarial 
applications, such as the inflation or interest rate, are assumed to be 
autoregressive and have constant unconditional means. 

If the level of a series in equation (1) is not stationary, but the dif
ference of the series (Le., 6. Yt ) is stationary, then the series is said to 
contain a unit root (or said to be integrated or order 1, or to be differ
ence stationary). The existence of unit roots determines the nature of 
the trends in the series. If a series contains a unit root, then the trend 
in the series is stochastic and shocks to the series will be permanent. 
If the series does not contain a unit root, then the series is trend sta
tionary. The trend in the series will be deterministic, and shocks to the 
series will be transitory. 

When the LLd. error assumption is not practical, other models must 
be considered. One such model is the autoregressive conditional het
eroscedasticity (ARCH) model. The ARCH model, introduced by Engle 
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(1982), allows for time-varying conditional variance by modeling the 
variance of the errors of a series, Vt, as a function of past model errors, 
Et, using the equation: 

q 

Vt = ()(o + L ()(jEL j (2) 
j=l 

where q is the order of the ARCH process, or simply an ARCH(q) pro
cess. The errors of the series are obtained after fitting a mean equation 
to allow for mean reversion. 

The GARCH model, introduced by Bollerslev (1986), allows the vari
ance of the errors to depend on previous values of the variance as well 
as past errors using the equation: 

q q 

Vt = ()(o + L ()(jEF-j + L CPjVt-j 
j=l j=l 

which is referred to as a GARCH(p, q) process. Many other volatil
ity models have been proposed: the exponential GARCH model (Nel
son, 1991) and the nonlinear asymmetric GARCH model (Engle and Ng, 
1993). 

The models used for scenario generation as described in the actu
arialliterature typically use ARCH models. For example, Mulvey (1996) 
describes the Towers Perrin model where inflation is modeled as an 
autoregressive process with ARCH errors. Sherris, Tedesco, and Zehn
wirth (1996), Harris (1994,1995), and others support the need to model 
heteroscedasticity in Australian inflation and interest rates. 

This paper will consider using ARCH models for Australian time 
series data. Specifically, the models assume ARCH and normal distri
bution of errors using Australian inflation, stock market, and interest 
rate time series data. The paper does not examine assumptions of inde
pendence of errors or model selection, and ill9dels will need to satisfy 
wider criteria than are examined in this paper. Carter (1991) and Harris 
(1994,1995) have considered some of these issues for Australian data. 

2 Australian Time Series Data 

The data used for the empirical analysis in this paper are taken from 
the Reserve Bank of Australia Bulletin database. The study uses quar
terly data. This is the highest frequency for which the inflation series 
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is available in Australia. The Australian Consumer Price Index is deter
mined quarterly-a frequency suitable for many actuarial applications. 

Different series are available over different ame periods. The longest 
time period for which data are available on a quarterly basis for all of 
the financial and economic series is from September 1969.1 The series 
considered are: 

• The Consumer Price Index-All Groups (CPI); 

• The All Ordinaries Share Price Index (SPI); 

• Share dividend yields; 

• The 90 day bank bill yields; 

• The two year Treasury bond yields; 

• The five year Treasury bond yields; and 

• The ten year Treasury bond yields. 

An index of dividends is constructed from the dividend yield and the 
Share Price Index series. Logarithms and differences of the logarithms 
are used in the analysis of the CPI, SPI, and dividends. The difference in 
the logarithms of the level of a series is the continuously compounded 
equivalent growth rate of the series. 

Figures 1 through 8 provide time series plots of the series. An ex
amination of the plots for the CPI, SPI and the Dividend Index series 
shows exponential growth. The plot of the logarithms of these series 
suggests that the series could be fluctuations around a linear trend in 
the logarithms. Such a series is referred to as trend stationary. The plot 
of the differences of the logarithms of these series appears to indicate 
a nonconstant variance or heterogeneity. Table 1 provides summary 
statistics for all of the series. 

