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10.1  An Introduction to Modeling Salmonella in Low 
Water Activity Foods

The presence and survival of Salmonella in low water activity (aw) foods contin­
ues to pose a challenge for the food industry. Peer‐reviewed literature data on 
prevalence and levels of contamination of Salmonella in low water activity foods 
in the United States are limited. Available published data include those on: 
Salmonella contamination on nuts and peanuts (Calhoun et al., 2013), almonds 
(Danyluk et al., 2007; Bansal et al., 2010), pecans (Brar, Strawn, and Danyluk, 
2016), and walnuts (Davidson et al., 2015); prevalence and levels of Salmonella 
on spices (Van Doren et al., 2013); as well as data on prevalence of Salmonella in 
animal feed (Li et al., 2012). On the other hand, data on survival and inactivation 
of Salmonella in low water activity foods have been collected extensively. 
Examples include Salmonella in a wide variety of nuts (Uesugi, Danyluk, and 
Harris, 2006; Uesugi and Harris, 2006; Danyluk et al., 2008; Beuchat and Mann, 
2010, 2011; Abd, McCarthy, and Harris, 2012; Blessington, Mitcham, and Harris, 
2012, 2014; Kimber et al., 2012; Beuchat et al., 2013b; Blessington et al., 2013a; 
Blessington et al., 2013b; Brar et al., 2015), whey protein (Santillana Farakos, 
Frank, and Schaffner, 2013), peanut butter (Ma et al., 2009; Lathrop, Taylor, and 
Schnepf, 2014; Li, Huang, and Chen, 2014), dry confectionary raw materials 
(Komitopoulou and Penaloza, 2009), spices (Keller et al., 2013), and several oth­
ers as detailed in the reviews by FAO/WHO (2014), Beuchat et al. (2013a) and 
Podolak et al. (2010). In these studies, Salmonella is shown to be very resistant to 
desiccation and, once the cells are dry, have an increased resistance to heat. A 
high degree of variability is seen among studies, substrates, and the environmen­
tal conditions under which the experiments take place. Water activity is one 
critical factor in Salmonella inactivation and survival. Other influencing factors 
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include the interaction between water and Salmonella cells and the effect of tem­
perature, as well as the interaction between water and other components of the 
food matrix (e.g., sugars and fats). How these factors and interactions influence 
survival is still not well understood.

The Weibull model has been determined to be the best applicable model to 
describe survival of Salmonella in low water activity foods (Santillana Farakos, 
Frank, and Schaffner, 2013; Santillana Farakos et al., 2016). Predictive models 
developed for Salmonella survival in these foods include models for survival on 
almonds at −20, 4, and 24 °C assuming log‐linear declines developed by Danyluk, 
Harris, and Schaffner (2006) and Lambertini et al. (2012). Santillana Farakos, 
Frank, and Schaffner (2013) developed secondary models using a Weibull pri­
mary model to predict survival in a low‐fat food model system at temperatures 
ranging from 21 to 80°C and aw <0.6. More recently, a Weibull‐type model able to 
predict survival of Salmonella in tree nuts at typical storage temperatures, incor­
porating variability and uncertainty separately was developed (Santillana Farakos 
et al., 2016).

The first step in developing a predictive model is to collect data on survival 
and/or inactivation. Once developed, predictive models can be used for different 
purposes, including quantitative microbial risk assessment (QMRA) and to 
provide information useful for setting performance standards and food safety 
objectives. Quantitative risk assessment is a tool able to estimate the risk of 
adverse health effects from exposure to a hazard in the food supply and the 
associated burden of illness for a specific population. It consists of four steps: 
(i) hazard identification, (ii) hazard characterization, (iii) exposure assessment, 
and (iv) risk characterization (CAC, 1999; CFSAN, 2002). In addition to data and 
models on Salmonella survival, the exposure assessment component of QMRA 
requires prevalence and contamination levels. Available QMRA of Salmonella in 
low water activity foods include those by Danyluk, Harris, and Schaffner (2006), 
Lambertini et al. (2012) and the US Food and Drug Administration (FDA, 2013, 
2016). Lambertini et al. (2016) have also conducted a quantitative assessment of 
the risk of salmonellosis to both humans and also to pets associated with the 
consumption of dry pet foods.

The aim of this chapter is to provide an introduction to modeling Salmonella 
in low water activity foods focusing on the statistical issues related with model 
development and the development of a QMRA. Salmonella on peanuts are used 
in an example case study.

