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Dynamic Immunization and Transaction Costs 
With Different Term Structure Models 

Eliseo Navarro* and Juan M. Nave t 

Abstract* 

A bond portfolio selection model is developed in a dynamic framework 
using different term structures, but without transactions costs. We show that 
the optimal portfolios are consistent with Khang's dynamic immunization the­
orem, i.e., the optimal path consists of making portfolio duration equal to the 
investor's horizon planning period. The model is then extended to include 
transaction costs. The resulting optimal portfolios are no longer consistent 
with Khang's dynamic immunization theorem. In fact, the strategy for con­
structing the optimal portfolio consists of initially choosing a portfolio with a 
duration that is smaller than the horizon planning period. 

Key words and phrases: bond, portfolio, planning period, strategy, risk, interest 
rate, stochastic 
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1 Introduction 

Suppose an investor in a fixed income market has certain obligations 
due at some specified future date, called the investor's horizon planning 
period. A key problem facing such an investor is the problem of immu­
nizing l (protecting) his or her portfolio of bonds against interest rate 
risk. 

Bierwag and Khang (1979) prove that the process of immunizing 
a bond portfolio can be described as a maxi-min strategy in a game 
against nature where the investor's target is to guarantee a minimum 
return over his or her planning period or, equivalently, to guarantee 
a minimum value at the end of his or her horizon planning period. 
Dantzig (1971) shows that this maxi-min solution can be determined by 
solving an equivalent linear program that depends on the assumption 
about the term structure of interest rates. 

One of the main results concerning the development of portfolio im­
munization strategies against interest rate risk is due to Khang (1983) 
and is described by his dynamic global immunization theorem. Khang's 
strategy consists of a continuous portfolio rebalancing in order to keep 
portfolio duration equal to the length of the remaining planning period. 

Specifically, consider an investor who has a horizon planning pe­
riod of length H. Suppose the forward interest rates structure shifts 
up or down by a stochastic shift parameter at any time during the in­
vestor's planning period. If the investor follows Khang's strategy, then 
the investor's wealth at the end of his or her planning period will be 
no less than the amount anticipated on the basis of the forward in­
terest rates structure observed initially (at time 0). Furthermore, the 
investor's wealth at time H will be greater than the amount anticipated 
initially if at least one interest shock takes place during the planning 
period. 

The validity of Khang's strategy rests on two key assumptions: (i) 
If 9 (t), t ~ 0, denotes the forward interest rates structure, and the 
forward interest rates structure changes to g* (t), then 

g*(t) = g(t) + (j 

where (j is a stochastic shift parameter; and (ii) there are no transaction 
costs. 

The first assumption avoids the problem of the risk of misestimat­
ing the term structure behavior, which Fong and Vasicek (1983) call 

1 Immunization consists of making a portfolio's duration (properly defined) equal to 
the remaining horizon planning period. 
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the "immunization risk."2 Assumption (ii) avoids the high costs that a 
strategy of continuous portfolio rebalancing may incur. 

In this paper we investigate the applicability of Khang's strategy un­
der both a static and a dynamic portfolio selection model. Each model 
is tested under three different assumptions about the term structure 
of interest rates behavior: a flat term structure, a diffusion process 
as in Vasicek (1977), and a diffusion process as in Cox, Ingersoll, and 
Ross (1985). The dynamic portfolio selection model under the flat term 
structure model behaves according to classical Fisher and Weil (1971) 
immunization theorem. It behaves according to Boyle's (1978) stochas­
tic immunization in the two alternative stochastic cases. Finally the 
model is expanded to include transaction costs. We show, through an 
example, that if transaction costs are high enough, the optimal strategy 
may differ from that proposed by Khang. 

2 The Term Structure Models 

Three different term structure models are used in our analysis: 

• The first and simplest model assumes a flat term structure and 
parallel term structure of interest rates shifts; 

• The second model assumes a stochastic term structure with in­
stantaneous spot interest rate following a diffusion process as in 
Vasicek (1977); and 

• The third model assumes a stochastic term structure with instan­
taneous spot interest rate following a diffusion process as in Cox, 
Ingersoll, and Ross (1985). 

2.1 Flat Term Structure Model 

This model makes the following assumptions about process of the 
term structure of interest rates: 

Al The term structure is flat; 

2Bierwag (1987) calls it "stochastic process risk" and defines the stochastic process 
as "the way in which the term structure shifted from period to period," adding afterward 
that "it is conceivable that an investor could assume an incorrect stochastic process and, 
as a consequence, the perceived durations would be different from the actual ones. The 
investor ... losses from misestimation (or misguesstimation) of the correct process can 
be substantial" (Bierwag, 1987). 
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A2 Term structure of interest rates changes consist of parallel move­
ments of the entire term structure, i.e., short-term and long-term 
interest rates changes are equal; and 

A3 The pure expectations hypothesis3 holds. 

A4 There are m different levels of interest rates rj (j = 1,2, ... m) 
with rl < r2 < ... < rm. 

The implication of assumption (A3) is that under a flat term structure 
model any interest rate change is considered to be unexpected. 

Let 

r(t) 

to 
rc 

P(r(t), t, s) 

It follows that 

The spot rate of interest at time t; 
The current time; 
The current spot rate of interest (at time to); 
The price at time t of a pure discount bond 
maturing at time s (t ~ s). 

P(r(t), t, s) 

E[r(s)lr(to) = rc] 

e-(s-t)r(t) (1) 

(2) 

for s > to, i.e., interest rates are expected to remain unchanged. Under 
the flat term structure model, the relative basis risk4 of a discount bond 
is given by 

loP 
-p or = s - t. 

2.2 The Vasicek (1977) Model 

Here we make the following assumptions about the term structure: 

AS Instantaneous spot interest rate r(t) follows a diffusion process 
so its behavior is described by the following stochastic differential 
equation: 

dr = f3(y - r)dt + pdt. (3) 

where f3, y, and p are positive constants, and dt. is a Wiener pro­
cess with zero mean and variance dt; apd 

3For a thorough discussion of the different hypotheses about the term structure of 
interest rates and their implications, see Cox, Ingersoll, and Ross (1981). 

4 BaSis risk can be defined as the possibility that an institution's margin will rise or 
fall as a consequence of market rate movements. 
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A6 There are no arbitrage opportunities. 

Equation (3) yields the following expressions for s > t: 

where 

E[r(s)lr(t)] 

P(r(t), t, s) 

F(x) 

G 

y + (r(t) - y)e- f3 (S-t) 

exp [ F(s-t)(G-r(t» 

-(s - t)G - -F(s - t)2 p2 ] 
4~ 

1 
-[1- exp(-[3x)] 
[3 

p2 
Y - 2[32· 

The relative basis risk of a discount bond is now given by 

loP 
-par =F(s-t). 

2.3 The Cox-Ingersoll-Ross (1979) Model 

In addition to assumption (A6), we assume the following: 

A7 ret) satisfies the following stochastic differential equation: 

(4) 

(5) 

dr = K(J.l - r)dt + uvrdz (6) 

where K, J.l, and u are positive constants. 
Equation (6) yields the following expressions, for s > t: 

where: 

A(x) 

B(x) 

i\ 

E[r(s)lr(t)] J.l + (r(t) - J.l)e-K(s-t) (7) 

P(r(t),t,s) = A(s-t)exp[-r(t)B(s-t)] (8) 

[ 
2i\exp[(K-i\)x/2] ]2KPI(T2 

(i\ + K)[I- exp(-i\x)] + 2i\exp(-i\x) 

2(1 - exp(-i\x» 
(i\ + K)[1 - exp( -i\x)] + 2i\ exp( -i\x) 

o/K2 + 2u2. 
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The relative basis risk is 

loP 
-Ii or = B(s - t). 

3 The Static Model 

Consider an investor who wants to allocate an amount of I dollars 
in a market where n different default-free non-callable coupon-bearing 
bonds are available. The investor's objective is to construct a portfo­
lio that guarantees a minimum return over his or her planning period 
or, equivalently, that guarantees minimum value at the end of the in­
vestor's horizon planning period. 

In the static model, the market can be characterized by the following 
set of assumptions: 

A8 Financial markets are competitive; Individual investors' decisions 
don't affect interest rates that are given exogenously; 

A9 There is perfect divisibility of financial assets; 

A10 There are no arbitrage opportunities; 

All There are no transaction costs; and 

A12 Short sales are not allowed.s 

3.1 Notation 

The notation introduced in this section will be used throughout this 
paper: 

n Number of default-free non-callable coupon bonds; 
H Horizon planning period, which spans the interval (to,H]; and 
I Investor's initial wealth at to. 

We assume that the bonds are ordered according to their maturity 
so bond 1 is the bond with the shortest time to maturity and bond n is 

SThis constraint is imposed in the model as a sufficient condition in order to guar­
antee that the net income generated by the portfolio is always nonnegative throughout 
the planning period, which is one of the hypotheses of Khang's theorem. 
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the bond with the longest term to maturity. For i = 1, ... , n, let 

Ti Time to maturity of bond i with Ti =::; Ti+l 

for i = 1, ... , n - 1; 
P Number of bonds maturing in (to, H], p = 0,1, ... , n; 

ni Number of bond i coupon payments made after to; 
Tlil Time of bond i's s-th coupon payment after to, 

for 5 = 1,2, ... , ni; 

TA~) Ti 

Pi Current (at to) price of one unit of bond i; 
Xi Number of units of bond i in the optimal portfolio; and 
Ci Size of each coupon payment from bond i. 

Clearly, in order to obtain a duration close to H, some of the TiS must 
exceed H. Also, bonds p + 1, ... , n mature after H. 

3.2 The Static Model's Linear Prograrr. 

The investor's strategy consists of purchasing an allocation6 vector 
(Xl, X2, ... , xn) of bonds that satisfy the following budget constraint: 

n 

2: XiPi = I. 
i=l 

(9) 

If just after selecting a strategy at to, interest rates instantaneously 
change from rc to rj, then portfolio value at the end of the horizon 
planning period is Vj such that: 

n 

Vj = 2: XiVij 
i=l 

(10) 

where Vij denotes the value at the end of the horizon planning period 
of an investment of Pi dollars in bond i, Le., 

L:~~ll Cie-rj(T;O-tO) + (1 + Ci)e-rj(Ti-tO) 
Vij = e-rjH (11) 

under the flat term structure model, and 

6 A portfolio allocation vector can be considered as a strategy of the investor. 
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L~~ll CiP(rj, to, Tji») + (1 + Ci)P(rj, to, Td 
Vij = (12) 

per), to,H) 

under the Vasicek and the Cox-Ingersoll-Ross models. 
Note that Vij is based on two assumptions: (i) the interest rates re­

main rj until the end of the horizon planning period (in accordance 
with the pure expectations theory); and (ii) the coupon and principal 
payments made before the end of the horizon planning period are rein­
vested at rate rj under the flat term structure model. Under stochastic 
models, coupon and principal payments are assumed to be reinvested 
at the forward rates corresponding to a term structure of interest rate 
derived from a instantaneous spot rate equal to rj. 

Let V denote the minimum final portfolio value the investor wishes 
to maximize, i.e., V is a lower bound for the final portfolio value. Thus, 
V is independent of interest rate changes and depends on the selected 
portfolio. The portfolio selection process can be modeled as the fol­
lowing linear program: 

Static Model 

subject to 
n 
L XiVij;:: V, j = 1,2, ... ,m 
i=1 
n 

L XiPi = I 
i=l 

V;:: 0, Xi;:: 0, i = 1~2, ... ,n. 

(13) 

Cox, Ingersoll, and Ross (1979) point out that if we want stochastic 
duration to serve as a proxy for the basis risk of coupon bonds with the 
units of time, it is natural to define it as the maturity of a discount bond 
with the same risk. Therefore, portfolio duration at to under Vasicek's 
term structure model is Dv given by: 

( 

,,~ X'W(F) ) D = F- 1 L..l=1 l l 

V n [ni (i) ] 
Li=l Xi Ls=1 CiP(r, to, Ts ) + per, to, Ti) 

(14) 

where r is the interest rate at to, 

ni 
wt) = L CiP(r, to, Tji»)F(Tji) - to)P(r, to, Td + F(Ti - to) 

s=1 
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and 

F-1 (x) = _ In(l # {3X) . 

On the other hand, the portfolio duration under the Cox-Ingersoll­
Ross term structure model is DCIR: 

where: 

and 

ni 

w?) = I CiP(r, to, Tjil)B(Tjil - to)P(r, to, Ti) + B(Ti - to) 
5=1 

B-1(x) = ..lin [2 - (K - '\)X]. 
,\ 2 - (K + ,\)x 

3.3 An Example 

(15) 

To illustrate our ideas, we apply them to a simple example. Assume 
an investor has I = $1,000,000 and a horizon planning period of 18 
months. There is a fixed income market with four default-free non­
callable 10 percent coupon bonds, as described in Table 1. 

Table 1 
10% Coupon Bonds 

With Coupons Paid Semi-Annually 
Maturity Macaulay 
(In Years) Duration 

Bond 1 0.5 0.5000 
Bond 2 1.0 0.9762 
Bond 3 
Bond 4 

1.5 
2.0 

1.4297 
1.8616 

In the case of the series flat term structure, we assume a nominal 
current interest rate level of 10 percent (compounded semiannually). 



162 Journal of Actuarial Pra':tice, Vol. 5, No.2, 1997 

Interest rates may move up and down by 100 basis points to 9 percent or 
to 11 percent. In other words, nominal interest (compounded semian­
nually) may take only one of three values: n = 9 percent; Y2 = Yc = 10 
percent; Y3 = 11 percent. 

The optimal solution of the linear program of equation (13) is shown 
in Table 2. This result is consistent with Fisher and Weil immunization 
theorem (which states that the optimal solution consists of a portfolio 
with a duration equal to the horizon planning period). 

In the case of the series Vasicek (1977) and Cox-Ingersoll-Ross (1985) 
term structure model, we use the model parameters estimated in Now­
man (1997) for both U.S. (from the Treasury bill market) and U.K. (ster­
ling one month interbank rate). (See Table 3.) 

Nature strategies consist of the different values that the current in­
stantaneous spot rate can take which we assume can vary 100 basis 
points (up or down) from its current level (5.61 percent for the U.S. and 
5.99 percent for the U.K.).? The optimal solutions are shown in Table 
2. 

It is important to see that, under stochastic term structure models, 
portfolio immunization consists of making portfolio duration (properly 
defined) equal to the remaining horizon planning period. 

3.4 Immunization Risk 

So far we have assumed a specific term structure behavior where 
the whole term structure is supposed to depend on a unique factor 
(short-term interest rate). The nature of the dynamics of interest rates, 
however, is more complex.s Immunization strategies may fail if the 

7We have assumed a one percent change in instantaneous spot interest rate and then 
recalculated the whole term structure of interest rates according to equations (5) and 
(8) to determine the new bond prices. Theoretically, the interest rate change conSidered 
in these models should be the largest change that is possible within a trading day (or 
any other suitably short time interval). We are aware that the probability of one percent 
change in interest rates within a day is, according to model parameters, negligible. Such 
a drastic change in interest rates is assumed, however, in order to have a similar level of 
interest rate risk in all three cases analyzed. Despite this, the interest rate risk assumed 
under the stochastic model is still lower due to the mean reversion effect. According to 
Boyle (1978), under flat term structure models, a small interest rate change may have 
a dramatic impact on the price of long-term bonds. The impact of instantaneous spot 
rate changes on long-term bonds under the stochastic models considered in this paper, 
however, is diminished by the expected mean reversion of short interest rates. 

8There is some international evidence that at least 95 percent of term structure move­
ments can be explained by three factors: parallel shifts, slope changes, and curvature 
changes. Depending on the country analyzed and the period covered by different stud­
ies, parallel shifts can explain between 72 and 97 percent of the variance on interest rate 
changes. For further detail see Steeley (1990), Strickland (1993), D'Ecclesia and Zenios 
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Table 2 
Optimal Strategies in a Static Framework 

Panel A: Nonstochastic Model 
Xl X2 X3 X4 Duration 

2639.536 0 0 7360.465 1.5006 
Panel B: Vasicek Model 

Xl X2 X3 X4 Duration 
U.S. 0 0 7886.288 1516.520 1.5010 
U.K. 1044.207 0 4745.310 3676.038 1.4999 
Panel C: Cox-Ingersoll-Ross Model 

Xl X2 X3 X4 Duration 
U.S. 2858.766 0 0 6843.708 1.5012 
U.K. 0 3919.526 0 5545.140 1.5010 
Notes: Portfolio durations are calculated as follows: Macaulay duration is used 
for Panel A; Equation (14) is used for Panel B; and Equation (15) is used for 
Panel C. 

term structure of interest rates behaves differs significantly. This is 
known as immunization risk.9 

To minimize the immunization risk from an unexpected behavior 
of the term structure, several proposals have been suggested. Most 
of them consist of selecting among the set of immunized portfolios 
those that generate payment streams as close as possible to the end 
of the horizon planning period. A trivial example would be a portfolio 
consisting entirely of zero coupon bonds maturing at the end of the 
horizon planning period. 

There are several alternative measures of immunization risk. The 
usually accepted dispersion measure, however, is that proposed by 
Fong and Vasicek lO known as M2. By minimizing this quadratic dis­
persion measure, the effect on final portfolio value of a non-expected 

(1994), Navarro and Nave (1995), and Sherris (1995) for the U.K., U.S., Italy, Spain, and 
Australia, respectively. 

9For a review of the effects of nonparallel yield curve shifts on traditional immuniza­
tion strategy, see Reitano (1992a and 1992b). Reitano (1991) generalizes Kang's result 
to any directional yield curve model and to a general multivariate nondirectional model. 

lOThere are alternative dispersion measures, such as M-absolute, derived from dif­
ferent assumptions about term structure movements. Chalmers and Nawalka (1996) 
test the suitability of the M-absolute measure as a first order condition to protect an 
investment against interest rate risk instead of using it as a second order condition to 
lninimize immunization risk. Other authors have criticized the M2 measure, suggesting 
the convenience of including an asset with maturity at the end of the horizon planning 
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Table 3 
Parameter Values of the 

Vasicek and Cox-Ingersoll-Ross Models 
(With r(t) Determined in April 1997) 

Panel A: Vasicek Model 

f3 y p2 r(t) 

U.S. 0.0506 0.0691700 0.0001 0.0561 
U.K. 0.0311 0.1028939 0.00f)1 0.0599 
Panel B: Cox-Ingersoll-Ross Model 

f3 y p2 r(t) 

U.S. 0.0373 0.0697051 0.0008 0.0561 
u.K. 0.0279 0.1039427 0.0007 0.0599 
Notes: The parameters {3, y, and p2 were estimated by 
Nowman (1997) using a discrete time model that reduces 
some of the temporal aggregation bias. The data used are 
U.S. Treasury bill one month yields from June 1964 to De­
cember 1989 and the one month sterling interbank rate 
from March 1975 to March 1995. 

term structure of interest rates movement is minimized. Fong and Va­
sicek analyze the effect of a shift consisting of a linear movement of 
the instantaneous forward rate around the end of the horizon planning 
period; in this case it is not possible to build an immunized portfolio, 
but there is a lower bound for the portfolio's final value that depends 
onM2. 

For i = 1, ... , n, the Fong-Vasicek dispersion measure for bond i, 
Ml, is defined as follows: 

(16) 

Ml is introduced in the model by penalizing the objective function 
which becomes: 

n 

v-QLMlxi (17) 
i=l 

period is the best strategy against immunization risk. (See Bierwag et aI., 1993). In 
practical terms, the alternative measures lead to similar results. 
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where Q > 0 is a parametric constant that depends on the investor's im­
munization risk aversion. When M; is used ill the model, the optimal 
portfolio path consists of immunized portfolios of minimum disper­
sion, independent of the term structure assumption. ll (See Table 4.) 

Table 4 
Optimal Strategies of Minimum 

Dispersion in a Static Framework 
Panel A: Nonstochastic Model 

Xl X2 X3 X4 Duration 
0 0 8382.429 1617.571 1.4996 

Panel B: Vasicek Model 
Xl X2 X3 X4 Duration 

U.S. 0 0 7914.367 1488.932 1.4995 
U.K. 0 0 7966.707 1494.853 1.4999 
Panel C: Cox-Ingersoll-Ross Model 

Xl X2 X3 X4 Duration 
U.S. 0 0 7916.721 1485.324 1.4999 
U.K. 0 0 7956.605 1506.982 1.5005 
Notes: Dispersion measure is calculated according to Fong and Vasicek M2 
equation (16). Portfolio durations are calculated as follows: Macaulay dura­
tion is used for Panel A; Equation (14) is used for Panel B; and Equation (15) 
is used for Panel C. 

4 The Dynamic Model 

The static portfolio selection model described in Section 3 provides 
a portfolio that is immunized against interest rate risk, but only at the 
beginning of the horizon planning period. The dynamic behavior of 
portfolio duration makes it impossible to keep that portfolio immu­
nized during the entire planning period. Moreover, the immunization 
solution provided by the static model is valid only for the current in­
terest rate, so the portfolio must be adjusted continuously as the rate 

11 Any other decreasing function of M2 could be added to the objective function to 
penalize portfolio dispersion, as we are only trying to obtain the immunized portfolio 
of minimum dispersion. 
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of interest changes.12 Our task now is to derive an optimal dynamic 
portfolio strategy that rebalances the portfolio in order to keep it free 
of interest rate risk. 