The interest rate series all show a changing level as interest rates 
rose during the 1970s and 1980s. Models of interest rates that incorpo
rate mean-reversion, i.e., models that assume that the level of interest 
rates has constant unconditional mean and variance, are often used. 
This is not intuitive from our examination of the time series plots of 
the interest rates. The differences in the levels of the interest rates 
seem to fluctuate around a constant value, but the series appear to be 
heteroscedastic. 

1 Individual series are available for differing time periods. For example, Phillips (1994) 
fits Bayes models to Australian macroeconomic time series. The data used are similar 
to those used here but cover different time periods. 
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Figure 2 
All Ordinaries Share Price Index 
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Figure 3 
Share Price Dividend Index 
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Figure 4 
Dividend Yields 
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Figure 5 
90 Day Bank Bill Yields 
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Figure 6 
Two Year Treasury Bond Yields 
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Figure 7 
Five Year Treasury Bond Yields 
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Figure 8 
Ten Year Treasury Bond Yields 
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Table 1 
Summary Statistics of All Series 

Quarterly Data from September 1969 to December 1994 
Mean STDEV Max Min Median Mode SKEW KURT 

CPI 60.074 32.462 112.80 17.000 55.300 107.60 0.2375 -1.3631 
C 3.9220 0.62386 4.7256 2.8332 4.0128 4.6784 -0.3408 -1.2288 
SPI 865.01 595.05 2238.7 194.30 603.40 2238.7 0.6797 -1.0008 
S 6.5177 0.71137 7.7137 5.2694 6.4026 7.7137 0.1667 -1.4523 
DVY 4.4506 1.1496 7.7300 2.0700 4.5000 5.8500 0.2237 -0.1128 
DVS 3741.5 2584.0 9398.3 861.74 2877.4 9398.3 0.7365 -0.7603 
BB90 10.909 4.1029 19.950 4.4500 10.350 15.450 0.3310 -0.8313 
TB2 10.185 3.2623 16.400 4.6000 9.9400 15.150 0.0137 -1.1443 
TB5 10.465 2.9845 16.400 5.2000 10.030 13.850 -0.0775 -1.0843 
TBlO 10.648 2.8299 16.400 5.7500 10.180 9.5000 -0.0997 -1.0091 
Notes: Quarterly data for all series were available from September 1969 to December 1994. The 
data are CPI = Consumer Price Index; C = In(CPl); SPI = Share Price Index; S = In(SPl); DW = 
Share dividend yields; DVS = Share dividends series; BB90 = 90 day bank bills yields; TB2 = Two 
year treasury bond yields; TB5 = Five year treasury bond yields; TB10 = Ten year treasury bond 
yields. In addition, STDEV = Standard Deviation; SKEW = Coefficient of skewness; and KURT = 
CoeffiCient of excess kurtosis. 
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The following notation is used throughout the rest of the paper: 

t 

Et 

CPIt 

Ct 

!:lit 

SPIt 

St 

DVYt 

Yt 

DVIt 

It 
Ft 

Number of quarters since January 1, 1969, t = 1,2, ... ; 
The error term at t, for t = 1,2" .. ; 
Consumer Price Index for quarter t; 
In(CPIt); 

it - it-l for any function i; 

Share Price Index for quarter t; 
In(SPld; 

Dividend yield for quarter t; 
In(DVY t ); 

Dividend index for the Australian data for quarter t; 

In(DVId; 

Force of interest for quarter t. 

3 Analysis of the Australian Data 

3.1 Inflation 

Sherris, Tedesco, and Zehnwirth (1996) provide empirical evidence 
that the Ct series contains a unit root for Australian data. Although 
unit root tests can erroneously reject the hypothesis of a unit root in 
the presence of structural breaks2 (Silvapulle, 1996) and are affected 
by additive outliers3 (Shin, Sarkar, and Lee, 1996), this is not taken 
into account. Structural changes can lead to erroneous rejection of the 
hypothesis of a unit root. 

