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Analyzing Management Fees of Pension Funds: A 
Case Study of Mexico 
Tapen Sinha* 

Abstractt 

Though the rates of return for public pension funds have been high over 
the past two decades, one critical aspect of the financing of this type of fund 
is often overlooked: high management fees. As a result, the rates of return 
for workers who have invested in these funds have not necessarily been high. 
Management fees charged on pension funds in Mexico result in a leakage of 
funds in the order of 20-30% of the fund. That is, the amount at retirement 
would have been 20-30% higher had there been no fees. 

A model is developed that includes all the diverse fees and discounts. No 
other model of the Mexican system contains all of these fees and discounts. 
Therefore, simulations from other studies do not yield reliable results. Our 
simulation results show that it is rarely optimal (from the point of view of 
minimizing lifetime management fees) to stay with one company. Also, no 
company dominates all others with respect to the minimization of its fees. 
Unfortunately, because of the complexity of the fee structure, it is difficult to 
say much beyond this. This research shows that the risks that the privatized 
system carries may be much higher than what appears at first sight. 

Key words and phrases: privatization, defined contribution plan, Chile, retire­
ment fund, pay-as-you-go, AFORE, simulation 
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1 Introduction 

Privatization of pensions has become an important issue around the 
world. From Chile to China, from Argentina to Zimbabwe, privatiza­
tion of pensions either has been implemented or is being contemplated 
(Schwarz and Demirguc-Kunt, 1999). 

Nowhere in the world has privatization of state-run pension schemes 
been undertaken with more zeal than in Latin America. Ten countries 
in the world have privatized their pension plans (Social Security Ad­
ministration, 1999)-eight of them are from Latin America (Argentina, 
Bolivia, Chile, Colombia, EI Salvador, Mexico, Peru, and Uruguay). The 
other two are from Eastern Europe (Hungary and Poland). 

In 1997, a new privatized (but government-mandated) system of re­
tirement program was created in Mexico. The system is essentially a 
defined contribution pension plan in which private companies operate 
pension funds. Each company operating a pension fund is called an 
Administradora de Fondos de Retiro or an AFORE. Under the system 
each worker will have his or her own account with an AFORE, and this 
account accumulates the individual and government contributions and 
the investment returns generated by these contributions. Thus, the 
contributions and the performance of the fund solely will determine 
each worker's pension benefit. 

In some sense, the Mexican model can be viewed as an adaptation of 
the Chilean model. The Chilean model is the most decentralized model 
of pension. Chile has succeeded in delivering many benefits for which 
privatized pension plans strive. Most policy makers in Mexico are famil­
iar with the system in Chile and are influenced by it. Economists (such 
as Diamond, 1994, 1999) have criticized the Chilean system because of 
its high transaction cost. In some ways, the high growth rate in real 
wages and high real rates of return have obscured high transactions 
costs for Chile. 

Like the Chilean system, an unfortunate feature of the new Mexican 
system is its relatively high management fees. Management fees im­
posed on the pension funds in Mexico are the most complex in Latin 
America. It is difficult for anyone other than sophisticated investors to 
disentangle the effects of various charges and determine which fund 
offers the best rate of return. There are several types of fees and dis­
counts. These high fees result in severe losses to the development of 
the workers' funds. 

The objective of this paper is to analyze the impact of management 
fees on funds available at retirement for Mexican workers. To this end 
a model is developed in which all the diverse fees and discounts are ac-
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counted for. This model is used to calculate future values of the fund, 
taking into account all the complexities of the Mexican system. The 
model is also used to compare funds over various horizons under a va­
riety of scenarios. In all other models developed in the Mexican context, 
many of these cost elements have been ignored. Due to the complexity 
of the management fee structure, analytic results are difficult to obtain; 
simulations are used instead. 

This paper is organized as follows: Section 2 discusses some of the 
reasons for moving from a state-run pay-as-you-go system to a priva­
tized system. Section 3 reviews the basics of the new Mexican system 
and comments on some of its deficiencies. 

2 Why Privatize SOCial Security? 

Why are Latin American countries enthused about privatizing social 
security? There are four related reasons: 

• Policy makers have recognized that their current state-run pay-as­
you-go systems will be bankrupt within the next decade or so. 

• The pioneering privatization plan in Chile has been extolled for 
its success. The Chilean example has given privatization a new 
sense of urgency in neighboring countries. 

• Privatization systems seem to increase national saving. 

• Privatization helps develop long-term capital markets. 

2.1 What's Wrong With the Pay-as-You-Go System? 

Developed countries (such as the Unites States) are beginning to ex­
perience problems with pay-as-you-go retirement systems (such as the 
U.S. social security system) largely due to a mismatch of benefits paid 
to retirees compared with the revenue generated from the working pop­
ulation. 

Similar problems are in the offing for other countries. Therefore, 
aging itself provides a strong incentive for fixing the systems in some 
ways. 

These problem can arise in a number of different ways: 

• The government increases the benefits of the retired population 
by indexing benefits to inflation without indexing revenue in the 
same way. 
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• The government relaxes eligibility (for example, by relaxing the 
age of retirement, by making the definition of disability or poor 
health broader etc.). 

• Government, directly or indirectly, reduces its revenue base. For 
example, a rise in the marginal tax rates may force some people 
to leave the formal employment sector (where they finance such a 
scheme through payroll taxes) and enter the informal (cash-only) 
sector where they avoid paying payroll taxes thus reducing the 
government's revenue base. 

• The population is aging, Le., the percentage of the aged in the 
population is increasing. Aging is caused mainly by falling birth 
rates and falling mortality rates at the older ages. 

Table 1 illustrates how the projected proportion of older persons 
will rise (in some cases, dramatically) in Latin American countries. For 
comparison, the United States is included in Table 1. There are two 
striking features of Table 1: 

1. From looking at the column for 2050, all the countries appear to 
be converging to a similar population structure. The proportion 
of people over 60 is similar across countries. If, instead of this 
proportion, we look at the entire distribution (say separated by 
five years), it will be similar too. 

2. Not all countries have the same degree of population aging in 
1990. 

As Argentina and Uruguay have population structures that are similar 
to the United States' population structure today, there is a certain ur­
gency of reform for their state-run pension scheme that exceeds those 
of other Latin American countries. On the other hand, even though 
Peru has a much younger population structure today, its population is 
expected to experience the benefits of better health care and medicines 
and will age rapidly over the next 50 years. A similar experience is 
expected to occur in the other countries in Latin America. 

From the point of view of demographics (Le., population structure), 
the potential problem may seem to be far in the future. But many 
Latin American countries will face the problem sooner rather than later. 
There are many inefficiencies in their public pension systems, including 
a large informal (cash-only) sector, that make the problem more acute 
than ever before (Vittas, 1994). 

Bolivia is a classic example of how things can go wrong, even when 
the population structure is young. Bolivia has had a defined-benefit 
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Table 1 
Projections of Percentage of Population 

Over Age 60 from 1990-2050 
Year 1990 2030 2050 
Argentina l3.1 19.3 25.9 
Bolivia 5.4 10.0 17.6 
Brazil 6.7 16.9 24.2 
Chile 8.7 20.8 26.4 
Colombia 6.0 18.0 25.5 
Ecuador 5.5 l3.7 22.4 
Mexico 5.7 15.7 24.6 
Paraguay 5.2 10.4 16.1 
Peru 5.8 l3.7 21.5 
Uruguay 16.4 22.5 27.8 
Venezuela 5.6 15.5 23.6 
U.S. 16.6 28.2 29.8 
Source: World Bank (1994). 

pay-as-you-go scheme for many years. In 1997 the number of people 
contributing to the system was 300,000. The number of people draw­
ing a pension from the system was 120,000. Thus, the pensioner to 
contributor dependency ratio of the system was 40 (120,000/300,000) 
percent. If we look at the ratio of number persons age 60+ to the num­
ber age less than 60 in the population as a whole, however, it is 5.8 
(l00 x 0.054/ (l - 0.054)) percent (Table 1). The percentage of GDP 
covered by the system was less than 12 percent (von Gersdorff, 1997). 
Most pensioners were either government employees (65 percent of the 
total) or schoolteachers (30 percent). The Bolivian economy, however, 
is dominated by the informal sector. 

2.2 Why is Everyone Looking at Chile? 

The Chilean system has produced spectacular results in terms of 
rates of return on funds (Table 2). The system also has created deeper 
financial markets; markets for long-term bonds have developed as a 
direct consequence of the system. The saving rate in Chile also has 
risen spectacularly over the same period, from 8.2 percent of GDP in 
1982 to 23.3 percent in 1996. Real GDP has increased at an average 
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annual rate of 7.7 percent from 1980 to 1997. [For an illuminating 
discussion on the Chilean system, see Edwards (1996).] GDP growth 
has slowed to 3.1 percent in 1998 and -1.4 percent in 1999. Many 
commentators have jumped to the conclusion that the rise in saving 
and GDP are (partly) consequences of privatization of pension (Pifiera, 
2000). This conclusion, however, is not supported by statistical evi­
dence (Holzmann, 1996). 

Table 2 
Percentage Rates of Return 
For Pension Funds in Chile 

Weighted 
Year Average Range 
1982 28.8 23.2 to 30.2 
1983 21.2 18.5 to 24.7 
1984 3.6 2.2 to 5.1 
1985 13.4 13.0 to 14.3 
1986 12.3 10.6 to 15.5 
1987 5.4 4.8 to 8.5 
1988 6.5 5.9 to 8.7 
1989 6.9 4.0 to 9.5 
1990 15.6 13.3 to 19.4 
1991 29.7 25.8 to 34.3 
1992 3.0 0.9 to 4.2 
1993 16.2 14.6 to 16.9 
1994 18.2 15.7 to 21.1 
1995 -2.5 -4.6 to -1.8 
1996 3.5 2.9 to 4.1 
1997 4.7 -0.2 to 5.5 
1998 -1.1 -2.7 to -0.4 
1999 12.31 11.99 to 14.16 

Source: Banco Central de Chile, Boletin Mensual (various 
issues). Notes: Rates of return (in %) are weighted by the 
asset value in each pension fund. The data for 1999 are 
through August 1999. 

There are several notable features of Table 2. First, the average rates 
of return for funds in Chile have been high. This has impressed many 
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foreign observers; however, there is a large year-to-year variation. At 
the same time, the rates of return for different funds in any particular 
year have not varied a great deal in that year (especially early years). 
The rate of return for funds is misleading, however, as it does not nec­
essarily mean the same thing for the workers who have contributed to 
these funds. This difference is discussed further below. 

2.3 Saving and Capital Market Developments 

In theory, under certain conditions savings may rise as a result ofpri­
vatization. Such results are sensitive to model specification. A change 
in model specification can lead to a collapse of the result (Sinha, 2000, 
Chapter 2). As Chile has the longest experience of privatized pensions, 
it is natural that researchers have turned to Chile to investigate the 
question of whether savings rise under privatization. The Chilean ev­
idence, when carefully analyzed, shows that national saving rate does 
not increase when social security is privatized (Holzmann, 1996, Agosin 
et al., 1997). 

Do capital market developments follow from pension privatization? 
It is clear that privatization needs to be preceded by some capital mar­
ket development. For example, there has to be a well-functioning gov­
ernment bond market (Vittas, 1996). 

3 Mexican System 

3.1 The Pre-Reform System 

Since 1943 Mexico had a system run by the IMSS (Instituto Mexicano 
del Seguro Social). There are four pillars of this system: (i) disability, old 
age, severance, and life insurance; (ii) maternity and health insurance; 
(iii) workplace insurance; and (iv) childcare centers. 

The disability, old age, severance, and life insurance component 
(also known as Seguro de Invalidez, Vejez, Cesancia en Edad Avanzada 
y Muerte abbreviated to IVCM) is the largest program for social security 
in Mexico. IVCM is a pay-as-you-go scheme that has protected workers 
in the formal sector since 1943. In addition, there are separate dis­
ability, old age, severance, and life insurance programs for government 
employees, for the armed forces, and others. 

Total contribution to IVCM was 8.5 percent of base salary in 1996. 
There is a tripartite split between the employers, employees, and the 
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government. Employers paid 5.95 percent, employees paid 2.125 per­
cent, and the government paid 0.425 percent of the base salary. In 
addition, there was an additional payment of 2 percent of base salary 
in the SAR (Sistema para el retiro, the retirement account). 

There were many problems associated with the old IVCM system. 
Only a small percentage of workers was covered. For example, in 1999 
fewer than 30 percent of the workers in the labor force were covered. In 
addition, it is estimated that without any reform, revenue for the IMSS 
in 1999 would have fallen short of the cost in 1999, a classic problem 
of pay-as-you-go schemes. 

3.2 Pension Reform in Mexico 

On July 1, 1997, a new privatized (but government-mandated) re­
tirement system came into existence in Mexico, replacing IVCM. This 
system consists of private companies operating pension funds. Each 
company operating a pension fund is called an Administradora de Fon­
dos de Retiro or an AFORE. The investment fund, run by the company 
independent of the parent AFORE company, is called a Sociedad de In­
version en Fondos de Retiro (a SIEFORE). 

Each worker in the system is assigned a retirement fund account 
with an AFORE. Funds in the account accumulate through periodic em­
ployer, employee, and government contributions and from the yield 
generated by investment in the AFORE. Thus, the contributions and the 
investment performance of the fund alone determine each worker's 
pension benefits at retirement. This individual defined contribution 
pension scheme contrasts sharply with the old pay-as-you-go scheme 
ran by IMSS. 

Among the four pillars mentioned earlier, only IVCM was privatized 
through AFOREs. The other three pillars are still being operated by 
IMSS. We will not consider the other three pillars of the IMSS. [See Banco 
de Mexico (1996) for further discussion on reform in the other three 
pillars.] 

There are two elements of contribution to an account: contribu­
tion of 6.5 percent of wages by the employee/employer and a govern­
ment contribution of 5.5 percent of national minimum salary (regard­
less of the worker's actual salary). For a worker who earns exactly the 
minimum salary, the contribution to an AFORE will be 1l.5 percent 
(6.5 + 5.5) of his or her salary. For a worker earning ten times the min­
imum salary, the contribution will be 7.05 percent (6.5 + 5.5/10) of his 
or her actual salary. For the average worker, the government contri­
bution amounts to 2.2 percent of salary. For high-income workers, the 
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government contribution is a relatively insignificant percentage of their 
salary. 

The new system is compulsory for persons entering the workforce 
on or after July 1, 1997. Individuals who have contributed to the old 
system have a choice: they can opt for the benefits under the old scheme 
or they can receive benefits from the new scheme, whichever is larger. 
The majority that have contributed to the old system for at least 20 
years will fare better under the old scheme. For others, it depends 
critically on the rates of return that the new scheme will earn. Thus, 
there will be additional costs incurred during the transition. The cost 
will rise up to 4 percent of GDP during the early part of the 21 st century 
(Sales-Sarrapy et al., 1996). 

The new system has spawned many AFOREs. Seventeen AFOREs 
have been given licenses to operate (although four since have merged). 
Mexican companies (mainly banks) own some of them (wholly). Others 
have large (although not majority) foreign shareholders. Table 3 lists 
the AFOREs in operation at the end of 2000. 

The Mexican government has created a separate division to over­
see the activities of the AFOREs: the Comision Nacional del Sistema 
de Ahorro para el Retiro (CONSAR). CONSAR has the critical role of 
overseeing all the activities of AFOREs. For example, CONSAR has es­
tablished general rules of operation of the AFOREs. 

The objectives of these institutions include: 

• Open, administer, and manage the individual retirement accounts 
in agreement with provisions in social security laws. Regarding 
housing-promotion sub-accounts, the AFOREs will register each 
worker's contributions, and the interest paid thereon, based on 
information provided by social security institutions. 

• Receive, from social security institutions, the contributions made, 
in accordance with the law, by the government, employers, and 
workers, as well as voluntary contributions by workers and em­
ployers. 

• Itemize the amounts received periodically from social security in­
stitutions and deposit them into each worker's individual retire­
ment account, as with the returns obtained on the investment of 
these funds. 

• Provide administrative services to mutual investment funds. (Banco 
de Mexico, 1996). 
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Table 3 
AFOREs Authorized by CONSAR and Their Compositions 

AFORE Main Shareholders and Percentage Holding 
Atl{mtico Promex Banca Promex 50, Banco del Atl{mtico 50 
Banamex 
Bancomer 

Bancrecer-Dresdner 

Bital 

Capitaliza 
Confia-Principal 

Garante 

Genesis 
Inbursa 
Previnter 

Profuturo GNP 

Santander Mexicano 

Siglo XXI 

S6lida Banorte 
Tepeyac 
Zurich 

Grupo Financiero Banamex-Accival100 
Grupo Financiero Bancomer 51, Aetna Interna­
cional, Inc. 49 
Grupo Financiero Bancrecer 51, Dresdner Pen­
sion Fund Holdings 44, Allianz Mexico, S. A. 5 
Grupo Financiero BITAL 51, ING America Insur­
ance Holding, Inc. 49 
General Electric Capital Assurance Co. 100 
Abaco Grupo Financiero 51, Principal Interna­
tional49 
Grupo Financiero Serfin 51, Grupo Financiero 
Citibank40, Habitat Desarrollo Internacional 9 
Seguros Genesis, S. A. 100 
Grupo Financiero INBURSA 100 
Boston AIG Company 90, The Bank of Nova Sco­
tia 10 
Grupo Nacional Provincial 51, Banco Bilbao 
Vizcaya-Mexico, S. A. 25, Provida Internacional, 
S. A. 24 
Grupo Financiero Invermexico 75, Santander In­
vestment, S. A. 25 
Instituto Mexicano del Seguro Social 50, IXE 
Grupo Financiero 50 
Grupo Financiero Banorte 
Seguros Tepeyac 
Zurich Vida, Compafiia de Seguros 77, Gabriel 
Monterrubio Guasque 10 

Note: No mention is made of shareholders with equity participation under 5 
percent of the total capital of the respective AFORE 
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Table 4 
Administrative Costs as a Percentage of Expenditure 
Latin America OECD 
Argentina 2.30 Australia 1.22 
Bolivia 21.39 Canada 2.80 
Chile 8.00 France 4.18 
Colombia 81.80 Germany 2.86 
El Salvador 33.40 Italy 2.20 
Mexico 23.55 Japan 1.79 
Peru 130.98 Spain 2.81 
Uruguay 6.51 Switzerland 3.04 

United Kingdom 3.10 
United States 3.28 

Source: Mitchell (1996) 

The cost of administering the new system is high by OECD stan­
dards. When compared with other Latin American countries, however, 
administrative costs are not out of line (Table 4). 