4.1 The Rebalancing Points 

Recall the notation from Section 3.1, i.e., bond i matures at Ti and 
pays coupons at times Tlil for 5 = 1,2, ... , ni. Consider all of the n 
bonds at to and arrange the times of their coupon payments in ascend­
ing order so that ts denotes the time of s-th coupon payment in (to, H] 
so that 

. {(1) (2) (n)} t1 = mIll T1 ,T1 , ... ,T1 . 

Let tk denote the time of the last coupon payment in (to, H], i.e., 

k = The integer such that tk ~ H find tk+1 > H. (18) 

If one of the n bonds makes a coupon payment at H, then tk = H; 
otherwise, tk < H. Without loss of generality, we assume that at least 
one bond pays a coupon at H so that 

(19) 

Equation (19) implies that (to,H] is partitioned into k intervals. The 
s-th interval is (ts-1, t s], for 5 = 1,2, ... , k. 

For example, we have three coupon bonds bought at to. Bond 1 (ini­
tially a 10 year bond) matures in 7.1 years and makes its remaining 
coupon payments at times (0.1,0.6,1.1, ... ,7.1); Bond 2 (initially a 20 
year bond) matures in 15.75 years and makes its remaining coupon pay­
ments at times (0.25,0.75,1.25, ... ,15.75); and finally Bond 3 (initially 
a 30 year bond) matures in 17 years and makes its remaining coupon 
payments at times (0.5,1.0,1.5, ... ,17). Ordering all of the coupon 
payment times gives to = 0, t1 = 0.1, t2 = 0.25,t3 = 0.5, t4 = 0.6, 
etc. If the investor's planning period is H = 1.5 years, then k = 6 and 
tk = H = 1.5. If H = 1.7 years, however, then k = 7 because t6 < H and 
t7 = 1.75 > H. 

Let us now express the time of maturity of bond i, h in terms of 
the ts's for those Ti ::::; H. For i = 1,2, ... , n define 

120nly portfolios consisting entirely of zero coupon bonds with maturity at the end of 
the horizon planning period can be kept immunized over the horizon planning period 
without any additional rearrangements. 
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{ 

5 if 35 E {l,2, ... ,k} such that ts = Ti::; H; 
Si = 

k if Ti > H = tk 
(20) 

Finally, we assume that portfolio rebalancing is only allowed at the 
beginning of each interval t s , 5 = 0,1, ... , k - 1. 

4.2 The Constraints 

Next we need to construct the constraints for the linear program. 
To this end, the following notation will be uspd: 

x(S, i) 

b(s, i) 
Z (5, i) 
y(s, i) 

1'"s 

p (5, i) 

Number of units of bond i in the portfolio immediately 
after the rebalancing at time ts; 
Number of units of bond i bought at ts; 
Number of units of bond i sold at ts; 
Number of units of bond i maturing at ts; 
E[ r(ts) Ir(to)]; and 
Price of one unit of bond i at ts assuming that 
r(u) = E[r(u)lr(to)] for u?::: to. 

The definition of p (5, i) assumes the actual interest rates are equal to 
the expected interest rates throughout the planning period. 

The following set of constrains must be satisfied: 

(i) x(O, i) = b(O, i) for i = 1, ... , n; 
(ii) x(s, i) = x(s - 1, i) + b(s, i) - z(s, i) - y(s, i) 

for 5 = 1, ... , k and i = 1, ... , n; 
(iii) x(s, i) = b(s, i) for 5 = Si,Si + 1, ... , k and i = 1, ... , n; 
(iv) z(s,i)=Ofors=si, ... ,kandi=l, ... ,p; 
(v) y(s, i) = 0 for 5 =1= Si, ... , k and i = 1, ... , p; 

or for 5 = 1, ... , k and i = P + 1, ... , n. 

Constraint (iii) represents the number of units of bond 5 maturing 
at Ti or being sold at tk. (Note that all bonds must be sold at the end 
of the horizon planning period.) Constraint (iv) indicates that bond i 
cannot be held or traded after it matures. Constraint (v) states that 
bond i matures only at a single point in time. 

Constraint (i) indicates the number of bonds bought at the beginning 
of the horizon planning period. Constraint (ii) indicates the purchases 



168 Journal of Actuarial Practice, Vol. 5, No.2, 1997 

and sales at each subsequent ts. Constraint (iii) indicates that bond i 
cannot be held or traded after it matures. Constrain (iv) indicates that 
those bonds with maturity before or at tk cannot be sold after their 
maturity. Note that constraints (ii), (iii), and (iF) imply that X(Si -1, i) = 
Y(Si, i) for i = 1, ... , p, because those bonds with maturity at or before 
tk mature at Si. Constraint (v) indicates that bonds 1 to p can only 
mature at Si. Meanwhile, bonds p + 1 to n do not mature at any point 
during the planning period. Note that for bonds p + 1 to n constraints 
(ii) and (v) imply that X(Si -1, i) = Z(Si, i), Le., all bonds outstanding at 
tk have to be sold at the end of the horizon planning period). 

The initial budget constraint is now: 

n 
2,x(O,i)p(O,i) =1 (21) 
i=l 

where I is the amount of money available at the beginning of the horizon 
planning period. The budget constraint must be satisfied not only at 
to but during the whole planning period, so we must add the following 
set of budget constraints for S = 1, ... , k - 1 

(vi) 2:f=db(s, i)p(s, i) - z(s, i)p(s, i) - y(s, i)p(s, i) 
-Cix(s-I,i)]=O 

(vii) 2:f=dz(k, i)p(k, i) + y(k, i)p(k, i) + Ci x(k - 1, i)] = Vk 

where Vk is the portfolio value at tk, Le., at the end of the horizon 
planning period. Note that p (Si, i) is the amount of face value of bond 
i maturing at ts;; The constraint (vi) shows that the amount of money 
invested in new purchases at each t s , 2: b(s, iJP(s, i), must come from 
coupon payments, 2: CiX(S - 1, i), sales, 2: z(s, i)p(s, i), and principal 
repayment 2: y (s, i) p (s, i). Constraint (vii) shows the expected value 
of the portfolio at H. 

4.3 The Optimal Portfolio 

As in the static model, the investor's aim at each ts is to maximize 
the guaranteed portfolio value at the end of the horizon planning pe­
riod assuming unexpected interest rate changes only occur immediately 
after portfolio rebalanCing, Le., just after each ts. 

If we let Vs be the minimum final portfolio value to guarantee at ts , 
then the following set of constraints must be satisfied: 

n 
2,x(S,i)Vij(S);::Vs , s=O, ... ,k-l, j=I, ... ,m, 
i=l 
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where Vij (s) denotes the final value (at H) of an investment of p (s, i) 
dollars in bond i at ts. In addition, the definition of Vij (s) assumes that 
the instantaneous spot interest rate changes at ts+ from Ys to rj and 
no additional unexpected interest rate change occurs until the end of 
the horizon planning period. Thus 

(i) 
IU:T~i»ts CiP(rj, ts, Tu ) + P(rj, ts, Ti) 

vij(s) = P(rj, ts,H) (22) 

As the investor's aim is to maximize the minimum portfolio final 
values at each ts and to Simultaneously minimize immunization risk at 
each ts , the objective function can restated as: 

k k-l n 

2: Vs - Q 2: 2: M 2(s, i)x(s, i) (23) 
s=O s=Oi=l 

where M 2 (s, i) is the Fong-Vasicek dispersion measure for bond i at ts , 
defined as follows: 

2 . IU:T~i»ts (T~i) - HfCiP(Ys, ts, T~i» + (Ti - H)2P(rj, ts, Td 
M (s, t) = _ (i) 

IU:T~i)>ts CiP(rs, ts, Tu ) + P(rj, ts, Ti) 
(24) 

for s = 0, ... , k - 1; i = s + 1, ... , n. The complete dynamic model is: 

The Dynamic Model: 
max I~=o Vs - Q I~:6 I~l M2(s, i)x(s, i) 

subject to 
I~l x(O, i)p(O, i) = I 

(i) x(o, i) = b(O, i) for i = 1, ... , n; 
(ii) x(s, i) = x(s - 1, i) + b(s, i) - z(s, i) - y(s, i) 

for s = 1, ... ,k and i = 1, ... ,n; 
(iii) x(s, i) = b(s, i) for s = Si,Si + 1, ... , k and i = 1, ... , n; 

(iv) z(s, i) = ° for S = Si, ... , k and i = 1, ... , p; 

(v) y(s, i) = ° for S "* Si, ... , k and i = 1, ... , p; 
or for S = 1, ... , k and i = P + 1, ... , n; 

(vi) If=db(s, i)p(s, i) - z(s, i)p(s, i) - y(s, i)p(s, i) 

- Ci X (s - 1, i)] = ° for s = 1, ... , k - 1 
(vii) If=dz(k, i)p(k, i) + y(k, i)p(k, i) + Ci x(k - 1, i)] = Vk 
(viii) x(s, i), b(s, i),z(s, i),y(s, i), Vs ~ ° 

for s = 1, ... , k and i = 1, ... , n. 
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4.4 The Example Continued 

Here H = 1.5 years and to = O. From the data in Table 1 we see that 
Tl = 0.5, T2 = 1.0, T3 = 1.5, and T4 = 2.0. There are only three coupon 
payments in (0,1.5] at tl = 0.5, t2 = 1.0, and t3 = 1.5; it follows that 
k = 3. It is easily seen that, because of the way the bonds are labeled, 
Si = i for those bonds with maturity at or before t3. 

In the case of the series flat term structure, we again assume a cur­
rent interest rate level of 10 percent and YI = 9 percent; Y2 = Yc = 10 
percent; Y3 = 11 percent. The optimal solution paths are reported in 
Panel A of Table 5. We can see that this result is consistent with Khang's 
theorem: the optimal portfolio duration consists of making duration 
equal to the remaining horizon planning period at every ts. The small 
difference between these two variables is duf' to the finite number of 
scenarios of interest rate changes considered. 

In the case of the Vasicek (1977) and Cox-Ingersoll-Ross (1985) term 
structure models, we use the parameters estimated in Nowman (1997) 
for both u.s. (from the Treasury bill market) and U.K. (sterling one 
month interbank rate). (See Table 3.) The expected interest rate at 
the beginning of each interval is given by equation (4) for the Vasicek 
model and equation (7) for the Cox-Ingersoll-Ross model. 

The results are displayed in Panel A of Tables 6 to 9. Again, Khang's 
theorem is still valid. These results also are consistent with those ob­
tained by Gagnon and Johnson (1994) under a stochastic interest rate 
in a discrete time framework. 13 

5 Transaction Costs 

The static and dynamic models described in Sections 3 and 4 do not 
include transaction costs and lead to solutions consistent with Khang's 
theorem. The next step is to introduce transaction costs into the model 
and analyze their effects on the optimal solution. 

We assume all transaction costs are incurred only at portfolio rear­
rangement times and are a constant proportion, ex (0 ::; ex < 1), of the 
volume traded (in dollars) at each ts. We also assume that principal and 
coupon repayments don't generate transactio'} costs. 

l3In particular, Gagnon and Johnson (1994) assume the Black, Derman, and Toy (1990) 
arbitrage-free evolution model. 
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Table 5 
Optimal Portfolio Path 

Under the Flat Term Structure 
Panel A: No Transactions Costs (ex = 0.00%) 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 8382.429 1617.571 1.4996 

0.5 0 9951.796 548.204 0 0.9999 
1 11025.000 0 0 0 0.5000 

Panel B: With Transactions Costs 
ex = 0.15% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 9448.628 536.395 1.4529 

0.5 0 9947.132 536.395 0 0.9994 
1 10470.523 536.395 0 0 0.5232 

ex = 0.30% 
s X(S, 1) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 9434.535 535.554 1.4529 

0.5 0 9931.548 535.554 0 0.9994 
1 10453.338 535.554 0 0 0.5232 

ex = 0.45% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 9420.485 534.717 1.4529 

0.5 0 9916.016 534.717 0 0.9994 
1 10436.212 534.717 0 0 0.5232 

ex = 0.60% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 9940.359 0 1.4297 

0.5 0 10434.412 0 0 0.9762 
1 10953.022 0 0 0 0.5000 

Notes: (a) The ()( value represents the level of transaction costs as a percent-
age of the volume traded; ()( = 0 means the absence of transaction costs. In 
this case the optimal strategy is consistent with Khang's theorem, Le., at each 
rebalancing point the portfolio has to be restructured in order to keep its du-
ration equal to the remaining horizon planning period; (b) Macaulay duration 
is used for this table. 
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Table 6 
Optimal Portfolio Path 

Under the Vasicek Model Using U.S. Data 
Panel A: No Transactions Costs «()( = 0.00%) 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 7914.367 1488.932 1.4995 

0.5 0 9363.004 510.227 0 0.9999 
1 10366.868 0 0 0 0.5000 

Panel B: With Transactions Costs 
()( = 0.15% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 8893.123 513.351 1.4543 

0.5 0 9344.520 513.351 0 1.0002 
1 10348.526 0 0 0 0.5000 

()( = 0.30% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 8879.864 512.549 1.4543 

0.5 0 9329.912 512.549 0 1.0002 
1 9810.844 512.549 0 0 0.5238 

()( = 0.45% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 9387.450 0 1.4305 

0.5 0 9836.590 0 0 0.9764 
1 10316.518 0 0 0 0.5000 

()( = 0.60% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 9373.477 0 1.4305 

0.5 0 9821.278 0 0 0.9764 
1 10299.744 0 0 0 0.5000 

Notes: (a) The ()( value represents the level of transaction costs as a percentage 
of the volume traded; ()( = 0 means the absence of transaction costs. In this 
case the optimal strategy is consistent with Khang's theorem, Le., at each 
rebalancing point the portfolio has to be restructured in order to keep its 
duration equal to the remaining horizon planning period; (b) Equation (14) is 
used for duration in this table. 
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Table 7 
Optimal Portfolio Path 

Under the Vasicek Model Using U.K. Data 
Panel A: No Transactions Costs (0( = 0.00%) 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 7966.707 1497.853 1.4999 

0.5 0 9426.207 511.094 0 0.9999 
1 10433.992 0 0 0 0.5000 

Panel B: With Transactions Costs 
0( = 0.15% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 8960.509 505.285 1.4542 

0 . .5 0 9416.569 505.285 0 0.9998 
1 10415.415 0 0 0 0.5000 

0( = 0.30% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 8947.112 504.493 1.4542 

0.5 0 9401.809 504.493 0 0.9998 
1 9886.797 504.493 0 0 0.5233 

0( = 0.45% 
s x(s,1) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 8933.754 503.703 1.4542 

0.5 0 9387.090 503.703 0 0.9998 
1 9870.596 503.703 0 0 0.5233 

0( = 0.60% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 9431.205 0 1.4308 

0.5 0 9882.670 0 0 0.9764 
1 10365.058 0 0 0 0.5000 

Notes: (a) The DC value represents the level of transaction costs as a percentage 
of the volume traded; DC = 0 means the absence of transaction costs. In this 
case the optimal strategy is consistent with Khang's theorem, Le., at each 
rebalancing point the portfolio has to be restructured in order to keep its 
duration equal to the remaining horizon planning period; (b) Equation (14) is 
used for duration in this table. 
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Table 8 
Optimal Portfolio Path 

Under the Cox-Ingersoll-Ross Model Using U.S. Data 
Panel A: No Transactions Costs ()( = 0.00%) 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 7916.720 1485.324 1.4999 

0.5 0 9364.264 507.666 0 1.0000 
1 10365.467 0 0 0 0.5000 

Panel B: With Transactions Costs 
()( = 0.15% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 8910.619 494.905 1.4539 

0.5 0 9361.767 494.905 0 0.9995 
1 10346.979 0 0 0 0.5000 

()( = 0.30% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 8897.360 494.133 1.4539 

0.5 0 9347.161 494.133 0 0.9995 
1 9827.833 494.133 0 0 0.5230 

()( = 0.45% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 8884.090 493.360 1.4539 

0.5 0 9332.549 493.360 0 0.9995 
1 9811.754 493.360 0 0 0.5230 

()( = 0.60% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 9372.248 0 1.4309 

0.5 0 9819.790 0 0 0.9764 
1 10297.982 0 0 0 0.5000 

Notes; (a) The lX value represents the level of transaction costs as a percentage 
of the volume traded; lX = 0 means the absence of transaction costs. In this 
case the optimal strategy is consistent with Khang's theorem, Le., at each 
rebalancing point the portfolio has to be restructured in order to keep its 
duration equal to the remaining horizon planning period; (b) Equation (15) is 
used for duration in this table. 
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Table 9 
Optimal Portfolio Path 

Under the Cox-Ingersoll-Ross Model Using U.K. Data 
Panel A: No Transactions Costs (ex = 0.00%) 
s x(s,l) x(s,2) x(s,3) x (s, 4) Duration 
0 0 0 7956.605 1506.982 1.5005 

0.5 0 9427.115 509.365 0 0.9999 
1 10433.109 0 0 0 0.5000 

Panel B: With Transactions Costs 
ex = 0.15% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 8959.023 505.935 1.4542 

0.5 0 9414.835 505.935 0 0.9998 
1 9901.047 505.935 0 0 0.5234 

ex = 0.30% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 8958.877 492.139 1.4537 

0.5 0 9413.339 492.139 0 0.9992 
1 9898.075 492.139 0 0 0.5228 

ex = 0.45% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 8945.533 491.371 1.4537 

0.5 0 9398.639 491.371 0 0.9992 
1 9881.896 491.371 0 0 0.5228 

ex = 0.60% 
s x(s,l) x(s,2) x(s,3) x(s,4) Duration 
0 0 0 9430.492 0 1.4309 

0.5 0 9882.616 0 0 0.9764 
1 10364.794 0 0 0 0.5000 

Notes: (a) The ()( value represents the level of transaction costs as a percentage 
of the volume traded; ()( = 0 means the absence of transaction costs. In this 
case the optimal strategy is consistent with Khang's theorem, Le., at each 
rebalancing point the portfolio has to be restructured in order to keep its 
duration equal to the remaining horizon planning period; (b) Equation (15) is 
used for duration in this table. 
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The budget constraints must be modified as follows: 

(i) 
(ii) 

( iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

I~l (1 + DC)X(O, i)p(O, i) = I 
x(O,i) = b(O,i) for i = 1, ... ,n; 
x(s, i) = x(s - 1, i) + b(s, i) - z(s, i) - y(s, i) 

for s = 1, ... , k and i = 1, ... , n; 
x(s, i) = b(s, i) for s = Si, Si + 1, ... , k and i = 1, ... , n; 
z(s, i) = 0 for s = Si, . .. , k and i = 1, ... , p; 
y(s, i) = 0 for S * Si, ... , k and i = 1, ... , p; 
or for S = 1, ... , k and i = P + 1, ... , n; 
I~d(1 + DC)b(s, i)p(s, i) - (1- DC)Z(S, i)p(s, i) 

- y (s, i) p (s , i) - C i X (s - 1, i)] = 0 for s = 1, ... , k - 1 
If=d«1 - DC)z(k, i) + y(k, i))p(k, i) + Ci x(k - 1, i)] = Vk 
x(s, i), b(s, i), z(s, i),y(s, i), Vs ;::: 0 
for s = 1, ... , k and i = 1, ... , n. 

Transaction costs have the effect of increasing asset purchase prices by 
DC while reducing sale prices by DC. This new purchase (sale) price can 
be understood as the bid (ask) price of the bonds plus (minus) fees paid 
to intermediaries. 

5.1 The Example Continued 

The dynamic model with transactions costs is applied to the exam­
ple, and the results are presented in Panel B of Tables 5 to 9 for different 
DC values (0.15 percent, 0.3 percent, 0.45 percent, and 0.6 percent). 

The optimal path depends on the level of the transaction costs, i.e., 
on the level of DC. For DC = 0 we reach Khang' optimal solution: at each 
rebalancing point portfolio duration must be equal to the remaining 
horizon planning period. But for values of DC greater than 0.05 percent 
the optimal path has an initial portfolio that is not immunized because 
its duration is less than the horizon planning period. The fact that 
values of DC as low as 0.05 percent lead to a non-immunized portfolio 
implies that the immunization strategy cannot be optimal, in practical 
terms. 

The difference between the initial portfolio duration and the horizon 
planning period increases as the level of transaction costs rises. In 
this simple example four different solutions are obtained; the initial 
portfolio 'durations range from 1.5 years (for DC = 0) to approximately 
1.43 years (for DC = 0.6 percent). For sufficiently high transaction costs, 
the optimal solution is to invest the entire initial budget in a bond with 
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maturity at the end of the horizon planning period. This is because 
by investing in bonds with maturity at the end of the horizon planning 
period, we avoid the transaction costs generated by the reinvestment 
of those bonds with maturity before the end of the horizon planning 
period as well as the losses derived from the sales of those bonds still 
outstanding at the end of the horizon planning period. In the example 
this is the result we get when ex = 0.6 percent. To avoid transaction 
costs the optimal strategy consists of investing in bond 3, i.e., the bond 
with maturity at t3 = H = 1.5 years 

A possible explanation of why the optimal strategy consists of port­
folios with an initial duration less than the horizon planning period 14 

is that if no cash payment occurs, portfolio duration is equal to the 
remaining horizon planning period. But if a coupon payment occurs, 
portfolio duration is increased a finite amotJlt and becomes greater 
than the horizon planning period. 