An AR(l) model is fitted4 (with a log-likelihood value of 331.778) to 
the CPI series to give 

!:lCt = 0.0187 + 0.802 (!:lCt-l - 0.0187) + 0.0090Et. (3) 

This AR(l) model is examined first because it is used in actuarial ap
plications with the assumption that the errors are normally distributed 
and with constant variance. Diagnostics for these model assumptions 

2 A structural break occurs in the series where there is a discontinuity in the mean 
or the trend. 

3 An additive outlier is a single observation which is not consistent with the other 
observations in the series usually indicated by a highly significant t-ratio. 

4All equations were fitted with the SHAZAM (1993) econometrics package. 
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are given in Table 2. The ARCH test of Engle (1982), is based on a re
gression of Ef on ELI and is a test for nonlinear dependence in the 
residuals. 

The ARCH test regresses the squared residuals from the AR(1) model 
on a constant and the lagged squared residuals. The number of obser
vations times the R2 of this regression (N x R2) has an asymptotic X2 

distribution with 1 degree of freedom. 
The Jarque-Bera test is based on the statistic 

2 2 
Nx(h+Yz] 

6 24 

where )'1 is defined as the skewness and )'2 is defined as the excess 
kurtosis. This statistic has a X2 distribution with 2 degrees of freedom 
for large N. Skewness and excess kurtosis are defined as: 

and 

where mk is the k-th sample central moment, i.e., 

1 N 
mk = N 2:: (Et - E). 

t=l 

Table 2 
Quarterly Inflation Rate Autoregressive Model 

AR(1) Model for Ct 

Log-Likelihood Function Value 
ARCH Test 2.535 
Skewness 
Excess Kurtosis 
Jarque-Bera Test 

0.7781 
3.1785 

46.8732 

331.778 
(X 2, 1 df, - 5% critical value 3.841) 

(std. dev. is 0.240) 
(std. dev. is 0.476) 

(X 2 , 2 df, 5% critical value 5.991) 

The residuals for equation (3) are leptokurtic.5 The statistical evi
dence for ARCH in this data series over this time period is not strong, al
though Sherris, Tedesco, and Zehnwirth (1996) find that a GARCH(1, 1) 
model fits !lCt well for the period September 1948 to March 1995. 

5 A leptokurtic distribution is more peaked than the normal distribution and thus 
has fatter tails. 
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The inflation model described in Mulvey (1996) uses an ARCH model 
for volatility. An ARCH(1) model is fitted to the Australian quarterly CPI 
data to obtain 

0.0187 + O.675(~Ct-l - 0.0187) + O"tEt 

0.00007 + 0.31EF-l 

(4) 
(5) 

with a log-likelihood value of 329.792. Diagnostics for ARCH and nor
mal distribution of errors for this model are reported in Table 3. 

Table 3 
Quarterly Inflation Rate Autoregressive Model 

AR(l) Model-ARCH(1) Modd for Ct 

Log-Likelihood Function Value 329.792 
ARCH Test 0.294 (X 2 , 1 df) 
Skewness 0.6550 (std. dev. is 0.240) 
Excess Kurtosis 3.7087 (std. dev. is 0.476) 
Jarque-Bera Test 57.6464 (X 2 , 2 df) 

Although the model appears to capture ARCH in the volatility of 
the rate of inflation, the errors are still significantly nonnormal. The 
log-likelihood decreases. These results suggest that if an autoregres
sive model for the rate of inflation is used, the normality assumption 
for the errors will not be appropriate. An ARCH model with the as
sumption that errors are normally distributed is also not supported as 
an appropriate model for Australian inflation data. Because such an 
ARCH model is often used by actuaries in practice for inflation, some 
caution about the results from such a model is warranted. 

3.2 Stock Market Series 

The Wilkie (1986) approach to modeling stock returns uses a divi
dend yield and a dividend index. The model described in Mulvey (1996) 
diVides stock returns into dividends and priLe appreciation. We con
sider models for price appreciation, dividend yields, and a diVidend 
index for the Australian data. Sherris, Tedesco, and Zehnwirth (1996) 
present the results from unit root tests for the data considered here 
which indicate that the logarithm of the Australian Share Price Index, 
the logarithm of the dividends series, and dividend yields are difference 
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stationary. An important issue in equity market data is the allowance 
for share market crashes. In this paper we consider them as additive 
outliers. 