10.2  Developing a Predictive Model for Salmonella 
in Low Water Activity Foods

Predictive models in food microbiology are used to estimate microbial concen­
tration levels given certain conditions. The first step in developing a predictive 
model is to develop a primary model. Primary models determine the magnitude 
of a response of interest (e.g., growth rate, survival rate, inactivation rate, lag 
phase, etc.) given certain conditions (e.g., temperature (T), aw) that are con­
sidered fixed. For example, it may be necessary to know the survival rate of 
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Salmonella in peanuts during storage at ambient temperature. The specific 
response of interest could be the time it takes to reduce the population of Sal­
monella by 2‐log10 CFU in peanuts at 25°C and aw 0.45. Once the data are 
collected on Salmonella survival under the temperature and water activity con­
ditions of interest, primary models would be selected to fit the data. A commonly 
used primary model is the classic linear model (Bigelow model, Equation 10.1), 
where survival numbers can be estimated using the traditional D/z concept:

	N N expt
k tmax= ( )

0 * *− 	 (10.1)

where N0  is the population at time 0, Nt  is the population at time t, t is the time 

(min), kmax is the maximum specific inactivation rate (min−1), and D
ln
kvalue

max
= ( )10

.

The Weibull primary model (Equation 10.2) can also be used to describe sur­
vival curves that do not follow log‐linear kinetics and show asymptotic tails. This 
is most commonly the case for Salmonella survival in low water activity foods.

	log log t10 10 0N Nt( ) = ( ) ( )− /δ ρ 	 (10.2)

where N0 , Nt , and t are as defined above, δ is the time required for first decimal 
reduction (e.g., min) and ρ is a parameter that defines the shape of the curve.

By fitting these models to the data, an estimate of the model parameters is 
obtained: the maximum specific inactivation rate when fitting the Bigelow 
model (kmax in Equation 10.1); or the time it takes for the first log10 reduction 
(δ in Equation 10.2) and a parameter that defines the shape of the survival curve 
(ρ  in Equation 10.2) when fitting the Weibull model. The models can then be 
used with these fitted parameter values and, given an initial population of 
Salmonella (No), the time it takes to reduce the population by a certain log10 
CFU can be calculated or the log10 reduction given a certain amount of time 
(e.g., 10  min). Using this approach, the predictive model obtained would be 
applicable to the specific strain, temperature, water activity, and other environ­
mental conditions present when collecting the data used to derive the model. 
The Bigelow equation is valid at any time t (and independent of t), that is, 
N N expt dt

k dtmax
+

( )= t * *− , while this is not the case for the Weibull model, where 
log N log N dt d10 10+( ) = ( ) ( )t − /δ ρ  should not be used. The correct equation to 
use with the Weibull model would be log N log N t dt d10 10 0+( ) = ( ) +( )( )− /δ ρ  or 
log N log N t d tt d10 10( ) ( ) /+ = +t − (( ) − )ρ ρ ρδ .

If data are collected over a range of temperatures (e.g., 25–50°C) and aw 
(e.g., 0.25–0.55), secondary models can be developed to cover survival prediction 
at this temperature and aw range. Once primary models are derived directly from 
experimental data, secondary models are derived to predict changes in primary 
model parameters as a function of independent variables. In the Salmonella‐
peanut example, secondary models could be used to predict primary model 
parameters of the Bigelow and Weibull models (kmax if using the Bigelow model 
or δ and ρ if using the Weibull model) and determine their relationship with the 
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experimental conditions (T and aw). Survival of Salmonella in raw peanuts at any 
temperature and water activity within the range of those used to develop the 
model can then be determined.

In the following subsections, using the data collected by Brar et al. (2015) on 
Salmonella survival on raw peanuts at three different temperatures (−24, 4, and 
22°C), a case study on how to develop a primary and secondary predictive model 
for survival of Salmonella is shown This approach could be used for survival data 
on any pathogen in any food, and is explored here for survival of Salmonella in 
low water activity foods.

10.2.1  Primary Models

Survival of Salmonella in low water activity foods may be characterized by curves 
with a relatively rapid initial decline followed by long‐term persistence, with little 
decline over time (Podolak et al., 2010; Santillana Farakos, Schaffner, and Frank, 
2014). The shapes of the survival curves have been observed to vary depending 
on the study, the substrate, and the environmental conditions under which the 
experiments take place. Various primary models are available and can be used to 
fit microbial survival data: the log‐linear model (Bigelow and Esty, 1920), the 
Geeraerd‐tail model (Geeraerd, Herremans, and Van Impe, 2000), the Weibull 
model (Mafart et al., 2002), the Coroller model (Coroller et al., 2006), and the 
biphasic linear model (Cerf, 1977). Of the aforementioned models, the Weibull 
model has been shown to provide the best description of Salmonella survival 
kinetics in low water activity foods (Mattick et al., 2001; Ma et al., 2009; Abd, 
McCarthy, and Harris, 2012; Santillana Farakos, Frank, and Schaffner, 2013). All 
these models are available in GInaFiT (Geeraerd, Valdramidis, and Van Impe, 
2005), a free software fitting tool (http://cit.kuleuven.be/biotec/software/GinaFit 
[last accessed 10 February 2017]).