Because charges apply to different parts of the AFORE, it is not 
easy to compare charges across AFOREs. If we examine the system 
as a whole, however, the charges appear too high at this early stage 
of the system's development. In Chile, for example, in 1984 charges 
amounted to 9 percent of wages or 90 percent of contributions to the 
retirement system (Edwards, 1996, p. 17). The costs dropped to about 
15 percent of contributions in 1990 (World Bank, 1994, p. 224). 

3.3 Organization and Investment Activities of AFOREs 

Some AFOREs are fully owned by Mexican companies, while other 
AFOREs are partly owned by foreign companies. For example, AFORE 
Bancomer is 51 percent owned by the second largest banking group in 
Mexico and the other 49 percent is owned by Aetna, one of the largest 
insurance companies in the United States. Garante has the most in­
teresting ownership structure. It has the majority shareholding by a 
Mexican group; it is partly owned by Citibank; and it is partly owned by 
a pension fund from Chile, AFP Habitat. 

On one hand, the Mexican government was keen to have foreign 
companies participate in this sector, because foreign participation usu-
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ally signals a faith in the system. On the other, the government was 
also keen on keeping the majority shareholding within the country for 
political reasons. By the end of 1999, three of the AFOREs have already 
merged with others. Atlantico has been sold to Confia; Genesis has 
been sold to Santander; and Previnter has been sold to Profuturo. 

Although CONSAR is clear on ownership rules, it has been ambigu­
ous on the issue of prevention of monopoly rule. It states: 

CONSAR will establish procedures to prevent absolute or rel­
ative monopolistic practices resulting from the behavior of 
individual market participants or due to market concentra­
tion. In doing so, the CONSAR will abide by the Economic 
Competition Federal Act. Accordingly, no single AFORE may 
have more than 20 percent of the retirement saving system's 
market. Subject to prior authorization from its Consulta­
tive and Surveillance Committee, the CONSAR may authorize 
greater market concentration ratios, as long as this does not 
harm workers' interests. 

The rule initially did not define the phrase "no more than 20 percent 
of the market." Later, CONSAR ruled that it meant 20 percent of the 
total number of individual accounts (rather than 20 percent of market 
share in terms of value). CONSAR also left the question of some AFOREs 
operating with more than 20 percent of all individual accounts open by 
adding the phrase "as long as this does not harm workers' interests." 

At present, AFOREs do not have much freedom in choosing their 
investment portfolios. Basically, all of their investments have to be 
in the form of Mexican government bonds (called CETES) and price­
indexed linked bonds (such as UDIBONOS). 

CETES (Certificados de la Tesoreria de la Federaci6n) are peso-deno­
minated money market instruments issued by the Mexican Treasury in 
28-day, 91-day, 182-day, 364-day, and 728-day maturities. CETES are 
considered to be the short-term interest rate benchmark in Mexico and, 
with rare exceptions, are auctioned on a weekly basis. CETES are similar 
to U.S. Treasury bills. The market for CETES is the most important 
capital market instrument available in Mexico. It is also one of the 
few Mexican capital market instruments with an active futures market: 
CETES futures are traded in the Chicago Mercantile Exchange. 

As a consequence, CONSAR has chosen CETES to be the first instru­
ment for the AFOREs. Because there are CETES of differing maturities, 
it is possible to obtain different rates of return on CETES, as the term 
structure of interest rates does not stay constant over time. 
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Table 5 
Annualized Rates of Return 

(July 1997-June 1999) 
Name Nominal Real 
Banamex 28.83% 8.38% 
Bancomer 29.12% 8.59% 
Bancrecer 25.12% 5.64% 
Bital 29.90% 9.17% 
Garante 29.21% 8.66% 
Genesis 28.29% 7.98% 
Inbursa 25.26% 5.75% 
Principal 27.54% 7.43% 
Profuturo 29.92% 9.19% 
Santander 26.48% 6.64% 
Banorte 28.19% 7.91% 
Tepeyac 26.48% 6.64% 
XXI 27.27% 7.23% 
Zurich 26.79% 6.87% 
Average 28.33% 8.01% 
Source: CONSAR 

About 35 percent of total investment by AFOREs has been in CETES. 
Another 48 percent has been in five-year inflation-indexed government 
bonds called Bonde91, while another 10 percent has been in convertible 
bonds called Udibonos (July 2000). 

Restrictions on the use of financial instruments by the AFOREs have 
reduced the variability in the before-charges rates of return of the funds 
(Table 5). With the restrictions imposed, one important question arises: 
why should different AFOREs charge such high fees? After all, their 
roles have been reduced to (almost) nothing but bookkeeping (Espinosa 
and Sinha, 2000). 

Though there have been high rates of return of the funds, this does 
not automatically imply a high rate of return for workers who have 
money in those funds. The basic problem is the high management fees 
charged by private penSion funds. Shah (1997) has calculated these 
rates of return after charges for Chile (Table 6). Table 6 shows that even 
though the real rates of return of funds have been large and positive 
for the funds, they have not been so for the affiliates. 



18 Journal of Actuarial Practice, Vol. 9, 2001 

Table 6 
Comparing Real Rates of Return of Funds 

And Cumulative Real Rates of Return of Affiliates in Chile 
Cumulative Rates 

Year Rates For Funds For Affiliates 
1982 28.8% -3.2% 
1983 21.3% -1.3% 
1984 3.5% -5.9% 
1985 13.4% -2.3% 

1986 12.3% 0.3% 
1987 5.4% 0.5% 
1988 6.4% 1.4% 
1989 6.9% 2.1% 
1990 15.5% 4.2% 
1991 29.7% 7.9% 
1992 3.1% 6.9% 
1993 16.2% 8.0% 
1994 18.4% 9.1% 
1995 -2.5% 7.4% 

Source: Shah (1997). Notes: The first column gives the rate of return of the 
fund in a given year. The second column gives the cumulative rate of return. 
Thus, for example. the figure for 1995 for the affiliates is the real rate of return 
the affiliate would have between 1982 and 1995. As a result, it is possible for 
the second column to have a bigger number than the first column. 

The basic features of individual accounts are similar in Mexico. There­
fore, it should not be surprising that the Mexican system will not pro­
duce positive real rates of return in the next decade. 

4 Calculating Future Values of AFORE 

Individual retirement benefits are essentially calculated using an ac­
cumulated value formula. This formula must account for wages, con­
tributions, fees, and discounts. In particular, the following are pecu­
liarities of the Mexican system: 

• The government contribution to the individual account is made 
every two months, and indexing is not applicable monthly. 
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• Commissions come in three basic varieties: 

- Commissions on the flow of funds, 

- Commissions on the account balance, and 

- Commissions on the real rate of return. 

- Some companies charge commissions combining all these op-
tions. 

• In addition, these commissions may vary with the number of years 
one stays in the fund. 

For these reasons, the following discussion will be devoted to a step by 
step development of the formula for calculating retirement benefits. 

4.1 The Basic Formula 

There are two components of the new system: the contribution by 
the worker and the contribution by the government. The contribution 
by the worker is 6.5 percent of his or her base wage. The contribution 
by the government is 5.5 percent of the minimum salary indexed to the 
rate of inflation. There are two additional complications: the interest 
rate is calculated for every account every two months, and indexation 
of the government contribution to inflation occurs every three months. 

For k = 1,2, ... , let Sk denote the accumulated sum in the kth month; 
BWk denote the worker's base wage in the kth month; Gk denote the 
government's contribution in the kth month; ik12

) denote the nominal 
annual rate of interest compounded monthly that is in effect in the kth 
month (see, for example, Kellison (1991) for more on nominal interest 
rates); and CP is the number of months of contribution by an affiliate. 
Therefore, we can write the accumulated value in the AFORE as: 

(O.065BWk + Gk) 
ik12 ) 

Sk-l(1 + 12) 

(Sk-l + O.065(BWk-l + BWk) + Gk) 
iF 2) 

x(l + 12) 

Note that, for k = 1,2, ... ,CP, 

k = 1; 

k = 2,4, ... ,CP; 
(1) 

k = 3,5, ... ,CP. 
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where, CSk is defined as: 

l
o.055MW k = 1; 

rr(4) 

CSk = CSk-d1 + +) k = 3,5, ... ,CP; 

CSk-l k=2, 4, ... , CP, 

(2) 

where rr(4) is the nominal annual adjustment compounded quarterly 
that is in effect in the kth month (every quarter the government's con­
tribution is adjusted according to the consumer price index), and MWk 
is the (national or regional) minimum wage in effect in the kth month. 
The government's contribution is set at 5.5 percent of the minimum 
salary in Mexico City for the year 1997 (about U.S. $1 per day under the 
exchange rate at the end of 1997). 

The idea behind equation (1) is simple. Every affiliate gets his/her 
contribution plus the government's contribution. The way the interest 
is credited and the way the government's contribution is credited makes 
it complicated. The wage (BWk) is added every other month. Govern­
ment contributions are adjusted every three months for inflation. Thus, 
every third month, a bit extra is added using the consumer price index. 

4.2 The Inclusion of Charges 

Equation (1) does not take into account charges that funds impose 
on account holders (affiliates). Some AFOREs have charges on contri­
bution as a percentage of wages (for example, Banamex). Others have 
charges on the balance in the AFORE account (such as Bancrecer). Still 
others have charges on the real interest rate (such as Inbursa). 

Let CWk be the charge on wage (rate) and CBk be the charge on the 
account balance in effect in the kth month. Equation (1) is modified as 
follows: 

k = 1; 

k = 2,4, ... ,CP; (3) 

k = 3, 5, ... , CP; 
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Table 7 
Fee Structure of AFOREs 

As Charges on Annual Flow, Account Balance, and Real Returns 
Charges on 

Annual Flow Account Real Rate 
AFOREs (% of Wages) Balance Of Return 
Atlantico Promex 1.40% 20.00% 
Banamex 0.002% in 1997 

0.85% in Jan. 1998 
1.70% in March 1998 
and onward 

Bancomer 1.70% 
Bancrecer Dresdner 1.60% 0.50% 
Banorte 1.00% 1.50% 
Bital 1.68% 
Capitaliza 1.60% 
Confia Principal 0.90% 1.00% 
Garante 1.68% 
Genesis 1.65% 
Inbursa 33.00% 
Previnter 1.55% 
Profuturo GNP 1.70% 0.50% 
Santander 1.70% 1.00% 
XXI 1.50% 0.99% 
Tepeyac 1.17% 1.00% 
Zurich 0.95% 1.25% 
Source: CONSAR website at http://www.consar.gob.mx 



22 Journal of Actuarial Practice, Vol. 9, 2001 

There is a third element of charges. For two funds (Inbursa and 
Atlantico) charges apply to the real rate of return. Incorporating the 
charges on the real interest rate yields 

[ 0.065BWk (1 - O~~k5) + Gk J 
x [( 1 + ill~)) (1 _ ~~k ) _ i~l~ CY] 

for k = 1; 

[ 

i\12) ( CBk) i(12) ] 
Sk-1 (1 + 12) 1 - 12 -12CY 

for k = 2,4, ... ,CP; 

[Sk-l + 0.065(BWk-l + BWk) (1- O~~k5l 
+ Gk] X [(1 + iG)) (1 - ~~k) - ~CY 

for k = 3,5, ... ,CP; 

(4) 

where rr(12) is the annual inflation rate compounded monthly, CY is the 
charge on the real interest rate, and i112

) is the nonnegative real interest 
rate 

;(12) rr(l2) 
.(12) "1 - } 
tR = max{O, ( rr(12))' 

12 1 + 12 
(5) 

One assumption made here is that the charges remain fixed for the 
total life of the system. In practice, however, the charges for each com­
pany depend on the number of years a person has been in the AFORE. 
For example, AFORE Banamex charges 1.70 percent of wages up to the 
fourth year. A person who stays with the AFORE for the fifth year gets 
a reduction in charges. Thus, the fifth year charge becomes 1.68 per­
cent of wages; the sixth year charge becomes 1.66 percent of wages; 
and so on. This process continues until year 39 with the AFORE with a 
reduction of 0.02 percent of wages for every additional year. 

The final realistic element missing from equation (4) is growth in 
wages. In Chile, for example, the average wage rate has grown at a rate 
of 6 percent per year over the last 20 years. But the rise in the average 
wage rate is not important here, as it represents the average across 
many individuals at a given point of time. For individuals, the more 
meaningful number is the growth of wage rate longitudinally. Hence, 
equation (4) must be modified to take the reductions and wage growth 
into account: 
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(6) 

where fk is the discount rate at month k, and 6.S{6) is the annual growth 
rate of wages, compounded bimonthly, of an individual worker salary 
over his or her lifetime. Note that fk is not the same for all funds. For 
example, AFORE Bancomer offers a rising discount rate starting with 
0.01 percent of wages up to 0.05 percent of wages. 

In some countries (Chile, South Korea), average wage rates have risen 
more than 6 percent in real terms per year. In others (Mexico), the 
average real wage rate has fallen over the past two decades. We should 
look at the wage rate for each individual longitudinally and not the 
average wage for the population. 

Equation (6) is called the comprehensive model and will be used in 
the simulation study of the Mexican fee structure. 

5 Simulation of the Comprehensive Model 

5.1 Simulation Assumptions 

As the simulation is based on equation (6), assumptions must be 
made about many items, including the rates of return for an AFORE. 
Separate assumptions must be made about the rate of inflation and the 
real rate of return because two of the 17 AFOREs have charges based on 
the real rate of return (Inbursa and Atlantico). The growth of individual 
wages rate and the specific charges that apply also must be considered 
in our list of assumptions. 
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Assumptions About Inflation and Wage Growth: The inflation rate is 
assumed to be constant,1 and the real growth rate is assumed to 
be zero over the lifetime of the affiliates. 

Assumptions Abo'.!t Interest: It is a daunting task to predict inflation 
and interest rates for a country that has seen triple digit inflation 
rates and negative real interest rates over a number of years in 
the last 20 years; see Figure 1.2 

Figure 1 
Annualized Inflation Rates in Mexico (1970-1999), Annualized 

Rates of Return for Mexican Government Bonds (CETES) 
(1978-1999), and Mexican Real Interest Rates (1978-1999) 
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1 The author experimented with stochastic inflation rates that have truncated normal 
and uniform distributions. For each 1,000 simulations, the majority of the cases pro­
duced results that were either identical or similar to the ones ·reported with constant 
inflation. 

2Few forecasters are brave enough to predict Mexican rates more than three years. 
Even the Central Bank of MexiCO is reluctant to venture into such an exercise! 
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The simulations are performed under three sets of interest rate 
scenarios: fixed interest rate, stochastic but time-independent 
interest rates, and stochastic and time-dependent interest rate. 
The fixed interest rate scenario is used to provide a benchmark 
to measure our results. A study of month-to-month changes in 
the (nominal) interest rate shows that they are a dependent time 
series process. There is clear evidence of first order autocorrela­
tion.3 Therefore, the first order autoregressive time series model 
is used for interest: 

Xt = 0.7Xt-l + 0.015 + Et 

where Et is normally distributed with mean zero and variance (T2. 

Under this assumption, the long-term interest rate converges to 5 
(0.015/(1- 0.7)) percent. 

Assumptions About Charges: In Mexico commissions often are expres­
sed as a percentage of wages and not as a percentage of contri­
butions. Thus, if a person earns 1,000 pesos a month, the ac­
tual contribution will be 6.5 percent of 1,000 pesos or 65 pesos. 
Hence, the charges in some cases will be a straight percentage 
of the 65 pesos. Of the 17 AFOREs, 15 charge on the flow of 
wages. Eight of the AFOREs charge only on the wages and noth­
ing else. These companies, therefore, do not have schemes based 
on performance of the funds. Regardless of the performance of 
the fund, charges apply. It is easy to compare across those funds: 
we simply choose the fund with the lowest charges. In this case, 
the winner is Previnter with 23.85 percent of contributions. By 
international standards, however, even Previnter's rate is high. In 
addition, there are service fees, some of which are expressed in pe­
sos, and some of which are expressed in UDIs (these are inflation­
indexed rates). Table 8 shows the discount factors obtained by 
staying with the same fund. Table 9 shows the various charges 
levied by each AFORE. 