Growth in an equity index and dividends are the two components 
of the return from equities that require modeling for actuarial appli
cations. In this section models for the Australian equity market index 
and for dividends on the index are considered. 

3.3 Share Price Index 

Because we are interested in using volatility models for stock market 
returns we consider the following model for the Share Price Index: 

where J.ls = E[~StJ. 

J.ls + EtJVt 

lXo + lXIELI 

(6) 
(7) 

Table 4 reports the results from fitting this model with ARCH(l) 
volatility. Note the lXI parameter for ARCH volatility is significant at 
the 5 percent significance level. Based on the tests on the residuals 
given in Table 4, however, the residuals do not appear to be from a nor
mal distribution. We have not tested these residuals for independence. 
Thus, although scenarios generated from a model using ARCH errors 
appear to be supported by the historical data, we should not use such 
a model in practice with the normal distribution of errors. 

Because the quarter December 1987 appears in the residuals as an 
outlier corresponding to a stock market crash, it is of interest to deter
mine the impact that this observation has on the results. This particular 
quarter is modeled as an additive outlier using a dummy variable de
noted by D(4, 87), i.e., 

D (4 87) = S 1 t deno~es the quarter is December 1987; 
t, l 0 otherwIse. 

The AR(1) model is modified as: 

~St = J.ls + {3D t (4, 87) + Et. (8) 

Table 5 reports the results of fitting equation (8) assuming constant 
variance. 

The ARCH test indicates that an ARCH model should be considered 
for the volatility even after adjusting for the market crash outlier. The 
model used is 
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D.St = /.is + f3Dd4, 87) + €t-JVt (9) 

with equation (7) representing the ARCH(l) component. Table 6 reports 
the results of fitting equation (9). The ARCH parameter is not signifi
cant, and the results do not support ARCH errors in SPI returns after 
adjusting for the market crash using an additive outlier. 

Table 4 
D.St with ARCH Errors 

Log-Likelihood Function Value 83.992 
Mean Equation Constant 

Coefficient 0.01634 
t-ratio 1.720 

Variance Equation ARCH (Xo (Xl 

Coefficient 0.00795 0.40661 
t-ratio 4.921 1.985 

Diagnostics of Errors 
ARCH Test 0.105 (X 2 , 1 df) 
Skewness -0.6818 (std. dev. is 0.240) 
Excess Kurtosis 1.2789 (std. dev. is 0.4 76) 
Jarque-Bera Test 13.2316 (X 2 , 2 df) 

3.4 Dividend Yields 

Preliminary analysis using the unit root tests indicate that the loga
rithms of the dividend yields are difference stationary, so we consider 
the model: 

(10) 

with the ARCH(l) component as in equation (7). This model is fitted, 
and the ARCH test gives a significant result. An ARCH model is fitted 
for Vt, and the results for the variance equation are reported in Table 7. 
The model appears satisfactory from the point of view of ARCH errors. 

Autoregressive models for dividend yields are used in scenario gen
eration for actuarial modeling. With this in mind, the following AR(1) 
model is used: 

(11) 
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Table 5 
!:lSt with Constant Mean and Variance 

and December 1987 Dummy Variable for Market Crash 
Log-Likelihood Function Value 92.238 
Mean Equation Ils f3 

Coefficient 0.02195 -0.59475 
t-ratio 2.231 -6.035 

Diagnostics of Errors 
ARCH Test 4.164 (X 2 , 1 df) 
Skewness -0.7679 (std. dev. is 0.240) 
Excess Kurtosis 1.4587 (std. dev. is 0.476) 
Jarque-Bera Test 17.0620 (X 2 , 2 df) 

with the ARCH(1) component as in equation (7). Note that IjJ is a con
stant. 