The first step in the process of choosing a primary model is to visually analyze 
the data. In Figure 10.1, Salmonella survival on raw peanuts at three different 
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Figure 10.1  Survival of Salmonella on raw peanuts at (○) −24, (Δ) 4, and (□) 22°C for 365 days 
(Brar et al. (2015), reprinted with permission of the authors).
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temperatures (−24 , 4, and 22°C), as collected by Brar et al. (2015), is plotted 
against 365 days.

There was no significant decline of Salmonella on raw peanuts at freezing or 
refrigeration temperatures (Brar et al., 2015). The average decline over 365 days 
was 0.3‐log10 CFU at −24°C and 0.4‐log10 CFU at 4°C. Salmonella populations 
had higher declines on raw peanuts at 22°C, with an average log reduction of 
2.0‐log10 CFU over 365 days (Brar et al., 2015). Salmonella survival is character­
ized by an initial decline during the first seven days of storage, which does not 
seem to be influenced by temperature (Figure 10.1). At all temperatures, the 
Salmonella population dropped 1‐log in the first seven days. In the Brar et al. 
(2015) study, day 0 was the day of the (wet) inoculation, day 3 was three days after 
storage at room temperature, and day 7 was after an additional four days of equi­
libration at room temperature. Day 7 was thus the first time point of storage at 
the specific temperature. The influence of temperature began to show around 
day 30, after which a significant decline was observed for the data at 22°C, while 
no significant decline was observed at either −24 or 4°C (Figure 10.1). These 
observed survival kinetics for Salmonella on raw peanuts are in line with other 
published literature, where survival curves for Salmonella in low water activity 
foods do not follow log‐linear kinetics and show significant asymptotic tails 
(Uesugi, Danyluk, and Harris, 2006; Beuchat and Mann; 2010, Blessington, 
Mitcham, and Harris, 2012; Kimber et al., 2012; Blessington et al., 2013a; 
Blessington et al., 2013b; Keller et al., 2013; Santillana Farakos, Frank, and 
Schaffner, 2013). The data presented in Figure 10.1 indicate that the best descrip­
tion of Salmonella survival under these conditions requires a model that includes 
a nonlinear inactivation rate and the ability to incorporate tailing. In the exten­
sive data collection and analysis of Salmonella survival in low water activity 
foods by Santillana Farakos, Frank, and Schaffner (2013), the Weibull model was 
determined to be the best model to describe the survival kinetics at temperatures 
ranging from 21 to 80°C and water activity levels below 0.6. An extension of the 
Weibull survival model to the double Weibull model was proposed by Coroller 
et al. (2006) (Equation 10.3) to describe a mixture of two subpopulations, one 
subpopulation being more sensitive to the environmental stress than the other:

	

Nt

N t t

=
+

+















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
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
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+



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







	 (10.3)

where N0 , Nt , ρ, and t are described as above, α =






log10 1
f

f−
 and f is the frac­

tion of bacteria in population 1; δ1  and δ2  are the time to the first log10 reduction 
for population 1 and 2, respectively.

The Weibull (Equation 10.2 with ρ ≠ 1) and double Weibull (Equation 10. 3) 
models were thus selected as candidates for primary modeling of the peanut data 
set, and their fits were compared with those found when using the more tradi­
tional log‐linear Bigelow model (Equation 10.1). Given the experimental design 
of the survival study, the data were modeled using day 7 (the first day of storage 
at the specified temperature) as time 0.
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10.2.2  Criteria for Choosing the Best Applicable Model

The models were fit using GInaFiT. An ftest was used to determine the capacity of 
the model to describe the data well (95% confidence, ftest < Ftable). If more than 
one model fit the data well for all conditions, the model with best statistical 
parameter fits was chosen (lowest AIC, lowest RMSE, and highest Radj

2).

10.2.3  Primary Model Fits

The statistical analysis results of the fits with the log linear, Weibull and double 
Weibull models are presented in Table 10.1. All three models describe the data 
well ( f F Ftest table table< =; .1 45 ) for all conditions, except one where the double 
Weibull model did not provide an appropriate fit to the 4°C survival data. Survival 
of Salmonella on raw peanuts at 4°C showed log‐linear persistence of the patho­
gen over time and the double Weibull model was, thus, unable to fit the data. 
Statistical analysis results show the Weibull model (with ρ ≠ 1 in Equation 10.2) 
provided a better fit to the data at freezing and ambient temperature storage 
(Table 10.1) (lower AIC and RMSE, highest Radj

2), while the log‐linear survival 
model provided the lowest AIC and RMSE and highest Radj

2 for survival at refrig­
eration temperature. In all, the Weibull model provided better fits for most of the 
conditions under study, and statistical parameters indicated the best fit. The 
Weibull model can also produce linear fits (with ρ = 1 in Equation 10.2), and thus 
describe linear inactivation kinetics as obtained at 4°C. As such, it was selected 
as the best applicable model for the data set. In Table 10.2, the δ and ρ values of 
the Weibull model fits for all conditions under study are presented. Because δ 
values for data at distinct temperatures differed by several orders of magnitude, 
these values were transformed to the log scale and are presented in Table 10.2.