If portfolio duration is long enough, this problem may be solved 
by reinvesting coupon payments in bonds with a short duration. If the 
horizon planning period is short, it will not be possible to keep duration 
equal to the horizon planning period unless we sell bonds with long 
durations and invest the proceeds in bonds with shorter duration. 

The optimal solution of this model provides an initial portfolio with 
a duration less than the horizon planning period. As coupon payments 
are due, its duration increases approaching the horizon planning period 
without any additional rebalancing, thereby avoiding transaction costs. 
Also, this fact can be helped by an optimal reinvestment of coupon 
payments. 

These findings are common to all cases analyzed, i.e., they are inde­
pendent of the term structure of interest rate model assumed. These 
models provide a first hint to answer the question posed by Maloney 
and Logue (1989) with respect to the "mismatch duration that is tolera­
ble, given that allowing a modest mismatch will certainly reduce trading 
costs." 

14 At t = 1 all optimal portfolios have a duration greater or equal to the remaining 
horizon planning period. This is caused by the characteristics of the set of bonds 
considered in this counterexample. At t = 1 all the bonds have a duration greater than 
0.5. If we had included bonds with a duration at t = 1 less than 0.5 (Le., bonds with 
quarterly coupon payments) this result could not hold. 
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6 Summary 

This paper develops a dynamic portfolio selection model for inter­
est rate risk management under different term structure of interest rate 
regimes. This model's results are consistent with Khang's dynamic im­
munization strategy which consists of a continuous rebalancing to keep 
portfolio duration equal to the investor's hor~zon planning period. 

The model is then extended in order to analyze the effects of trans­
action costs on the optimal strategy. Our results suggest that if trans­
action costs are considered, the strategy of making portfolio duration 
equal to the horizon planning period is not optimal. Moreover, the op­
timal path has an initial solution with a portfolio duration less than the 
horizon planning period. Furthermore, the bigger the level of transac­
tion costs, the bigger the difference between the initial portfolio dura­
tion and the horizon planning period. This result holds under different 
term structure of interest rate models. 
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A New Approach for Determining Claim Expense 
Reserves in Workers Compensation 
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Abstractt 

This paper describes a new approach for determining a reserve for claim 
expenses. While the discussion focuses on workers compensation claims, the 
methodology is equally applicable to other lines of business. The approach 
also can be applied to the calculation of the reserve for all claims (includ­
ing IBNR claims) and the reserve for claims reported to date (excluding IBNR 
claims). In addition, a methodology for pricing claims-handling services is 
discussed. The implications of pricing claims-handling services on a handle­
to-conclusion basis versus pricing claims-handling services on a limited time 
handling basis are examined. 

Finally, the paper discusses a methodology for tracking the duration so 
that the rate of claim closing can be monitored. This, in turn, allows targets 
to be set. Departments that are interested in implementing new techniques 
for shortening the duration can use the monitoring techniques to determine if 
their new claim-closing techniques are successful. 
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1 Introduction 

The determination of a claim expense reserve is an important is­
sue for workers compensation because of the length of time for which 
workers compensation claims remain open. The duration has been in­
creasing over the last several years. As duration increases, so does the 
expense of handling the claim for the remainder of the claim's life. 

Self-insurance and large deductible plans are now common means 
of financing risk. Few self-insureds handle their own claims, however. 
Risk managers are increasingly aware of the expense of handling claims. 
As insurance companies and third party administrators (TPAs) are un­
der tremendous pressure to cut expenses, the need to know the total 
cost of handling claims becomes more important. Companies that are 
able to estimate their cost of handling claims will be more successful 
in reducing costs. 

There are several ways to estimate claim expense reserves, includ­
ing the use of automated work measurement and paid-to-paid ratios. 
Automated work measurement1 studies show that there are differing 
levels of work effort necessary for claims in the first 30 days than on 
claims that have been open for, say, five years. On the other hand, 
the paid-to-paid methodology assumes that claims incur expense only 
when initially opened and when closed. While this may not be an unrea­
sonable assumption for claims from short-tailed lines, this assumption 
is not true for liability claims. Moreover, the paid-to-paid ratio is sub­
ject to distortion when a company is growing or shrinking or when a 
line of business is in transition.2 

Throughout the rest of the paper, I will describe a methodology for 
setting a reserve for claim expenses. The method is straightforward and 
it opens the door to several related issues: specifically, a claim depart­
ment's mOnitoring of closing claims and the pricing of claims service. 
Although this methodology is applicable to any line of business, the dis­
cussion and the examples that follow focus on workers compensation 
lost time claims. 

My methodology shares many features with the methodology docu­
mented in Wendy Johnson's 1989 paper,3 e.g., both use claim reporting 
and claim closure patterns to calculate the reserve. The differences in-

1 Automated work measurement, also known as time and motion studies, may be 
used to determine the key drivers in the cost of handling claims. 

2This was the case for workers compensation throughout the early 1990s as many 
large customers moved to deductible poliCies or toward self-insurance. 

3 Johnson, W. "Determination of Outstanding Liabilities for Unallocated Loss Adjust­
ment Expense"Procedings of the Casualty Actuarial Society 76 (1989): 111-125. 
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clude differing assumptions/applications of the expense loads for claim 
costs. Also, my paper broadens the reserving concepts to pricing and 
also to the monitoring of claim department efficiency. 

2 Some Key Definitions 

The following definitions are provided for the convenience of the 
reader: 

Allocated loss adjustment expense (ALAE): Expenses associated with 
settling a claim that are allocable to a specific claim, e.g., attorneys' 
fees, investigative fees, independent medical examinations, many 
managed care expenses, and court and other legal fees; 

Created claims: Claims reported to an insurance company or third party 
administrator. Also known as reported claims; 

Duration: The amount of time that a claim remains open. Also known 
as the life of the claim; 

Handle-to-conclusion: A term used by third party administrators to 
denote claims service that will continue for as long as the claim 
remains open. The fee charged for handle-to-conclusion, unless 
otherwise stated, also covers the handling of any reopened claims 
for as long as they remain (re-)opened; 

Intake expense: The cost of setting up a newly created claim in the 
system; 

limited time handling: A term used by third party administrators to 
signify claims service for some specified time limit, after which 
time an additional fee will be charged for the continued handling 
of the claim; 

Outstanding fee: The expense of handling a claim for as long as it re­
mains open. This could be expressed in various ways, e.g., as a 
fee per month or a quarterly fee; 

Reported claims: Claims of which the insurance company or third party 
administrator has been made aware. Also known as created claims; 

Third party administrator (TPA): A company that is in the business of 
handling and servicing claims. Such a company may also provide 
services other than claims services such as loss control, risk man­
agement information systems, actuarial services, etc. A TPA may 
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be affiliated with an insurance carrier or operate as a stand-alone 
entity; 

Unallocated loss adjustment expense (UIAE): Expenses associated with 
settling claims but not allocable to a specific claim, e.g., claim ad­
justers salaries, heat, light, rent, etc. 

3 The New Reserve Methodology 

The basic steps of the new reserve methodology are as follows: 

Step 1 Construct the closed claim count and created claim4 count tri­
angles. Ideally, these triangles should have quarterly evaluations; 
also the created claim counts and the closed claim counts will be 
net of both canceled claims and claims closed with no loss or ALAE 
payment. For the sake of brevity, the example presented here is 
based on annual data; see Table 1. 

Either accident year, report year, or policy year triangles may be 
used, but I prefer the report year version because the accompa­
nying statistics are more useful. Report year triangles result in a 
ULAE reserve that makes no provision for IBNR claims. Later in 
the paper I will discuss some of these statistics, e.g., the number 
of months claims will remain open. 

Step 2 Calculate loss development factors (LDF); 

Step 3 Use the LDFs to project ultimate claims: Because the example 
uses report year claims, the ultimate number of claims is identical 
to the claims reported after twelve months. The number of report 
year claims could change after the end of the report year, how­
ever, due to re-openings, the re-assignment of initially medical 
only claims to lost time claims (and vice versa), and the removal 
of canceled or claims closed with no loss or ALAE payment claims. 
With accident year data, one can use either closed claims, created 
claims, or a combination of these to project the ultimate number 
of claims. 

Step 4 Calculate the projected open claims: There are at least two 
methods for calculating the projected open claims. The first is 
to fill in the bottom of each of the created and closed triangles, 
Le., use the LDFs from the first step to estimate the future created 

4Created claims are reported claims. 
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claims and use a similar procedure to estimate the future closed 
claims. Taking the difference of the projected created and the 
projected closed claims provides the projected open claims. In 
my experience, this can lead to some unreasonable results, e.g., 
more than 10 percent of claims remaining open after ten years 
for a line where this is not reasonable, which makes additional 
re-selection of the LDFs necessary. 

My preferred method for projecting the open claims is to calculate 
another triangle which is the ratio of the (actual) open claims to 
the ultimate claims. By selecting the percentage of open claims at 
each evaluation and then applying this percentage to the ultimate 
number of claims for each year, one derives the projected number 
of open claims. This is illustrated in Tables 2 and 3. 

Step 5 Estimate the average number of in-force claims during a year. 
One way of estimating the number of in-force claims during a year 
is to average the number of open claims at the beginning and end 
of a year as shown in Table 4. 

Step 6 Calculate the reserve for each year by multiplying the number 
of open claims by the outstanding cost per claim: Multiplying the 
number of in-force claims in each year (Table 4) by the outstanding 
cost per claim per year (Table 5) gives the cost of handling claims 
in that particular year. This calculation produces the incremental 
cost per year as shown in Table 6. Summing all of these costs 
after a particular point in time, e.g., as of 12 months, results in 
the reserve for claim expenses as of 12 months (only for claims 
open through ten years); see Table 7. 

4 An Example 

This example assumes that the outstanding claim expense per year 
is $600 in 1995 dollars.s Future expenses are assumed to increase at 
4 percent per year. The nominal value of the reserve can be calculated 
by using $600 consistently for as long as claims are expected to remain 
open. 

One way of determining the outstanding cost per claim is an au­
tomated work measurement study within the claim department. Such 
a study would determine standards to complete various tasks rather 

SThis is not a true standard that will apply to any company nor should it be construed 
to be my company's standard. 



186 Journal of Actuarial Practice, Vol. 5, No.2, 1997 

than dollar amounts because many costs are inflation-sensitive. For ex­
ample, one may determine that a typical workers compensation claim 
requires fifteen hours to settle (which could be translated into a cost 
using the most current hourly rates) rather than saying its ultimate 
handling cost is $600. 

The reserve calculated in Table 7 covers only the expense in the first 
ten years the claims are open because the triangles used in the example 
end at ten years. Because there are claims remaining open after ten 
years and there will likely be claims open for as many as 40 years (or 
more), the reserve must be adjusted to account for the claims open after 
ten years. 

The assumption to be used in calculating this tail reserve is that 
any workers compensation claim still open after ten years is a tabular 
claim for which benefits will be paid for the claimant's or the survivor's 
lifetime. Ten years is used in this example only; it is not meant to be 
a standard. For example, if one has data through 15 or 20 years, one 
could make the same assumption at 15 or 20 years. 

One can obtain historical information about the age of the claimant 
or survivor ten years after the claim is reported (for report year statis­
tics) or ten years after the claim occurs (for accident year statistics). Ad­
ditionally, an assumption must be made about the average age at death 
to determine how many years the claims will remain open. Refinements 
to this methodology are possible, e.g., one can apply mortality tables to 
each claim open after ten years. 

We will assume that claims open for ten years will remain open, on 
average, for an additional 25 years. The tail reserve is the product of the 
number of claims open after ten years multiplied by 25 times the annual 
cost of handling the claim. The tail reserve calculated in this manner is 
sensitive to the number of years used in the calculation. The significant 
dollar amounts produced by this methodology beg the question "Will it 
really cost this much to handle tabular claims?" 

While tabular claims incur expense, these claims are generally less 
expensive to handle than newer claims. The work typically involved in 
maintaining an open tabular claim is an annual or semi-annual review of 
the reserve and the mail delivery of a monthly or weekly check (typically 
an automated process). Discussions with my claim department indicate 
that tabular claims incur roughly one-third of the expense of a newer 
claim. This may differ from company to company; this also will differ 
for cases involving ongoing intensive medical treatment. 



Year 12 24 36 48 60 

1986 101,909 101,909 101,909 101,909 101,909 

1987 96,869 96,869 96,869 96,869 96,869 

1988 102,346 102,346 102,346 102,346 102,346 

1989 107,315 107,315 107,315 107,315 107,315 

1990 111,029 111,029 111,029 111,029 111,029 

1991 107,345 107,345 107,345 107,345 107,345 

1992 113,367 113,367 113,367 113,367 

1993 107,084 107,084 107,084 

1994 107,687 107,687 

1995 104,446 
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Table 2 

Ratio of Open to Ultimate Claims 

Year 12 24 36 48 60 72 84 96 108 120 

1986 0.4581 0.2382 0.1364 0.0903 0.0585 0.0440 0.0346 0.0267 0.0242 0.0200 
'--
0 

1987 0.4677 0.1991 0.1130 0.0655 0.0455 0.0355 0.0273 0.0229 0.0180 t: 
~ 

::l 

1988 0.4567 0.2122 0.1184 0.0608 0.0576 0.0434 0.0318 0.0233 ~ 
0 ...... 

1989 0.4647 0.2083 0.1284 0.0823 0.0589 0.0424 0.0323 > 
1"\ .... 

1990 0.4607 0.2284 0.1412 0.0971 0.0703 0.0509 t: 
$lJ 
~ 

1991 0.4631 0.2294 0.1452 0.0990 0.0675 eI 
\J 

1992 0.4669 02500 0.1594 0.0990 
~ 

$lJ 
1"\ .... 

1993 0.4616 0.2181 0.1359 
r:;. 

_I'D 

1994 0.4643 0.2476 < 
0 

Average 0.4626 0.2257 0.1347 0.0877 0.0597 0.0432 0.0315 0.0243 0.0211 0.0200 U1 -
Selected 0.4626 0.2257 0.1347 0.0877 0.0597 0.0432 0.0315 0.0243 0.0211 0.0200 
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Table 3 '-. 
0 

Actual and Estimated Open Claims 0 
(J) .... 

Year 12 24 36 48 60 72 84 96 108 120 
(J) , 
3 

1986 46,680 24,271 13,903 9,203 5,960 4,479 3,525 2,468 2,038 ::l 

::l 

1987 45,306 19,287 10,949 6,341 4,410 3,438 2,646 1,937 
\C 

Q 

1988 46,745 21,720 12,115 8,265 5,900 4,445 2,047 e:!. 
3 

1989 49,865 22,355 13,775 8,835 6,320 2,146 rn x 
"0 

1990 51,152 25,355 15,678 10,780 2,343 2,221 
(J) 

::l 
VI 
(J) 

1991 49,710 24,630 15,585 2,608 2,265 2,147 ;;Q 
(J) 
VI 

28,340 18,070 1992 52,935 3,571 2,755 2,392 2,267 (J) , 
< 

1993 49,428 4,626 3,373 2,602 2,259 2,142 
(J) 
VI 

1994 50,002 9,444 6,429 4,652 3,392 2,617 2,272 2,154 

1995 49,155 9,160 6,235 4,512 3,290 2,538 2,204 2,089 

Notes: (1) Numbers above the jagged line are actual data, while numbers below are estimates, and; (2) For example, 
for year 1995 at 24 months: 23,573 = 0.2257 x 104,446, where 0.2257 is the selected open ratio and 104,446 is the 
estimate of ultimate claims for 1995. 
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Table 4 

Average Open Claims 

Year 12 24 36 48 60 72 84 96 108 120 

1986 23,340 35,476 19,087 11,553 7,582 5,220 4,002 3,126 2,597 2,253 
'--
0 

1987 22,653 32,297 15,118 8,645 5,376 3,924 3,042 2,433 1,981 1,840 c ..... 
:::s 

1988 23,373 34,233 16,918 10,190 7,083 5,173 3,850 2,820 2,273 2,104 ~ 
0 ....., 

1989 24,933 36,110 18,065 11,305 7,578 5,435 4,010 3,039 2,436 2,205 » 
("l ..... 

1990 25,576 38,254 20,517 13,229 9,295 6,729 4,572 3,098 2,521 2,282 c 
$lJ 
::::!. 

1991 24,855 37,170 20,108 13,108 8,938 5,941 4,009 2,995 2,437 2,206 $lJ 

-0 

1992 26,468 40,638 23,205 14,648 8,997 5,833 4,234 3,163 2,574 2,330 
..... 
$lJ 
("l ..... 

1993 24,714 36,390 18,953 11,973 7,892 5,510 4,000 2,988 2,431 2,201 ri· 
.!1> 

1994 25,001 38,335 20,587 11,975 7,937 5,541 4,022 3,005 2,445 2,213 < 
0 

1995 24,578 36,364 18,821 11,615 7,698 5,374 3,901 2,914 2,371 2,147 U1 -
Z 

Notes: Average Open Claims = Average number of claims at the beginning and the end of the year. 0 
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Table 5 0 

0 
Cost Per Open Claim ro .... ro 

Year 12 24 36 48 60 
-: 

72 84 96 108 120 :3 
::s 

1986 422 438 456 474 493 513 533 555 577 600 :i 
lO 

1987 438 456 474 493 513 533 555 577 600 624 n 
~. 

1988 456 474 493 513 533 555 577 600 624 649 :3 
ITI 

1989 474 493 513 533 555 577 600 624 649 675 x 
"0 
ro 

1990 493 513 533 555 577 600 624 649 675 702 ::s 
VI 
ro 

1991 513 533 555 577 600 624 649 675 702 730 ;:0 
ro 
VI 

624 675 702 730 
ro 

1992 533 555 577 600 649 759 -: 
< ro 

1993 555 577 600 624 649 675 702 730 759 790 VI 

1994 577 600 624 649 675 702 730 759 790 821 

1995 600 624 649 675 702 730 759 790 821 854 

Notes: Cost per open claim is assumed to be $600 per year in 1995 dollars. Prior 
and subsequent expenses are derived assuming 4 percent inflation. 
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Table 6 

Incremental Cost Per Year 

Year 12 24 36 48 60 72 84 96 108 120 

1986 9,839,025 15,552,960 8,702,731 5,478,302 3,738,864 2,676,990 2,134,658 1,733,820 1,498,269 1,351,800 
'--

1987 9,931,395 14,725,611 7,168,785 4,263,336 2,757,000 2,093,053 1,687,500 1,403,365 1,188,300 1,147,848 0 
c: 
"'" 1988 10,656,707 16,232,665 8,342,971 5,226,273 3,777,790 2,869,360 2,221,154 1,692,000 1,418,040 1,365,087 :::l 
~ 

1989 11,822,710 17,807,873 9,265,223 6,030,062 4,203,495 3,135,577 2,406,000 1,896,336 1,580,867 1,488,195 0 ....... 

2,010,154 1,701,132 
» 

1990 12,612,965 19,619,551 10,943,456 7,338,572 5,362,500 4,037,100 2,852,928 1,601,770 1"'1 ..... 
c: 

1991 12,747,695 19,826,397 11,154,308 7,562,019 5,362,500 3,707,184 2,601,681 2,021,043 1,710,216 1,610,362 Po> 
~. 
Po> 

1992 14,117,707 22,542,992 13,387,500 8,788,500 5,613,816 3,785,059 2,857,605 2,220,158 1,878,634 1,768,536 
" "'" 

1993 13,709,689 20,994,231 11,371,800 7,470,840 5,121,592 3,718,46:; 2,807,310 2,180,850 1,845,215 1,737,425 Po> 
1"'1 ..... 

1994 14,423,654 23,001,000 12,845,976 7,770,972 5,356,490 3,888,961 2,936,027 2,280,991 1,930,077 1,817,186 
1"'1 

_(1) 

1995 14,746,800 22,691,136 12,214,076 7,838,840 5,402,992 3,922,611 2,961,606 2,300,775 1,946,926 1,833,083 < 
0 

Notes: For example, for year 1995, expenses as of 12 months is equal to 14,746,800 = 24,578 x 600, where 24,578 V1 

is the number of average open claims for 1995 as of 12 months and 600 is the estimated cost per open claim (as Z 
shown on Table 5). 0 

N 

<.0 
<.0 
'-l 
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Table 7 
Tail Reserve by Report Year 

Workers Compensation Lost Time Claims 
Report 
Year (1) (2) (3) (4) 

1986 200 43.3117 2,038 $17,653,849 
1987 208 43.3117 1,937 $17,450,111 
1988 216 43.3117 2,047 $19,150,355 
1989 224 43.3117 2,146 $20,820,107 
1990 232 43.3117 2,221 $22,445,567 
1991 244 43.3117 2,147 $22,565,627 
1992 252 43.3117 2,267 $24,743,281 
1993 264 43.3117 2,142 $24,368,548 
1994 272 43.3117 2,154 $25,500,196 
1995 284 43.3117 2,089 $25,695,792 
Col. (1) = Estimated annual claim expense after 10 years and is one­
third of the expense of handling newer claims. Col. (2) = Inflationary 
factor for 25 years, and is LIS 1.04k. Col. (3) = Projected number 
of claims open after ten years and is taken from Table 2. Col. (4) = 

Cols. (1) x (2) x (3). 