3See Sinha, T. and Escoto, Y. "Oil Price and Economic Growth: A View from the South." 
Paper presented at the Southern Economic Association Annual Conference, November 
17-19,2001 
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Table 8 
Partial list of Discounts 

Given by Various AFOREs 
Year Banamex Bital Confia Bancrecer 

1 1.70 1.68 0.90 1.60 

2 1.70 1.68 0.85 1.60 

3 1.70 1.68 0.80 1.60 

4 1.70 1.68 0.75 1.60 

5 1.70 1.68 0.70 1.60 

6 1.68 1.66 0.65 1.58 

7 1.66 1.64 0.60 1.56 

8 1.64 1.62 0.55 1.54 

9 1.62 1.60 0.50 1.52 

10 1.60 1.58 0.45 1.50 

11 1.58 1.58 0.45 1.48 

12 1.56 1.58 0.45 1.46 

13 1.54 1.58 0.45 1.44 

14 1.52 1.58 0.45 1.42 

15 1.50 1.58 0.45 1.40 

16 1.48 1.58 0.45 1.38 

17 1.46 1.58 0.45 1.36 

18 1.44 1.58 0.45 1.34 

19 1.42 1.58 0.45 1.32 

20 1.40 1.58 0.45 1.30 

21 1.38 1.58 0.45 1.28 

22 1.36 1.58 0.45 1.26 

23 1.34 1.58 0.45 1.24 

24 1.32 1.58 0.45 1.22 

25 1.30 1.58 0.45 1.20 

26 1.28 1.58 0.45 1.18 

27 1.26 1.58 0.45 1.16 

28 1.24 1.58 0.45 1.14 

29 1.22 1.58 0.45 1.12 

30 1.20 1.58 0.45 1.10 
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Table 8 (continued) 
Partial list of Discounts 

Given by Various AFOREs 
Year Banamex Bital Confia Bancrecer 
31 1.18 1.58 0.45 1.08 
32 1.16 1.58 0.45 1.06 
33 1.14 1.58 0.45 1.04 
34 1.12 1.58 0.45 1.02 
35 1.10 1.58 0.45 1.00 
36 1.08 1.58 0.45 0.98 
37 1.06 1.58 0.45 0.96 
38 1.04 1.58 0.45 0.94 
39 1.02 1.58 0.45 0.92 
40 1.00 1.58 0.45 0.90 
41 0.98 1.58 0.45 0.88 
42 0.96 1.58 0.45 0.86 
43 0.94 1.58 0.45 0.84 
44 0.92 1.58 0.45 0.82 
45 0.90 1.58 0.45 0.80 
46 0.88 1.58 0.45 0.78 
47 0.86 1.58 0.45 0.76 
48 0.84 1.58 0.45 0.74 
49 0.82 1.58 0.45 0.72 
50 0.80 1.58 0.45 0.70 
51 0.78 1.58 0.45 0.68 
52 0.76 1.58 0.45 0.66 • 
53 0.74 1.58 0.45 0.64 
54 0.72 1.58 0.45 0.62 
55 0.70 1.58 0.45 0.60 
56 0.68 1.58 0.45 0.58 
57 0.66 1.58 0.45 0.56 
58 0.64 1.58 0.45 0.54 
59 0.62 1.58 0.45 0.52 
60 0.60 1.58 0.45 0.50 
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Table 9 
Commissions as Percentages of Contribution 

Commissions as a Charges as a 
AFORE Percentage of Wage Percentage of Contributions 
Banamex 1.70% 26.15% 
Bancomer 1.70% 26.15% 
Profuturo 1. 70% plus others 26.15% plus others 
Santander 1. 70% plus others 26.15% plus others 
Bital 1.68% 25.85% 
Garante 1.68% 25.85% 
Genesis 1.65% 25.38% 
Previnter 1.55% 23.85% 
XXI 1.50% plus others 23.08% plus others 
Capitaliza 1.50% 23.08% 
Atlantico 1.40% 21.54% 
Tepeyac 1.17% plus others 18.00% plus others 
Banorte 1.00% plus others 15.38% plus others 
Zurich 0.95% 14.62% 
Confia 0.90% plus others 13.85% plus others 
Bancrecer Charges on balance Charges on balance 
Inbursa Charges on real return Charges on real return 
Source: CONSAR website at <http://www. consar . gob. mx> 

5.2 Results of the Simulations 

Though the simulations are performed under various scenarios with 
fixed interest rates, stochastic but independent interest rates, and stoch­
astic-dependent independent interest rates, only the results of the the 
deterministic case are presented here. 

For most income levels, Inbursa performs the best at the beginning 
because Inbursa's charges are based only on account balances, and bal­
ances are usually small in the early stages. Funds that charge on con­
tributions only have the opposite trend: their charges appear relatively 
high when the balance is low (compared with the contributed amount). 
Three factors determine how the balance grows: (1) the real interest 
rate, (2) the level of income, and (3) the inflation rate. 
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• Impact of real interest rate: If the real interest rate is high and 
stays high (for example, more than 6 percent), the charges of In­
bursa become significant within five to ten years. If the real in­
terest rate is low (3 percent or less), Inbursa remains the top per­
former for 20 years. 

• Impact of income level: If the income level rises, the cost benefits 
from staying with Inbursa rise. For example, for persons earning 
the minimum wage, the benefits of low fees from Inbursa evap­
orate after ten years. But, for people earning at least ten times 
the minimum wage, the benefits (such as lower management fees) 
from staying with Inbursa are evident for 20 years. 

• Impact of inflation rate: Except for Inbursa, all other funds charge 
a fee regardless of how well the funds are performing. (Atlantico's 
charges are based on the real rate and the contribution.) There­
fore, if the real rate is zero or negative, Inbursa will not charge 
anything, while other funds will still charge a fee. 

The simulation results show that no single fund dOminates all others 
under all scenarios. Our results do, however, suggest an interesting 
strategy: it is optimal to switch to a different fund after ten to 20 years 
(depending on level of income). The best fund to shift to depends the 
person's level of income and the level of real interest rates. 

We do not show each fund's accumulated values under each sce­
nario because the actual accumulated values are scenario dependent. 
Instead, the overall ranking of each fund is reported to see if any fund 
dominates. Clearly the rankings do not tell us how far apart the funds 
are in their final balances, nor do they tell us how accumulated values 
compare with a fund with zero fees. After 25 years or so, the differences 
between consecutively ranked funds are in the order of magnitude of 1 
to 3 percent. 

Tables 10, 11, and 12 show the best performing AFOREs for various 
levels of interest, inflation, and salaries. For example, Panel A of Table 
10 shows that Inbursa is the best performing fund when the nominal 
interest rate is 3 percent and inflation is 0 percent and a person with 
income equivalent to the minimum salary leaves his or her money in the 
AFORE for five years. For investments for five, ten, and 15 years, Inbursa 
is the best performer. The best AFORE with 0 percent inflation is Zurich, 
but Banamex leads in other scenarios. A 3 percent real rate is used in 
Table 10 because the Mexican government's national development plan 
projects a long-term real rate of 3 percent in Mexico. 
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Table 10 

Different Scenarios with a 3% Real Interest Rate and a Minimum Salary of 768.5 

Panel A: Initial Wage = Minimum Salary 

Nominal Time (in years) 

Rates Inflation 5 10 15 20 25 30 35 

3% 0% Inbursa Inbursa Inbursa Inbursa Zurich Zurich Zurich 

Confia Confia Zurich Zurich Banamex Banamex Banamex '-
0 

Bancrecer Zurich Confia Banamex Inbursa Previnter Previnter l::: .... 
~ 

9% 6% Inbursa Inbursa Inbursa Banamex Banamex Banamex Banamex ~ 
0 

Confia Confia Banamex Previnter Previnter Previnter Previnter -... 
l> 

Capitaliza Capitaliza 
C"'\ 

Bancrecer Banamex Previnter Inbursa Zurich .... 
l::: 
~ 

15% 12% Inbursa Inbursa Inbursa Banamex Banamex Banamex Banamex .... 
~ 

Confia Banamex Banamex Previnter Previnter Previnter Previnter 'i:J 

Zurich Confia Previnter Capitaliza Capitaliza Capitaliza Capitaliza ~ 
C"'\ .... 

21% 18% Inbursa Inbursa Inbursa Banamex Banamex Banamex Banamex ;::;" 
~ 

Confia Banamex Banamex Previnter Previnter Previnter Previnter ~ 
Zurich Previnter Previnter Capitaliza Capitaliza Capitaliza Capitaliza ~ 

I\.J 
<::> 
<::> 
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Table 10 (continued) ):. 
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Different ScenariOS with a 3% Real Interest Rate and a Minimum Salary of 768.5 Sl -~ 
Panel B: Initial Wage = 10 x Minimum Salary ~. 

I.S:l 
Nominal Time (in years) :s: 

Sl 
Rates Inflation 5 10 15 20 25 30 35 ~ 

Sl 
I.S:l 

3% 0% Inbursa Inbursa Inbursa Inbursa Inbursa Inbursa Zurich ~ 

~ 
Bancrecer Bancrecer Bancrecer Bancrecer Bancrecer Zurich Inbursa ~ 

~ .... 
Confia Confia Confia Zurich Zurich Bancrecer Banamex ~ 

~ 

9% 6% Inbursa Inbursa Inbursa Inbursa Inbursa Inbursa Zurich ""' Cl 

Bancrecer Bancrecer Bancrecer Zurich Zurich Zurich Banamex -.... 
""\) 

Confia Confia Confia Bancrecer Inbursa 
~. 

Bancrecer Banamex ~ .... 
15% 12% Inbursa Inbursa Inbursa Inbursa Inbursa Zurich Zurich ~ 

""\) 

Bancrecer Bancrecer Bancrecer Zurich Zurich Inbursa Banamex ~ 
~ 

""' Confia Confia Zurich Bancrecer Banamex Banamex Previnter c· 
~ 

21% 18% Inbursa Inbursa Inbursa Inbursa Inbursa Zurich Zurich .." s:: 
~ 

Bancrecer Confia Zurich Zurich Zurich Inbursa Banamex Sl.. 

""' Confia Bancrecer Confia Banamex Banamex Banamex PreVinter 

w 
"""' 
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Table 10 (continued) 

Different Scenarios with a 3% Real Interest Rate and a Minimum Salary of 768.5 

Panel C: Initial Wage = 100 x Minimum Salary 

Nominal Time (in years) 

Rates Inflation 5 10 15 20 25 30 35 

3% 0% Inbursa Inbursa Inbursa Inbursa Inbursa Inbursa Inbursa 

Bancrecer Bancrecer Bancrecer Bancrecer Bancrecer Zurich Zurich '-
0 

Confia Confia Confia Zurich Zurich Bancrecer Bancrecer s.:: 
..... 
~ 

9% 6% Inbursa Inbursa Inbursa Inbursa Inbursa Inbursa Zurich ~ 
0 

Bancrecer Bancrecer Bancrecer Bancrecer Zurich Zurich Inbursa -... 
~ 

Confia Confia Confia Zurich 
r, 

Bancrecer Banamex Banamex ..... 
s.:: 
~ 

15% 12% Inbursa Inbursa Inbursa Inbursa Inbursa Inbursa Zurich ..... 
§: 

Bancrecer Bancrecer Bancrecer Zurich Zurich Zurich Inbursa '1::J ..... 
Confia Confia Confia Bancrecer Banamex Banamex Banamex ~ 

r, ..... 
21% 18% Inbursa Inbursa Inbursa Inbursa Inbursa Inbursa Zurich ;:;;" 

~ 

Bancrecer Bancrecer Bancrecer Zurich Zurich Zurich Inbursa ~ 
:--

Confia Confia Zurich Bancrecer Banamex Banamex Banamex .:0 
I'v 
0 
0 
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Table 11 ~ 
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Different Scenarios with a 6% Real Interest Rate and a Minimum Salary of 768.5 :::s 
!O:l 

Panel A: Initial Wage = Minimum Salary ~ 
3;. 

l.!O:l 
Nominal Time (in years) ~ 

!O:l 
Rates Inflation 5 10 15 20 25 30 35 :::s 

!O:l 
l.!O:l 

6% 0% Inbursa Inbursa Zurich Zurich Zurich Zurich Banamex 
~ :s 
~ 

Confia Confia Previnter Banamex Banamex Banamex Zurich :::s ..... 

Bancrecer Zurich Banamex Previnter Previnter Previnter Previnter ~ 
~ 
V> 

12% 6% Inbursa Inbursa Banamex Banamex Banamex Banamex Banamex a 
~ 

"\J 
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Not surprisingly, the rankings change when the scenarios change. 
Once again, Inbursa does well for short time periods such as five or ten 
years. Banamex is better for all the long horizon scenarios. For money 
invested in an AFOREs for ten years when there is a 6 percent nominal 
interest rate and 0 percent inflation rate, for example, Confia comes out 
at the top, followed by Zurich and Banamex. 

If the real interest rate stays high (9 percent) for a number of years, 
the advantage of Inbursa erodes. There is no single winning AFORE 
under all possible alternatives. 

6 Alternatives to the Decentralized Pension Model 

The Chilean-influenced model adopted by Mexico is not the only 
model available. Other models have been tried successfully in different 
countries. The two most cited alternatives are the Singaporean Central 
Provident Fund (CPF) model and the employer-based Australian-Swiss 
model. 

6.1 The Singaporean Central Provident Fund 

As the name suggests, the CPF model has only one fund. This fund 
is centralized and controlled by the government. Investment by the CPF 
has been mainly in foreign government bonds and some foreign stocks. 
The real rate of return for the fund has been less than 3 percent per 
year over a period of 25 years. The transactions cost has been low as 
well. 

To implement the Singaporean model, people have to have faith in 
government. In Mexico (and in other parts of Latin America), the pop­
ulation has had little faith in government. In the past governments in 
these countries have not been efficient or open. Therefore, implement­
ing a model with a central and crucial role for the government was not 
a viable option. 

There have been criticisms of the Singapore model. Two compar­
isons can be made: one with other private pension funds operating in 
Singapore and the other with holding a mostly-bonds fund. On both 
counts, CPF account holders are penalized 1 to 3 percent per annum 
(Valdes-Prieto, 1998). 
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6.2 The Australian-Swiss Employer Based Model 

In the Australian-Swiss model each employer (rather than each em­
ployee) chooses a fund. Every employee for the employer is assigned 
the same fund. In this case, the transactions cost is low. Funds do 
not have to seek each account holder. They can concentrate on a few 
thousand employers rather than on millions of employees. Therefore, 
the costs of obtaining additional accounts are significantly lower. In 
these systems of pension, there is some choice by the superannuation 
account holders. Each pension fund is floated as a separate entity. In 
each entity employees (mostly through the unions) choose half of the 
members of the board of directors, and the employer chooses the rest. 
Hence, it is possible for workers to have (at least) indirect influence 
on the fund. From the complaints received by the Commissioner of 
Superannuation in Australia, it seems that many persons are deeply 
dissatisfied with the lack of choice. As a result, new legislation is being 
considered that would force each superannuation fund to offer a menu 
of at least five separate funds for employees. 

Early evidence on management fees in Australia indicates that costs 
are low. A recent study conducted by the Association of Superfunds 
of Australia reveals that earlier estimates may have severely underes­
timated management fees. This study, reported by Quinlivan (1998), 
argues that the pension fund industry in Australia has approximately 
$350 billion under management (Australian dollars). Cost of adminis­
tration and management is estimated at $4 billion. The annual inflow is 
around $33 billion. Therefore, charges are 12 percent of annual inflow 
and 1.15 percent of account balance. These charges in Australia are not 
spectacularly lower than what we observe in Latin America. The results 
from Murthi et al., (1999) for the United Kingdom are similar. The cost 
of fund management (without including fees for changing funds) is of 
the same order of magnitude in the United Kingdom. 

7 Closing Comments 

In studying the Mexican model, we compare the performance of the 
AFORE funds under various economic scenarios. The results show that 
an optimal strategy for individuals who want to minimize the impact 
of Mexico's high management fees is to switch funds periodically. The 
point of switching depends on assumptions about the scenarios. More­
over, in some scenarios, the optimal strategy is to switch more than 
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once. Still, the effect of these fees is to reduce workers' retirement 
funds by as much as 30 percent. 

In contrast, Mitchell (1999) conducts a set of simulations with a per­
son earning average income and without the discount given to persons 
with long tenure in one fund. Mitchell (page 16) wrongly concludes that 
" ... Plan ranking by commissions prove rather stable across simulated 
holding periods and interest rates." 

As other countries contemplate privatization of their public pen­
sion systems they must be wary because privatization is a double edged 
sword. First, privatization brings the risk of adverse selection that is 
well known in the insurance literature. Second, privatization does not 
solve the problem of transition generation, the obligations of the gov­
ernment to pay the promised benefits under the old pay-as-you-go sys­
tem. If the government issues bonds to finance the transition, then 
the system is not privatized (Espinosa and Sinha, 2000). Third, if pri­
vatization entails huge transaction costs, then another (perhaps more 
insidious) problem may have been created. 

There are generally two circumstances under which high transac­
tions cost or low rates of return credited to workers' funds may be 
obscured: (i) during periods of rapidly growing wages, or (ii) during 
periods of rapidly growing contribution rates. 

In Chile, high transactions costs were obscured by the rapidly grow­
ing wage rate. In addition, the real rates of return on the funds were 
high. Therefore, account holders ignored costs because the growth in 
their fund balances was high. 

In Singapore the real wage rate grew rapidly in the late 1980s while 
the rate of contributions grew rapidly (from 11 percent of salary to 45 
percent of salary) over a period of 25 years. Yet during the same period 
low rates of return were credited on the workers' accounts. Account 
holders did not protest because their balances grew steadily. 

In closing, we must emphasize that differences exist among the 
funds and using calculated average fees tend to mask these differences. 
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MUlti-year policies with large aggregate deductibles or multiple triggers 
raise some interesting issues about the correct amount of unearned premium 
reserve that a company should carry. Examples in this paper illustrate some of 
the difficulties that arise when trying to establish such reserves. The basic ap­
proach taken here is that the pure premium portion of the unearned premium 
reserve should always be adequate to cover the remaining risk. This approach, 
however, can lead to some unusual and controversial earning patterns; there 
are even situations where a negative premium is earned. In addition, the earn­
ing pattern for a particular loss scenario can differ materially from the earning 
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1 Introduction 

Statutory accounting requires that reserves be established for cov­
ered losses that have occurred but are unpaid (loss reserves) and eff­
ectively for losses that have not yet occurred, but will be covered by 
policies already on the books (unearned premium reserves). Further­
more, these reserves need to be separate. 

A problem can arise, however, when a multi-year contract has a large 
aggregate deductible. If losses depleting the deductible occur faster 
than expected, the premium reserve at some point may be inadequate. 
Of course, it is also possible that those losses occur more slowly than 
anticipated, in which case the premium reserve may be redundant. 