10.2.4  Secondary Models

Linear models relating the time required for first decimal reduction (log δ) and 
shape factor values (ρ) to temperature were fit using multiple linear regression 
and are shown in Equations 10.4 and 10.5, respectively. These models are sec­
ondary models of a Weibull primary model and can be used to predict primary 
model parameters (δ and ρ) given certain T values. These δ and ρ values as 
obtained with the secondary models could be used to predict survival of 
Salmonella on raw peanuts at the range of temperatures at which the data were 
collected (−24, 4, and 22°C) and water activity levels specifically associated with 
the storage temperature (detailed in Table 10.2).

	
log . * .δ = − + =0 065 3 4 2T R 0.96 	 (10.4)

	
ρ = + =0 0069 0 38 2. * .T R 0.99 	 (10.5)

In Equation 10.4 the standard error (s.e.) of log δ was 0.18, that of the tempera­
ture parameter (T) was 0.013, and that of the constant 0.25. In Equation 10.5, the 
s.e. of ρ was 0.00025, that of the T parameter was 0.0005, and that of the constant 
was 0.01.
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If more data are available at different temperatures and different water activity 
levels at the same temperature, the linear predictive models presented above can 
be extended in their prediction potential using the same approach. Even more 
sophisticated modeling techniques can be used to develop a predictive model 
that includes an estimate of uncertainty and variability in the parameter esti­
mates. Further reading on a proposed approach to incorporating variability and 
uncertainty in a predictive model for survival of Salmonella in tree nuts is avail­
able elsewhere (Santillana Farakos et al., 2016).

10.3  Model Validation

Methods for selecting a model or to determine whether a given model is valid for 
a given set of conditions has always been an important part of predictive micro­
biology commonly referred to as validation. Models can be validated using an 
independent set of data from that used to develop a model. One of the earliest 
efforts to provide a standard method or criteria to validate a model was by Ross 
(1996), who proposed indices called the bias and accuracy factors. These factors 
were soon updated by Baranyi, Pin, and Ross (1999), who modified and general­
ized the bias and accuracy to enable comparisons between growth models, as 
well as with observations. Baranyi, Pin, and Ross (1999) describe the revised 
accuracy and bias factors as essentially methods of determining “averages,” where 
the averages are computed in slightly different ways. Accuracy is computed using 
mean square differences, while bias is computed using the arithmetical mean of 
the differences. The revised factors enable direct comparison of models to one 
another, rather than to a specific data set, which might not be representative of 
“true” behavior. Baranyi, Pin, and Ross (1999) note that a direct comparison of 
models in this manner can indicate whether models differ significantly from one 
another, or describe the same information equally well within the limits of the 
data. Finally the authors reiterate that it is still important to visually examine a 

Table 10.2  δ and ρ values of the Weibull model fits for Salmonella survival on raw peanuts 
at −24, 4, and 22°C.

Water activity T (°C)

Weibulla

log δb

(log days) log se δc ρd se ρe

0.69 ± 0.05 −24 ± 1 4.83 5.18 0.21 0.09
0.94 ± 0.09 4 ± 2 3.49 3.27 0.39 0.11
0.56 ± 0.08 22 ± 1 1.76 1.15 0.54 0.06

a)	 Mafart et al. (2002);
b)	 time required for first decimal reduction (measured in log days);
c)	 standard error of δ parameter value;
d)	 fitting parameter that defines the shape of the curve;
e)	 standard error of ρ parameter value.
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plot of predicted versus observed values to guard against any systematic devia­
tions that might not be revealed by the bias and accuracy factors.

Mohr et al. (2015) published an extensive validation and assessment of six 
Clostridium perfringens cooling models, with some relevant insights on model 
validation in general. These authors define a model as “validated” when its 
predictions have been “extensively compared to laboratory data, provided the 
model’s performance is acceptable.” Mohr et al. (2015) used three sets of criteria, 
each based on different definitions for “accurate,” “fail‐safe,” and “fail‐dangerous” 
to evaluate model performance. These criteria are summarized in Table 10.3 and 
are all modifications of the acceptable prediction zone (APZ) method (Oscar, 
2005a), although Mohr et al. (2015) redefine “A” in “APZ” to be “accurate” and 
not “acceptable” as in the original definition by Oscar (2005a).