193 

The tail reserve is estimated as the number of claims open after ten 
years multiplied by the outstanding expense per year multiplied by the 
number of years the claim is expected to remain open. In this example, 
we assume claims open after ten years will remain open, on average, for 
an additional 25 years. Note that the resulting tail reserve is sensitive 
to the number of years used. For example, for report year 1986: 

TailReserve = 2,038x$600x43.3117 

= $52,961,547. 

As discussed in the paper, the tailor tabular claims incur roughly 
one-third the expense of a newer claim. Then the tail reserve for report 
year 1986 would be $17,653,849. Similarly, the tail reserve for other 
report years may be calculated. 

The tail reserve for each report year is calculated as shown above. In 
Table 8 this tail reserve is shown for each report year after 120 months. 
The total reserve is calculated by summing the cost per quarter after a 
particular quarter:' The reserve for older report years (or accident years) 
may be calculated using the procedure described above. See Tables 8, 
9, and 10. 
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5 Duration 

We have presented a methodology for calculating the total reserve, 
which is the sum of the expenses in handling claims in the first ten 
years and the tail reserve for the tabular claims. The example is based 
on report year data. If this methodology is used with accident or policy 
year data, the reserve will be for all claims, whether reported or not. 
For a company that does not wish to hold reserves for incurred but 
not reported (IBNR) claims or for claims that are not yet incurred, a 
variation of this methodology is necessary. 

The concept of duration is introduced to illustrate the calculation 
of a reserve per claim. Duration is the average life of a claim or the 
length of time, on average, that a claim remains open. Duration has 
a different and distinct meaning in the financial community from that 
offered here. Because a claim incurs expense for as long as it remains 
open, duration is a key factor in calculating both the reserve and the 
cost of handling of a claim. 

One way of computing the duration of a claim involves counting the 
number of days between the date of report and the date of closure using 
many years. This method of computing the duration may understate a 
company's duration if the claims system began in (for example) 1970 or 
if the company has not been writing workers compensation claims since 
the early 1900s. (It is not uncommon for workers compensation claims 
to remain open for 50 years or more). Even for a company writing busi­
ness for many years, the duration may be misstated if the volume has 
changed significantly over time or if the nature of claims has changed. 

Another way of estimating duration is to use triangles of claim count 
data. For each report year, one takes the weighted average over time of 
the incremental closed claims in each quarter as well as the weighted 
average over time of the incremental reported claims in each quarter. 
The difference of the closed weighted average and the created weighted 
average gives an estimate of the duration for each report year. 

A company with only 20 years of workers compensation experience 
could compute the truncated duration of the first 20 years worth of 
claims and then make the assumption that claims still open after 20 
years are tabular claims. One could estimate the length of time the 
tabular claims will remain open using annuity tables or use a method 
similar to that illustrated above for the tail re<;erve. The total duration 
could then be calculated using a simple weighted average. 
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Table 8 0 
{l) 

Reserve as of Year 
.... 
{l) .... 

Year 12 24 36 48 60 72 84 96 108 120 
3 
::l 

1986 42,868,395 27,315,435 18,612,704 13,134,402 9,395,538 6,718,548 4,583,889 2,850,069 1,351,800 ° 
::l 
\0 

1987 36,434,799 21,709,187 14,540,402 10,277,066 7,520,066 5,427,013 3,739,513 2,336,148 1,147,848 ° 
n 
ill 

1988 43,145,341 26,912,675 18,569,704 13,343,431 9,565,641 6,696,281 4,475,127 2,783,127 1,365,087 ° 
3 
Tn 

1989 47,813,627 30,005,754 20,740,532 14,710,469 10,506,975 7,371,398 4,965,398 3,069,062 1,488,195 ° 
x 

"'C 
{l) 

1990 55,467,164 35,847,613 24,904,156 17,565,584 12,203,084 8,165,984 5,313,056 3,302,902 1,601,770 ° 
::s 
til 
{l) 

1991 55,555,710 35,729,313 24,575,005 17,012,986 11,650,486 7,943,302 5,341,621 3,320,578 1,610,362 ° :;0 
{l) 
til 

1992 62,842,799 40,299,807 26,912,307 18,123,807 12,509,991 8,724,932 5,867,328 3,647,170 1,768,536 ° 
{l) 

< 
1993 57,247,725 36,253,495 24,881,695 17,410,855 12,289,262 8,570,799 5,763,490 3,582,639 1,737,425 ° 

{l) 
til 

1994 61,827,679 38,826,679 25,980,703 18,209,731 12,853,241 8,964,281 6,028,254 3,747,263 1,817,186 ° 
1995 61,112,045 38,420,909 26,206,833 18,367,993 12,965,001 9,042,390 6,080,785 3,780,010 1,833,083 ° 
Notes: This reserve calculated in this example only covers claim expenses through the first ten years. For example, for year 1995, the reserve as of 36 
months is 26,206,833 = 7,838,840 + 5,402,992 + 3,922,611 + ... , which is the sum of the incremental cost per year for each year after 36 months. 

,..... 
CD 
Vl 



Table 9 

Incremental Cost Per Year 

Year 12 24 36 48 60 72 84 96 108 120 Reserve 

1986 9,839,025 15,552,960 8,702,731 5,478,302 3,738,864 2,676,990 2,134,658 1,733,820 1,498,269 1,351,800 17,653,849 

1987 9,931,395 14,725,611 7,168,785 4,263,336 2,757,000 2,093,053 1,687,500 1,403,365 1,188,300 1,147,848 17,450,111 

1988 10,656,707 16,232,665 8,342,971 5,226,273 3,777,790 2,869,360 2,221,154 1,692,000 1,418,040 1,365,087 19,150,355 

1989 11,822,710 17,807,873 9,265,223 6,030,062 4,203,495 3,135,577 2,406,000 1,896,336 1,580,867 1,488,195 20,820,107 

1990 12,612,965 19,619,551 10,943,456 7,338,572 5,362,500 4,037,100 2,852,928 2,010,154 1,701,132 1,601,770 22,445,567 

1991 12,747,695 19,826,397 11,154,308 7,562,019 5,362,500 3,707,184 2,601,681 2,021,043 1,710,216 1,610,362 22,565,627 

1992 14,117,707 22,542,992 13,387,500 8,788,500 5,613,816 3,785,059 2,857,605 2,220,158 1,878,634 1,768,536 24,743,281 

19'13 13,709,689 20,994,231 11,371,800 7,470,840 5,121,592 3,718,463 2,807,310 2,180,850 1,845,215 1,737,425 24,36'3,548 

1994 14,423,654 23,001,000 12,845,976 7,770,972 5,356,490 3,888,961 2,936,027 2,280,991 1,930,077 1,817,186 25,500,196 

1995 14,746,800 22,691,136 12,214,076 7,838,840 5,402,992 3,922,611 2,961,606 2,300,775 1,946,926 1,833,083 25,695,792 

Notes: For example, for year 1995, expenses as of 12 months is 14,746,800 = 24, 578x600, where 24,578 is the number of average open claims for 
1995 as of 12 months and 600 is the estimated cost per open claim (as shown on Table 5). 

....... 
(.0 
en 

I.-

0 
c 
"'" ::s 
~ 
0 ...... 
> n ..... 
c 
III 

"'" iij. 
-
\J 

"'" III 
n ..... 
n 
.!D 
< 
0 

Vl -
Z 
0 

N 

1.0 
1.0 
'-I 



Table 10 

Reserve as of Year 

Year 12 24 36 48 60 72 84 96 108 120 

1986 60,522,244 44,969,284 36,266,553 30,788,251 27,049,387 24,372,397 22,237,738 20,503,918 19,005,649 17,653,849 

1987 53,884,910 39,159,298 31,990,513 27,727,177 24,970,177 22,877,124 21,189,624 19,786,259 18,597,959 17,450,111 

1988 62,295,696 46,063,030 37,720,059 32,493,786 28,715,996 25,846,636 23,625,482 21,933,482 20,515,442 19,150,355 

1989 68,633,734 50,825,861 41,560,639 35,530,576 31,327,082 28,191,505 25,785,505 23,889,169 22,308,302 20,820,107 

1990 77,912,731 58,293,180 47,349,723 40,011,151 34,648,651 30,611,551 27,758,623 25,748,469 24,047,337 22,445,567 

1991 78,121,337 58,294,940 47,140,632 39,578,613 34,216,113 30,508,929 27,907,248 25,886,205 24,175,989 22,565,627 

1992 87,586,080 65,043,088 51,655,588 42,867,088 37,253,272 33,468,213 30,610,609 28,390,451 26,511,817 24,743,281 

1993 81,616,273 60,622,043 49,250,243 41,779,403 36,657,810 ?2,939,347 30,132,038 27,951,187 26,105,973 24,368,548 

1994 87,327,875 64,326,875 51,480,899 43,709,927 38,353,437 34,464,477 31,528,450 29,247,459 27,317,382 25,500,196 

1995 86,807,837 64,116,701 51,902,625 44,063,785 38,660,793 34,738,182 31,776,577 29,475,802 27,528,875 25,695,792 

Notes: For example, for year 1995, the reserve as of 36 months is 51,902,625 = 7,838,840 + 5,402,992 + 3,922,611 + ... , which is the sum of the 
incremental cost per year for each year after 36 months. 
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As an example, assume the duration of the report year 1977 closed 
claims as of December 31, 1996 is 12.6 months and that 99.5 percent 
of report year 1977 claims are closed. The remaining 0.5 percent of 
claims are open and are expected to remain open for an additional 21 
years. The total duration would be 15 months.6 

Duration differs by state because of the different laws in each state 
for workers compensation benefits. For example, the duration of the 
permanent total claims in the ten states in the 1994 National Council 
on Compensation Insurance (NCCI) Closed Claims Studies 7 ranged from 
21.3 months (South Carolina) to 50.2 months (Wisconsin). Industry data 
from these 1994 NCCI studies show increasing durations for all of the 
ten states in the study. This study measures the duration in median 
number of days for permanent disability claims through closure year 
1992. It seems likely that managed care will have some impact on de­
creasing the overall claim duration, but it is too soon to determine the 
validity of this hypothesis. 

We assume that the countrywide duration for a workers compensa­
tion lost time (WCLT) claim is 15 months, the cost per month of handling 
a claim is $50, and there is no inflation. Every reported claim needs a 
reserve of $750 (= 15 x $50) set aside. Therefore, the reserve at any 
point in time would be: Number of Created Claims x $750 - Reserve 
Released for Open Claims. This concept is probably easier to illustrate 
than to explain. 

Assume that one claim is reported at the beginning of each quarter 
and that the number of open claims at the end of each quarter is as 
shown below. Also assume for simplicity that claims close at the end 
of the quarter. 

In the example above, the reserve is increased $ 750 whenever a claim 
is reported and the reserve is drawn down $50 every month a claim is 
open. So each quarter the reserve is computed as the reserve at the 
beginning of the quarter plus the addition to the reserve (from newly­
reported claims) minus the claim expenses incurred during the quarter. 

In the example above, the assumption is made that claim expense 
is incurred if the claim is open at the end of the month. Because one 
claim was closed before the end of the first month of the quarter in the 
fourth quarter, no money is released from the reserve for this claim. 
In this way, the money set aside for claims that close early (before 15 
months) is there for the claims that remain open late (after 15 months). 

6Duration = 0.995 x 12.6 + 0.005 x (21 + 19.5) x 12 = 15 months. 
7Hartwig, R.P., Kahley, W.J. and Retrepo, T.E. "Workers Compensation Loss Ratios 

and the Business Cycle." NCCI Digest 9, no. 2 (December 1994): 1-l3. 
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Table 11 
Quarterly Reserve Calculations 

(1) (2) (3) (4) (5) 
Q1 1 1 $750 $150 $600 
Q2 1 2 $750 $300 $1,050 
Q3 1 3 $750 $450 $1,350 
Q4 1 3 $750 $450 $1,650 
Ql = First Quarter, etc.; Col. (1) = Number of Re­
ported Claims; Col. (2) = Number of Open Claims 
(at the end of each month of the quarter; Col. 
(3) = Addition to the Claim Reserve; Col. (4) = 

Subtraction from Claim Reserve; and Col. (5) = 

Reserve at the End of the Quarter. 

6 Pricing Claims Service 

199 

The concept of duration is used to compute the reserve per claim, 
which can easily be modified to derive the price of handling a claim. 
For many customers today and for virtually all national accounts cus­
tomers, claims service is an unbundled, separately negotiated piece of 
the risk-financing program. 

The methodology described here is only for the basic claim expenses. 
The total cost of adjusting claims is the sum of basic unallocated and 
the sundry allocated types of loss adjustment expenses such as legal 
expenses, managed care expenses, nurse case managers, etc. 

In the examples presented thus far, we have assumed that claims 
incur uniform expenses each month for the first ten years. Discussions 
with my claim department indicate that this is an overly Simplistic as­
sumption. Rather, a claim generally incurs the most expense during the 
first month in which it is open, during which time the file must be set 
up, various phone calls must be made, investigative work is necessary, 
etc. Therefore, the expense incurred by a claim may better be modeled 
by assuming an intake expense and then several months of outstanding 
expense for as long as the claim is open. One could also incorporate a 
closing expense for the cost necessary in closing a claim. 

A further refinement in modeling the claim expense would be to 
differentiate outstanding expenses. Again, the idea is that the first few 
months a claim is open are more labor-intensive than are later months. 
Thus, there may be discriminatory standards for outstanding expenses. 
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The cost of handling a claim (excluding ALAE) would be: 

Cost = Intake Expense + (OSl X x) + (OS2 x (Duration - 1 - x)), 

where x is the number of months early in the claim's life when the 
claim is more expensive, OSl is the higher cost of handling claims in 
the first few months and OS2 is the lower cost of handling claims later. 
Note that we are assuming the cost of handling a claim in the first 
month is included in the intake expense, so we only must account for 
(Duration - 1) months of outstanding expenses. 

In setting the reserve using the reserve per claim concept, a reserve 
equal to 

Reserve Per Claim = (OSl x x) + (OS2 x (Duration - 1 - x)) 

would be set aside for each claim in the month in which the claim is 
reported. If the claim closes in the first month, then the full reserve 
would be banked for claims remaining open longer than the average 
life of the claim. If the claim remains open at the end of the second (or 
third) month, then OSl dollars would be released from the reserve. If 
the claim remains open at the end of the fourth and succeeding months, 
then OS2 dollars would be released from the rf'serve for each month the 
claim is open. 

These additional claim standards will have to be determined based 
on some type of work measurement study. Although these standards 
conceivably will differ by state due to differences in wage levels, rent, 
etc., the most significant difference by state is due to duration. One 
could take these differing durations into account in pricing claims ser­
vice to avoid adverse selection in problem states. 

The formula presented above is for handle-to-conclusion pricing,. 
i.e., the fee is sufficient to cover the expenses of handling the claim for 
as long as the claim is open. Today many third party administrators 
(TPAs) also price claims on a limited time handling basis. Under this 
option, an additional fee would be levied to service claims remaining 
open after (for example) two years. This additional fee typically is ne­
gotiated at the time of sale. 

Today most large (self-)insureds separately negotiate the cost of 
claims service with an insurance company TPA or a stand-alone TPA. 
The stand-alone TPA will partner with an insurance company who is 
willing to unbundle its claims service. While an insurance company 
TPA would be willing to offer this limited time handling option, many 
insurance companies would not want the insured to take its claims else­
where to be serviced because these claims are the insurance company's 
liability (or conceivably could be if serviced under a deductible policy). 
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Given a handle-to-conclusion fee, how could one quickly estimate 
the limited time handling fee? The statistics in Table 2 show that 22.6 
percent of claims remain open after two years. We could then estimate 
the limited time handling fee for two years as (1 - 0.226) x HTC, where 
HTC is the handle-to-conclusion fee. The claims remaining open after 
two years would begin to incur a monthly fee and would continue to 
do so as long as the claim stayed open. The flaw of this quick estimate 
is the 77.4 percent of claims closed in the first two years have lower 
average claim handling cost than do the 22.6 percent of claims still 
open after two years. 

Claims still open at 24 months likely will remain open an additional 
24 months. This is a key statistic because it allows you to price the claim 
handling expense for these claims. Many persons find it surprising 
when told the cost to handle a claim that has been open for 24 months is 
higher than the cost to handle a new claim. A new claim will be open, on 
average, for a shorter duration than an old claim, i.e., a claim remaining 
open after 24 months. If a customer chooses to pay a one-time fee 
to handle a claim remaining open after 24 months, the necessary fee 
assuming a monthly outstanding expense of $50 will be $1,200 = 24 x 
$50 (per claim). 

This one-time fee also could be calculated as the cost of handling 
takeover claims. A customer who has limited time handling option who 
chooses to take its claims to another TPA would be subject to a takeover 
claim fee. 

7 Monitoring the Duration 

There is some evidence that duration has increased during the 1990s. 
It also seems likely that managed care will play some part in decreasing 
duration. Because it is generally true that the longer a claim remains 
open, the higher will be the expense of handling that claim, it is a good 
idea for claim departments to monitor progress or slippage in duration. 

A process for monitoring the duration would be to use outstanding 
claims by report quarter and to monitor the percentage open at three, 
six, nine, and 12 months. In the absence of change in claims handling, 
one would expect to see the same percentage.:; throughout a column. 

By using report quarter instead of accident quarter, there is no is­
sue with claim development. Also, by using report quarter rather than 
report year, the analyst can more quickly discern changes in outstand­
ing rates (because of the frequency with which these reports will be 
produced) or any seasonality that may exist. 
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While this type of triangulation may be used to monitor duration, it 
also may be used by claim departments or third party administrators 
in setting goals for the future. The goal could be to continue to close 
claims at the same rate or the goal could be to close claims more quickly. 
The longer claims stay open, the higher is the total cost of handling 
claims although this could be a trade-off as closing claims too quickly 
could lead to more reopened claims and/or h~gher settlement values. 

A claim department or third party administrator who is interested 
in more sophisticated monitoring techniques could use the same types 
of report quarter comparisons at successive evaluations to monitor: 

• Average incurred claim size; 

• Average paid claim size: 

• Average outstanding claim size: 

• Ratio of paid ALAE to paid loss; 

• Average ALAE per reported claim; 

• Average recovery per claim; 

• Recovery as a percentage of loss; and 

• Ratio of closed claims to the number of claims handlers. 

By monitoring the claim closing rate as well as the claim costs and other 
measures at like points in time, a claim department can monitor not 
just the closing of the claims but the full range of statistics bearing on 
a claim department's performance. 

8 Closing Comments 

By using the techniques described here, a claim department or third 
party administrator can price claim service based on the total cost of 
handling the claim. This will allow the company to set up and maintain 
an adequate reserve and to monitor the success in handling the claims. 

As claim prices have become unbundled in insurance and service 
proposals, insurance companies and TPAs have become more aware of 
the expenses involved in handling claims. The concepts presented in 
this paper provide a framework for pricing and reserving for claims, as 
well as for monitoring the efficiency of the claim handling process. 
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Pricing Earthquake Exposure Using Modeling 

Debra L. Werland* and Joseph W. Pitts t 

Abstract* 

This paper demonstrates a practical methodology for determining a statewide 
rate level indication for the earthquake insurance and for determining more 
equitable territorial relativities within a state. The methodology is based on the 
output from a certain commercially available earthquake modeling software 
package. The methodology addresses some of the complex issues involved in 
pricing earthquake insurance exposure and potential regulatory acceptance. 
The paper also features a section dealing with the net cost of reinsurance in 
the proposed direct rates. A final consideration is the treatment of a model's 
output when it is believed the modeled results art' less than fully credible. 
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1 Introduction 

Pricing hurricane and earthquake risk has never been an easy task. 
No insurer's loss history is adequate to cover the expectation of all pos­
sible type and size of events. Any ratemaking formula based on actual 
loss experience for such rare events will fail to capture the scope of 
possible events that could affect an insurer's financial results. Catas­
trophe hazard modeling represents a way of developing the scope of 
possible catastrophic events. The financial impact of these events is 
based on characteristics of the underlying peril and their interaction 
with the insured properties. 

Actuaries are relying more than ever on the use of modeling in pric­
ing catastrophic risks such as hurricanes and earthquakes. As a re­
sult, catastrophe hazard modeling has become an important tool for 
ratemaking in lines of business subject to low frequency, high sever­
ity type losses. Natural hazard events such :1S hurricanes and earth­
quakes rarely occur, but their devastation can be overwhelming when 
they do. Few insurance companies have enough historical loss data to 
sufficiently price these events. 