To deal with this potential problem with mUlti-year contracts, we 
recommend that at each point in time (or at the end of each accounting 
period) the pure premium portion of the unearned premium reserve 
should be adequate. This, in turn, implies a certain earning pattern for 
the premium that, in some cases, requires that a negative premium be 
earned~ 

The problems associated with the adequacy of the pure premium 
reserve were captured in the spirit of a hypothetical question put for­
ward by Ruy Cardoso on CASNET in 1999. Mr. Cardoso's question is 
paraphrased here: 

Losses are certain at $10 per month. You cover $20 excess 
$100 in aggregate. The contract begins 7/1/xx. What is the 
loss reserve at 12/31/xx (ignore investment income)? 

Most of this paper illustrates, using numerical examples, some of the 
consequences of taking the "adequate pure premium reserve" approach 
to establishing the unearned premium reserve (UEPR). These examples 
are designed to illustrate how the experience early in a multi-year excess 
contract affects the expected losses (to the contract, not ground-up)l 
that occurs later in the contract and how thiS, in turn, should affect 
premium reserving and earning patterns. While the examples could be 
made more realistic, such realism could introduce complications not 
relevant to the central issue. For example, in our Simplification of Ruy 
Cardoso's question above, we assume that there are certain losses of 
$20 per month. If the losses are certain, there are questions of risk­
transfer. 

Similarly, in Section 4, the single premium policy has an indefinite 
term-even though such a policy would be highly unusual. Despite 

IThe losses "ground-up" refer to the losses from first dollar. The losses to the con­
tract are those losses (limited by the limit) that are above the attachment point. 
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the simplifications, the examples and the technical considerations they 
illustrate are relevant. 

Section 7 provides some comments on practical considerations, in­
cluding remarks relevant to the new requirement that an actuary opine 
on the adequacy of the unearned premium reserve under certain cir­
cumstances. 

In some cases, the approach contained hereih might result, for ex­
ample, in earning a premium faster than some state's regulations would 
allow. Naturally, one should consult with qualified accounting profes­
sionals to decide how to properly record the financials of complex or 
difficult contracts. 

2 The Unearned Premium Reserve (UEPR) 

2.1 What is Unearned Premium? 

According to the glossary of the 1994 property-casualty insurance 
accounting text published by the Insurance Accounting and Systems As­
sociation (IASA), "Unearned premium [is] the portion of the premium 
applicable to the unexpired period of the policy." What is the unearned 
premium reserve (UEPR)? Again from the glossary, "The sum of all pre­
miums representing the unexpired portions of the poliCies or contracts 
which the insurer or reinsurer has on its books as of a certain date ... " 
UEPR is a liability that represents the premium for the unexpired risks 
on the insurer's books. 

The American Academy of Actuaries' Statement of Principles Re­
garding P&C Insurance Ratemaking (1999) states that ratemaking is 
prospective, and that a rate is an estimate of the expected value of fu­
ture costs. Also, a rate provides for all costs associated with the transfer 
of risk. This paper is concerned primarily with the pure premium por­
tion of the rate-i.e., the expected loss and loss adjustment expense, 
not including other expenses. 

Combining these two concepts, we see that UEPR consists of the 
pure premiums and the other expenses for the unexpired portion of 
the risks that are currently on the insurer's books. From one valuation 
date to another, the amount of unexpired risk on an insurer's books 
changes: new risks may be written, and the unexpired portion of those 
risks that were on the books at the beginning of the period generally 
decreases. This is captured in the familiar accounting identity: 
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EP = WP + UEPRbegin - UEPRend (1) 

where: 

EP = The premium earned during the period; 
WP = The premium written during the period; 

UEPRbegin = UEPR at the beginning of the period; and 
UEPRend = UEPR at the end of the period. 

Thus, other things being equal, UEPRend is inversely related to the 
amount of premium earned. Should it happen that the UEPRend for 
a certain policy is larger than its UEPRbegin without any new premium 
being written (we shall see below how this might happen), then equation 
(1) implies that the premium earned on the policy during this particular 
period is negative. 

2.2 Example 1 

We now turn to the question of the indicated UEPR for multi-year 
policies. For ease of exposition, let's first examine a Simplified version 
of the problem. We will assume 

• there are no reporting lags and that losses are paid as they are 
incurred; 

• there is a maximum of one loss in each year, each loss is exactly 
$1,000; 

• there is no investment income; and 

• the probability that a loss occurs in any given year is 10 percent 
and that different years are independent. 

For this simplified set of assumptions, we want to compute the pure 
premium for the kth loss during the next n years; we will denote this 
pure premium PP(k, n). Let Policy (k, n) denote a policy covering the 
kth loss. 

To illustrate: 

• PP(l,1) is the pure premium for a policy that pays $1,000 if there 
is at least2 one loss during year one, so PP( 1, 1) = $1,000 x 0.1 = 

$100. 

2In this first example, there can be only one loss per year so for the first year "at 
least one" implies "exactly one." 
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• PP(I, 2) is the pure premium for a policy that pays $1,000 if there 
is a loss during year one or year two (as we discount flows at 0 
percent it does not matter which). The probability that there is 
no loss in two years is 0.92 = 81 percent, so the probability of at 
least one loss is 19 percent and PP(I, 2) = $190 . 

• PP(2, 2) is the pure premium for a policy that pays $1,000 if there 
are at least two losses during years one and two. As we are as­
suming at most one loss per year, this can happen only if there is 
exactly one loss in each of years one and two. The probability of 
this is 0.10 x 0.10 = 1 percent and the pure premium is $10. 

Suppose that you purchased both Policy (1,2) and Policy (2,2). You 
would have full coverage for two years. In fact, your coverage would 
be identical to first purchasing Policy (1,1) and then one year later pur­
chasing a second Policy (1,1). Your pure premium for the first set of 
policies would be $190 + $10 = $200. For the second your pure pre­
mium would be $100 + $100 = $200 once more. This is no coincidence. 
Identical coverages must have identical pure premiums. 

In a world ignoring transaction costs, risk and profit loads, and other 
expenses, where risk carriers are willing to cede or assume risks for 
their pure premiums, the following principle holds: If two sets of poli­
cies give identical coverage, they must have the same premium charge. 
If this were not so, a portfolio consisting of a long position (assumed 
risk) and a short position (ceded risk) could be assembled that has 
positive net (pure) premium, but no net risk. This would violate the 
economic principle of no risk-free arbitrage, also referred to as the no 
arbitrage principle. 

2.3 The Required Pure Premium Reserve (RPPR) 

The pure premium for a policy is equal to the expected losses at 
contract inception. As time passes, however, the pure premium for 
the remaining losses will change. The required pure premium reserve 
(RPPR) is the expected future losses (ignoring transactions costs and 
other expenses) over the remaining lifetime of the insurance contract. 
The required pure premium reserve at time t (RPPRt) is the amount that 
a hypothetical risk carrier would require to assume the risk at time t, 
ignoring transactions costs and other expenses. RPPRt may depend on 
the loss experience up to time t. 

At policy inception, the required premium reserve equals the pure 
premium for the policy. At policy termination, when no more losses 
can occur, the required premium reserve is zero. (Here and throughout 
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the paper we assume that losses are paid as they are incurred and that 
there is no reporting lag.) RPPR is similar to the unearned premium 
reserve (UEPR), but it has one important difference. UEPR contains pre­
mium elements other than pure premium (such as expense loads and 
risk loads). In world with no transactions costs, an exactly adequate 
UEPR is equal to RPPR; in the following discussion the terms are used 
interchangeably. 

RPPR may depend on loss experience, as the following continuation 
of example 1 illustrates. The RPPR for Policy (1,2) at time t = 0 is the 
pure premium, which we computed above as $190. After one year, we 
are in one of two states: 

State Probability RPPRI 
Loss 10% 

No Loss 90% 

No more cover remains; 
RPPRI = 0 
Remaining cover is Policy (1,1); 
RPPRI = 100. 

The decrease in RPPR during the first year is analogous to the (pure) 
premium earned during that period. The decrease in RPPR in the loss 
case is 190 and in the no-loss case is 90. The probability of the loss case 
is 10 percent, so the expected change in RPPR is 0.1 x 190 + 0.9 x 90 = 

100, which must be equal to the pure premium for a one-year cover 
(Le., the coverage that you receive during the first year of Policy (1,2)). 
In fact, it is always true that the a priori expected value of the change 
in RPPR during a period is equal to the a priori expected value of the 
losses occurring during that period. 

In the above example, expected losses are $100 and the expected 
change in RPPR is also $100. While the expected change is $100, an 
actual change of $100 is not possible in this example. (It is either $90 
or $190.) 

3 The Adequate Pure Premium Reserve Approach 

Using this approach, the change in RPPR is a correct measure for 
pure premium earned during the period, and the pure premium portion 
of UEPR should be RPPR. Applying this approach to the example of the 
previous section: in the no-loss case, we would earn premium of $90 
during the first period. In the loss case we would earn premium of 
$190. 
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Under current accounting rules: in the loss case, because there is 
no more cover, all future premiums would be accrued and earned in 
the current period,3 so earned (pure) premium would be $190, just as 
the adequate pure premium reserve approach indicates. In the no-loss 
case, I believe that most companies would Simply earn half of the pure 
premium ($95) during the first year (and some might recognize that 
they have a $ 5 premium deficiency, as the pure premium for year two 
is $100). 

My view is that at policy inception we expect to earn $100, but that 
in fact we earn either $190 or $90 depending on our experience. This 
however can lead to some odd results. 

Consider the expected change in RPPR for Policy (2,2) during year 
one. This policy pays $1,000 for the second loss in two years. The pure 
premium for this policy is $10, so this is RPPR at time O. 

After one year we are again in one of two states: 

State Probability RPPRI 
Loss 10% Remaining cover is Policy (1,1); 

RPPRI = 100 
No Loss 90% As there can be only one loss per year, 

there can now be no second loss: 
RPPRI = o. 

In the no-loss case, which occurs 90 percent of the time, the decrease 
in RPPR is $10. In the loss case, the decrease in RPPR for Policy (2,2) is 
-$90. The expected decrease in RPPR is 0.9 x 10 + 0.1 x -$90 = o. 

The premium earning principle tells us that this must be the ex­
pected value of losses occurring during the first year. Does this make 
sense? Yes! This policy pays only on the second loss, and because we 
assume there can be only one loss per year, the second loss cannot oc­
cur during year one. That is why the expected losses during year one 
are zero. 

3.1 Standard Premium-Accrual Methodology Considerations 

I am not certain how companies would account for the above cover 
today. Some would argue that because the second loss cannot occur in 

3Under U.S.-GAAP, at least for reinsurers, this is the content of EITF93-6, Issue 3 "How 
should the ceding and assuntlng companies account for changes in future coverage 
resulting from experience under the reinsurance contract?" 
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year one, no premium should be earned in year one on this cover; they 
would earn all $10 in year two. Others might earn $5 in the first year 
and $ 5 in the second year. 

I would argue that in the no-loss case all $10 should be earned in the 
first year, but that in the loss case -$90 should be earned in the first 
year. The adequate pure premium reserve approach implies that the 
amount of pure premium earned during a period must be that amount 
such that the remaining RPPR contains exactly the expected pure pre­
mium required for the remaining policy period given the losses that 
have occurred to date. 

At inception, the company's expectation is to earn nothing during 
year one on this policy because the insured event could not occur during 
this period. But in fact one of two things happens: they have either an 
underwriting gain of $10 or an underwriting loss of $90. 

The standard premium accrual procedure referred to earlier (Le., ac­
cruing all future premium when no more cover remains) together with 
an application of the no arbitrage principle leads to the same conclu­
sion as the adequate pure premium reserve approach, as we will now 
illustrate. 

Recall that the portfolio consisting of Policy (1,2) and Policy (2,2) 
together give identical coverage to the portfolio consisting of Policy 
(1,1) along with a one year deferred Policy (1,1). By the no arbitrage 
principle, the premiums and how they are earned should be the same. 
During year one, the premium earned on Policy (1,1) is equal to 100. 
The premium earned during year one on each of Policy (1,2) and Policy 
(2,2) depends on the results of year one: 

(i) The Loss Case: 
Probability = 10 percent 
Policy (1,2) earns a premium of $190 implies 
Policy (2,2) earns a premium of -$90 
or 
(ii) The No-Loss Case: 
Probability = 90 percent 
Policy (2,2) earns a premium of $10 implies 
Policy(I,2) earns a premium of $90. 

In the loss case, the premium earned on Policy (1,2) is $190 by the 
standard premium accrual procedure. Using the no arbitrage principle, 
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because the total premium earned on the two policies during year one 
must be $100, the premium earned on Policy (2,2) must be -$90. 

Similarly, in the no-loss case, the premium earned on Policy (2,2) 
should be all $10, because no coverage remains. No arbitrage forces 
the premium earned on Policy (1,2) to be $90, because the sum must be 
$100. 

If one is uncomfortable with earning all of the premium for Policy 
(2,2) in the no-loss case in year one, consider what happens to the pair 
of poliCies in year two given that there is no loss in year one. The 
coverage is identical to the coverage afforded by a one year deferred 
Policy (1,1), so the earned premium in year two must be the same: $100. 
The coverage during year two for Policy (1,2) is the same as for a Policy 
(1,1) because we are given that there is no loss in year one. The premium 
earned on Policy (1,2) during year two must be $100. Because the total 
premium earned is also $100, no premium can be earned on Policy (2,2). 
Over the life of Policy (2,2) $10 must be earned; if none is earned in year 
two, all of it must be earned in year one. 

3.2 Reconciling Total Earnings 

The total amount of pure premium earned during the life of the 
policy is always equal to the initial pure premium. If some negative 
premium is earned during one period, it is recovered in later periods 
(or is balanced by some overearning in prior periods). The total change 
in RPPR from contract inception to contract termination is the a pri­
ori pure premium. This is an important point. The negative premium 
earned is not new premium, the written premium stays the same-it is 
just earned in a different pattern.4 

UEPR for a given policy is amortized over the policy's term. This 
amortization occurs according to some amortization schedule. For 
most lines of business this amortization schedule is linear over the 
term. This linearity produces the familiar pro-rata earning pattern. 
This pattern is theoretically correct for a policy with no aggregate de­
ductible, no aggregate limit, and an underlying loss process that has a 
compound Poisson distribution. For a further discussion of compound 
distributions see, for example, Bowers et al., (1997, Chapter 12). For 
certain lines of business (e.g., extended warranty, ocean marine cargo 
cover, credit insurance on a declining balance) other amortization pat­
terns and, hence, earning patterns are used. The adequate unearned 

4It is should be noted that the process of setting the UEPR to the currently required 
pure premium reserve is nothing more than a mark-to-market of the outstanding UEPR. 
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premium reserve process described above can be thought of as adjust­
ing this amortization schedule to include the latest data. 

Traditionally, one thinks of unearned premium reserves flowing into 
loss reserves and surplus as the policy term progresses. Sometimes the 
losses occur more slowly than expected, and an unexpectedly large por­
tion of this flow goes to surplus. Other times losses occur more rapidly 
than expected, and (unfortunately) in these cases surplus may flow into 
loss reserves. In the example above, it is the unearned premium reserve, 
not the loss reserve, that has become inadequate and requires supple­
mentation from surplus. 

4 More Examples 

4.1 Example 2: A Less Simplified Example 

This example allows for more than one loss in each year. For sim­
plicity, we assume that in each year there are 0, 1, or 2 losses with 
probabilities 1/2, 1/3, and 1/6, respectively. Losses are still constant 
but the constant loss amount will be $216 instead of $1,000. We con­
tinue to ignore investment income. 

The pure premiums for Policy (k, n) may be computed as follows. 
First compute the probability of having exactly k losses by the end of 
year n; the result of this calculationS is displayed in Table 1. Then sum 
the probabilities in Table 1 to produce the probability of having at least 
k losses in n years; see Table 2 for these values. Finally, multiply the 
probabilities in Table 2 by the constant loss amount of $216 to compute 
the pure premiums shown in Table 3. 

Consider Policy (2,3), which covers the second loss in three years. 
The pure premium for this coverage is $135. How much of this pre­
mium do we expect to earn during the first year? 

Half of the time there will be no loss during the first year, and RPPR 
for the last two years of the policy must be $90-the pure premium for 
Policy (2,2). In this case $135 - $90 = $45 would be earned in the first 
year. 

5The probabilities are most easily computed recursively. For example: 

Pr(2, 2) = 1/2 x Pr(2,1) + 1/3 x PrO, 1) + 1/6 x Pr(O,l). 

That is, the only way to have exactly two losses at the end of year two is to have had no 
loss in year two and exactly two losses in year one, or exactly one loss in year two and 
one loss in year one, or two losses in year two and no loss in year one. (Here the events 
joined by "and" are independent and the events joined by "or" are mutually exclusive.) 
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Similarly, one-third of the time there will be one loss during the 
first year; then RPPR for the last two years must be $162 (the pure 
premium for Policy (1,2), which is equivalent to the remaining coverage) 
and $l35 - $162 = -$27 would be earned during the first year. 

Finally, one-sixth of the time there are two losses in year one. In this 
case there is no more coverage available. RPPR for the last two years is 
zero, and the full $l35 would be earned during year one. 

Combining the above calculations for the first year earned premiums 
we find that at policy inception the expected earned premium for year 
one is 

1/2 x $45 + 1/3 x -$27 + 1/6 x $l35 = $36. 

Year three's expected earnings are Similarly easy to calculate: during 
the first two years of the cover there is a 1/2 x 1/2 = 1/4 chance that 
there have been no losses and a 1/2 x 1/3 + 1/3 x 1/2 = 1/3 chance of 
exactly one loss. From Table 2, we see that the pure premium for Policy 
(2,1) is 36 and for Policy (1,1) is 108. From this we see that at policy 
inception we expect to earn 1/4 x $36 + 1/3 x $108 = $45 during year 
three. 

During the life of the policy we will earn exactly $l35. If at policy 
inception we expect to earn $36 in year one and $45 in year three, it 
follows that we must expect at policy inception to earn $l35 - $36 -
$45 = $54 during year two. 