We fit an AR(I) model to the dividend yield and check for outliers 
and ARCH. As would be expected given the share market index results, 
an outlier in the December 1987 quarter is detected corresponding to 
the share market crash. A dummy intervention variable is included 
for this observation and the residuals are tested for ARCH. The test is 
Significant, so we fit an autoregressive model with ARCH errors as in 
equation (11). The residuals from this model do not reject the normal 
distribution assumption. 

As noted earlier, in the actuarial literature models for scenario gen
eration are based on autoregressive models for dividend yields and a 
normal distribution of errors. Such a model would have been consid
ered satisfactory if no test for unit roots had been performed. Unit root 
tests, however suggest that the series is difference stationary and the 
difference stationary model would be preferred in this case. 

3.5 Share Dividends 

Sherris, Tedesco, and Zehnwirth (1996) construct a dividend index 
(DVIt) for the Australian data. This index is defined as: 

DVIt = SPIt x DWt . (12) 

Modeling the rate of growth of dividends, It = In(DVId, is difficult 
because dividends contain seasonal patterns. The difference series, !:lIt, 
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Table 6 
D.St with Constant Mean, ARCH Errors, 

and December 1987 Dummy Variable for Market Crash 
Log-Likelihood Function Value 93.7266 
Mean Equation Ps {3 

Coefficient 0.02195 -0.59475 
t-ratio 2.395 -4.641 

Variance Equation ARCH 0<0 0<1 

Coefficient 0.00752 0.20405 
t-ratio 5.262 1.346 

Diagnostics of Errors 
ARCH Test 0.456 (X 2, 1 df) 
Skewness -0.4209 (std. dev. is 0.240) 
Excess Kurtosis 0.2998 (std. dev. is 0.476) 
Jarque-Bera Test 3.10087 (X2, 2 df) 

is first modeled as an AR(I) time series. The residuals from this model 
indicate ARCH and an outlier in the series in the June quarter of 1976. 
The cause of this outlier is not known. A dummy variable, Dt(2, 76), is 
defined as: 

D (2 76) = {I t deno~es the quarter is June 1976; 
t , 0 otherWlse. 

After including a dummy variable for the outlier, the model becomes: 

D.lt = PI + tjJD.lt-l + {3Dt(2, 76) + ftVVt (13) 

with the ARCH(1) component as in equation (7). In this model of equa
tion (13) the ARCH effect diminishes in Significance. These results for 
the equity series are displayed in Table 8 support the point made in 
Chan and Wang (1996) that ARCH effects in share investment returns 
series are magnified by observations such as the crash that may be out
liers. 

3.6 Interest Rates 

The interest rate series is transformed into a force of interest, Ft, 
using the transformations: 
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F = { In(l + 90it/36500) for 90 day bank bill yields; (14) 
t In(1 + it/200 ) for 2,5, and 10 year bond yields 

where it is the per annum percentage yield to maturity for the 90 day 
bank bill, two, five, and ten year bond for quarter t. 

Sherris, Tedesco, and Zehnwirth (1996) present statistical support 
for these Australian bond yields containing a unit root and hence being 
difference stationary. In contrast, the assumption often used for sce
nario generation of future bill and bond yields in actuarial investment 
models is an autoregressive model. The standard unit root tests do not 
provide support for an autoregressive model for the Australian data 
series examined in this paper. These tests may have low power against 
close-to-stationary models. 

For the interest rate series we consider models for the transformed 
interest rate series of the form 

(15) 

As before, models with constant volatility are considered initially. 
For 90 day bank bills there is an outlier for the June 1994 quarter. 

This corresponds to a quarter when there was a significant tightening of 
monetary policy with the government raising short-term official interest 
rates dramatically. The series is adjusted for the effect of this outlier 
as follows: 

(16) 

where 

D (2 94) = {I t denotes the quarter is June 1994; 
t , 0 otherwise. 

The adjusted series shows evidence of ARCH, so an ARCH model is 
fitted. Although this captures the ARCH effect, the normal distribution 
assumption for the residuals still is rejected. 