In this paper we will focus on the earthquake peril and its pricing. 
The approach adopted is to use an earthquake computer simulation 
model. In particular we use an earthquake model developed by Ap­
plied Insurance Research, Inc. (AIR) of Boston, a leading computer sim­
ulation/modeling firm. While it is not necessary for one to completely 
understand the intricacies of all functions and assumptions used in the 
simulation model, it is important nonetheless to present an overview 
of the AIR model. Briefly, the AIR earthquake model is composed of 
three separate component models: an earthquake occurrence model, 
a shake damage model, and a fire-following model. The overall model 
uses sophisticated mathematical techniques to estimate the probabil­
ity distribution of losses resulting from earthquakes anywhere in the 
48 contiguous states. The AIR earthquake model is described in more 
detail later in the appendix. 

For ratemaking purposes, the output from the model includes loss 
costs applicable to a specific location, type of construction, and policy 
form. Our interest is in a single family dwelling as covered under a 
typical homeowners policy. The loss costs generated by the model are 
the basic building blocks in the development of an appropriate rate. 

We will discuss target underwriting profii. provisions, reinsurance 
costs, and other components of developing an adequate rate per $1,000 
of dwelling coverage for a typical book of homeowners business. The 
credibility of the results will be addressed in the derivation of the in-
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dicated rates, and the state will be partitioned into geographic zones 
based on the relative difference in loss costs determined from the mod­
eled results. 

2 Proposed Methodology 

The goal of this paper is to present a methodology for developing a 
rate per $1,000 of earthquake coverage. We assume that the indicated 
rate is based on Coverage A (the dwelling limit of a typical homeown­
ers single family dwelling). The modeled results include all coverages 
(dwelling, other structures, personal property, time element expenses), 
and the figures have been ratioed to Coverage A, in 1000s. 

2.1 Statewide Indicated Rate 

The statewide indicated rate is determined using the pure premium 
method. The losses are based on an insurer's own exposure distri­
bution within the state. The first input into the methodology is the 
statewide modeled expected losses stated at a base deductible leveL In 
this example the base deductible is 10 percent applicable to the dwelling 
limit. The expected annual losses represent the average annual amount 
of losses an insurer could expect from writing the earthquake line of 
business in state X if each insured had a 10 percent deductible. 

The modeled results are generally available on an individual state 
basis as well as on a zip code or county basis within the state. The 
expected annual losses are trended (severity only) and adjusted for loss 
adjustment expense (LAE), then ratioed to the total trended value of 
insured dwellings to develop a projected pure premium which is used 
to determine the indicated rate as shown in Table 1. (A viable alternative 
would be to trend the insured values first and use these trended values 
as input to the catastrophe model, thus yielding an estimate of trended 
severity within the model results). In this example, the current rate is 
assumed to be $2.50 per $1,000 of dwelling coverage. The indicated 
rate is calculated by taking the projected pure premium and grossing it 
up to include reinsurance costs net of reinsurance recoveries, trended 
fixed expenses, and variable expenses. These calculations show that 
the indicated statewide rate is $3.77 per $1,000 of dwelling coverage. 

Some of the rows of Table 1 are described in more detail as follows: 

(1) This is the main output received from the modeling firm. It is an 
estimate of the expected annual losses at a base deductible for an 
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Table 1 
Statewide Indicated Rate 

Modeled Expected Annual Losses, 
10% Deductible, 12/31/95 $19,500,000 
Total Dwelling Coverage, 12/31/95 $10,965,281,000 
Proposed Effective Date 7/1/96 
LAE Factor 1.150 
Loss Trend Factor Trended to 7/1/97 1.250 
Exposure Trend Factor Trended to 7/1/97 1.190 
State X Earthquake Share of 
Net Cost of Reinsurance $7,592,703 
Trended Fixed Expense Provision 
Per $1000 of Coverage 0.265 
Pure Premium Per $1000 of Coverage $2.99 
Variable Permissible Loss and LAE Ratio 0.794 
Indicated Rate: (9) / (10) $3.77 
Current Statewide Rate Per $1000 
of Dwelling Coverage $2.50 
Indicated Percentage Change: (11) / (12) - 1 50.8% 
Proposed Change 50.8% 
Proposed Statewide Rate: (12) x [1 + (14)] $3.77 

insurer, given the current book of business within the state for 
the earthquake line of business; 

(2) The total value of insured dwellings is provided to the modeling 
firm by the insurer and is used to determine the average expected 
annual losses per $1,000 of coverage in the pure premium method; 

(3) The proposed effective date as selected by the insurer; 

(4) The LAE factor is calculated based on a comparison of estimated 
ultimate loss adjustment expenses to estimated ultimate losses 
from the most recent earthquake events faced by the insurer; 

(5) The modeled losses are trended using historical homeowners sever­
ity data. Earthquake loss trend data are not used because of their 
instability. Losses should not be trended for frequency, unless the 
insurer is confident there exists an increased period of seismicity 
in the future; 
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(6) The exposure trend is based on historical changes in the average 
amount of insurance for the earthquake line of business; 

(7) The state X earthquake share of the expected net cost of reinsur­
ance is calculated as described in Table 2; 

(8) The trended fixed expense provision per $1,000 of coverage is cal­
culated by trending fixed expenses to a point in time appropriate 
for the proposed effective date and dividing it by trended insured 
value, using an annualized fixed expense trend of 5 percent; 

(9) The formula for Row (9) is: 

Pu Pr · $1000 _ (8) [(1) x (4) x (5) + (7)] x 1000 
re erruum per , - + (2) x (6) , 

which combines the modeled expected losses with the net cost 
·of reinsurance for the state and line of business with the trended 
fixed expense provision to provide an estimate of the projected 
pure premium to be expected during the time the proposed rates 
are to be in effect; and 

(10) The variable permissible loss and LAE ratio are calculated based 
on historical variable expenses and a consideration of the relative 
riskiness of the earthquake line of business compared to other 
lines being written and the overall required return on surplus. An 
18.2 percent underwriting profit provision is used along with a 
2.4 percent provision for variable expenses. 

2.2 Net Cost of Reinsurance 

An important component that we reflect in the rate indication is the 
net cost of reinsurance. An insurer should decide whether to include 
this component based on the costs and anticipated recoveries associ­
ated with its reinsurance program. The net cost of reinsurance should 
be included as a cost if the expected reinsurance recovery is less than 
the amount of premium paid to the reinsurer for reinsurance protec­
tion. This relationship generally will be the case due to the presence of 
transaction costs that include a margin for reinsurance risk load and 
profit. 

The expected reinsurance recovery represents the average annual 
amount an insurer could expect to recover from the reinsurer(s) due 
to insured events and can be determined using catastrophe modeling. 
The expected reinsurance recovery needs to be calculated considering 
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the attachment points or quota share percentages associated with an 
insurer's reinsurance program. An insurer's reinsurance program of­
ten is structured to provide protection against many types of hazards; 
however, some reinsurance contracts are designed to provide protec­
tion against only one hazard. 

To accurately measure the net cost of reinsurance for a particular 
hazard, the reinsurance premium from all programs that provide pro­
tection for the hazard should be included. If other catastrophic hazards 
such as hurricanes are a large proportion of an insurer's exposure to 
catastrophe loss, the reinsurance premium for multihazard contracts 
could be segregated for each hazard. The reinsurance premium for 
each hazard then could be included with each net cost of reinsurance 
calculation for every line of business. In the example, however, the net 
cost of reinsurance is allocated to the earthquake line of business and 
to the appropriate state. 

The allocation to line of business in the example shown in Table 2 
is based on model results comparing expected earthquake reinsurance 
recovery to the total expected reinsurance recovery. This ratio is ap­
plied to the net cost of reinsurance to obtain the earthquake-only net 
cost of reinsurance. The allocation to a state level uses earthquake writ­
ten premium. This allocation may introduce a distortion if the state in 
question has a different level of premium adequacy than countrywide 
premium adequacy. In addition, a premium base allocation may not 
adequately represent the riskiness of expected earthquake losses by 
state. 

The rows of Table 2 are described in more detail as follows: 

(1) This is the total of all reinsurance premium paid for reinsurance 
contracts that provide protection for earthquake losses; 

(2) This is a model output number. It is determined based on the 
attachment point or quota share arrangement an insurer has with 
its reinsurer(s); 

(3) The net cost of reinsurance is the difference between the reinsur­
ance premium paid for contracts providing earthquake protection 
and the expected total reinsurance recovery; 

(4) Model results are used to determine what portion of the expected 
recovery is due to earthquake; 

(5) The earthquake proportion of the total expected reinsurance re­
covery is expressed as a factor to be applied to the total net cost 
of reinsurance; 
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Table 2 
Estimated Net Cost of Reinsurance 

(1) 1995 Countrywide Reinsurance Premium for 
Contracts Covering the Earthquake Peril $37,890,000 

(2) Expected Reinsurance Recovery $17,481,970 
(3) Net Cost of Reinsurance: (1) - (2) $20,408,030 
(4) Expected Earthquake Reinsurance Recovery $9,154,600 
(5) Proportion of Earthquake Recovery 

to Total Recovery: (4)/(2) 52.4% 
(6) Earthquake Share of Net Cost 

of Reinsurance: (3) x (5) $10,693,808 
(7) 1995 State X Earthquake Written Premium $27,271,677 
(8) 1995 Countrywide Earthquake Written Premium $38,551,154 
(9) State X Earthquake Share of Net Cost 

of Reinsurance: [(7) / (8)] x (6) $7,592,703 

(6) The earthquake share of the net cost of reinsurance is the propor­
tion of the earthquake recovery to the total recovery multiplied 
by the total net cost of reinsurance; 

(7) The latest year state X earthquake written premium is used to 
allocate the earthquake share of the net cost of reinsurance to a 
state level; and 

(8) The latest year countrywide earthquake written premium is used 
to find what proportion is represented by state X. Each state's writ­
ten premium is first adjusted to current rate levels, if applicable. 

The concept of including the net cost of reinsurance in a rate in­
dication is relatively new and likely will be challenged or subjected to 
additional scrutiny by regulatory agencies. It does represent a cost of 
doing business, however; therefore, we include its net costs. Reinsur­
ance costs also may be considered in conjunction with the selected rate 
of return. 

2.3 Target Rate of Return 

To develop an underwriting profit provision, we choose a total rate 
of return methodology. We are not proposing one method over an­
other; we have selected this particular method for the development 
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of a reasonable profit target for the earthquake line of business. The 
target rate of return on GAAP equity is developed using a discounted 
cash flow (dividend yield) method and the capital asset pricing model 
(CAPM). The selected rate of return, averaged from the results of these 
two methods, is 13.0 percent. From this selected rate of return we have 
subtracted 8.0 percent (which represents the post-tax investment rate 
of return from all investable funds). Table 3 converts this difference to 
a pre-tax basis, using a corporate tax rate of 35 percent. For an insur­
er's total book of business this percentage is divided by the company's 
premium-to-surplus ratio to convert the target underwriting profit pro­
vision to a percentage of premium. Although we do not endorse the 
divisibility of surplus or leverage ratios, we propose this method for 
calculating a reasonable earthquake underwriting profit provision. 

We have selected a company whose underwriting results resemble 
the years 1985-1994 for all property and casualty insurers writing per­
sonallines automobile, homeowners multiperil, and earthquake cover­
ages. (It would be appropriate for more years to be used; however, the 
earthquake line of business was not segregated prior to 1985). The data 
are from Best's Aggregate and Averages. A company's own data also 
can be used for this purpose. 

Table 3 
Target Underwriting Profit Provision 

A. Target Rate of Return (% of GAAP Surplus) 
1. DiVidend Yield Model 12.0% 
2. Capital Asset Pricing Model 14.0% 
3. Selected Target Rate of Return 13.0% 

B. Target Underwriting Rate of Return (% of GAAP Surplus) 
1. Investment Rate of Return After Tax 8.0% 
2. Target U/W Return After Tax (A3) - (B1) 5.0% 

3. Target U/W Return Before Tax (B2) / (1 - 0.35) 7.7% 
C. Target Underwriting Profit Provision (% of Direct Earned Premium) 

1. Net Written Premium/GAAP Surplus Ratio 1.30 
2. Indicated U/W Profit Provision (B3)/(C1) 5.9% 

3. Selected U/W Profit Provision 5.9% 
Note: Insurers are chosen that resemble the mix of bUSiness written by the filing in­
surer. Company betas and projected dividend yields are from Value Line. Both the 
dividend yield method and CAPM are used in determining an appropriate rate of 
return. The selected target rate of return is a straight average of the two methods. 



Werland and Pitts: Pricing Earthquake Exposure 211 

A company's underwriting profit provision should vary based on the 
riskiness of the line of business. A measure of risk we have chosen is 
the coefficient of variation (measured as standard deviation/mean) of 
a series of underwriting results for each line. Alternatively, combined 
ratios could be used, where a 100.0 combined ratio reflects a 0 percent 
underwriting result. Because the selected period includes the effects of 
Hurricane Andrew and the Northridge Earthquake, we adjust the losses 
so that Andrew reflects a l-in-30 year event and Northridge a l-in-50 
year event. We did not adjust for Hurricane Hugo. 

Table 4 shows the industry's yearly (1985-1994) underwriting gains 
and losses as a percent of net earned premium. Table 5 shows the coef­
ficient of variation of each line, the weighted average of the coefficients 
of variation using the latest ten years of premium, and a risk index (the 
ratio of each line's coefficient of variation to the weighted coefficient of 
variation). 

Table 4 
Annual Underwriting Results as a Percentage of Premium 

Private Passenger Homeowners 
Year Automobile Multiperil Earthquake 
1985 -11.0% -11.7% 60.0% 
1986 -8.3% -3.5% 58.0% 
1987 -6.0% 3.3% 44.2% 
1988 -6.8% 0.0% 57.5% 
1989 -8.9% -13.9% -42.1% 
1990 -9.1% -12.9% 43.8% 
1991 -4.6% -17.7% 55.3% 
1992 -1.9% -58.4% 61.4% 
1993 -1.8% 13.5% 68.0% 
1994 -1.3% -18.4% -222.2% 

Assume the company's premium-to-surplus ratio corresponds to the 
industry's at 1.30, so that its inverse is 0.77. The risk indices are used to 
adjust each line's surplus ratio (surplus-to-premium) in the total rate of 
return methodology, resulting in target underwriting profit provisions 
that reflect the risk of each line of business. The resulting earthquake 
profit provision will be used in the derivation of the variable permissible 
loss and loss adjustment expense provision. Table 6 summarizes this 
information. 
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Table 5 
Coefficient of Variation (CV) and Risk Index (RI) 

Line of Business PD CV* RI 
Private Passenger Automobile 80:1% 0.550 0.92 
Earthquake 0.5% l.854 3.09 
Homeowners Multiperil 19.4% 0.780 l.30 
Total 100.0% 0.600 l.00 
Notes: PD = Premium Distribution; * Absolute value. 

Table 6 
Target Underwriting Profit Provision 

Line of Business RI SIP TUPP 
Private Passenger Automobile 0.92 0.71 5.4% 
Earthquake 3.09 2.38 18.2% 
Homeowners Multiperil l.30 l.00 7.7% 
Total 100.0% 0.77 5.9% 
Notes: RI = Risk Index; SIP = Implied Surplus Ratio; TUPP = Target 
Underwriting Profit Provision. 

In this example industry net underwriting results are used to deter­
mine an appropriate underwriting profit provision for the earthquake 
line of business. A larger earthquake underwriting profit provision 
would result if direct results were used. The variability of net under­
writing results is removed by the stabilization of reinsurance. Using our 
methodology it is reasonable to conclude that part of the difference 
between underwriting profit provisions calculated using net or direct 
underwriting results would be due to reinsurance costs. An insurer 
should expect a lower net cost of reinsurance if part of the reinsur­
ance cost is reflected in the earthquake underwriting profit provision 
calculated using direct underwriting results. Efforts could be made to 
quantify what portion of the net cost of reinsurance is contained in an 
earthquake underwriting profit provision based on direct underwriting 
results. One possible approach would be to compare the difference in 
earthquake underwriting profit provisions calculated using net and di­
rect underwriting results to a net cost of reinsurance as calculated in 
this example. 
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2.4 Zone Relativities 

Model results also can be used to determine revised earthquake zone 
definitions and earthquake zone relativities. The data used to establish 
earthquake zone definitions are model results at a five digit zip code 
level. The sum of all the five digit zip code modeled losses and dwelling 
insured values should balance to the statewide totals used to determine 
the statewide indicated rate. 

Table 7 
State X Earthquake Model Results, Zip Code Level 

DIY EAL at 10% Loss 
Zip (in $000) Deductible Cost 
1 $ 921,339 $ 2,303,348 $2.50 
2 1,096,528 1,644,792 1.50 
3 258,481 387,722 1.50 
4 548,264 603,090 1.10 
5 922,272 830,045 0.90 
6 79,839 98,897 1.24 
7 722,114 902,643 1.25 
8 103,211 232,225 2.25 
9 803,112 3,011,670 3.75 

10 801,247 721,122 0.90 
11 552,322 359,009 0.65 
12 402,178 623,376 1.55 
13 700,659 1,156,087 1.65 
14 1,102,321 2,369,990 2.15 
15 200,321 490,786 2.45 
16 402,111 1,105,805 2.75 
17 727,727 1,928,477 2.65 
18 202,001 490,786 1.03 
19 112,007 123,768 1.11 
20 307,227 399,088 1.30 

Total $10,965,281 $ 19,500,000 $1.78 
Notes: Zip = Five Digit Zip Code Area; DIY = Dwelling In­
sured Value; and EAL = Expected Annual Loss. 

In the example we assume the state comprises 20 distinct five digit 
zip codes. Table 7 shows the data segregated by five digit zip code. We 
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use a SAS clustering program to determine the new earthquake zone 
definitions and zone relativities. The SAS procedure we used is de­
scribed in the SAS user's manual (1989). 

PROCF ASTCLUS performs a joint cluster analysis on the basis of 
Euclidean distances computed from one or more quantitative variables. 
The observations are divided into clusters such that every observation 
belongs to one and only one cluster. The procedure is intended for use 
with large data sets, from approximately 100 to 100,000 observations. 
With small data sets the results may be highly sensitive to the order of 
the observations in the data set. 

PROCFASTCLUS uses a method referred to as nearest centroid sort­
ing. A set of points called cluster seeds is selected as a first guess of 
the means of the clusters. Each observation is assigned to the nearest 
seed to form temporary clusters. The seeds are replaced by the means 
of the temporary cluster, and the process is repeated until no further 
changes occur in the cluster. 

Specifying the desired number of earthquake zones and using the 
SAS procedure yields the results in Table 8. T!le number of zones to be 
used in a real application will depend on the size of the insurer's earth­
quake book of business, geographic spread, and the level of seismic 
variation within the state. The proposed earthquake zones probably 
will not be contiguous because five digit zip codes from different parts 
of the state will fall into the same cluster in the SAS procedure. We only 
use 20 zip codes in our example; however, the SAS procedure has the 
capability to handle a much larger number of zip codes. The relativities 
shown in Table 8 are applied to the statewide indicated rate previously 
calculated to determine each zone's earthquake rate. 

The resultant earthquake zone rates should display a wider variance, 
as it could be argued that risk margins should vary by geographic lo­
cation for the earthquake peril. We view this as another area deserving 
further consideration and an important aspect of determining adequate 
earthquake rates. 

3 Shortcomings Inherent in Modeling 

3.1 Data Problems 

Modeled results can be understated for many reasons, most of which 
can be attributed to company issues or to adjustments not made within 
the models. We first will discuss company shJrtcomings and then fol­
low with model shortcomings. Where appropriate, we will make sug-



Werland and Pitts: Pricing Earthquake Exposure 215 

Table 8 
State X Earthquake Zone Relativities 

Zone (1) (2) (3) (4) (5) 

1 $552,322 $359,009 $0.65 0.37 $1.38 
2 3,694,971 3,886,713 1.05 0.59 2.23 
3 3,560,167 6,181,967 1.74 0.98 3.68 
4 2,354,709 6,060,641 2.57 1.45 5.46 
5 803,112 3,011,670 3.75 2.11 7.95 

Statewide $10,965,281 $19,500,000 $1.78 1.00 $3.77 
Notes: Zone = Earthquake Zone; Column (1) = Dwelling Insured Value in ($000); 
Column (2) = Expected Annual Loss at 10% Deductible; Column (3) = Loss Cost = 
(2) / (1); Column (4) = Indicated Relativity to Statewide = (3) /1.78; and Column (5) 
= Indicated Earthquake Zone Rate = (4) x 3.77. 

gestions on how to handle quantifiable and supportable adjustments 
to the modeled input or output. The following list is not meant to be 
exhaustive, but is typical of company issues. Company shortcomings 
include: 

• Underinsurance (homes insured less than their value) or overin-
surance (homes insured more than their value); 

• Demand surge for labor and materials after a catastrophic event; 

• The need for extra claims adjusters following catastrophic events; 

• No data collecting or coding for retrofitting safety features; and 

• Invalid or incomplete data. 

The major company shortcoming may be the problem of underin­
surance. Expected loss to a particular structure in a particular area is 
based on applying an average damage ratio (defined as the ratio of the 
repair cost of a building to its total replacement value) to the total in­
sured value of the structure. It is assumed that the insured value of a 
building represents its true replacement cost. A company should esti­
mate its underinsurance (or overinsurance) problem before providing 
data to a modeling firm. If, on average, it is determined that a book 
of business is underinsured by 10 percent, then all limits should be 
adjusted before the model is run. 