Does this mean that we should earn the premium over the three 
years in this pattern: $36, $54, $457 No, because these are a priori 
expectations. As we have seen in earlier sections, the premium earned 
during year one need not equal the a priori expected earned premium. 
Also, at the end of year one our expectations for the earnings in years 
2 and 3 will probably be different than they were at inception. 

The first two rows of Table 3 contain all the information needed to 
compute the actual amount of premium earned to date at the end of 
each year. For example, suppose there is exactly one loss, and it occurs 
in year two. Then we should earn $45 in the first year, because when we 
start year two, the remaining coverage is the second loss in two years: a 
Policy (2,2). During year three we are in a first-loss position, so we need 
to earn $108 because at the start of year three, the remaining coverage 
is the first loss in one year: a Policy (1,1). Because the total amount 
earned over the three years must be $l35, we find that the year two 
(actual) earnings must be -$18. So the actual earning pattern observed 
in this case would be ($45, -$18, $108), which differs markedly from 
the a priori expectation. 
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Table 1 
Probability of Exactly k Losses in n Years 

k n=l n = 2 n=3 
0 50.00% 25.00% 12.50% 
1 33.33% 33.33% 25.00% 
2 16.67% 27.78% 29.17% 
3 0.00% 11.11% 20.37% 
4 0.00% 2.78% 9.72% 
5 0.00% 0.00% 2.78% 
6 0.00% 0.00% 0.46% 

Table 2 
Probability of at Least k Losses in n Years 

k n=l n=2 n=3 
o 100.00% 100.00~ 100.00% 
1 50.00% 75.00% 87.50% 
2 
3 
4 
5 

6 

16.67% 41.67% 62.50% 
0.00% 13.89% 33.33% 
0.00% 2.78% 12.96% 
0.00% 0.00% 3.24% 
0.00% 0.00% 0.46% 

Table 3 
Pure Premiums for Policy (k, n) 

Loss k n = 1 n = 2 n = 3 

1 108 162 189 
2 36 90 135 
3 
4 
5 

6 

o 
o 
o 
o 

30 
6 
o 
o 

72 
28 

7 
1 
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4.2 Example 3: An Indefinite-Term Example 

In this example we will assume a 1/10 chance of loss each year and 
return to the simplified model of at most one loss per year. Loss severity 
is assumed constant at $3,000. We will continue to ignore investment 
income. The policy that we consider in this example covers one loss, 
but has no time limit. The policy will stay in effect until there is a loss, 
at which time it will pay $3,000.6 

4.2.1 Pure Premium and Earning Patterns 

What is the pure premium for this coverage? Let P be this premium. 
Then P must pay for two things. One-tenth of the time there is a loss 
during year one of $3,000 and RPPRI = O. The other nine-tenths of the 
time, there is no loss in the first year, and RPPRI is the pure premium for 
a policy that pays $3,000 whenever the loss occurs-but this is exactly 
what P is. We have: 

P = 1/10 x ($3,000 + 0) + 9/10 x (0 + P). 

Solving for P, one finds P = $3,000. 
Upon reflection this is not surprising, as $3,000 will be paid out 

eventually. (Recall that we are still ignoring investment income.) The 
pure premium equals the expected loss, which is $3,000. 

How does one earn the premium for such a policy? In the loss case, 
the premium earned in year one is $3,000; in the no-loss case the pre­
mium earned in year one is $0 (because RPPRI remains at $3,000). At 
policy inception the expected earned premium for the first year is $300. 

What about later years? The answer depends on when you ask the 
question. 

At the start of the first year, we expect to earn $270 during the 
second year and $243 during the third. But these are the a priori ex­
pectations at the start of the first year; after one year has passed there 
has been either one loss or no loss, and with this additional information 
the expected values for earned premium change. 

At the start of the second year there are two possibilities: either 
there is a loss in year one (in which case no coverage remains) or there 
is no loss in year one (in which case there is coverage for year two). 
Also, because we are assuming no late reporting, you will know which 
case applies. The conditional expectation (given no loss in year one) 

6This example is akin to a single premium whole life insurance policy. 
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for the premium earned in year two is $300. Similarly, the conditional 
expectation (given no loss is year one) for the premium earned in year 
three is $270. Similarly, the conditional expectation (given no loss in 
years one and two) for the earned premium in year three is $300. 

The expected earning pattern at the start of any year, for that and 
subsequent years, is ($300, $270, $243, ... ), with each term being 9/10 
of the previous term. When a year passes without loss, each of these 
terms shifts forward. It should come as no surprise that this infinite 
geometric series sums to $3,000. 

Why is no premium earned during no-loss years? Because RPPR at 
the start of the no-loss year is $3,000, and it is also $3,000 at the end of 
the year. The change in RPPR, in this case $0, is the earned premium. 
During a loss year, RPPR is $3,000 at the start of the year, and it is $0 at 
the end of the year (because no more coverage remains). The amount 
earned during the year is $3,000. 

The company shows no underwriting gain or loss, regardless of the 
outcome. In the no-loss case there is no movement in the reserves; in 
the loss case RPPR becomes the loss reserve. This is a consequence of 
the indefinite policy term. Because the cover continues until there is 
a loss, having a no-loss year only delays the inevitable payment; with­
out investment income, the delay does not benefit us. We relax this 
restriction below. 

4.2.2 The Impact of Investment Income 

Let's take into account investment income. Assume that all losses 
are paid at the end of the year and that invested funds earn interest 
at a rate of 5 percent. The equation for the present value of the pure 
premium then becomes: 

$3,000 P 
P = 1/10 x 1.05 + 9/10 x 1.05' 

One-tenth of the time we pay a loss of $3,000 (discounted one year) and 
nine-tenths of the time the present value of RPPRI is P (discounted one 
year). Solving for P, we find that P = $2,000. 

How should this premium be earned? Should the fact that we now 
consider investment income affect how we earn the premium? 

Suppose that we have a loss in year one. Then, as before, RPPRI = 0, 
so we earn the full $2,000 during year one. We also have investment 
income of $100. On the other hand, suppose that we have no loss in the 
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first year. Then RPPRI = $2,000, and again we have investment income 
of $100. What should be done with the investment income? 

To investigate that question, we examine an alternative way to con­
struct this same coverage. Consider an annual policy that pays $1,000 
at the end of the year if there is a loss, for a premium payable at the 
end of the year? of $100 (the pure premium for the policy). In effect, 
this policy provides similar coverage to the first year of the original pol­
icy, subject to a $2,000 self-insured retention. Imagine that the insured 
sets aside this $2,000 in a special account. During the year, $100 in 
investment income is earned on the $2,000 (this is paid to the insurer 
as premium) and, if there is a loss, the $2,000 set aside and the $1,000 
from the insurer combine to provide the $3,000. 

With a one-time premium of $2,000 and a limit of $3,000, the insurer 
has only $1,000 at risk. So in this second set-up, the insurer is entitled 
to only $100 (= $1, 000 x 10%) in annual pure premium. This, as we 
have seen, is the investment income generated by the one-time premium 
payment of $2,000. 

We see that the insured can obtain identical coverage in two ways: 
by setting aside the $2,000 and paying an annual premium of $100 in 
arrears or by paying a one-time premium of $2,000. The no arbitrage 
principle says that because the two coverages are identical, their pure 
premiums must be equal. In order for this to work, we need to view 
the investment income on (discounted) premium as premium-this is 
implicit in the pricing equation. 

Now we can determine the earning pattern for the original multi-year 
policy and answer the question about what to do with the investment 
income. In a year with no loss, premium of $100 is earned. In a loss 
year, premium of $2100 (the original premium plus one year's invest­
ment income) is earned. 

This result is related to the paid-up insurance formula for life re­
serves; see, for example, Bowers et al., (1997, Chapter 7). 

4.3 Example 4: An Example with Expenses 

In the real world, UEPR contains many components in addition to 
RPPR's pure premium. There may be, for example, on-going contract 
maintenance expense.8 Effectively, such expense forms an annuity that 
runs until contract termination. One quick example will give a flavor of 
the complications. 

7The premium is made payable at the end of the year to remove timing effects. 
SHad these expenses have been deferred policy acquisition expenses, there would be 

additional accounting complications. 
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Recall the earlier example of an indefinite-term policy that pays 
$3,000 when the loss occurs, has annual loss probability of 10 per­
cent, and no investment income. Assume that on-going contract main­
tenance expense is $150 per year. Letting G stand for the expense­
loaded premium, the premium equation now reads: 

G = 1/10 x ($3,000 + $150) + 9/10 x (G + $150). 

That is, one-tenth of the time we have expenses of $150 and a loss of 
$3,000, and the other nine-tenths of the time we have expenses of $150 
and RPPRI = G (because of the indefinite term). Solving for G, we find 
that G = $4500. 

The company with this risk on its books suffers an underwriting 
loss (after expenses) of $150 each year that there is no loss, but has an 
underwriting gain of $1350 the year that the loss occurS!9 

The interested reader may find it amusing to calculate the effect on 
this example of including 5 percent investment income. 

5 Some Practical Ramifications 

Though the preceding examples illustrate some of the theoretical 
issues, the practicing actuary must consider the broader practical ef­
fects of any change to common practice. Questions of materiality and 
practicality also should be addressed. 

5.1 Actuarial Reserve Opinions 

The National Association of Insurance Commissioners' (NAIC) SAO 
Instructions for Property-Casualty (1998) specifies that the SCOPE para­
graph include the reserve for direct, ceded, and net unearned premi­
ums. It also specifies that these three items must be covered in the 
opinion and relevant comments paragraphs. This applies to all insurers 
that write direct and/or assumed contracts or poliCies (excluding finan­
cial guaranty, mortgage guaranty, and surety contracts) with terms of 

9What's happening here is that we have an annuity with an expected life of ten years 
funding the expenses. When we have a no-loss year, the expected life of the annuity 
stays at ten (instead of decreasing to nine) and we show an underwriting loss of the 
difference. When we have a loss year, the expense annuity is no longer needed (its 
expected life drops from ten to zero). The release of the reserve supporting this annuity 
yields the underwriting gain. 
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13 months or more, which the insurer cannot cancel and for which the 
insurer cannot increase premiums during the term. 

The insurer is required to establish an adequate unearned premium 
reserve. For each of the three most recent policy years, the gross un­
earned premium reserve must be no less than the largest result of three 
tests. The three tests (in slightly Simplified form) are: 

1. The best estimate of the amounts refundable to the contract hold­
ers at the reporting date. 

2. The gross premium multiplied by the ratio of (a) over (b) where: 

(a) Equals the projected future gross losses and expenses to be 
incurred during the unexpired term of the contracts; and 

(b) Equals the projected total gross losses and expenses under 
the contracts. 

3. The amount of the projected future gross losses and expense to be 
incurred during the unexpired term of the contracts (as adjusted), 
reduced by the present value of the future guaranteed gross pre­
miums. 

The examples in this paper are intended to be non-cancelable insur­
ance contracts with fixed premiums. The contract terms are more than 
13 months in length. The rule applies, except for the proscribed lines 
of business. How do our examples fare under these tests? 

For SimpliCity, we shall assume that there are no refund provisions in 
the policy, so the Test 1 lower bound on the unearned premium reserve 
is zero. 

Test 2 requires that we estimate gross losses and expense. The 
examples in this paper for the most part have been concerned with 
pure premiums (Le., only the expected losses, with no provision for 
expenses). Under the simplifying assumption that expenses are zero, 
Test 2 tells us to estimate the projected future gross loss to be incurred 
and to divide this by the projected total gross loss. This ratio is then 
multiplied by the gross premium to obtain the second lower bound on 
the unearned premium reserve. 

Test 3 requires that the unearned premium reserve be at least as 
large as the expected future losses and expenses to be incurred during 
the contract (as adjusted). The amount of the projected future gross 
losses to be incurred is exactly RPPR at the statement date. The adjust­
ments in question are for future premiums and for investment income 
until the loss is incurred but not beyond. Our examples have no future 
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premiums and our losses are assumed to be immediately payable. [The 
test also specifies a company-specific maximum interest rate. We will 
assume that 5 percent meets this test.] 

In our examples, RPPR is the lower bound on the unearned premium 
reserve specified by Test 3. 

5.2 Perspectives on Aggregate Deductible Business 

In a multi-year contract with an aggregate deductible, the experience 
of the first few years can influence the required premium reserve in two 
ways. First, the aggregate deductible may be depleted more rapidly 
or more slowly than planned; second, adverse or favorable experience 
during the initial period may influence one's view of the future ground­
up experience. This paper addresses only the former. 

There is an additional way to view such policies. The later years 
of a multi-year policy with an aggregate deductible can be thought of 
as excess layers, each year/layer having a retention that depends on 
the earlier years' experience. If the total losses to date have been small, 
little of the aggregate deductible has been eroded and the retention (the 
remaining aggregate deductible) for the later years is higher. Because 
higher layers have lower premiums, RPPR is small. Similarly, if early 
experience has been unfavorable, much of the aggregate deductible will 
have been eroded. The retention will be lower and RPPR will be large. 
In essence, early experience determines to which layers the later years' 
coverage corresponds. 

5.3 What to Do About Negative Premium? 

In chapter 14 of the IASA text, David L. Holman and Chris C. Stroup 
discuss U.S.-GAAP accounting for P&C insurers. Under U.S.-GAAP there 
is a notion of a premium deficiency reserve (PDR). Holman and Stroup 
write: 

Projections, therefore, are periodically updated, based on 
new information about expected cash flows. GAAP requires 
that a premium deficiency be recognized if the sum of ex­
pected loss and loss adjustment expenses, expected divi­
dends to policyholders, maintenance costs, and unamortized 
(or deferred) policy acquisition costs, exceed the related un­
earned premiums related thereto. 

If there is a defiCiency, the unamortized policy acquisition costs are re­
duced to make up the shortfall. If that alone is not sufficient, a liability 
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is reported for the remaining deficiency. Interestingly, Canadian statu­
tory accounting provides a line item (Line 15) for premium deficiency 
(see chapter 18 of the IASA text). European actuaries speak of the re­
serve for unexpired risks, which is similar in concept to a combined 
unearned premium and premium deficiency reserve. 

So, under U.S.-GAAP one might establish a PDR to handle negative 
premium earnings. Effectively, a negative premium is earned by the 
reduction of an asset (the unamortized policy acquisition cost) and/or 
the establishment of an additional liability. 

Statutory accounting does not have the notion of a premium defi­
ciency, although in principle one could include one by using the write-in 
lines. Due to U.S. income tax regulation, there may be a material differ­
ence between treating the shortfall as premium or as some other type 
of liability. The interested reader should see chapter 13 of the IASA 
text or Almagro and Ghezzi (1988). 

5.4 Is It Loss or Is It Premium? 

The argument can be made that instead of altering the premium 
earning methodology, we should establish loss reserves corresponding 
to the losses that are eroding the aggregate deductible. That is, there is 
an increase in expected losses to the cover caused by events that have 
occurred prior to the statement date. The amounts are not in dispute; 
they would be exactly the amount needed to make the booked reserve 
match RPPR. The difference is that these reserves would be character­
ized as loss instead of premium. 

But these reserves behave more like premium than loss in two im­
portant ways. First, they amortize over the remaining policy period. To 
see the second reason, consider a two-trigger two-year policy. In order 
for the policy to pay, two events, A and B, must occur during a two-year 
period. Say event A occurs in year one, and as a result some additional 
reserve (either a loss reserve or a premium deficiency reserve) is needed. 
Suppose now you wanted to completely reinsure this risk. You could 
do this by purchasing cover for event B. Observe that this reinsurance 
is completely prospective. Being prospective, it should be funded from 
premium reserves, not loss reserves. lO 

lOClaims-made poliCies and sunset clauses in reinsurance agreements can further 
blur the line between premium reserves and loss reserves. Suppose that an event has 
occurred, but that it has not been reported yet. Assuming that a reserve is appropriate, 
should it be premium or loss? This reserve amortizes over the remaining reporting 
period (acts like premium). On the other hand, the underlying loss event has already 
occurred. Is the reporting a second trigger? 



64 Journal of Actuarial Practice, Vol. 9, 2007 

6 Conclusions 

We could use the adequate pure premium reserve approach to an­
swer Mr. Cardoso's question, which was mentioned in Section 1 above: 
Losses are certain at $10 per month. You cover $20 excess $100 in 
aggregate. The contract begins 7/I/xx. What is the loss reserve at 
12/31/xx? 

Assuming no expenses or investment income, UEPR would be $20 
(because that is RPPR remaining), and the loss reserve would be $0 (be­
cause no covered loss has occurred). No premium (positive or negative) 
would have been earned to date. 

The adequate pure premium reserve approach outlined in this pa­
per is internally consistent, even though it leads to some controversial 
implications such as negative earned premium. But the idea of negative 
earned (and written) premium already is used in some instances, such as 
the treatment of ceded proportional reinsurance. U.S.-GAAP and Cana­
dian accounting have a notion of a premium deficiency reserve (PDR), 
and in some European jurisdictions there is a notion of an unexpired 
risk reserve. These entries could be used to record unexpected changes 
in the required premium reserve. 

There are some operational problems, however, with the negative 
premium approach: it may distort loss and expense ratios; it can make 
budgeting difficult; and, for U.S. taxpayers, the treatment of UEPR for 
U.S. taxation is different than for other reserves, which could lead to 
complications. 

The good news is that, on average, the standard methodology should 
give the same results as this method for a large book of uncorrelated 
risks, written evenly throughout the year. The analysis outlined in this 
paper is probably justified for those risk carriers with a few large risks 
or for single risks that are large enough to distort the book. 
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1 Introduction and Motivation 

1.1 A Priori Risk Classification Variables 

One of the main tasks of an actuary is to design a tariff structure 
that fairly distributes the burden of current claims among its portfolio 
of current policyholders. If the insurance portfolio consists of hetero­
geneous risks (policyholders), then it is fair to partition the portfolio 
into homogeneous classes of policies with policyholders belonging to 
the same class paying the same premium. 