The boundaries of the APZ are based on an evaluation of the standard devia­
tion of observed log counts among replicate experiments. Mohr et al. (2015) 
explain that Criterion 1 has a fail‐safe boundary set at twice the level of the fail‐
dangerous boundary because greater error can be tolerated in the fail‐safe direc­
tion, as originally noted by Oscar (2005b, 2007). The boundaries for Criterion 2 
are based on the levels of microbial growth that an expert food microbiologist 
would consider significant. The National Advisory Committee on Microbiologi­
cal Criteria for Foods (NACMCF) used growth of <1‐log as the criterion for 
determining the absence of measurable growth of pathogens of concern in its 
publication on microbial challenge studies (NACMCF, 2010). The boundaries for 
Criteria 3 are based on the observation that 0.5‐log is generally accepted as the 
resolution limit of microbial testing, resolution being the capability of distin­
guishing two sets of results. NACMCF (2010) noted that a difference of greater 
than 0.5‐log CFU/g may be an appropriate criterion for determining microbial 
growth but that this may depend on the food, inoculum level, and method of 
enumeration.

NACMCF (2010) also offers useful advice on when models alone are used to 
make a food safety decision, noting that “proper use of models requires judgment 
and experience, both in food microbiology and modeling.” Models must be 
shown to be valid for the food in question when models alone are used to make a 
decision (NACMCF, 2010). Any decisions should also take into consideration 
any lot‐to‐lot variation in the formulation and composition of the food 
(NACMCF, 2010). While a detailed discussion of the proper design of micro­
biological experiments, including sampling intervals, inoculation methods, and 

Table 10.3  Different criteria for definitions of fail‐safe, accurate, and fail‐dangerous model 
predictions as proposed by Mohr et al. (2015) based on the values of the residual (observed 
minus predicted value).

Fail-safe Accurate Fail-dangerous

Criterion 1 Residual <−1.0 log −1.0 < Residual <0.5‐log Residual >0.5‐log
Criterion 2 Residual <−1.0 log −1.0 < Residual < 1.0‐log Residual >1.0‐log
Criterion 3 Residual <−0.5 log −0.5 < Residual < 0.5‐log Residual >0.5‐log
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testing procedures, is beyond the scope of this chapter, interested readers are 
directed to NACMCF (2010).

10.4  Models in Risk Assessment

Risk assessment is a scientific process that addresses the magnitude of public 
health risk and identifies factors that control it. Risk managers can then use a 
risk assessment to make decisions regarding the management of the safety of a 
food product. A quantitative risk assessment provides enhanced information to 
risk managers particularly when a multistep food process is being evaluated 
(Brocklehurst, 2004). Risk assessments can also identify data gaps that when 
filled will refine the risk assessment model, in some cases reducing uncertainty 
in the risk estimates.

10.4.1  The Risk Assessment Model

In developing a QMRA, the first step is to identify the hazard and to determine 
what question(s) the risk model will be designed to answer. Using Salmonella 
and peanuts as an example, a risk model using Monte Carlo simulations could 
evaluate the risks of salmonellosis associated with the consumption of roasted 
peanuts and the impact of different log reductions in reducing the risk of roasted 
peanut–associated illness. To facilitate this process, a flow diagram of the process 
being evaluated can be established. Figure 10.2 shows a simplified flow diagram 
for roasted peanuts.

Following hazard identification and defining the risk management question(s) 
to be addressed, the next step is to collect data to establish an exposure analysis, 

Raw peanut receiving

Peanut roasting

Raw peanut storage

Roasted peanut storage

Distribution storage

Retail storage

Consumer storage

Consumption

Figure 10.2  Flow diagram for roasted peanuts process.
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(i.e., chance of consumer exposure). This step requires an understanding of both 
the prevalence and concentration of the microbe on the product throughout the 
process (ideally starting at the initial step in the model), and subsequent informa­
tion on how that population changes during the process. Because of changes in 
microbial populations, predictive food microbiology, or the development and 
use of mathematical models that describe the growth, survival or inactivation of 
microorganisms (NACMCF, 2010), has a natural application in the exposure 
assessment component of risk models (van Gerwen and Zwietering; 1998). In 
addition to information on microbial populations, information related to the 
consumption of the product also needs to be collected.