The effects of demand surge can be significant and should be fac­
tored into all modeled results. (It is not clear whether this adjustment 
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should be made by the insurer or by the modeler.) The demand for la­
bor and materials will vary depending on the location and magnitude of 
each earthquake. The additional cost probably varies between 0 percent 
and 30 percent, but the highest demand is associated with events that 
have the lowest expected probability; therefore, the effect on average 
annual aggregate losses should be minimal (albeit the effect could be 
substantial for large catastrophic events). We believe this adjustment 
to the modeled loss costs is important, yet is an uncertain aspect of 
the process. Studies should be conducted to determine the impact of 
demand surge factors, perhaps by studying the payout of events such 
as Lorna Prieta and Northridge, if data are available. Either overall aver­
age demand surge factors should be applied to the resultant loss costs 
or variable demand surge factors should be determined and applied by 
location and event. 

The need for independent claims adjusters is a real cost of settling 
claims following large catastrophic events. It is not clear which loss 
adjustment expense (LAE) factors should be applied to the modeled 
expected loss costs-there has not been enough loss experience to de­
termine appropriate factors. We suggest using either the ratio of LAE 
to losses of past events (which may understate the true ratio) or the 
underlying policy average LAE factor, given earthquake coverages are 
normally endorsed to a homeowners or dwelling fire program. 

Modeled results should account for retrofitting safety features of 
an insured structure. This is especially applicable to buildings made of 
unreinforced masomy. Average damage ratios should be adjusted for 
these features. It is not clear how the effects of retrofitting can be mea­
sured, but research should be conducted and insurers should encour­
age their installation. A strongly built and reinforced home should with­
stand the initial impact and aftershocks of an earthquake, as opposed 
to a home whose frame is not bolted to the foundation, for example. 
Most insurance companies do not request information on retrofitting 
mechanisms, nor do they store the data. We would encourage the Insti­
tute for Business and Home Safety (IBHS)l to study the effects of such 
safety features and simulate an earthquake under monitored laboratory 
conditions to determine the extent of damage on the structure and its 
contents. The Institute for Business and Home Safety is a nonprofit or­
ganization sponsored by the insurance industry. The mission of IBHS 
is "to reduce injuries, deaths, property damage, economic losses and 
human suffering caused by natural disasters." 

lInstitute for Business and Home Safety, 73 Tremont Street, Suite 510, Boston MA 
02108. 
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Finally, there is always the possibility of invalid data, incomplete 
data, or no data at all. Invalid data are most prominent if zip code, 
county, or street address is not validated before being stored on the 
insurer's database. Either the data should be cleaned before the in­
put files are created or the data should be eliminated from analysis. 
Alternatively, invalid data could be proportionally distributed through­
out the state by county or zip code based on the distribution of the 
insurer's valid data. Most companies do not have enough insureds lo­
cated in all areas of the state. Therefore, there will be many locations 
with no modeled loss costs. In these situations, modeling firms have 
access to an inventory of typical building structures by location, aver­
age dwelling limit, type of construction, average year of construction, 
building height, etc. Modeled loss costs from this generic inventory can 
supplement an insurer's results where few or no insureds reside. 

There will also be locations with insufficient data. Assume for a mo­
ment that an insurer's book of business is mapped to the geographic 
zip code centroid of each zip code within the state. Although modeled 
results are assumed to be 100 percent credible by location, the reader 
could question whether one, ten, or even 100 exposures are enough 
to deem the results credible. An insurer's database could be comple­
mented with the results of the generic inventory. The authors have 
chosen to consider data 100 percent credible by zip code with more 
than 100 exposures; otherwise, the generic inventory is given full cred­
ibility. 

3.2 Inadequate Information 

These brief remarks are not intended to criticize any model or mod­
eler, but to highlight the importance of their impact on modeled results. 
The following list is also not meant to be exhaustive, but does represent 
typical shortcomings: 

• Factor for unknown faults; 

• Inclusion of debris removal expenses; 

• Effects of aftershocks; and 

• Parameter risk within the model. 

The 1994 Northridge Earthquake is a perfect example of an unknown 
fault, a blind thrust fault that does not break the earth's surface. Not 
even seismologists know the extent of undiscovered fault lines beneath 
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the earth's surface. How understated could the modeled results be? No 
one knows for sure, and we propose no solution to handle this uncer­
tainty. Although the models account for possible earthquakes in all 
historical seismic source zones, it is questionable if distributions in the 
model account for all potential seismicity. With the passage of time 
and with advancing technology, perhaps these models may account for 
all possible faults some day. For now we must assume that a mod­
el's results may understate expected average annual losses and, hence, 
expected loss costs per $1,000 of coverage. 

Debris removal expenses, although small, should be added to the 
model's expected loss costs. More prominent would be the effects of 
aftershocks that follow moderate to large earthquakes. Claims often are 
reopened months later due to weakened structures repeatedly damaged 
from aftershocks. Future modifications to catastrophe models should 
account for this possibility. 

Because catastrophe modeling is based on incomplete distributions 
developed from historical information, parameter risk always will exist. 
This risk may lead to gross understatement (or overstatement) of poten­
tial insured losses and represents a potential shortcoming of modeling. 

3.3 Additional Considerations 

There will always exist areas that deserve further consideration. 
While we have presented a practical procedure for developing adequate 
earthquake rates, some areas deserve additional research and atten­
tion. We will divide these topics into four categories: (1) shortcomings 
of models, (2) credibility of data, (3) necessary target rate of return, and 
(4) net reinsurance costs. 

We devote an entire section of this paper to model shortcomings 
and company data issues. We repeat them to emphasize their impor­
tance and the need for further study. The cooperation of the insurance 
industry, modeling firms, and the IBHS is necessary to quantify the im­
pact of outstanding issues on expected loss costs. Perhaps special data 
calls or cooperative studies can be conducted and the results shared 
with all interested parties. 

Computer modeling simulates thousands of possible events, and 
its results are generally considered credible. The earthquake peril is 
unique by location, especially in California, so a feasible complement 
of credibility to augment a local result does not exist. Perhaps a re­
gional complement could be used, but its applicability is questionable, 
given local soil conditions and proximity to fault lines. We believe that 
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an industry inventory database represents the best alternative for a 
complement. 

Insuring the earthquake peril is much riskier than insuring auto 
physical damage coverages. Due to the relationship between risk and 
return, a higher rate of return (and therefore a higher underwriting 
profit and contingency provision) should be allowed to cover a compa­
ny's earthquake exposure. This provision also should vary by location. 
We have presented a Simplified method for dedving a reasonable profit 
provision, but we encourage more research in this important area. 

Should rates include the costs of reinsurance on an insurer's book 
of business? Their inclusion could be viewed as a pass-through to the 
consumer. Also, in the long run neither the insurer nor the reinsurer(s) 
should be worse off for engaging in a reinsurance program; otherwise, 
neither party would enter the contract. In the short run, however, rein­
surance costs are a legitimate expense of doing business, and we believe 
that all parties should share in that expense, including policyholders. 
Policyholders benefit from finanCially strong companies. 

4 Summary 

Catastrophe hazard modeling has become an integral part of the 
ratemaking process. Casualty Actuarial Society ratemaking principles 
(1988) state that "other relevant data may supplement historical ex­
perience. These other data may be external to the company or to the 
insurance industry." We have entered the realm of that other relevant 
data. Actuarial Standard of Practice (SOP) No.9 (1991) states that "an 
actuary should take reasonable steps to ensure that an actuarial work 
product is presented fairly ... if it describes the data, material assump­
tions, methods, and material changes in these with sufficient clarity that 
another actuary practicing in the same field could make an appraisal of 
the reasonableness and the validity of the report." With the advent of 
modeling, however, the actuary must rely on the work of another per­
son. SOP No.9 states that "reliance on another person means using that 
person's work without assuming responsibility therefore." These other 
persons now include experts in the fields of geology, seismology, and 
structural engineering, to name a few. Actuaries, however, can playa 
key role in contributing to the development of the models and, more 
importantly, the interpretation and communication of their valuable 
results. 

Catastrophe hazard modeling has become a necessary tool for the 
pricing oflarge catastrophic events such as hurricanes and earthquakes. 
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Their frequency is so low and their severity so potentially high that not 
even all of the property and casualty companies in a state could have 
enough loss history upon which to base rates. Despite any shortcom­
ings models may have, they hold the key to the future and the pricing 
of nature's perilous attacks. 
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Appendix: The Applied Insurance Research Model 

Overview 

The model developed by Applied Insurance Research uses sophisti­
cated mathematical techniques to estimate the probability distribution 
of losses resulting from earthquakes anywhere in the 48 contiguous 
states. The earthquake model is composed of three separate compo­
nents: an earthquake occurrence model, a shake damage model, and 
a fire-following model. The earthquake occurrence component of the 
model uses a probabilistic simulation to generate a synthetic catalog 
of earthquake events that is consistent with the historical record. The 
shake damage estimation component uses analytical numerical tech­
niques to calculate the distribution of losses for individual buildings 
given the characteristics of the event. The fire-following component 
uses simulation to estimate fire losses following an earthquake. To­
gether these techniques allow the estimation of a wide range of infor­
mation about potential earthquake losses in the United States. 

The earthquake simulation model incorporates descriptions of a 
large number of variables that define both the originating event (the 
earthquake) and its effect on structures. Some of these variables are 
random and others are deterministic. We will describe the key aspects 
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of the model, the main variables affecting the outcomes, and the rela­
tionships between the primary variables in the rest of this appendix. 

Earthquake Occurrence in the USA 

For earthquakes there are three key types of variables that describe 
the physical phenomenon. In broad terms, these variables describe 
where earthquakes can occur, the size of the earthquake, and the like­
lihood of seeing an earthquake of a particular size. In other words, the 
variables describe where, how big, and how often earthquakes occur. 

The issue of where earthquakes occur is handled by identifying faults 
or seismic zones where actual earthquakes have been observed. On the 
West Coast earthquakes tend to occur along well-defined geological fea­
tures called faults, which are places where the surface of the earth has 
been ruptured by past earthquakes and which are observable at the 
ground surface or by subsurface sounding techniques. 

Not all faults are active, i.e., not all faults are believed capable of rup­
turing ill the present, although they have ruptured in the distant past. 
Where faults are observed and where the historical catalog (record) of 
earthquakes indicate that the faults are still capable of rupturing, the 
surface trace of the fault defines a possible location for future earth­
quakes. 

Not all earthquakes occur on identifiable faults, however. Many 
earthquakes, especially those east of the Rocky Mountains, occur on 
faults that are not visible at the surface. Such faults are inferred from 
the occurrence of actual earthquakes in the historical record. For these 
areas, a source zone is created, which is an area with fuzzy boundaries 
within which future earthquakes are possible. 

The AIR model contains approximately 250 seismic source zones 
covering the 48 contiguous states. Each source zone is defined by a line 
on the surface of the earth with probability distributions describing the 
variability of potential epicenters both along and perpendicular to that 
line. A potential earthquake is not limited to occur along a known fault 
line, but can occur anywhere in the vicinity of a fault or anywhere within 
a seismic source zone, depending on the degree of uncertainty associ­
ated with the historical record of earthquakes in that area. The central 
line of the source zone does define the dominant direction of faults in 
the area and characterizes the orientation of the rupture surface. 

The size of an earthquake is usually measured by one of several 
magnitude scales. In the AIR model the surface wave magnitude Ms 
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scale2 is used to characterize the earthquake magnitude. For every 
fault and source zone the frequency of earthquakes of different mag­
nitudes must be described. Seismologists generally agree that, over a 
considerable magnitude range, the logarithm of the number of historic 
earthquakes that exceed a given magnitude scales varies linearly with 
magnitude. This indicates that the frequency-magnitude relationship 
is approximately exponential. 

Additionally, prehistoric seismologic data have been interpreted by 
some researchers to indicate that the frequency-magnitude relationship 
for large earthquakes differs from exponentidl scaling, leading to the 
notion of characteristic earthquakes in certain geographic areas. The 
AIR model incorporates a truncated exponential distribution, or trun­
cated Gutenberg-Richter relationship, to represent potential seismicity 
in each source zone. Where appropriate we incorporate a characteristic 
earthquake model. 

The AIR earthquake model is calibrated to a catalog of historical 
earthquakes that covers the historical record from the mid-1600s to the 
present. Because the completeness of the catalog varies both in time 
and as a function of magnitude (larger earthquakes are more likely to be 
included in the historical record), the fitting of the frequency-magnitude 
distribution is adjusted to account for the variation in historical com­
pleteness. 

Earthquake Attenuation 

After earthquakes are simulated using the probability distributions 
of the different earthquake parameters, the shaking intensity of the 
earthquake at every location affected by the earthquake is calculated 
using a relationship called an attenuation function. 3 The local intensity 
is corrected to reflect local soil conditions, as some types of soil amplify 
the shaking intensity relative to other soil types. This section discusses 
the variable interrelationships required to calculate the local shaking 
intensity. 

From the characteristics of the earthquake the local shaking inten­
sity is calculated using an attenuation relationship. The attenuation 
relationship depends on the location of the source zone, as earthquake 
shaking attenuates more quickly in the western U.S. than in the east-

2The Ms scale measures the strength of an earthquake as determined by observations 
of its locai surface waves. 

3This function measures the reduction in the shaking intensity as we move away 
from the epicenter of the earthquake. 
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ern part of the country. The same magnitude earthquake will affect a 
smaller area in California than in the northeast. 

The attenuation calculation starts by spreading the energy released 
by the earthquake over the rupture surface and integrating over the 
entire rupture surface to calculate the total effect of the earthquake. In 
effect, energy is assumed to be released uniformly over the rupture, and 
each incremental piece of energy is attenuated separately to obtain the 
effect at some distant point. This results in contours of equal intensity 
that are elongated along the orientation of the rupture. 

The calculation of local shaking intensity consists of two parts. First, 
a basic intensity is calculated that assumes uniform soil conditions at 
every location. This intensity (called a Rossi-Forel intensity) depends on 
the distance of the site from the earthquake rupture, the orientation of 
the rupture, and the earthquake magnitude and focal depth. The rup­
ture length is calculated from the basic earthquake parameters. Sec­
ond, the Rossi-Forel intensity is modified to reflect the soil conditions 
at the site. Soil conditions for the entire country are digitized on grids 
varying from 0.1 degree latitude!longitude squares to 0.5 minute lati­
tude/longitude squares. The local soil condition can significantly affect 
shaking intensity. The final intensity is identified as a modified Mercalli 
intensity (MMI). 

The MMI is a generally accepted unit of shaking intensity. It de­
scribes, in general terms, the type of damage that might be expected to 
buildings of usual design and other effects of earthquakes that would 
be expected at a particular location. The MMI is a good metric for esti­
mating damages to structures. 

Exposure Characterization 

In order to calculate damages from an earthquake, the AIR model 
incorporates an extensive description both of the structural character­
istics of an exposure and of the policy conditions describing the treat­
ment of deductibles and other factors. 

The seismic performance of a building depends primarily on the 
structural system resisting the lateral loads, but is also affected by other 
factors (including, in the AIR model, the age of the building and the 
height of the building). The age of the building is used to determine 
the likely code provisions under which the building was designed and 
constructed. Newer buildings, which may have been built to more exact­
ing code provisions for seismic performance, are expected to perform 
better than older buildings. 
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The AIR model incorporates damage ability relationships for many 
different classes of exposures, with up to three height categories in 
each class. There are 42 different damage relationships for each cover­
age type, plus several different age categories. The categories of struc­
tural types are based in part on the structural types defined in ATC -13,4 
although the actual damage relationships are modified and extended 
beyond those covered in that reference. 

The exposures are characterized by policy limits for four different 
coverages: 

• Coverage A refers to the dwelling limit; 

• Coverage B refers to the appurtenant structures; 

• Coverage C refers to personal property; and 

• Coverage D refers to additional living expense. 

Most commonly, Coverage B is combined with Coverage A for calcula­
tion purposes and is assumed to apply to the same structural type as 
Coverage A. The policy limit for each coverag~ may be defined by both 
a replacement value and a policy limit. The replacement value may rise 
in time without the policy limit being adjusted to reflect inflation. Dam­
age is always calculated with respect to replacement value and then is 
capped at the policy limit if appropriate. 

The location of the risk can be defined by a latitude and longitude 
point or by the five digit zip code in which the risk is located. The risk 
also can be associated with a line of business (homeowners, renters, 
commercial multiperil, etc.) in order to report losses separately in cat­
egories meaningful to the insurer. 

Damage Estimation 

Given the local shaking intensity in MMI units, damages to structures 
at a particular location can be calculated if sufficient information is 
available about the structure. Two types of damages are calculated by 
AIR: shake damage due to the lateral and vertical motions of the ground 
and fire damage due to earthquake-induced fires. 

In order to calculate shake damage, the exposure information is 
combined with the level of shaking intensity at the building. Informa­
tion on the structural characteristics of the properties at risk is used to 

4The Applied Technology Council is a 13 member advisory project engineering panel 
established in 1982 to develop earthquake damage/loss estimates for facilities in Cali­
fornia. 
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select an appropriate damageability relationship (also sometimes called 
a damage function or a fragility curve) relating the probability of dif­
ferent levels of damage to the local shaking intensity (MMI). The dam­
ageability relationship is a complete probability distribution of damage, 
ranging from no damage to complete destruction (0 to 100 percent dam­
age), with a probability corresponding to every level of damage. Thus 
the probability distribution is a continuous function of the local MMI 
level. 

The earthquake damage ability relationships have been derived and 
refined over a period of several years. They incorporate well-documented 
engineering studies by earthquake engineers and other experts both 
within and outside AIR. These damage ability relationships also incor­
porate the results of post-earthquake field surveys performed by AIR 
engineers and others as well as detailed analyses of actual loss data 
provided to AIR by its client companies. These relationships are con­
tinually refined and validated. 

Fire-Following Loss Estimation 

Once the shake damages have been calculated for a particular earth­
quake, fire-follOWing losses are estimated. This part of the model uses 
a separate simulation to estimate fire losses for each event. 

First, the number of fires spawned by the earthquake is generated. 
The fire ignition rate is based on the local MMI intensity and the total 
population in the area. A number of fires is simulated for each affected 
zip code. The mean ignition rate increases as the MMI increases. The 
probability distribution of ignition rates is assumed to be uniform in 
some interval around the mean rate. Once the number of fires is sim­
ulated, each fire is randomly placed within a zip code and is assigned 
to affect either residential properties, commercial properties, and/or 
mobile homes. 

The fire simulation then simulates the spread of the fires as well as 
the actions taken by local fire departments to control the fires. The fire 
spread rate is affected by a randomly selected wind speed appropriate 
for the location of the earthquake. Higher v1nd speeds increase the 
rate of spread of the fire. 

Some of the factors included in the fire simulation are the time to 
report the fire, the time for one or more fire engines to reach the fire, 
and the availability of water to fight the fire. All of these factors are 
affected by the local MMI, as areas experiencing high shaking intensity 
are more likely to have obstructed roads and broken water mains. Also, 
the influence of fire breaks-wide roads or other natural impediments 
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to fire spread-is included in the simulation. Fire engines can move 
from fire to fire as fires are controlled. 

Because the fire losses are determined by simulation, different levels 
of fire loss can be calculated for a given earthquake. Typically, the 
variability of fire losses is large, at least for the larger earthquakes, 
such that fire losses can vary by at least a fdctor of two if the same 
earthquake is simulated several times. This reflects the uncertainty in 
fire losses for larger earthquakes. 
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Inflation, Equity Returns, and Interest Rates 
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Abstract t 

Though actuaries have developed several types of stochastic investment 
models for inflation, stock market returns, and interest rates, there are two 
commonly used in practice: autoregressive time series models with normally 
distributed errors, and autoregressive conditional heteroscedasticity (ARCH) 
models. ARCH models are particularly suited when there is heteroscedastic­
ity in inflation and interest rate series. In such cases nonnormal residuals 
are found in the empirical data. This paper examines whether Australian uni­
variate inflation and interest rate data are consistent with autoregressive time 
series and ARCH model assumptions. 
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1 Introduction to ARCH Models 

In recent years actuaries have developed and applied time series 
models of inflation, interest rates, and stock market returns to assist 
with pension and insurance financial management. Some of the earliest 
work in developing models for actuarial applications was performed 
by Wilkie (1986, refined in 1995). Carter (1991) develops an Australian 
version of the Wilkie model using traditional time series analysis of 
Australian time series data for inflation, equity markets, and interest 
rates. See Geoghegan et al., (1992), Daykin and Hey (1989, 1990), and 
Boyle et al., (1998, Chapter 9) for a discussion of these and other models 
and their actuarial applications. 

The standard assumption in actuarial models is that the model er­
rors are independent and identically distributed (Li.d.) normal random 
variables. Inflation rates and interest rates are then modeled using 
autoregressive time series. A discrete time st'Jchastic process {Yt , t = 

0,1, ... , n, ... }, where Yt is a real valued random variable at time t, is 
called an autoregressive process of order p, AR(p), if it can be repre­
sented as 

p 

Yt = fJ + L cf>I<Yt-k - fJ) + ft (1) 
k=l 

where fJ = E[Yt], P is a positive integer, and cf>l, ... ,cf>p are constants 
with cf>p =1= o. In addition, the ftS form a sequence of uncorrelated nor­
mal random variables with mean 0 and variance (J"2. The time series 
in equation (1) is stationary in the sense that it has a constant uncon­
ditional mean and variance. In practice the series used in actuarial 
applications, such as the inflation or interest rate, are assumed to be 
autoregressive and have constant unconditional means. 