The classification variables used to partition the portfolio into ho­
mogeneous cells are called a priori variables (as their values can be 
determined at the start of the policy). In automobile third-party liabil­
ity insurance, for example, the commonly used classification variables 
include the age, gender, marital status, occupation, type and use of 
car, and residential address. Generalized linear models can be used to 
select the a priori classification variables. l 

In most practical situations many important factors (such as driv­
ing style, reflexes, or knowledge of rules of the road) cannot be taken 
into account when selecting the a priori classification variables. Conse­
quently, even after the a priori classification variables have been chosen, 
tariff cells may still be heterogeneous. It is reasonable to believe, how­
ever, that these characteristics are revealed by the number and sizes 
of claims reported by the policyholders over the successive insurance 
periods. Hence, at the end of each insurance period the next period's 
premium is adjusted on the basis of the individual's claims experience 
in order to ensure fair premiums among policyholders. 

It is interesting to mention that in North America, emphasis has tra­
ditionally been laid on a priori ratings using many classifying variables, 
while in continental Europe just a few a priori classifying variables were 
used and much importance was placed on the a posteriori evaluation of 
drivers. Since July 1994, however, European Union (EU) directives have 
introduced complete rating freedom. Insurance companies operating 
in EU countries are now (theoretically) free to set up their own rates, 
select their own classification variables, and design their own bonus­
malus system.2 Companies in most EU countries have taken advantage 
of this freedom by introducing more rating variables. 

IFor more on generalized linear models, see, for example, Renshaw (1994) or Pin­
quet (1997,1999) for applications in actuarial science; or Me Cullagh and NeIder (1989), 
Dobson (1990), or Fahrmeir and Tutz (1994). 

2For a thorough presentation of the techniques relating to bonus-malus systems, we 
refer the interested reader to Lemaire (1995). 
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In a competitive insurance market the trend is toward portfolio seg­
mentation because insurers tend to use all available relevant informa­
tion to match the rating structure used by competitors. As the only item 
of interest is the unknown distribution function of the claim amounts 
produced by the driver during a period, it seems fair to correct the in­
adequacies of the a priori system by using an adequate bonus-malus 
system. Such an experience rating system should be better accepted by 
policyholders than arbitrary a priori claSSifications. 

A bonus-malus system is a rating system based on the following 
mechanism: 

1. Claim-free policyholders, Le., those with zero claims within a sin­
gle period, are rewarded by premium discounts called bonuses; 
and 

2. Policyholders reporting one or more accidents at fault during a 
period are penalized by premium surcharges called rnaluses. 

This a posteriori ratemaking system is an efficient way of classifying 
policyholders into cells according to their risk. As pointed out by Lemaire 
(1995), if insurers are allowed to use only one rating variable, it should 
be a merit rating variable because merit rating variables are the best 
predictor of the number of claims incurred by a driver. Besides encour­
aging policyholders to drive carefully (Le., to counteract moral hazard), 
merit rating systems aim to better assess individual risks, so that ev­
eryone will pay in the long run a premium corresponding to her or his 
own claim frequency. Such systems are called no-claim discounts, ex­
perience rating, merit rating, or bonus-malus systems. 

1.2 The Nature of Risk Transfers3 

Consider a portfolio of automobile third-party liability insurance 
poliCies. Let Y denote a quantity of actuarial interest for a policy taken 
at random from the portfolio. For example, Y can be the amount of a 
claim, the aggregate claims in one period, or the number of accidents 
at fault reported by the policyholder during one period. The actuary 
has a set of observable risk classification variables, X, pertaining to the 
selected policyholder, which may include such items as age, gender, 
marital status, occupation, home address, type and use of her or his 
car. In addition, Y also depends on a set of unknown characteristics 
Z, which may include such items as annual mileage (Le., risk exposure), 

3The ideas presented in this section are inspired by De Wit and Van Eeghen (1984). 
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accuracy of judgment, aggressiveness behind the wheel, drinking be­
havior, etc. Some of the elements of Z are unobservable; others cannot 
be measured in a cost efficient way. If 0 denotes the entire set of risk 
factors for this policyholder then 

0= Xu Z. 

The true net premium for this policyholder is IE[YIO]; it is worth 
mentioning that this premium is a random variable but much less dis­
persed than Y itself, making insurance policies worth buying. The sit­
uation can be summarized as described in Table 1. In this case, the 
policyholder keeps the variations of the premiums due to the modi­
fications in her or his personal characteristics 0 and transfers to the 
company the purely random fluctuations of Y (that is, the variance of 
the outcomes of Yonce the personal characteristics X and Z have been 
taken into account). As the elements of Z are unknown to the insurer, 
the situation described in Table 1 is purely theoretical. Because the 
company only knows X, the actual reality of the insurance business is 
rather as depicted in Table 2. 

Table 1 
Risk Transfer Between Insurance Company 

And Policyholder in Case of Full Information 
Amount Carried By 

Policyholder Insurer 
Risk: IE[YIO] Y -1E[YIO] 
Expectation: IE[Y] 0 

Variance: var[ IE[YIO]] IE[ Var[YIO]] 

It is well known to statisticians and actuaries that for a random 
variable A and a random vector B (possibly of dimension 1), 

IE [A] = IE [IE [AlB]] and YarrA] = IE[Var[AIB]] + Var[IE[AIB]]. 

If we let A = YIX and B = 0, then 

IE[Var[YIX]] = IE[Var[YIO]] + IE[Var[IE[YIO] I X]]. 

The first term on the right, Le., IE[ Var[YIO]], represents the purely 
random fluctuations of the risk and is supported by the insurance com-
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pany. The second term on the right represents the variation in the ex­
pected claims due to the unknown risk characteristics Z. This quantity 
should be corrected by an experience rating mechanism. 

Table 2 
Risk Transfer Between Insurance Company 

And Policyholder in Case of Partial Information 
Amount Carried By 

Policyholder Insurer 
Risk: lE[YIX] Y -lE[YIX] 
Expectation: lE[Y] 0 

Variance: var[lE[YIX]] lE[ Var[YIX]] 

Next, assume the insurance company incorporates more a priori 
variables in its pricing structure; that is, X (with X c X) is substituted 
for X. 

that is, the residual heterogeneity in the portfolio is reduced. Conse­
quently, the variance of the insurer's experience is also reduced, Le., 

The severity of the a posteriori corrections thus decreases as the infor­
mation used by the insurer increases. 

1.3 Objectives 

Let 3"t denotes the entire past claims experience available about Y 
at time t. The central idea behind experience rating is that 3"t reveals 
its hidden features Z as t - 00, Le., the information contained in (X, 3"t) 
becomes comparable to n as time goes on. Therefore, the a posteriori 
premium is lE[YIX, 3"t]. 

The aim of this paper is to examine the interaction between a pri­
ori rate making (Le., identification of the best predictors X and of the 
risk premium lE[YIX]) and a posteriori ratemaking (Le., premium cor­
rections according to past claims history 3"t in order to reflect the un­
available information contained in Z). 
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The paper is organized as follows: Section 2 contains a brief review 
of the current methodology of automobile ratemaking in EU countries. 
It considers risk classification and credibility as two separate problems. 
This approach has flaws because the aim of experience rating is to re­
duce the residual heterogeneity of the portfolio, which obviously de­
pends on the degree of a priori segmentation. Therefore a priori and a 
posteriori ratemaking have to be integrated in a continuous risk eval­
uation mechanism. In Section 3, we present the results of Dionne and 
Vanasse (1989, 1992) and Gisler (1996), as well as an alternative ap­
proach based on an exponential loss function. Such loss functions have 
been considered by Ferreira (1977), Lemaire (1979), Young (1996), and 
Denuit and Dhaene (2001), among others. 

Our methods are illustrated by an example using a Spanish insur­
ance portfolio. This example considers only two risk factors and al­
lows for a deeper understanding of the technical concepts introduced. 
Adaptation of the methodology to real-life portfolio is then straightfor­
ward. Several optimization programs are used extensively throughout 
this paper (some of them are standard in actuarial science, others are 
less common). The appendix contains a description of all results, to­
gether with proofs for the sake of completeness. 

2 Current Methodology 

2.1 The Model 

Consider an automobile portfolio consisting of N independent poli­
cies. These poliCies are split into M homogeneous risk classes. The pre­
mium paid by each policyholder depends on the policyholder's rating 
factors for the current period and also on her or his claim history. The 
premium charged is the product of a risk classification base premium 
and of a bonus-malus coefficient. The base premium for a risk class is 
a function of the current rating factors, whereas the bonus-malus co­
efficient only depends on the policyholder's history of reported claims 
at fault. 

We assume the insurance company determines its risk classification 
factor using generalized linear models; see, e.g., in Renshaw (1994). 
We suppose the N risks are partitioned into M distinct (disjoint) risk 
classes. In each risk class, the poliCies are identical from the company 
point of view, whereas poliCies in different risk classes have distinct 
risk profiles. 
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For m = 1,2, ... , M, the base premium for the m th risk class is 
denoted by BPm , which is the amount charged to a new policyholder 
entering the m th risk class. Of course, inside each risk class, the policies 
are not strictly identical. Therefore, the premium is adjusted over time 
using a bonus-malus factor BMF(k, t) where t is the number of years 
the policy is in force and k is the number of claims reported while the 
policy is in force. 

Notice that while the base premium depends on the risk class, the 
same bonus-malus factor is applied to all drivers, i.e., it is independent 
of the risk class. This is erroneous because a bonus-malus system is 
supposed to correct the actual premium for the residual heterogeneity 
existing in the different risk classes, which implies that the severity of 
a bonus-malus system must depend on the policyholder's risk class. In 
fact, the more a priori risk factors used in the risk classification system, 
the less severe bonus-malus coefficients should be. Uniform bonus­
malus systems imposed by regulatory authorities in some EU countries 
(e.g., Belgium and France) create cross-subsidization of insurance port­
folios. 

Let 

Kij Number of claims incurred by the ith policyholder during period 
(j - l,j); 

nik Number of policies from class i reporting k claims; 

0h Risk proneness parameter of policyholder i. It captures the 
propensity of policyholder i to produce claims and is regarded 
as a random variable; and 

Zijk = Size (severity) of the kth claim produced by the ith policyholder 
during year (j - l,j). 

At the portfolio level, the vectors (8i,Kil,KiZ,Ki3, ... ) are assumed 
to be independent and identically distributed for i = 1,2, ... ,N. Also, 
given 8i = e, the random variables Kil,KiZ,Ki3, ... are assumed to be 
independent and identically distributed for fixed i. Unconditionally, 
these random variables are dependent. For fixed i, the ZijkS are as­
sumed to be independent and identically distributed and independent 
of the claim frequencies Kij. This assumption has been questioned by 
several authors because it implies that the cost of an accident is, for 
the most part, beyond the control of a policyholder. Though the degree 
of care exercised by a driver may mostly influence the number of acci­
dents, it has less influence on the cost of these accidents. Nevertheless, 
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this assumption seems acceptable in third-party liability insurance. The 
Zijk are also independent of Eli for any given i. 

The total claim amount for policyholder i in year j is 

Kij 

Sij = L Zijk. 
k=l 

We put IE[Zijk] = 1, which means that the expected claim amount 
is chosen as monetary unit. The pure premium for policy i in year j is 
then given by 

IE[SijlEli = e] = IE[KijlEli = e] = e. 
A priori (Le., without information about claims history), an identical 
amount of premium IE[Eld is charged to new policyholders. 

Given Eli = e, the numbers of claims generated in (j - I,j) by pol­
icyholder i are assumed to be independent and identically distributed 
(LLd.) Poisson random variables with mean e, Le., 

(1) 

where e is the claim frequency of this policyholder. The cumulative 
distribution function (cdf) of Eli, Fe (.), (often called the structure func­
tion), belongs to the two-parameter gamma family, Le., 

(2) 

where 

lX, T, e > O. (3) 

Combining equations (1) and (2) yields the well-known result that the 
number of claims for a policyholder randomly drawn from the portfolio 
follows a negative binomial distribution, Le., 

1fDr[K-' = k] = k + lX - 1 (_T_) ()( (_I_)k 
f) k l+T l+T 

(4) 

Though Kn, Ki2, ... are identically distributed, they are not indepen­
dent, because they are generated by the same policyholder and thus 
contingent on the same risk parameter Eli. 
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2.2 A Posteriori Premiums 

Suppose policyholder i has been observed for t years and the num­
ber of claims reported during this period is kil' ki2, ... ,kit. The pre­
mium for year t + 1 is defined as a function 'I't of the claims reported 
during the previous years, which is determined by minimizing lE[L(8i­
'I't (kil, ka, ... ,kit)) J for some loss functionL, taken to be non-negative, 
convex, and such that L(O) = 0. The loss functions considered in this 
paper are the quadratic loss where L(x) = x 2 and the exponential loss 
with positive parameter c where L(x) = exp( -cx). 

From the results recalled in the appendix, we easily get the following 
proposition. 

Proposition 1. The best estimator of the pure premium 8i at time t + 1 
is given by 

w(q) - ~(1- ) + ki.(t) 
t+l - T pq t pq 

for the quadratic loss (unction where 

t 
t 

pq = T + t and ki. (t) = L kij(t) 
j=l 

W (e) _ ()( (1 ()) ki. (t) () 
t+l - T - Pe c + -t-Pe c 

for the exponential loss (unction with c > 0, and 

Pe(c) = iln(1 + _C_). 
C T + t 

(5) 

while 

(6) 

(7) 

Notice that in Proposition 1, both expressions for Wt+l are convex 
combinations of the portfolio mean alT and the observed average num­
ber of claims ki. (t) It over the period [0, tJ. In both cases the weight 
given to the past claims tends to 1 as t goes to 00. The weight given to 
the claim history with the exponential loss function is smaller than the 
weight given to the claim history a quadratic loss function. Le., 

i In (1 + _C_) ::; _t_. 
c T+t T+t 

Note that in the POisson-gamma model, the Bayesian approach coin­
cides with the linear credibility estimator. In other words, Proposition 
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1 can be interpreted in a semi-parametric framework, as in the classical 
Brthlmann-Straub approach. Notice that 

1· W(e) W(q) 
un t+l = t+l' 
C~O 

Le., the a posteriori premium associated with the exponential loss func­
tion converges to that associated with the quadratic loss function. 

Also, as c ~ + 00 we have that 

This provides an intuitive meaning of the parameter c: if c increases, 
then the a posteriori merit-rating scheme becomes less severe, and at 
the limit, the premium no longer depends on the incurred claims. More­
over, routine calculations show that 

d 
dcPe(c) < 0, 

so that the weight given to the observed average claim number de­
creases as c increases. 

Let Ii (t) E (1, 2, ... ,M) denote the index of the risk class occupied 
by policyholder i during year t. Now, the a posteriori premium for year 
t + 1 (Le., for the time period (t, t + 1)) charged to policyholder i having 
reported ki. (t) claims during the first t years is given by 

with 

W(q) 

BMF(q) (ki. (t), t) = lE[~il] 

()( + ki. (t) T 
= x-

T+t ()( 

under a quadratic loss. Under an exponential loss, we get 

(8) 

(9) 

(10) 
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with 

w(e) 

BMF(e) (ki. (t), t) = lE[~t] 

= 1- !In(1 + _C_) 
C T + t 

I (1 
C )ki.(t)T + n +-- ----. 

T + t C ex 

77 

(11) 

The model used to determine the bonus-malus coefficients assumes 
that all the risks of the portfolio have the same a priori claim frequency 
and that the differences in the claim frequency between the risks are 
only due to differences in the individual risk characteristics 8i. Hence, 
the model impliCitly assumes that the tariff takes into account differ­
ences in claim frequencies only through the bonus-malus payments and 
that such differences are not reflected in the base premiums. 

This approach is erroneous because the aim of the bonus-malus sys­
tem is to adjust the amount of premium according to past claim expe­
rience. The effect of this premium adjustment is to reduce the residual 
heterogeneity within the different risk classes of the portfolio. As the 
bonus-malus coefficients of Proposition 1 do not take into account ex­
planatory variables, they are functions of the total heterogeneity of the 
portfolio, before tariff segmentation. In other words, the bonus-malus 
factors penalize bad risks and reward good risks. 

2.3 A Numerical Illustration 

Consider Table 3, which displays data from a Spanish insurance 
company. As can be seen from Table 3, poliCies have been categorized 
into 12 classes according to the age of the driver (three categories) and 
and the power of the car (four categories). The three age categories are 
"Age .:0:; 35," "36 .:0:; Age .:0:; 49," and Age ~ 50." The four power cate­
gories are "Power .:0:; 53," "54 .:0:; Power .:0:; 75," "76 .:0:; Power .:0:; 118," and 
"Power ~ 119." 

Let nik represent the number of policies from class i reporting k 
claims, i = 1,2, ... ,12, and 

00 

ni. = L nik 
k=O 

is the number of poliCies in the ith class, i = 1,2, ... ,12. 
Again, we assume that the number of claims reported by a policy­

holder in class i during a year follows a Poisson distribution with mean 
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Table 3 
The Twelve Risk Classes 

For Classification Factors Age and Power 
Power of Car Age of Driver (in Years) 
(In Horsepower) Age s 35 36 sAge s 49 Age ~ 50 
Power s 53 1 2 3 
54 s Power s 75 4 5 6 
76 s Power s 118 
Power ~ 119 

7 
10 

Table 4 

8 
11 

Observed Mean Claim Frequencies 
For Classification Factors Age and Power 

9 
12 

Power of Car Age of Driver (in Years) 
(In Horsepower) Age s 35 36 sAge s 49 Age ~ 50 
Power s 53 0.1866 0.1572 0.1283 
54 s Power s 75 0.2685 0.2279 0.1986 
76 s Power s 118 0.2992 
Power ~ 119 0.3217 

0.2526 
0.2846 

0.2386 
0.2483 

Ai. Moreover, the random variables Kil, Ki2,'" are assumed to be inde­
pendent. Therefore, the total number of claims Ki. = L.j~\ Kij reported 
by the ni. policyholders in class i has a Poisson distribution with mean 
ni.Ai. The realization of Ki. is ki. = Lk~l knik. 