Using Salmonella and peanuts as an example, data on prevalence and concen­
tration of Salmonella on raw, shelled peanuts are available from Calhoun et al. 
(2013), where a screening of three crop years resulted in 2.33% positive samples 
(out of 944 samples, testing done between several days and several weeks after 
sample collection), and that of Miksch et al. (2013), where Salmonella was found 
in 0.67% of shelled raw runner peanut samples (out of 10 162 samples, testing 
done between 1 and 18 months after sample collection) over a three‐year period. 
Salmonella concentrations obtained from these studies were <0.03–2.4 MPN/g 
(<3–240 MPN/100 g) (Calhoun et al., 2013) and 0.74–5.25 MPN/350 g (0.21–1.5 
MPN/100 g) (Miksch et al., 2013). As previously discussed, Salmonella popula­
tions decrease on raw peanuts during storage (Brar et al., 2015). Models such as 
those described earlier based on the storage times and temperatures typical of 
peanuts at different points in the model will need to be considered to calculate 
the reduction level. The “kill step” of peanut roasting is also included in the 
model; the log‐reductions associated with peanut roasting are variable, depend­
ing on the type of roasting (oil versus dry). In the absence of published informa­
tion, assumptions are made on peanut storage times and temperatures (which 
can be made following discussions with industry experts). Consumer storage 
data from published studies of consumer behavior can be used (Lee et al., 2011). 
Production data may be obtained from USDA reports like the ERS (2014) report 
on tree nut production in the United States. Consumption data can be estimated 
using data originating from the National Health and Nutrition Examination 
Survey (NHANES) (CDC, 2013). If data are not available, expert elicitations can 
take place with industry members and other subject matter experts.

The next step is to establish a dose–response analysis, or a way of translating 
the data from the exposure analysis into an output measure of human health. To 
translate the exposure analysis, statistical models are used to analyze or quantify 
dose–response relationships. The term “infective dose” implies that at a certain 
pathogen load illness or infection will occur for an entire population or subpopu­
lation of hosts. Infective dose has also been used to describe pathogenicity or 
likelihood of an illness. However, this is not the case in many foodborne outbreak 
situations and has limited use in QMRA. In the complex situation of foodborne 
disease, the actual ingested dose required to cause illness varies based on a num­
ber of factors, including the host, pathogen, food matrix, and other environmen­
tal interactions (Marks et al., 1998). For risk assessment purposes, there is a need 
to account for the variability and, if possible, uncertainty that results from incom­
pletely characterized ingested doses and population responses. The result is a 
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dose–response distribution that models a distribution reflecting the uncertainty 
of many factors rather than a point estimate (Marks et al., 1998). These distribu­
tions, often beta‐Poisson in nature (Haas, 1983), indicate the relative possibility 
of illness (usually plotted on the y‐axis) at any given ingested dose (plotted on the 
x‐axis), and use two parameters (α and β) to describe the distribution of suscep­
tibility to the pathogen to characterize the variability among members of the 
population (Cassin et al., 1998). Because published human feeding studies of 
foodborne pathogens are rare, development of dose–response models often 
depends on epidemiological data, using samples of remaining contaminated lots 
of the suspect food to infer an actual ingested dose based on the contamination 
level of the pathogen found. For the example of Salmonella and peanuts, a dose–
response curve published by FAO/WHO (2002) can be used to determine the 
probability of salmonellosis based on the ingested dose. This model is based on 
20 documented outbreaks of salmonellosis in eggs and broiler chickens, and 
remains the most commonly used dose–response model for salmonellosis for 
all  food commodities. More complete and complex alternative dose–response 
models are available elsewhere (Bollaerts et al., 2008; Teunis et al., 2010).

The final step of a risk assessment involves developing a risk characterization, 
or the complete picture of the assessed risk, by combining the hazard identifica­
tion, exposure analysis, and dose–response analysis. Any data from the hazard 
identification, exposure analysis, and dose–response analysis where there is 
inherent variability should be transformed into a probability distribution to be 
fed into the Monte Carlo analysis. The use of probability distributions for all 
variables allows for the description and an inclusion in the risk model of the vari­
ability in the inputs. Common types of probability distributions used in risk 
models include normal, log‐normal, uniform, triangle, beta‐PERT, and beta‐
Poisson; should the data not fall into one of these distributions, it is also possible 
to utilize a histogram of the data as is (empirical distribution).

10.4.2  The Monte Carlo Analysis

Monte Carlo simulations are the most commonly used technique in the field of 
food safety microbial risk assessment. This technique utilizes simulations to 
obtain statistics of output variables for a set scenario based on the statistics of 
input variables, allowing the user to account for variability in the risk in quanti­
tative analysis and decision making. In each scenario, the values of the input 
random variables are sampled based on their distributions, and the output vari­
ables are calculated using a computational model (Mahadevan, 1996). Statistics 
for output variables are calculated following a number of iterations of the Monte 
Carlo simulation, allowing the user to determine how likely the resulting out­
comes are. This output of the range of possible outcomes and probabilities allows 
the user to evaluate the likelihood of possible outcomes based on changes to the 
input variables.

During a Monte Carlo simulation, a different value is selected randomly from 
each of the distributions for each of the inputs to calculate an output; each set of 
random samples collected from the distributions inputted into the model is 
called an iteration. Each of these outputs is recorded and the process is repeated 
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for multiple iterations; typical Monte Carlo simulations are run for thousands, if 
not tens or hundreds of thousands, of iterations. When the simulation is com­
plete, the multiple outputs from the model provide information on probability of 
reaching the model result; the result indicates not only what may happen, but 
how likely it is to happen.