If the level of a series in equation (1) is not stationary, but the dif­
ference of the series (Le., 6. Yt ) is stationary, then the series is said to 
contain a unit root (or said to be integrated or order 1, or to be differ­
ence stationary). The existence of unit roots determines the nature of 
the trends in the series. If a series contains a unit root, then the trend 
in the series is stochastic and shocks to the series will be permanent. 
If the series does not contain a unit root, then the series is trend sta­
tionary. The trend in the series will be deterministic, and shocks to the 
series will be transitory. 

When the LLd. error assumption is not practical, other models must 
be considered. One such model is the autoregressive conditional het­
eroscedasticity (ARCH) model. The ARCH model, introduced by Engle 
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(1982), allows for time-varying conditional variance by modeling the 
variance of the errors of a series, Vt, as a function of past model errors, 
Et, using the equation: 

q 

Vt = ()(o + L ()(jEL j (2) 
j=l 

where q is the order of the ARCH process, or simply an ARCH(q) pro­
cess. The errors of the series are obtained after fitting a mean equation 
to allow for mean reversion. 

The GARCH model, introduced by Bollerslev (1986), allows the vari­
ance of the errors to depend on previous values of the variance as well 
as past errors using the equation: 

q q 

Vt = ()(o + L ()(jEF-j + L CPjVt-j 
j=l j=l 

which is referred to as a GARCH(p, q) process. Many other volatil­
ity models have been proposed: the exponential GARCH model (Nel­
son, 1991) and the nonlinear asymmetric GARCH model (Engle and Ng, 
1993). 

The models used for scenario generation as described in the actu­
arialliterature typically use ARCH models. For example, Mulvey (1996) 
describes the Towers Perrin model where inflation is modeled as an 
autoregressive process with ARCH errors. Sherris, Tedesco, and Zehn­
wirth (1996), Harris (1994,1995), and others support the need to model 
heteroscedasticity in Australian inflation and interest rates. 

This paper will consider using ARCH models for Australian time 
series data. Specifically, the models assume ARCH and normal distri­
bution of errors using Australian inflation, stock market, and interest 
rate time series data. The paper does not examine assumptions of inde­
pendence of errors or model selection, and ill9dels will need to satisfy 
wider criteria than are examined in this paper. Carter (1991) and Harris 
(1994,1995) have considered some of these issues for Australian data. 

2 Australian Time Series Data 

The data used for the empirical analysis in this paper are taken from 
the Reserve Bank of Australia Bulletin database. The study uses quar­
terly data. This is the highest frequency for which the inflation series 
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is available in Australia. The Australian Consumer Price Index is deter­
mined quarterly-a frequency suitable for many actuarial applications. 

Different series are available over different ame periods. The longest 
time period for which data are available on a quarterly basis for all of 
the financial and economic series is from September 1969.1 The series 
considered are: 

• The Consumer Price Index-All Groups (CPI); 

• The All Ordinaries Share Price Index (SPI); 

• Share dividend yields; 

• The 90 day bank bill yields; 

• The two year Treasury bond yields; 

• The five year Treasury bond yields; and 

• The ten year Treasury bond yields. 

An index of dividends is constructed from the dividend yield and the 
Share Price Index series. Logarithms and differences of the logarithms 
are used in the analysis of the CPI, SPI, and dividends. The difference in 
the logarithms of the level of a series is the continuously compounded 
equivalent growth rate of the series. 

Figures 1 through 8 provide time series plots of the series. An ex­
amination of the plots for the CPI, SPI and the Dividend Index series 
shows exponential growth. The plot of the logarithms of these series 
suggests that the series could be fluctuations around a linear trend in 
the logarithms. Such a series is referred to as trend stationary. The plot 
of the differences of the logarithms of these series appears to indicate 
a nonconstant variance or heterogeneity. Table 1 provides summary 
statistics for all of the series. 

The interest rate series all show a changing level as interest rates 
rose during the 1970s and 1980s. Models of interest rates that incorpo­
rate mean-reversion, i.e., models that assume that the level of interest 
rates has constant unconditional mean and variance, are often used. 
This is not intuitive from our examination of the time series plots of 
the interest rates. The differences in the levels of the interest rates 
seem to fluctuate around a constant value, but the series appear to be 
heteroscedastic. 

1 Individual series are available for differing time periods. For example, Phillips (1994) 
fits Bayes models to Australian macroeconomic time series. The data used are similar 
to those used here but cover different time periods. 
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Figure 2 
All Ordinaries Share Price Index 

I 
1940 

All O"dinaries St-are Price lrelex 
Septeniler 1939 to March 1995 

I I I I I 
1950 1960 1970 1980 1990 

Year 

Logarithm of Share Price Index 
March 1939 to March 1995 

1950 1980 1990 

Year 

2000 

I 
2000 

Differerces of the LogaritlTn of Share Price lrelex 
Septerrber 1939 to March 1995 

I I I 
1940 1950 1960 1970 1980 1990 2000 

Year 



Sherris: Model Assumptions for Australia 

10000 

9000 
8000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

0 

9 

8 

7 

I 
1965 

I 
1965 

Figure 3 
Share Price Dividend Index 
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Figure 4 
Dividend Yields 

Dividerd 'vfelds 
Septerrl:Jer 1967 to Deoerrber 1994 

I 
1975 

Year 

I 
1985 

Dffererces of tre Dividerd 'vfelds 
Septerrl:Jer 1967 to Deoerrber 1994 

I 
1975 

Year 

I 
1985 

I 
1995 

I 
1995 



Sherris: Model Assumptions for Australia 

H 
OJ 
p.. 

20 

Of> 10 

5 

9 

4 

-1 

-6 
I 

1970 

Figure 5 
90 Day Bank Bill Yields 
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Figure 6 
Two Year Treasury Bond Yields 
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Figure 7 
Five Year Treasury Bond Yields 
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Figure 8 
Ten Year Treasury Bond Yields 
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Table 1 
Summary Statistics of All Series 

Quarterly Data from September 1969 to December 1994 
Mean STDEV Max Min Median Mode SKEW KURT 

CPI 60.074 32.462 112.80 17.000 55.300 107.60 0.2375 -1.3631 
C 3.9220 0.62386 4.7256 2.8332 4.0128 4.6784 -0.3408 -1.2288 
SPI 865.01 595.05 2238.7 194.30 603.40 2238.7 0.6797 -1.0008 
S 6.5177 0.71137 7.7137 5.2694 6.4026 7.7137 0.1667 -1.4523 
DVY 4.4506 1.1496 7.7300 2.0700 4.5000 5.8500 0.2237 -0.1128 
DVS 3741.5 2584.0 9398.3 861.74 2877.4 9398.3 0.7365 -0.7603 
BB90 10.909 4.1029 19.950 4.4500 10.350 15.450 0.3310 -0.8313 
TB2 10.185 3.2623 16.400 4.6000 9.9400 15.150 0.0137 -1.1443 
TB5 10.465 2.9845 16.400 5.2000 10.030 13.850 -0.0775 -1.0843 
TBlO 10.648 2.8299 16.400 5.7500 10.180 9.5000 -0.0997 -1.0091 
Notes: Quarterly data for all series were available from September 1969 to December 1994. The 
data are CPI = Consumer Price Index; C = In(CPl); SPI = Share Price Index; S = In(SPl); DW = 
Share dividend yields; DVS = Share dividends series; BB90 = 90 day bank bills yields; TB2 = Two 
year treasury bond yields; TB5 = Five year treasury bond yields; TB10 = Ten year treasury bond 
yields. In addition, STDEV = Standard Deviation; SKEW = Coefficient of skewness; and KURT = 
CoeffiCient of excess kurtosis. 

Vl 
::::; 
(1) -. 
::::!. 
VI 

s:: 
0 
0.. 
(1) 

» 
VI 
VI 
c: 
:3 
"0 
:::!". 
0 
::J 
VI 

0' -. 
» c: 
VI .... -. 
!:!... 
iii· 

N 
W 
CD 



240 Journal of Actuarial Practice, Vol. 5, No.2, 1997 

The following notation is used throughout the rest of the paper: 

t 

Et 

CPIt 

Ct 

!:lit 

SPIt 

St 

DVYt 

Yt 

DVIt 

It 
Ft 

Number of quarters since January 1, 1969, t = 1,2, ... ; 
The error term at t, for t = 1,2" .. ; 
Consumer Price Index for quarter t; 
In(CPIt); 

it - it-l for any function i; 

Share Price Index for quarter t; 
In(SPld; 

Dividend yield for quarter t; 
In(DVY t ); 

Dividend index for the Australian data for quarter t; 

In(DVId; 

Force of interest for quarter t. 

3 Analysis of the Australian Data 

3.1 Inflation 

Sherris, Tedesco, and Zehnwirth (1996) provide empirical evidence 
that the Ct series contains a unit root for Australian data. Although 
unit root tests can erroneously reject the hypothesis of a unit root in 
the presence of structural breaks2 (Silvapulle, 1996) and are affected 
by additive outliers3 (Shin, Sarkar, and Lee, 1996), this is not taken 
into account. Structural changes can lead to erroneous rejection of the 
hypothesis of a unit root. 

An AR(l) model is fitted4 (with a log-likelihood value of 331.778) to 
the CPI series to give 

!:lCt = 0.0187 + 0.802 (!:lCt-l - 0.0187) + 0.0090Et. (3) 

This AR(l) model is examined first because it is used in actuarial ap­
plications with the assumption that the errors are normally distributed 
and with constant variance. Diagnostics for these model assumptions 

2 A structural break occurs in the series where there is a discontinuity in the mean 
or the trend. 

3 An additive outlier is a single observation which is not consistent with the other 
observations in the series usually indicated by a highly significant t-ratio. 

4All equations were fitted with the SHAZAM (1993) econometrics package. 
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are given in Table 2. The ARCH test of Engle (1982), is based on a re­
gression of Ef on ELI and is a test for nonlinear dependence in the 
residuals. 

The ARCH test regresses the squared residuals from the AR(1) model 
on a constant and the lagged squared residuals. The number of obser­
vations times the R2 of this regression (N x R2) has an asymptotic X2 

distribution with 1 degree of freedom. 
The Jarque-Bera test is based on the statistic 

2 2 
Nx(h+Yz] 

6 24 

where )'1 is defined as the skewness and )'2 is defined as the excess 
kurtosis. This statistic has a X2 distribution with 2 degrees of freedom 
for large N. Skewness and excess kurtosis are defined as: 

and 

where mk is the k-th sample central moment, i.e., 

1 N 
mk = N 2:: (Et - E). 

t=l 

Table 2 
Quarterly Inflation Rate Autoregressive Model 

AR(1) Model for Ct 

Log-Likelihood Function Value 
ARCH Test 2.535 
Skewness 
Excess Kurtosis 
Jarque-Bera Test 

0.7781 
3.1785 

46.8732 

331.778 
(X 2, 1 df, - 5% critical value 3.841) 

(std. dev. is 0.240) 
(std. dev. is 0.476) 

(X 2 , 2 df, 5% critical value 5.991) 

The residuals for equation (3) are leptokurtic.5 The statistical evi­
dence for ARCH in this data series over this time period is not strong, al­
though Sherris, Tedesco, and Zehnwirth (1996) find that a GARCH(1, 1) 
model fits !lCt well for the period September 1948 to March 1995. 

5 A leptokurtic distribution is more peaked than the normal distribution and thus 
has fatter tails. 
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The inflation model described in Mulvey (1996) uses an ARCH model 
for volatility. An ARCH(1) model is fitted to the Australian quarterly CPI 
data to obtain 

0.0187 + O.675(~Ct-l - 0.0187) + O"tEt 

0.00007 + 0.31EF-l 

(4) 
(5) 

with a log-likelihood value of 329.792. Diagnostics for ARCH and nor­
mal distribution of errors for this model are reported in Table 3. 

Table 3 
Quarterly Inflation Rate Autoregressive Model 

AR(l) Model-ARCH(1) Modd for Ct 

Log-Likelihood Function Value 329.792 
ARCH Test 0.294 (X 2 , 1 df) 
Skewness 0.6550 (std. dev. is 0.240) 
Excess Kurtosis 3.7087 (std. dev. is 0.476) 
Jarque-Bera Test 57.6464 (X 2 , 2 df) 

Although the model appears to capture ARCH in the volatility of 
the rate of inflation, the errors are still significantly nonnormal. The 
log-likelihood decreases. These results suggest that if an autoregres­
sive model for the rate of inflation is used, the normality assumption 
for the errors will not be appropriate. An ARCH model with the as­
sumption that errors are normally distributed is also not supported as 
an appropriate model for Australian inflation data. Because such an 
ARCH model is often used by actuaries in practice for inflation, some 
caution about the results from such a model is warranted. 

3.2 Stock Market Series 

The Wilkie (1986) approach to modeling stock returns uses a divi­
dend yield and a dividend index. The model described in Mulvey (1996) 
diVides stock returns into dividends and priLe appreciation. We con­
sider models for price appreciation, dividend yields, and a diVidend 
index for the Australian data. Sherris, Tedesco, and Zehnwirth (1996) 
present the results from unit root tests for the data considered here 
which indicate that the logarithm of the Australian Share Price Index, 
the logarithm of the dividends series, and dividend yields are difference 
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stationary. An important issue in equity market data is the allowance 
for share market crashes. In this paper we consider them as additive 
outliers. 

Growth in an equity index and dividends are the two components 
of the return from equities that require modeling for actuarial appli­
cations. In this section models for the Australian equity market index 
and for dividends on the index are considered. 

3.3 Share Price Index 

Because we are interested in using volatility models for stock market 
returns we consider the following model for the Share Price Index: 

where J.ls = E[~StJ. 

J.ls + EtJVt 

lXo + lXIELI 

(6) 
(7) 

Table 4 reports the results from fitting this model with ARCH(l) 
volatility. Note the lXI parameter for ARCH volatility is significant at 
the 5 percent significance level. Based on the tests on the residuals 
given in Table 4, however, the residuals do not appear to be from a nor­
mal distribution. We have not tested these residuals for independence. 
Thus, although scenarios generated from a model using ARCH errors 
appear to be supported by the historical data, we should not use such 
a model in practice with the normal distribution of errors. 

Because the quarter December 1987 appears in the residuals as an 
outlier corresponding to a stock market crash, it is of interest to deter­
mine the impact that this observation has on the results. This particular 
quarter is modeled as an additive outlier using a dummy variable de­
noted by D(4, 87), i.e., 

D (4 87) = S 1 t deno~es the quarter is December 1987; 
t, l 0 otherwIse. 

The AR(1) model is modified as: 

~St = J.ls + {3D t (4, 87) + Et. (8) 

Table 5 reports the results of fitting equation (8) assuming constant 
variance. 

The ARCH test indicates that an ARCH model should be considered 
for the volatility even after adjusting for the market crash outlier. The 
model used is 
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D.St = /.is + f3Dd4, 87) + €t-JVt (9) 

with equation (7) representing the ARCH(l) component. Table 6 reports 
the results of fitting equation (9). The ARCH parameter is not signifi­
cant, and the results do not support ARCH errors in SPI returns after 
adjusting for the market crash using an additive outlier. 

Table 4 
D.St with ARCH Errors 

Log-Likelihood Function Value 83.992 
Mean Equation Constant 

Coefficient 0.01634 
t-ratio 1.720 

Variance Equation ARCH (Xo (Xl 

Coefficient 0.00795 0.40661 
t-ratio 4.921 1.985 

Diagnostics of Errors 
ARCH Test 0.105 (X 2 , 1 df) 
Skewness -0.6818 (std. dev. is 0.240) 
Excess Kurtosis 1.2789 (std. dev. is 0.4 76) 
Jarque-Bera Test 13.2316 (X 2 , 2 df) 

3.4 Dividend Yields 

Preliminary analysis using the unit root tests indicate that the loga­
rithms of the dividend yields are difference stationary, so we consider 
the model: 

(10) 

with the ARCH(l) component as in equation (7). This model is fitted, 
and the ARCH test gives a significant result. An ARCH model is fitted 
for Vt, and the results for the variance equation are reported in Table 7. 
The model appears satisfactory from the point of view of ARCH errors. 

Autoregressive models for dividend yields are used in scenario gen­
eration for actuarial modeling. With this in mind, the following AR(1) 
model is used: 

(11) 
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Table 5 
!:lSt with Constant Mean and Variance 

and December 1987 Dummy Variable for Market Crash 
Log-Likelihood Function Value 92.238 
Mean Equation Ils f3 

Coefficient 0.02195 -0.59475 
t-ratio 2.231 -6.035 

Diagnostics of Errors 
ARCH Test 4.164 (X 2 , 1 df) 
Skewness -0.7679 (std. dev. is 0.240) 
Excess Kurtosis 1.4587 (std. dev. is 0.476) 
Jarque-Bera Test 17.0620 (X 2 , 2 df) 

with the ARCH(1) component as in equation (7). Note that IjJ is a con­
stant. 

We fit an AR(I) model to the dividend yield and check for outliers 
and ARCH. As would be expected given the share market index results, 
an outlier in the December 1987 quarter is detected corresponding to 
the share market crash. A dummy intervention variable is included 
for this observation and the residuals are tested for ARCH. The test is 
Significant, so we fit an autoregressive model with ARCH errors as in 
equation (11). The residuals from this model do not reject the normal 
distribution assumption. 

As noted earlier, in the actuarial literature models for scenario gen­
eration are based on autoregressive models for dividend yields and a 
normal distribution of errors. Such a model would have been consid­
ered satisfactory if no test for unit roots had been performed. Unit root 
tests, however suggest that the series is difference stationary and the 
difference stationary model would be preferred in this case. 

3.5 Share Dividends 

Sherris, Tedesco, and Zehnwirth (1996) construct a dividend index 
(DVIt) for the Australian data. This index is defined as: 

DVIt = SPIt x DWt . (12) 

Modeling the rate of growth of dividends, It = In(DVId, is difficult 
because dividends contain seasonal patterns. The difference series, !:lIt, 
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Table 6 
D.St with Constant Mean, ARCH Errors, 

and December 1987 Dummy Variable for Market Crash 
Log-Likelihood Function Value 93.7266 
Mean Equation Ps {3 

Coefficient 0.02195 -0.59475 
t-ratio 2.395 -4.641 

Variance Equation ARCH 0<0 0<1 

Coefficient 0.00752 0.20405 
t-ratio 5.262 1.346 

Diagnostics of Errors 
ARCH Test 0.456 (X 2, 1 df) 
Skewness -0.4209 (std. dev. is 0.240) 
Excess Kurtosis 0.2998 (std. dev. is 0.476) 
Jarque-Bera Test 3.10087 (X2, 2 df) 

is first modeled as an AR(I) time series. The residuals from this model 
indicate ARCH and an outlier in the series in the June quarter of 1976. 
The cause of this outlier is not known. A dummy variable, Dt(2, 76), is 
defined as: 

D (2 76) = {I t deno~es the quarter is June 1976; 
t , 0 otherWlse. 

After including a dummy variable for the outlier, the model becomes: 

D.lt = PI + tjJD.lt-l + {3Dt(2, 76) + ftVVt (13) 

with the ARCH(1) component as in equation (7). In this model of equa­
tion (13) the ARCH effect diminishes in Significance. These results for 
the equity series are displayed in Table 8 support the point made in 
Chan and Wang (1996) that ARCH effects in share investment returns 
series are magnified by observations such as the crash that may be out­
liers. 

3.6 Interest Rates 

The interest rate series is transformed into a force of interest, Ft, 
using the transformations: 
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F = { In(l + 90it/36500) for 90 day bank bill yields; (14) 
t In(1 + it/200 ) for 2,5, and 10 year bond yields 

where it is the per annum percentage yield to maturity for the 90 day 
bank bill, two, five, and ten year bond for quarter t. 

Sherris, Tedesco, and Zehnwirth (1996) present statistical support 
for these Australian bond yields containing a unit root and hence being 
difference stationary. In contrast, the assumption often used for sce­
nario generation of future bill and bond yields in actuarial investment 
models is an autoregressive model. The standard unit root tests do not 
provide support for an autoregressive model for the Australian data 
series examined in this paper. These tests may have low power against 
close-to-stationary models. 

For the interest rate series we consider models for the transformed 
interest rate series of the form 

(15) 

As before, models with constant volatility are considered initially. 
For 90 day bank bills there is an outlier for the June 1994 quarter. 

This corresponds to a quarter when there was a significant tightening of 
monetary policy with the government raising short-term official interest 
rates dramatically. The series is adjusted for the effect of this outlier 
as follows: 

(16) 

where 

D (2 94) = {I t denotes the quarter is June 1994; 
t , 0 otherwise. 

The adjusted series shows evidence of ARCH, so an ARCH model is 
fitted. Although this captures the ARCH effect, the normal distribution 
assumption for the residuals still is rejected. 