Next we introduce the indicator variable Iik such that 

. = {I if policyholder i is in age category k for k = 2,3; 
Itk 0 otherwise. 

Similarly, define Lik as 

L. = {I if policyholder i drives a car in category k for k = 2, 3,4; 
tk 0 otherwise 

The ith policyholder is represented by a vector of classification infor­
mation: 
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Table 5 
Observed Claims Distribution of Number of Policyholders 

Submitting k Claims in the ith Risk Class, nib i = 1, 2, ... , 12 
The First Six Risk Classes, i = 1, 2, ... , 6 

k nlk n2k n3k n4k nSk 
0 3,316 7,797 10,437 9,470 21,031 
1 548 1,063 1,159 1,916 3,775 
2 61 140 143 445 720 
3 15 17 15 84 143 
4 4 6 2 21 36 
5 1 0 1 7 11 
6 0 0 1 0 2 
7 0 0 0 1 1 
8 0 0 0 3 0 

;:;:9 0 0 0 0 0 
ni. = 3,945 9,023 11,758 11,947 25,719 
ki. = 736 1,418 1,509 3,208 5,862 
Xi= 0.1866 0.1751 0.1283 0.2685 0.2279 
s2 = 

t 0.227 0.1828 0.1501 0.3635 0.2946 

and a corresponding vector of unknown parameters is 

'1T = (€,}'2, Y3, 02, 03, 04) 

where T denotes the transposed matrix. 

n6k 
22,788 

3,766 
591 
109 

24 
5 
4 
0 
0 
0 

27,287 
5,420 

0.1986 
0.2451 

79 

When the claim numbers are small, which is typically the case in 
automobile insurance, the normal approximation is poor and fails to 
account for the discreteness of the data. Normal regression should be 
avoided in this case. Generalized linear models provide an appropriate 
framework for the analysis of discrete data. A linear model for In(Ai) 
is often used in actuarial science. [See, e.g., Pinquet (1997)]. This pro­
vides a regression model for count data analogous to the usual normal 
regression for continuous data. In addition, the standard methodology 
of generalized linear models uses the logarithmic function as the natu­
rallink function for the Poisson distribution. [See, e.g., Dobson (1990).] 
Thus, we specify a linear model for In(Ad + In(ni.) as 



80 Journal of Actuarial Practice, Vol. 9, 2007 

Table 5 (Continued) 
Observed Claims Distribution of Number of Policyholders 

Submitting k Claims in the ith Risk Class, nib i = 1, 2, ... , 12 
The Second Six Risk Classes, i = 7,8, ... ,12 

k n7k nSk n9k nlOk nUk n12k 

0 6,570 15,702 15,158 1,125 4,554 4,680 
1 1,423 3,112 2,848 274 902 900 
2 321 603 510 69 224 187 
3 89 148 123 9 55 25 
4 33 31 33 7 15 12 
5 6 11 11 1 9 5 
6 3 2 1 1 2 1 
7 1 0 3 0 0 1 
8 1 0 1 0 1 1 

:::::9 0 0 0 0 0 0 

ni. = 8,447 19,609 18,688 1,486 5,762 5,812 

tie = 2,527 4,953 4,459 478 1,640 1,443 

Xi= 0.2992 0.2526 0.2386 0.3217 0.2846 0.2483 
S2 = 

t 0.4322 0.3288 0.3200 0.4376 0.4214 0.3408 

3 4 

In(Ai ) + In(ni.) = Xit} = E + L YkJik + L 6kLik. (12) 
k=2 k=2 

In order to determine the maximum likelihood estimator of the param­
eter t}, we have to maximize L(t}) where 

The regularity conditions satisfied by the Poisson distribution ensure 
thereis a unique solution to the system of equations a InLI at} = o. Itis 
easy to check that the maximum likelihood estimator ij of the parameter 
t} is the solution of the equations 

12 

L (ki. - ni.Ai)Xij = 0 
i=l 

(13) 
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for j = 1,2, ... ,6, where Xij is the ph element of Xi. As pointed out 
by Pinquet (1997), equation (l3) can be interpreted as an orthogonality 
relation between the residuals and the covariates. The estimates and 
the standard deviation and 95% confidence interval for the estimates 
are displayed in Table 6. 

As the rating factors have a finite number of levels and the explana­
tory variables are indicators of these levels, equation (l3) implies that, 
for every sub-portfolio corresponding to a given level, the sum of the 
fitted claim numbers is equal to the total number of claims incurred in 
that sub-portfolio for the observation period. As an example, equation 
(l3) with j = 2 ensures that as far as policyholders in age category 2 are 
concerned the sum of the fitted claim frequencies equals the total num­
ber of claims. Consequently, such a system is expected not to create 
cross-subsidization in the portfolio 

Table 6 
Parameters Estimates of 1] in Equation (12) 

Standard 95% Confidence 
1] ij Deviation Interval 
E -1.7219 0.0198 [-1.7607, -1.6831] 

Y2 -0.1634 0.0147 [-0.1922, -0.l345] 

Y3 -0.2800 0.0149 [-0.3093, -0.2508] 
62 0.3987 0.0185 [0.3625,0.4350] 

63 0.5324 0.0189 [0.4953,0.5694] 

64 0.6150 0.0236 [0.5688,0.6611 ] 

It is well known that the vector ij is approximately normal for large 
sample sizes, with mean 1] and variance-covariance matrix V, which is 
the inverse of the Fisher information matrix. The element (j, k) of V is 

12 

Vjk = L XijXikni.i'\i. 
i;l 

Computing the variance-covariance matrix yields 
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0.392 -0.144 -0.151 -0.277 -0.277 -0.265 
-0.144 0.217 0.145 0.002 0.000 -0.014 

V-I = 10-3 -0.151 0.145 0.223 0.008 0.009 -0.006 
-0.277 0.002 0.008 0.342 0.274 0.273 
-0.277 0.000 0.009 0.274 0.357 0.273 
-0.265 -0.014 -0.006 0.273 0.273 0.555 

Considering Table 6, all the parameters are significantly different 
from 0 (because no confidence interval overlaps 0), so that all the co­
variates are statistically significant. The expected claim numbers for 
each of the 12 cells are given in Table 7. (It is interesting to compare 
the fitted results to their empirical counterparts given in Table 3.) Table 
7 thus gives the base premiums attached to each of the 12 risk classes. 

Table 7 
Estimated Mean Claim Frequencies 

Based on Classification Factors Age and Power 
Power of Car Age of Driver (in Years) 
(In Horsepower) Age:::; 35 36:::; Age:::; 49 Age;:: 50 
Power:::; 53 0.1787 0.1518 0.1351 
54 :::; Power:::; 75 0.2663 0.2262 0.2013 
76 :::; Power:::; ll8 0.3044 0.2585 0.2300 
Power;:: 119 0.3306 0.2808 0.2498 

In order to calculate the bonus-malus factors, let us consider the 
claim distribution for the whole portfolio, which is given in Table 8. The 
negative binomial is fitted using the maximum likelihood approach and 
is displayed in the third column. The a posteriori premiums are then 
given by equations (8) and (10) with the estimated values of ()( and T 

given by ex = 0.8665 and T = 3.9097. 
Consider for instance a 30-year-old female driver whose car is in the 

power category",:::; 53." Her a priori expected number of accidents is 
0.1787 for the first five years; upon reaching age 35 her expected num­
ber of accidents becomes 0.1518. In the first half of Table 9, one can 
see the bonus-malus coefficients and premiums for that individual. The 
second column (entitled "BPt") represents the expected number of acci­
dents (Le., the base premium) for each period. The BMFt+l column rep­
resents the bonus-malus factor in case the policyholder does not cause 
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Table 8 
Observed and Fitted Claim 

Distribution Using Data in Table 5 
k nk 11k 
0 122,628 122,713 
1 21,686 21,656 
2 4,014 4,116 
3 832 801 
4 224 158 
5 68 31 
6 17 6 
7 7 1 
8 7 0 
~9 0 0 

Notes: The fit is a negative binomial distribution 
with parameters IX = 0.8665 and f = 3.9097. 

83 

any claims during (0, t) computed on the basis of equation (8). Column 
Pt(~i gives the total corresponding premium (Pt(~i = BPt+l xBMFt+d. For 
power category"~ 119," her expected claim frequency for the first five 
periods is 0.3306 and 0.2808 after. The second half of Table 9 shows 
the evolution of the premium amounts for this policyholder. 

Table 10 is similar to Table 9 except an exponential loss function is 
used. The bonus-malus factors are computed from equation (10) with 
c = 12.93. This parameter has been set in such a way that the variance 
of the a posteriori premiums paid by a policyholder during the first 10 
years represents 50% of the variance if the premiums were computed 
under a quadratic loss; for more details.[See Denuit and Dhaene (2001).] 
It is interesting to compare the bonus-malus factors in Tables 9 and 10. 
Notice that her bonus-malus factors are identical whatever the power 
of the car but the premiums differ substantially. When an exponential 
loss is used, the size of the maluses is reduced. Because the system 
is finanCially balanced, this implies that the size of the bonuses is also 
reduced. 
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Table 9 
Bonus-Malus Coefficients and A Posteriori Premiums 

Quadratic Loss Function for Policyholder Age 30 
Car in Power Category "Power::::; 53" 

o Claim in (0, t) 1 Claim in (0, t) 2 Claims in (0, t) 

t BPt +1 BMF(q) 
t+1 

p(q) 
t+1 

BMF(q) 
t+1 

p(q) 
t+1 

BMF(q) 
t+1 

p(q) 
t+1 

1 0.1787 0.7963 0.1423 1.7154 0.3065 2.6344 0.4708 
2 0.1787 0.6616 0.1182 1.4251 0.2547 2.1887 0.3911 
3 0.1787 0.5658 0.1011 1.2189 0.2178 1.8719 0.3345 
4 0.1787 0.4943 0.0883 1.0648 0.1903 1.6352 0.2922 
5 0.1787 0.4388 0.0784 0.9453 0.1689 1.4517 0.2594 
6 0.1518 0.3945 0.0599 0.8499 0.1290 1.3052 0.1981 
7 0.1518 0.3584 0.0544 0.7720 0.1172 1.1856 0.1800 
8 0.1518 0.3283 0.0498 0.7072 0.1073 1.0860 0.1649 
9 0.1518 0.3028 0.0460 0.6524 0.0990 1.0019 0.1521 

10 0.1518 0.2811 0.0427 0.6055 0.0919 0.9299 0.1412 
Car in Power Category "Power ~ 119" 

1 0.3306 0.7963 0.2633 1.7154 0.5671 2.6344 0.8709 
2 0.3306 0.6616 0.2187 1.4251 0.4711 2.1887 0.7236 
3 0.3306 0.5658 0.1871 1.2189 0.4030 1.8719 0.6189 
4 0.3306 0.4943 0.1634 1.0648 0.3520 1.6352 0.5406 
5 0.3306 0.4388 0.1451 0.9453 0.3125 1.4517 0.4799 
6 0.2808 0.3945 0.1108 0.8499 0.2386 1.3052 0.3665 
7 0.2808 0.3584 0.1006 0.7720 0.2168 1.1856 0.3329 
8 0.2808 0.3283 0.0922 0.7072 0.1986 1.0860 0.3050 
9 0.2808 0.3028 0.0850 0.6524 0.1832 1.0019 0.2813 

10 0.2808 0.2811 0.0789 0.6055 0.1700 0.9299 0.2611 
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Table 10 
Bonus-Malus Coefficients and A Posteriori Premiums 

Exponential Loss Function (c = 12.93) for Policyholder Age 30 
Car in Power Category "Power :$ 53" 

o Claim in (0, t) 1 Claim in (0, t) 2 Claims in (0, t) 

t BP(e) 
t+1 

BMF(e) 
t+1 

p(e) 
t+1 

BMF(e) 
t+ 1 

p(e) 
t+1 

BMF(e) 
t+1 

p(e) 
t+ 1 

1 0.1787 0.9002 0.1609 1.3505 0.2413 1.8007 0.3218 
2 0.1787 0.8207 0.1467 1.2253 0.2190 1.6299 0.2913 
3 0.1787 0.7553 0.1350 1.1234 0.2007 1.4915 0.2665 
4 0.1787 0.7003 0.1251 1.0384 0.1856 1.3765 0.2460 
5 0.1787 0.6533 0.1167 0.9662 0.1727 1.2791 0.2286 
6 0.1518 0.6125 0.0930 0.9039 0.1372 1.1953 0.1815 
7 0.1518 0.5768 0.0876 0.8496 0.1290 1.1224 0.1704 
8 0.1518 0.5452 0.0828 0.8017 0.1217 1.0583 0.1606 
9 0.1518 0.5170 0.0785 0.7591 0.1152 1.0013 0.1520 

10 0.1518 0.4916 0.0746 0.7210 0.1095 0.9504 0.1443 
Car in Power Category "Power;::: 119" 
1 0.3306 0.9002 0.2976 1.3505 0.4465 1.8007 0.5953 
2 0.3306 0.8207 0.2713 1.2253 0.4051 1.6299 0.5388 
3 0.3306 0.7553 0.2497 1.1234 0.3714 1.4915 0.4931 
4 0.3306 0.7003 0.2315 1.0384 0.3433 1.3765 0.4551 
5 0.3306 0.6533 0.2160 0.9662 0.3194 1.2791 0.4229 
6 0.2808 0.6125 0.1720 0.9039 0.2538 1.1953 0.3356 
7 0.2808 0.5768 0.1620 0.8496 0.2386 1.1224 0.3152 
8 0.2808 0.5452 0.1531 0.8017 0.2251 1.0583 0.2972 
9 0.2808 0.5170 0.1452 0.7591 0.2132 1.0013 0.2812 

10 0.2808 0.4916 0.1381 0.7210 0.2025 0.9504 0.2669 
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3 Integrated Ratemaking 

3.1 Claim Frequency Model 

In seminal papers, Dionne and Vanasse (1989, 1992) proposed a 
bonus-malus system that integrates a priori and a posteriori informa­
tion on an individual basis. Their system introduces a regression com­
ponent in the Poisson counting model in order to use all available in­
formation in the estimation of accident frequency. 

Let us assume that the number of claims Kit for the i th policyholder 
of the portfolio during the year t conforms to a Poisson distribution 
with mean Aldt), where Ii(t) is the index of the risk class occupied by 
policyholder i in year t. A common problem for count data is that the 
fits obtained are poor even after allowing for important explanatory 
variables using the Poisson regression model. This indicates that, con­
ditional upon the explanatory variables included in the final model, the 
variance of an observation is greater than its mean, implying that the 
Poisson assumption is incorrect. Most often, this is due to the fact that 
important explanatory variables may not have been measured and are 
consequently incorrectly excluded from the regression relationship. 

A convenient way to avoid this problem is to introduce a random 
effect in this model; see, e.g., Pinquet (1999). We assume that Kit fol­
lows a Poisson distribution with mean Al;(t)8i, where 8i has a gamma 
distribution but with unit mean, i.e., with parameters «(X, (X). Then, Kit 
follows a negative binomial law, i.e., 

JIDr[Kit = kIIi(t)] = (X + k -1 ( Al;(t) )k ( (X )()( 
k (X + Aldt) (X + Al;(t) 

We can view 8i as representing the impact on the mean claim frequency 
of all the policyholders' characteristics not taken into account a priori. 
Let us now derive the a posteriori distribution of 8i. 

Lemma 1. If the cdf of 8i is f (,1 (x, (X) then the cdf of[ 8i IKij = kij, j = 

1,2, ... ,t] isf('l(X+ ki.(t),(X + Ai.(t)) where 

t 

Ai.(t) = L Al;(j). 
j=l 
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Proof: Bayes Theorem yields 

dlPr[8i :::; elKij = kij, j = 1,2, ... ,t] 

lPr[Kij = kij, j = 1,2, ... ,tl8i = e]dlPr[8i :::; e] 

lPr[Kij = kij, j = 1,2, ... ,t] 

eki • (tl exp( -e?\io (t)) (XiX eiX - 1 exp (- (Xe)de 
(XiX hEIR+ ~ki.(t)+iX-l exp( -(XAio (t)~)d~ , 

and the result follows. 
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In order to estimate the parameter (X describing the residual hetero­
geneity of the portfolio, we use the maximum likelihood method. We 
maximize 

L«(X) = n fI {(X + k - 1 (~)k (_(X_) iX}nik , 
i= 1 k=O k (X + Ai (X + Ai 

which yields iX = 0.8157. 

3.2 A Posteriori Premium Using a Quadratic Loss Function 

In the model described in the preceding section, Dionne and Vanasse 
(1989,1992) and Gisler (1996) have obtained the following result; it can 
be seen as a direct consequence of Proposition 4 and its proof is thus 
omitted. 

Proposition 2. Assuming the cdf of8i isf«(X, (X), then under a quadratic 
loss function, the a posteriori premium for policyholder i is given by 

Pt(~i = Aldt+l)BMPq)(kio(t),Aio(t)), 

where the bonus-malus coefficient is given by 

with 

Ai. (t) 
pq = (X + Ai. (t) 
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Note that the greater the variance of 8i (Le., the smaller lX) the 
greater pq (Le., the greater the weight given to the claim history of 
the policyholder). Moreover, pq is clearly increasing in Ai.. If Ai. is 
small, as is the case for policies with a high deductibles, then pq is 
also small. The no-claim discount for such poliCies is thus also small 
and, as pointed out by Gisler (1996), the bonus-malus systems are of 
questionable utility. 

3.3 A Posteriori Premium Using Exponential Loss 

The use of a quadratic loss function leads to high maluses because 
of the symmetry of the loss function: overcharges and undercharges 
are equally penalized. Although theoretically correct, such a system 
is not accepted by policyholders. It is better to have a model with a 
parameter controlling the severity of the system. One approach is to 
incorporate a priori variables in the exponential loss function. 

Proposition 3. Assuming that the cdf of8i is [(.llX, lX), then under an 
exponential loss with parameter c > 0 the a posteriori premium for pol­
icyholder i is given by 

where the bonus-malus coefficient is given by 

with 

Ai.(t) ( C) 
Pe = --In 1 + A. () . 