Continuing the example of Salmonella and peanuts, based on the percentage 
of peanuts that get roasted in the United States, a distribution of the serving 
sizes of roasted peanuts in the United States could be obtained using the 
NHANES survey data. The consumption data can then be linked to a distribu­
tion of Salmonella prevalence on raw peanuts (as determined by available data 
from Calhoun et al. (2013) and Miksch et al. (2013)) to determine the likelihood 
of that serving of roasted peanuts containing Salmonella. Should that serving 
contain Salmonella, the appropriate distribution for Salmonella concentration 
determined from the data presented in Calhoun et al. (2013) and Miksch et al. 
(2013) would determine the amount of Salmonella on that serving. Uniform 
distributions for storage time can be assumed when no additional data are avail­
able (with a minimum and maximum estimated value). If a most likely value for 
storage time is known together with a minimum and maximum value, a triangu­
lar distribution can be used instead. The temperature of storage can be esti­
mated under all conditions. To calculate Salmonella reductions during different 
storage conditions, data from previous studies (Brar et al., 2015) can be used to 
calculate estimated log reductions at each storage step. The predictive models 
developed for Salmonella survival in peanuts as described earlier can also be 
used. These calculated log reductions can then be subtracted from the concen­
tration of Salmonella on a peanut serving. The likelihood of that peanut serving 
leading to illness can then be calculated from the dose–response curve. Utilizing 
multiple iterations from the Monte Carlo model, ultimately the output from the 
model is the probability of a number of cases of human illnesses per year. To 
evaluate the independent variable, reductions during roasting, a reduction step 
can be added where a fixed reduction with certain amount of variability is 
assumed. For example, 4 ± 1, 4 ± 0.5, and 4 ± 0.0, or 5 ± 1, 5 ± 0.5, and 5 ± 0.0 log 
reductions could be selected, and Monte Carlo simulations for each scenario 
conducted to determine likelihood of illnesses and how those illness levels differ 
from the baseline.

The numerical distribution outputs of a Monte Carlo simulation and their 
precision depend on the convergence properties of the sampling algorithm 
(Smid et al., 2010). Convergence can be defined as the number of iterations the 
Monte Carlo simulation requires for it to obtain samples that are truly repre­
sentative of the underlying distribution of interest (Cowles and Carlin, 1996). 
The number of iterations required for convergence can be calculated according 
to Brooks (1998).

10.4.3  Sensitivity Analysis

One of the advantages of utilizing a Monte Carlo simulation is the ability to 
determine which inputs or assumptions entered into the model have the greatest 
impact on the risk outcome. A sensitivity analysis can easily be conducted on all 
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the different scenarios tested. Spearman’s rank correlation coefficients (R2) of 
parameters can be used as a simple measure of the impact of any input on the 
output. If the R2 of a parameter is positive, there is an increase in risk with an 
increase of the parameter value; if negative, there is a decrease in risk with the 
increasing value. Other sensitivity analysis methods are available (Frey, Mokhtari, 
and Danish, 2003), notably when strong interactions between parameters are 
expected in the model. If the input with the greatest impact on the risk outcome 
has a high amount of uncertainty associated with it, the user then has the ability 
to collect additional data and update the input.

10.4.4  Modeling Variability and Uncertainty

In the risk assessment model previously described for Salmonella in peanuts, all 
distributions represent variability of the parameter in the considered process. 
Variability is usually described as the distribution of the variable inherent to the 
system that cannot be reduced by further measurements. Serving size is a typi­
cal example: on a typical day, some individuals will consume a large serving size 
of peanuts (or peanut‐containing products) while others will consume a small 
serving size, however precisely this serving size is known. Similarly, the time 
(and temperature) at which peanuts will be stored by the consumer is variable 
from one consumer to the other, and will be variable even if all times are pre­
cisely recorded. This variability distribution of the storage time could be mod­
eled, as an example, using a triangular distribution with minimum value of 0 
(some consumers eat peanuts without further storage), with a mode of two 
weeks (most frequently, the consumers eat the product after 15 days of storage) 
and a maximum of one year (the maximum time a consumer keeps peanuts is 
assumed to be one year). As an output of the Monte Carlo simulation, including 
the variability distributions, the final distribution will then reflect a distribution 
of the risk, variable from serving to serving, as a function of the serving size, the 
consumer storage, and all the possible combinations of all parameters imple­
mented in the model. The simple multiplication of the mean risk per serving 
(output of the Monte Carlo simulation) by the number of servings provides 
a  mean estimate of  the expected mean number of cases in the population. 
Parameters in a “Salmonella in peanuts aw” simulation could include the pre­
valence variability (from lot to lot, from year to year and/or from region to 
region), the variability of the time, water activity and temperature of storage at 
the different steps, the variability of log reduction during inactivation, and the 
variability of the serving size.