Table 9 reports the fitted model and diagnostics for ARCH and nor­
mality for all of the bond series. For the two year bond yields there are 
no outliers and no evidence of ARCH, and the residuals appear to satisfy 
the normal distribution assumption. For the five year bond yields there 
are no outliers and no significant evidence of ARCH, but the residuals 
are negatively skewed and fat-tailed and reject the normal distribution 
assumption. In the case of the ten year bond yields there are no outliers 
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Table 7 
/1Dt (After Adjustment for Crash Dummy Variable) 

Log-Likelihood Function Value 85.0154 
Variance Equation ARCH ()(o 

Coefficient 0.00865 
t-ratio 5.006 

Diagnostics of Errors 
ARCH Test 0.000 
Skewness 0.170 
Excess Kurtosis -0.0194 
Jarque-Bera Test 0.4984 

()(l 

0.22236 
1.448 

(X 2, 1 df) 
(std. dev. is 0.240) 
(std. dev. is 0.476) 

(X 2, 2 df) 

and no evidence of ARCH. The residuals reject the normal distribution 
even more strongly than for the five year bond yields. 

Autoregressive models are commonly used for interest rates in ac­
tuarial modeling. An AR(1) model of the form: 

(17) 

is fitted to the transformed yields for the Australian series. For the two 
year bond yields the parameter estimates (standard errors in paren­
theses) are ao = 0.0534 (0.0084) and al = 0.943 (0.0301) with log­
likelihood 399.3. This autoregressive model is used as the null hypoth­
esis in a likelihood ratio test against the alternative of al = 1.0 (a unit 
root), but the standard critical values reject the null hypothesis. 

The AR(1) residuals reject the normal distribution assumption but 
show no Significant statistical evidence of ARCH. This result holds for 
all of the autoregressive models fitted to the bond yield series. If an 
autoregressive model is used, then these results indicate that these in­
terest rate models are not adequate and that adding ARCH volatility 
does not produce a better model. 

4 Conclusions 

The main aim of this paper has been to examine standard assump­
tions used in actuarial models for economic scenario generation. Quar­
terly Australian data for inflation, stock market, and interest rate series 
are examined to see if simple autoregressive models and ARCH models 



Sherris: Model Assumptions for Australia 249 

Table 8 

!:lIt is AR(1) with ARCH errors and June, 1976 Dummy Variable 

Log-Likelihood Function Value 142.19 

Mean Equation /lI tjJ f3 
Coefficient 0.02419 -0.01256 -0.2206 

t-ratio 4.175 -1.416 -2.584 

Variance Equation ARCH lXo lXI 

Coefficient 0.00299 0.17822 

t-ratio 5.548 1.315 

Diagnostics of Errors 

ARCH Test 0.001 (X2 , 1 df) 

Skewness -0.1549 (std. dev. is 0.240) 

Excess Kurtosis 0.7948 (std. dev. is 0.476) 

Jarque-Bera Test 2.4374 (X 2 , 2 df) 

of volatility with the assumption of a normal distribution of errors are 

reasonable. All of the analysis has been based on univariate series. 

The results do not suggest that volatility in the series can be suc­

cessfully modeled using an ARCH process. After allowing for additive 

outliers, some series do not show evidence of ARCH (for example, the 

rate of change of (transformed) bond yields). Equity returns show ev­

idence of ARCH, even after adjusting for the effect of outliers such as 

the market crash. Outliers also increase the ARCH effect in the equity 

series. 
The distribution assumed for errors in models used in practice must 

be considered carefully because the normal distribution assumption is 

not appropriate for errors based on the time series data for most of the 

models considered here. Alternative models and error distributions for 

economic scenario generation for actuarial applications require further 

investigation. It is not necessarily sufficient to use simple autoregres­

sive models and a normal distribution for the errors. Even adding ARCH 

volatility in the hope that the normal distribution for errors will be ad­

equate for modeling is not satisfactory. 

This paper further demonstrates the need to model volatility in 

these series but indicates that the ARCH and normal distribution as­

sumptions often used in practice and the actuarial literature are not 

supported by Australian historical data. 
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Comments on Some Parametric Models for 
Mortality Tables 

Kam C. Yuen* 

Abstractt 

Parametric models for the entire age pattern of mortality have been sug­
gested by Heligman and Pollard (1980) and Carriere (1992). The former is 
designed to fit the classical mortality pattern while the latter is supported by a 
statistical theory. Insights into their papers motivate us to consider a variation 
of the Heligman-Pollard model. We also apply these models to the 1993 Hong 
Kong Assured Lives Mortality Tables as well as the 1991 Hong Kong Female 
Life Table. This paper is not intended to construct a better parametric model 
for mortality tables; the main purpose is simply to provide insights into the 
potential of these models. 

Key words and phrases: Inverse-Weibull,Inverse-Gompertz, Gompertz, Weibull, 
mortality 

1 Introduction 

The study of parametric models for mortality tables, sometimes re­
ferred to as the law of mortality, has been of interest to actuaries for 
many years. A good model can give us a better understanding of the un­
derlying mechanism governing the mortality pattern. Recent develop­
ment in this topic can be found in Forfar et al., (1988), Renshaw (1991), 
Tenenbein and Vanderhoof (1980), and Wetterstrand ~1981). 
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A parametric model for mortality tables has many advantages: (i) 
it involves parameters having demographic hnd statistical interpreta­
tions; (ii) it is applicable to non-integral ages; (iii) it allows comparison 
among mortality tables by comparing only a few parameters, and; (iv) it 
provides a ready extrapolation beyond the range of the available data. 

The purpose of this paper is to study two parametric models for 
modeling the pattern of mortality: one proposed by Heligman and Pol­
lard (1980) and the other by Carriere (1992). A brief description of both 
models is given in Section 2. Insights into their papers and a variant on 
the Heligman-Pollard model are presented in Section 3. The Heligman­
Pollard model is designed to fit the classical pattern of mortality; in 
some cases a modified version may perform better. In Section 4, we fit 
the models to the 1993 Hong Kong Assured Lives Mortality Tables pre­
sented by the Actuarial Society of Hong Kong (1993) and to the 1991 
Hong Kong Female Life Table published by the Census and Statistics 
Department of Hong Kong (1992). To conclude this paper, we remark 
on various aspects of these two models. 

Finally, the objective of this paper is not to build a better parametric 
model for mortality tables. Instead, we are interested in exploring mod­
ifications to these models that may be better. It is hard to say which 
model is the best. It all depends on the pattern of mortality, the theory 
behind the model, and the interpretation of the parameters. Therefore, 
it is wise to plot the mortality pattern and to consider various aspects 
of the visible mortality patterns before making a choice. 

2 Heligman-Pollard and Carriere Models 

We will present only a brief discussion of these models. For more 
details about the two models, we refer the reader to the original papers. 

2.1 The Heligman-Pollard Model 

Heligman and Pollard (1980) propose a mathematical expression for 
the graduation of the pattern of mortality that fits Australian mortality 
fairly well at all ages. Their law of mortality has the form 

qx/(l-qx) =A(x+B)C +Dexp{-E(lnx-InF)2} +GHx (1) 

where qx is the probability that a person age x will die within a year. 
Equation (1) contains three terms, each representing a distinct com­

ponent of mortality. The first term reflects the fall in mortality during 
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childhood. The second term reflects the hump that generally exists 
between ages 10 and 40. This hump is a consequence of the elevated 
accident mortality for males and the increased accident mortality plus 
maternal mortality for females. The third term reflects the exponential 
pattern of mortality at adult ages. 

Figure 1 
Hong Kong 1991 Male Table: Plot of In (qx) vs. x 
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Many mortality tables exhibit the classical pattern suggested by equa­
tion (1). Such a pattern is illustrated by plotting In(qx) versus x, using 
the 1991 Hong Kong Male Life Table; see Figure 1. In Figure 1, we can 
immediately identify a fall at the early ages, a hump at around 22, and 
a linear component at the adult ages. The demographic interpretation 
of the eight parameters in Equation (1) is as follows: A measures the 
level of mortality in childhood; B is an age displacement to account for 
infant mortality; C measures the rate of mortality decline in childhood; 
D, E, and F represent the severity, spread, and location in the accident 
term, respectively; G represents the base level of mortality at the senior 
ages; while H reflects the rate of increase of mortality at the adult ages. 
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2.2 The Carriere Model 

Carriere (1992) establishes another parametric model for life tables 
that also describes the entire age pattern of mortality. This model can 
be written as a mixture of n survival functions (SkCx) , k = 1, ... , n), 
i.e., 

n 
S(x) = L WkSk(X) 

k=l 

where the w's are mixing probabilities with L.k=l Wk = 1. Then, qx can 
be evaluated by the relationship 

qx = 1 - S(X + 1)/S(x). 

For modeling the classical pattern of mortality, Carriere used n = 3, 
i.e., 

(2) 

where the parameter WI may be interpreted as the probability that a 
new life will die during childhood. Similar interpretations apply to W2 

and W3. 

Carriere argued that extreme-value survival functions are reasonable 
models for Sk (x)'s. Table 1 summarizes the distributions suggested 
by Carriere (1992). Note that one can choose either Inverse-Weibull 
or Inverse-Gompertz to depict the mortality for teenage years, i.e., the 
accident hump. From Table 1, we note that equation (2) represents an 
eight-parameter model just like equation (1). 

The forms of the distributions in Table 1 look rather different from 
the standard ones, for example, /.Ix = GHx, for the Gompertz distribu­
tion. Carriere claims that this reparametrization provides an insightful 
statistical interpretation in the sense that m > 0 is a measure of lo­
cation and that u > 0 is a measure of dispersion about m. For the 
Weibull distribution and the Inverse-Weibull distribution, however, m 
and u are statistically informative only when u is small relative to m. 

3 Insights and Variations 

It is well-known that the third term of equation (1) is the force of 
mortality of the Gompertz distribution. Helgiman and Pollard also men­
tioned in their paper that the second term of equation (1) is similar to 
the lognormal distribution. 
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It appears that Helgiman and Pollard did not recognize the first term, 
which is equivalent to the three parameter Weibull survival function: 

S(x) A(x+B)C 

exp (- (a(x + b))C) (3) 

for x > -b, a > 0, and c > 0. Therefore, the parameters A, B and C 
can be rewritten as exp( -aC ), b, and c, respectively. If we let b = 0, 
then we have the two parameter (standard) Weibull distribution. Thus, 
the Heligman-Pollard model of equation (1) is related to three distinct 
lifetime distributions. 

From the viewpoint of curve-fitting, the three parameter Weibull is 
better than the two parameter Weibull because the location parameter b 
can shift the two parameter Weibull curve back and forth. For example, 
if equation (1) does not have the parameter B, then qo will be fixed at 
1/2 no matter what values A and C may have (the value of G is usually 
small). 

The implicit idea behind the Heligman-Pollard model is that there 
are three distinct components of human mortality. With this in mind, 
we may wish to find other functions to replace those in equation (1) 
provided that they can do the job better. In our opinion, the first and 
third terms of equation (1) fit extremely well. It is hard to find other 
functions to supersede them. We may use the Inverse-Gompertz or 
Inverse-Weibull, however, to handle the second component. For exam­
ple, the model 

~ _ (x+B)C Eln(})FX exp(-EFX) x 

I -A + D x 1 (E) + GH (4) - qx - exp -

fits the 1991 Hong Kong Female Life Table better than equation (1); 
see Tables 4 and 5. For computational and notational convenience, 
the Inverse-Gompertz density in the second term of equation (4) is 
reparametrized using E and F instead of the m and (Y shown in Ta­
ble 1. The parameters D, -In(E)/ln(F),-l/ln(F) can be interpreted 
as the severity, location, and spread in the accident component. This 
reparametrization also is used in the numerical examples given in the 
next section. 

Under the Balducci assumption, the function qx / (1 - qx ) is the same 
as the force of mortality at x. Hence, Carriere construes equation (1) 
as a total force of decrement that is equal to the sum of three forces 
of decrement from different causes. This interesting statistical idea 
still holds for equation (4). Provided that each of the three terms is 
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nonnegative for the range of x and that fo"" qxl(l - qx)dx = 00, other 
variations of the Heligman-Pollard model share the same interpretation. 

Using the parametrization of the Weibull distribution in Table 1, it is 
possible to gain further insight by focusing on the mean, mf (1 + (T 1m), 
and the median, m (In 2) 0" 1m. Each of these quantities is close to m 
when (T is small relative to m. With this restriction, the location pa­
rameter m and the dispersion parameter (T are statistically informative. 
The values of (T and m quoted in various applications of equation (2), 
however, do not conform with the assumption that (T < m. The same 
comments apply to the Inverse-Weilbull distribution. 

In the theory of lifetime distribution (Lawless 1982), the parameter 
c in equation (3) or ml(T in equation (2) is known as the shape param­
eter because the shape of the Weibull density depends on the value of 
c. Furthermore, the parameter a in equation (3) or 11m in equation 
(2) is called the scale parameter for the Weihull distribution because 
the effect of different values of a in equation (3) on the graph of the 
density is just to change the scale on the horizontal x-axis, and not the 
basic shape of the graph. The parameter b in equation (3) may be de­
scribed as a location or shift parameter. In our opinion, the widely-used 
parametrization of equation (3) is more meaningful and natural. 

4 Application to Hong Kong Mortality Tables 

To illustrate the applications of the Heligman and Pollard (1980) 
and Carrier (1992) models, we now apply equations (1), (2), and (4) to 
several Hong Kong mortality tables. These equations are applied to the 
smoothed mortality tables and not to the raw mortality rates. The male 
and female tables are fitted separately. 

4.1 1993 Hong Kong Assured Lives Mortality Tables 

We apply equations (1), (2), and (4) to the 1993 Hong Kong Assured 
Lives Mortality Tables. Following the examples given in Heligman and 
Pollard (1980) and Carrier (1992), we estimate the parameters by mini­
mizing the loss function L 

99 ( A) 2 L = L 1- qx 
x=o qx 

(5) 

where qx is the estimate of qx. This commonly-used loss function is 
based on the sum of squared relative errors. All parameter estimates 
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and the loss given in Tables 2 and 3 are calculated using SAS, a statistical 
software package. 1 For equation (2), we use the Inverse-Gompertz for 
teenage years because it fits both male and female tables better than 
the Inverse-Weibull. For the 1993 Hong Kong Assured Lives Mortality 
male table, the parameter values for the Weibull distribution are ml = 

719.42446 and 0"1 = 5956.388042 in the Carriere model of equation 
(2). Hence, it is inappropriate to interpret ml and 0"1 as location and 
dispersion parameters, respectively, in this case. 

The term GHx can be expressed as HX-xO where Xo is the age at 
which qx / (1 - qx) = 1 simply because the first and second terms of 
equations (1) and (4) are extremely small at that age. Admittedly, Xo is 
close to the end of the life table. 

Table 2 
Parameter Estimates Using Equations (1), (2), and (4) 

for the 1993 Hong Kong Assured lives Mortality Male Table 
Heligman-Pollard Model: 
Equation (1) with Loss = 0.138381 
A = 0.000474 B = 0.000475 
D = 0.000221 E = 5.76254 
G = 0.0000177511 H = 1.104655 
Carriere Model: 
Equation (2) with Loss = 0.372211 
WI = 0.023591 ml = 719.42446 
W2 = 0.004303 m2 = 17.825229 
W3 = 0.972106 m3 = 87.200722 
Modified Heligman-Pollard Model: 
Equation (4) with Loss = 0.145928 
A = 0.000474 B = 0.000484 
D = 0.003088 E = 31.092184 
G = 0.0000176876 H = 1.104667 

C = 0.063875 
F = 17.616056 

0"1 = 5956.388042 
0"2 = 6.361696 
0"3 = 10.121226 

C = 0.063961 
F = 0.820805 

In equation (4), Xo is 109.9267 for males and 114.2788 for females. 
Based on the same model, comparison can be made between the two 
mortality tables. For instance, in equation (4), the value of G is higher 
and the values of Xo is lower for males than for females, indicating 
higher male mortality. Actually, the same phenomenon can be seen in 
the parameter estimates derived from other models. 

1 For more information on SAS see, for example, SAS/STAT User's Guide, Version 6. 
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Table 3 
Parameter Estimates Using Equations (1), (2), and (4) 

for the 1993 Hong Kong Assured Lives Mortality Female Table 
Heligman-Pollard Model: 
Equation (1) with Loss = 0.387583 
A = 0.000474 B = 0.000378 C = 0.0622 
D = 0.000244 E = 3.110173 
G = 0.0000095144 H = 1.106253 
Carriere Model: 
Equation (2) with Loss = 0.580548 
WI = 0.019969 ml = 105.354377 
W2 = 0.008744 m2 = 23.792527 
W3 = 0.971287 m3 = 92.370704 
Modified Heligman-Pollard Model: 
Equation (4) with Loss = 0.418212 
A = 0.000473 B = 0.000392 
D = 0.006058 E = 13.989076 
G = 0.0000091677 H = 1.106835 

F = 22.727553 

0"1 = 847.670466 
0"2 = 11.304304 
0"3 = 9.903073 

C = 0.062592 
F = 0.892388 

The pattern of mortality for the 1993 Hong Kong Assured Lives Mor­
tality male and female tables can be described by the function In(qx) 
and is displayed in Figures 2 and 3, which plot In(qx) and In(iix) for 
x = 0, ... ,99 for male and female lives respectively. The male and 
female tables exhibit similar mortality pattern at childhood and adult 
ages except that the dip at around age 10 is lower for females. 

Tables 2 and 3 show that the estimates of F in equation (1) are 17.6 
for males and 22.7 for females. It does appear in Figures 2 and 3 that the 
hump has its peak at about these ages. The wider spread of the hump 
for female is reflected by the smaller value of E. The level of mortality 
in this region for both tables are more or less the same because there 
is only a slight difference in the values of D. 

The estimated mortality rates fit the actual pattern reasonably well 
for each model. By comparing the loss, the Heligman-Pollard model 
of equation (1) is slightly better than equation (4). On the other hand, 
equation (2) does not fit as close as equation (1) and equation (4), espe­
cially for the 1993 Hong Kong Assured Lives Mortality male table. 
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Figure 2 
1993 Hong Kong Assured lives Mortality Male Table 

Plot of In(qx) and In(qx) Using Equation (1) 
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4.2 1991 Hong Kong Female Life Table 

In addition, we fit equation (1) and equation (4) to the 1991 Hong 
Kong Female Life Table. Again, both models fit the pattern of mortality 
very well. Equation (4) has a smaller loss this time. This fact shows that 
equation (1) does not always give the best fit among the three models. 
It depends on the underlying pattern of mortality. The results are given 
in Tables 4 and 5. 

The plots of residuals for Figures 2 and 3 are shown in Figures 4 
and 5, respectively. Some of the residuals in the childhood ages are 
large. Particularly, equation (2) produces relatively large residuals in 
this region partly because the two parameter Weibull is used instead 
of the more flexible three parameter Weibull. The plots also indicate 
the presence of systematic bias at certain ages. This weakness is the 
price that we have to pay for using a parametric model to fit the entire 
mortality table that already contains smoothed values. 
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Figure 3 
1993 Hong Kong Assured lives Mortality Female Table 

Plot of In(qx) and In(izx) Using Equation (1) 
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5 Some Closing Remarks 
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100 

We should be aware that, in Section 4, the equations are fitted to the 
smoothed mortality tables, and not to the raw mortality rates, thereby 
constituting a rather unusual type of two stage smoothing process_ If 
we fit the equations to the raw data, the loss may become larger than 
those shown in Tables 2 to 5. Under certain circumstances, the NUN 
procedure of SAS is successful in minimizing equation (5) only if it has 
good starting values. In particular, the Carriere model of equation (2) 
converges slowly due to its complicated nature, compared to the other 
two models. 

The fit during the childhood years could re improved for equation 
(2). This point was mentioned in Carriere's original paper as well. To 
obtain a better fit, we may employ the three parameter Weibull distri­
bution with the idea of truncated survival distribution, instead of using 
the standard (two parameter) Weibull distribution. This change should 
provide at least a better interpretation of the parameters in the first 
term of the model. 
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Figure 4 
1993 Hong Kong Assured lives Mortality Male Table 

Residuals Resulting From Using Equation (1) 
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Figure 5 
1993 Hong Kong Assured lives Mortality Female Table 

Residuals Resulting From Using Equation (1) 
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Table 4 
Parameter Estimates Using Equation (1) 

for the 1991 Hong Kong Female Mortality Table 
Heligman-Pollard Model: 
Equation (1) with Loss = 0.14638 
A = 0.000753 E = 0.888422 
B = 0.158423 F = 23.71991 
C = 0.167371 G = 0.0000076034 
D = 0.000226 H = 1.11813 

Table 5 
Parameter Estimates Using Equation (4) 

for the 1991 Hong Kong Female Mortality Table 
Modified Heligman-Pollard Model: 
Equation (1) with Loss = 0.122038 

A = 0.001015 E = 4.946691 
B = 0.317964 F = 0.933656 
C = 0.229451 G = 0.000007981 
D = 0.009157 H = 1.117485 

265 

Carriere (1994) proposes a select and ultimate parametric model 
which is based on equation (2). We feel that equation (1) also may be 
used to construct his select and ultimate parametric model because 
equation (1) has a much simpler form. This reconstruction seems fea­
sible. 
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