Table 9 reports the fitted model and diagnostics for ARCH and nor
mality for all of the bond series. For the two year bond yields there are 
no outliers and no evidence of ARCH, and the residuals appear to satisfy 
the normal distribution assumption. For the five year bond yields there 
are no outliers and no significant evidence of ARCH, but the residuals 
are negatively skewed and fat-tailed and reject the normal distribution 
assumption. In the case of the ten year bond yields there are no outliers 
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Table 7 
/1Dt (After Adjustment for Crash Dummy Variable) 

Log-Likelihood Function Value 85.0154 
Variance Equation ARCH ()(o 

Coefficient 0.00865 
t-ratio 5.006 

Diagnostics of Errors 
ARCH Test 0.000 
Skewness 0.170 
Excess Kurtosis -0.0194 
Jarque-Bera Test 0.4984 

()(l 

0.22236 
1.448 

(X 2, 1 df) 
(std. dev. is 0.240) 
(std. dev. is 0.476) 

(X 2, 2 df) 

and no evidence of ARCH. The residuals reject the normal distribution 
even more strongly than for the five year bond yields. 

Autoregressive models are commonly used for interest rates in ac
tuarial modeling. An AR(1) model of the form: 

(17) 

is fitted to the transformed yields for the Australian series. For the two 
year bond yields the parameter estimates (standard errors in paren
theses) are ao = 0.0534 (0.0084) and al = 0.943 (0.0301) with log
likelihood 399.3. This autoregressive model is used as the null hypoth
esis in a likelihood ratio test against the alternative of al = 1.0 (a unit 
root), but the standard critical values reject the null hypothesis. 

The AR(1) residuals reject the normal distribution assumption but 
show no Significant statistical evidence of ARCH. This result holds for 
all of the autoregressive models fitted to the bond yield series. If an 
autoregressive model is used, then these results indicate that these in
terest rate models are not adequate and that adding ARCH volatility 
does not produce a better model. 

4 Conclusions 

The main aim of this paper has been to examine standard assump
tions used in actuarial models for economic scenario generation. Quar
terly Australian data for inflation, stock market, and interest rate series 
are examined to see if simple autoregressive models and ARCH models 
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Table 8 

!:lIt is AR(1) with ARCH errors and June, 1976 Dummy Variable 

Log-Likelihood Function Value 142.19 

Mean Equation /lI tjJ f3 
Coefficient 0.02419 -0.01256 -0.2206 

t-ratio 4.175 -1.416 -2.584 

Variance Equation ARCH lXo lXI 

Coefficient 0.00299 0.17822 

t-ratio 5.548 1.315 

Diagnostics of Errors 

ARCH Test 0.001 (X2 , 1 df) 

Skewness -0.1549 (std. dev. is 0.240) 

Excess Kurtosis 0.7948 (std. dev. is 0.476) 

Jarque-Bera Test 2.4374 (X 2 , 2 df) 

of volatility with the assumption of a normal distribution of errors are 

reasonable. All of the analysis has been based on univariate series. 

The results do not suggest that volatility in the series can be suc

cessfully modeled using an ARCH process. After allowing for additive 

outliers, some series do not show evidence of ARCH (for example, the 

rate of change of (transformed) bond yields). Equity returns show ev

idence of ARCH, even after adjusting for the effect of outliers such as 

the market crash. Outliers also increase the ARCH effect in the equity 

series. 
The distribution assumed for errors in models used in practice must 

be considered carefully because the normal distribution assumption is 

not appropriate for errors based on the time series data for most of the 

models considered here. Alternative models and error distributions for 

economic scenario generation for actuarial applications require further 

investigation. It is not necessarily sufficient to use simple autoregres

sive models and a normal distribution for the errors. Even adding ARCH 

volatility in the hope that the normal distribution for errors will be ad

equate for modeling is not satisfactory. 

This paper further demonstrates the need to model volatility in 

these series but indicates that the ARCH and normal distribution as

sumptions often used in practice and the actuarial literature are not 

supported by Australian historical data. 
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