Additionally, there are some parameters that may be known with uncertainty 
(lack of knowledge of the parameter). As an example, the mode of the storage 
time was set to two weeks in the previous peanut example, but could actually be 
one week or even three weeks. Uncertainty can be reduced by further studies, in 
contrast to variability. The uncertainty can be characterized by a set of discrete 
values (e.g., the mode of the storage time distribution could be one week, two 
weeks, or three weeks), or may be characterized by a distribution (e.g., the 
uncertainty around the mode of the storage time may be characterized by a 
uniform distribution ranging from one to three weeks). Uncertainty and 
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variability dimensions should be separated in QMRA. Nauta (2000) illustrated 
how the mixing of uncertainty and variability distributions could lead to biases 
in a risk assessment outcome. The simplest way to evaluate the impact of uncer­
tainty is to run the model multiple times, changing the uncertain parameter 
from one simulation to the next one. In the previous peanut example, the model 
would be run using a mode of one week, then a second time using a mode of two 
weeks, and a third time using a mode of three weeks. The results from these 
three simulations would then be compared. As a minimum, the different sets of 
results associated with the various assumptions made for the parameter should 
be presented and discussed. Depending on the results, risk managers may 
decide that additional research must be undertaken to reduce the uncertainty in 
a parameter.

When more than one parameter in the model is known with uncertainty, the 
assessment can get complicated, notably in the presence of strong interactions 
between parameters. As such, simulation processes considering variability and 
uncertainty separately can be developed. This is known as a second order or 
two‐dimensional Monte Carlo simulation. In this second order process, the 
Monte Carlo simulation of variability is embedded in the Monte Carlo simula­
tion of uncertainty (Frey, 1992). By considering variability and uncertainty of the 
parameters separately, a measure of uncertainty of the outputs can be obtained, 
aiding in the interpretation of the resulting probability distributions of a risk 
assessment. Major sources of uncertainty (most are not only uncertain but also 
variable) in survival of Salmonella in peanuts and other low water activity foods 
can include the prevalence of Salmonella in the product, the survival parame­
ters, and certain characteristics of the processes.

10.4.5  Available Tools in Risk Assessment

Due to the nature of Monte Carlo simulations, where multiple probability distri­
butions are sampled in each iteration and numerous iterations are conducted in 
each simulation, software programs must be used to run the analysis. An exam­
ple of such a program is FDA‐iRISK®, a free software tool that can be used to 
estimate the public health outcome and economic burden of hazards (microbial 
and chemical) in foods (http://foodrisk.org/exclusives/fda‐irisk‐a‐comparative‐
risk‐assessment‐tool/). It is a web‐based system that enables users to relatively 
rapidly conduct a fully quantitative full probabilistic risk assessment of food 
safety hazards. The tool requires the user to input data but provides (behind the 
scenes) the challenging computational infrastructure that supports a risk assess­
ment. For more information on FDA‐iRISK® and example case studies, the 
reader is referred to Chen et al. (2013). Other software tools available that require 
prior knowledge on the mathematics and computational challenges behind a 
quantitative risk assessment are @RISK by Palisade Corporation, Crystal Ball by 
Oracle, and Model Risk by Vose Software. These tools are add‐ins to Microsoft 
Excel that allow the flexibility of Monte Carlo simulations in a spreadsheet model 
format. Others, like Analytica by Lumina Decision Systems, require independent 
software to run Monte Carlo simulations, often integrating probabilistic analysis 
from the start, which may increase ease of use and speed of computation. Risk 
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assessments have also been published using general statistical software such as 
SAS, R or MatLab; these require a risk assessor fully experienced in quantitative 
risk assessment to perform the analyses.

10.5  Summary

This chapter has provided an introduction to modeling the survival of Salmonella 
in low water activity foods, serving as a framework on key aspects to consider 
when developing predictive models and their use in quantitative microbial risk 
assessment. It has included a step‐by‐step approach on how to develop predic­
tive models for Salmonella using raw peanuts as the example food product. It has 
also included an overview on the factors to take into account when choosing 
available nonlinear versus linear inactivation models, a framework on how to 
incorporate variability and uncertainty as well as the importance of model vali­
dation. The scientific process of a quantitative microbial risk assessment for 
Salmonella has been presented using peanuts as the example low water activity 
food, including a reference to the available tools to conduct a risk assessment. 
Data on Salmonella contamination levels (prevalence and concentration) are 
scarce or lacking for many low water activity food commodities; and survival and 
inactivation studies have collected data using inocula at high concentrations 
(which are not those typically found in these types of products). Data on actual 
frequency and contamination levels, as well as studies collecting survival and 
inactivation data at lower concentrations, would be useful and aid in improving 
the prediction potential of current available models for Salmonella in these types 
of foods, as well as models to assess the risk of human salmonellosis arising from 
the consumption of low water activity food products.
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