C lX + t. t 

Proof: From Lemma 1, we get 

( 
lX + A· (t) ) lX+ki.(t) 

lE[e-
C8i

IKij =kij,j = 1,2, ... ,t] = lX+Ai'~~) +c 

It follows that 

(15) 

(16) 
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InlE[ e-cEli IKij = kij, j = 1,2, ... ,t] 

=-«()(+ki.(t))ln(l+ ()(+~i.(tJ 
IE[ InlE[ e-cEli IKij, j = 1,2, ... ,t]] 

=-«()(+Ai.(t))ln(l+ ()(+~i.(t))· 
The result then follows from Proposition 4. 
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Comparing the bonus-malus coefficients obtained with a quadratic 
and exponential loss functions we have, for any c :2: 0, 

( C) c In 1 + ::; , 
()( + Ai. ()( + Ai. 

so that Pe (c) ::; Pq; the weight given to past claims is thus smaller under 
an exponential loss. 

It can be shown that Pe(c) - Oasc - +00. Iftheasymmetryfactorc 
tends to + 00 then all the risks within the same tariff class pay the same 
premium: there is no more experience rating. Conversely, Pe(c) - Pq 
as c - O. The results obtained by Dionne and Vanasse (1989, 1992) 
also appear as limit cases of those obtained with an exponential loss 
function. 

3.4 Numerical Illustration 

Computing the premiums for a 30-year old female policyholder us­
ing Dionne-Vanasse's methodology yields the results in Table 11. Un­
like Table 9, the bonus-malus factors are not the same for both cate­
gories of car. The differences are explained by the presence of personal 
characteristics in the calculation of the factors in Table 11. Once the a 
priori variables are introduced the sizes of the bonuses and the maluses 
are reduced. Technically, this means that part of the heterogeneity has 
been taken into account in the a priori differentiation of the premiums, 
so that the residual heterogeneity is smaller and the magnitude of the 
a posteriori corrections is reduced. 

It is interesting to note that even if a policyholder whose car is in 
category "Power::; 53" always pays a smaller premium that the corre­
sponding premium for the driver in category "Power :2: 119," her bonus­
malus factors are always greater (Le., she has less bonuses and more 
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maluses). This is because good risks are rewarded in their base premi­
ums (through the a priori variables incorporated in the tariff). Conse­
quently, the size of bonus they require for equity is reduced. In other 
words, the premium discount awarded to risks judged as good a pri­
ori has to be smaller than the bonus awarded to those judged as bad a 
priori. Conversely, the penalties assessed to risks judged as good are 
larger than the penalties assessed to those judged as bad. 

The same remarks hold for the bonus-malus coefficients obtained 
with an exponential loss function presented in Table 12. The sever­
ity of the a posteriori corrections is weaker than with a quadratic loss 
function, as expected. 

4 Summary and Conclusions 

As was pointed out eqrlier, the aim of this paper is to examine the 
interaction between a priori ratemaking (i.e., identification of the best 
predictors X and of the risk premium lE[YIX]) and a posteriori ratemak­
ing (Le., premium corrections according to the claims history up to time 
t). To this end, we propose an extension of the exponential bonus-malus 
systems introduced in Denuit and Dhaene (2001) in the presence of a 
priori risk classification. The main advantage of this extension is that 
it provides the actuary with a parameter for controlling the severity of 
the a posteriori corrections. The actuary is allowed to vary this param­
eter from one extreme where there is no a posteriori correction to the 
other extreme where the severity corresponds to the classical quadratic 
loss function. At the limit, previous results based on a quadratic loss 
function are thus obtained. The a posteriori corrections also depend 
on the a priori amount of premium, yielding an integrated ratemaking 
mechanism recognizing the continuous nature of risk evaluation. 

To illustrate our methodology, an example is provided using data 
from a Spanish insurance portfolio. We show that good risks are re­
warded in their base premiums and, consequently, they require a smaller 
bonus than the bonus awarded to those judged as bad a priori, as ex­
pected. 

In the future, we purpose to study bonus-malus scales accounting 
for a priori risk classification in the spirit of Taylor (1997), substituting 
the exponential loss function for its classical quadratic counterpart. 
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Table 11 
Bonus-Malus Coefficients and A Posteriori Premiums 

Quadratic Loss Function for Policyholder Age 30 
Car in Power Category "Power:::; 53" 

o Claim in (0, t) 1 Claim in (0, t) 2 Claims in (0, t) 

t BPt+l BMF(q) 
t+l 

p(q) 
t+l 

BMF(q) 
t+l 

p(q) 
t+l 

BMF(q) 
t+l 

p(q) 
t+l 

1 0.1787 0.8203 0.1466 1.8259 0.3263 2.8316 0.5060 
2 0.1787 0.6953 0.1243 1.5478 0.2766 2.4002 0.4289 
3 0.1787 0.6034 0.1078 1.3432 0.2400 2.0829 0.3722 
4 0.1787 0.5330 0.0952 1.1863 0.2120 1.8397 0.3288 
5 0.1787 0.4772 0.0853 1.0623 0.1898 1.6474 0.2944 
6 0.1518 0.4383 0.0665 0.9757 0.1481 1.5130 0.2297 
7 0.1518 0.4053 0.0615 0.9021 0.1369 1.3989 0.2124 
8 0.1518 0.3768 0.0572 0.8388 0.1273 1.3008 0.1975 
9 0.1518 0.3521 0.0535 0.7838 0.1190 1.2155 0.1845 

10 0.1518 0.3305 0.0502 0.7356 0.1117 1.1408 0.1732 
Car in Power Category "Power ~ 119" 
1 0.3306 0.7945 0.2626 1.4162 0.4682 2.0379 0.6737 
2 0.3306 0.6590 0.2179 1.1747 0.3884 1.6905 0.5589 
3 0.3306 0.5630 0.1861 1.0036 0.3318 1.4442 0.4775 
4 0.3306 0.4914 0.1625 0.8760 0.2896 1.2606 0.4168 
5 0.3306 0.4360 0.1441 0.7772 0.2569 1.1184 0.3697 
6 0.2808 0.3979 0.1117 0.7092 0.1992 1.0206 0.2866 
7 0.2808 0.3659 0.1027 0.6522 0.1831 0.9386 0.2635 
8 0.2808 0.3387 0.0951 0.6037 0.1695 0.8687 0.2439 
9 0.2808 0.3152 0.0885 0.5619 0.1578 0.8085 0.2270 

10 0.2808 0.2948 0.0828 0.5255 0.1476 0.7562 0.2123 
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Table 12 
Bonus-Malus Coefficients and A Posteriori Premiums 

Exponential Loss Function (c = 12.93) for Policyholder Age 30 
Car in Power Category "Power ~ 53" 

o Claim in (0, t) 1 Claim in (0, t) 2 Claims in (0, t) 

t BP(e) 
t+l 

BMF(e) 
t+l 

pte) 
t+l 

BMF(e) 
t+l 

pte) 
t+l 

BMF(e) 
t+l 

pte) 
t+l 

1 0.1787 0.9635 0.1722 1.1676 0.2087 1.3718 0.2451 
2 0.1787 0.9313 0.1664 1.1236 0.2008 1.3159 0.2352 
3 0.1787 0.9022 0.1612 1.0846 0.1938 1.2669 0.2264 
4 0.1787 0.8758 0.1565 1.0495 0.1876 1.2232 0.2186 
5 0.1787 0.8516 0.1522 1.0177 0.1819 1.1838 0.2115 
6 0.1518 0.8324 0.1264 0.9927 0.1507 1.1531 0.1750 
7 0.1518 0.8144 0.1236 0.9694 0.1472 1.1245 0.1707 
8 0.1518 0.7974 0.1210 0.9476 0.1438 1.0978 0.1666 
9 0.1518 0.7813 0.1186 0.9270 0.1407 1.0728 0.1628 

10 0.1518 0.7660 0.1163 0.9076 0.1378 1.0492 0.1593 
Car in Power Category "Power ~ 119" 

1 0.3306 0.9359 0.3094 1.1298 0.3735 1.3238 0.4377 
2 0.3306 0.8835 0.2921 1.0597 0.3503 1.2359 0.4086 
3 0.3306 0.8390 0.2774 1.0013 0.3310 1.1636 0.3847 
4 0.3306 0.8003 0.2646 0.9513 0.3145 1.1023 0.3644 
5 0.3306 0.7660 0.2532 0.9075 0.3000 1.0491 0.3468 
6 0.2808 0.7396 0.2077 0.8743 0.2455 1.0089 0.2833 
7 0.2808 0.7154 0.2009 0.8439 0.2370 0.9724 0.2731 
8 0.2808 0.6931 0.1946 0.8161 0.2292 0.9391 0.2637 
9 0.2808 0.6723 0.1888 0.7904 0.2219 0.9084 0.2551 

10 0.2808 0.6530 0.1834 0.7665 0.2152 0.8800 0.2471 
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Appendix: Credibility Models with Quadratic and 
Exponential Loss Functions 

Let us consider a sequence of random variables {Xl, X2, X3, ... } and 
a risk parameter 8 where 8 is a random variable or possibly a sequence 
of random variables. We assume the sequence of random variables 
{XI,X2,X3, ... 18} are independent. The first two moments of the XiS 
are assumed to be finite. Moreover, the conditional mean of the XiS is 
given by 

for i = 1,2,3, .... 

Proposition 4. 

Ild8) = IE [Xi 18] 

IE[lli (8)] = Ili 

(i) The minimum of IE [Iln+ I (8) - 'Yn (Xl, X2,·.· , Xn) r on all the mea­
surable (unctions 'Yn : lRn 

-+ lR is obtained for 

'Y;i(XI,X2, ... ,Xn ) =IE[lln+I(8)IXI,X2, ... ,Xn]. 

(ii) The minimum ofIE[ exp [ - C(lln+I<8) - 'Yn (XI,X2, ... ,Xn»)]] on 
all the measurable {unctions 'Yn : lRn 

-+ lR satisfying the constraint 
lE['Yn (Xl, X2, .. · ,Xn )] = Iln+l is obtained for 

'Y;i(XI, ... ,Xn ) = Iln+l 
1 

+ -IE[lnIE[exp(-clln+I<8))IXI, ... ,Xn]] 
C 

- ~ lnIE [exp( -Clln+I(8» IXI, ... , Xn] J. 
(This constraint is made in order to guarantee financial equilib­
rium.) 
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Proof: (i) This is a classic result, and its proof can be found in many 
statistical textbooks. An easy way to see it consists in noting that 

lE[ (I1n+d8 ) - 'I'n(XI, ... ,Xn ») 2 

= lE[ (I1n+1 (8) - 'I'~ (Xl, ... ,Xn) 

+'I'~(XI' ... ,Xn) -'I'n(XI, ... ,Xn )/] 

= lE[ (I1n+d8 ) - 'I'~ (Xl, ... , Xn) ) 2] 
+lE[('I'~(XI' ... ,Xn) -'I'n(XI, ... ,Xn»)2], 

which is clearly minimal for 'I'n == 'I';t. 
(ii) Starting from 

lE[ exp [ - C(l1n+d8) - 'I'n(Xl. ... ,Xn»)] 

=lE[[ eXP[C'I'n(XI, ... ,Xn)}lE[exp[ -Cl1n+d8 )]IXI, ... ,XnJ] 

= lE[ exp [c ('I'n (Xl, ... , Xn) - 'I'~ (Xl, ... , Xn» ] 

exp[Cl1n+dexp[lElnlE[exp[ -Cl1n+d8)]IXI, ... ,Xn]]. 

Now, let us apply Jensen's inequality to get 

lEexp [ - C(l1n+d8) - 'I'n(XI, ... ,Xn»)] 

;::: exp [ClE ['I'n(XI, ... ,Xn) - 'I'~(XI, ... ,Xn )]] 

exp [Cl1n+1 ] exp [lElnlE[ exp [ - Cl1n+d8) ] IXI, ... , Xn]]. 

Because of the constraint on the expectation of the 'I'ns, the first expo­
nential is 1, thus completing the proof. D 
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Fitting Loss Distributions in the Presence of Rating 
Variables 

Farrokh Guiahi* 

Abstractt 

This paper focuses on issues and methodologies for fitting alternative statis­
tical models-parametric probability distributions-to samples of insurance 
loss data. The interactions of loss distributions, deductibles, policy limits, 
and rating variables in the context of fitting distributions to losses are dis­
cussed. Fitted loss distributions serve an important function in pricing in­
surance products. The methodology developed in this paper is applied to a 
sample of insurance loss data that has the lognormal as the underlying loss 
distribution. 

Key words and phrases: generalized linear models, curve fitting, right-censored 
and left-truncated data, rating variables, maximum likelihood estimation, iter­
atively re-weighted least squares, parametric distribution 

1 Introduction 

The price of an insurance product, i.e., the gross premium charged, 
consists of the pure premium, expenses, and a profit margin. The de­
termination of pure premium is dependent on the knowledge of fre­
quency and severity distributions of the potential claims. For pricing 
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some insurance products, only the mean of the frequency and severity 
distributions are sufficient. To price excess covers, however, the en­
tire severity distribution must be known because one is interested in 
means of the form lE [max (0, X - M)] where X is the loss and M > 0 is 
a suitable retention. 

To determine a severity distribution, the actuary fits a pre-selected 
parametric distribution to historical losses. So fitting distributions to 
losses is an integral component of pricing many insurance products. 
Hogg and Klugman (1984) provide a good introduction to the subject 
of fitting distributions to losses. 

This paper supplements Hogg and Klugman (I984) by focusing on 
certain related topics. First, more emphasis is placed on the proce­
dures for fitting loss distributions to individual loss data rather than 
grouped data. Second, methodologies required to incorporate rating 
variables in the process of fitting distributions to losses are presented. 
Finally, readers may find the computer program (codes), given to com­
pute maximum likelihood estimates of parameters of the model used 
to be of some value. 

The paper is organized as follows: Section 2 describes the types 
(complete or incomplete) of insurance data available and specifies the 
proper form for the likelihood function for each type. A procedure to 
incorporate rating factors into a curve-fitting process and assessing the 
effect of rating factors on loss distributions are discussed in Section 
3. Two methods to compute maximum likelihood estimate of model 
parameters, and the notion of generalized residuals are given in Section 
4. Section 5 illustrates how the methodology presented in this paper 
can be applied by using a sample of commercial fire loss data (Table Al 
of the appendix). Some concluding statements are made in Section 6. 

2 Complete and Incomplete Data 

Some preliminaries regarding losses, deductibles, policy limits, and 
rating variables as inputs for fitting distributions to losses are pre­
sented. Then the proper form of the likelihood function is defined. 

2.1 The Nature of Insurance Data 

Insurance data considered here have the following characteristics: 

• Losses are specified individually; 
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• For each individual loss, the information about its deductible and 
policy limit is furnished; and 

• For each loss, we have auxiliary policy information regarding the 
rating variables. 

These three items are further discussed below. 
Losses are given on an individual basis and have not been grouped 

by loss size. The methodologies to fit distributions to data differ, de­
pending on whether losses are grouped or indiVidually specified. Losses 
may be closed or open. The amount recorded for each loss is the in­
curred value at the latest available evaluation period. If some losses in 
the sample data are still open as of the latest evaluation period, then 
those losses should be properly adjusted for further development. For 
more on loss development and reserving, see, for example, Brown and 
Gottlieb (2001, Chapter 4) or Wiser (1990, Chapter 4). Unfortunately, 
most of the methodologies for developing losses to their ultimate val­
ues are only available for grouped data. Further research is needed in 
the area of developing individual losses to their individual ultimate val­
ues. These individual losses should be suitably trended to reflect values 
expected in the future. 

Deductibles are used to exclude certain losses. Usually deductibles 
are relatively small-for example, a few hundred or a few thousand 
dollars. For a large insured, however, deductibles may be sizable due 
to the existence of self-insured retention or other underlying coverages. 
Only dollar deductibles are considered here. Time deductibles such as 
waiting periods are not treated. A reported loss with a value in excess of 
its deductible is defined as left-truncated. If a loss arises from a policy 
with no underlying deductible, then for the purpose of the computation, 
a value of zero is imputed as the deductible amount. It is not required 
that the deductible amounts be the same for each loss. 

Policy limits serve to restrict the amount of payment on a given 
loss or a loss occurrence. When the loss amount is at least as large as 
its policy limit, the loss is said to have been right-censored. If a loss 
arises from a policy where there is no underlying policy limit, then any 
amount greater than the loss amount may be imputed as the policy 
limit. In these instances, those losses have not been censored. Varying 
policy limits are allowed. No grouping of losses based upon deductible 
or policy limit amounts is required. 

Samples of insurance loss data are said to be incomplete. This is 
due to inclusion of left-truncated (losses in excess of deductibles) and 
right-censored (some losses capped by their respective policy limits) 
data in the sample. Due to this incompleteness of data, it becomes 
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more difficult to estimate the parameters of a loss distribution and to 
assess the goodness of fit. Many traditional approaches for estimation 
of parameters of a loss distribution or assessing the goodness of fit 
of a distribution are valid only if the sample of observations is com­
plete; that is, when there are neither left-truncated nor right-censored 
observations in the sample. 

Rating variables in insurance depends upon the line of business, 
the degree of competition present in the market, and regulation. The 
effect of these rating variables upon loss distributions has important 
implications for underwriting selection. It also provides for a more dif­
ferentiated rating system. How to incorporate the information provided 
by rating variables into the process of fitting distributions to losses is 
discussed below. 

2.2 Likelihood Function 

The standard approach to analyzing losses is to assume that losses 
are a realization of a probabilistic process governed by a parametric 
statistical distribution. Once the parametric distribution is selected to 
present the distribution of losses, the task of fitting a distribution to 
the loss data becomes one of estimating parameters of the selected 
dis tribu tion. 

Some commonly used statistical methods to estimate parameters of 
a distribution are the method of moments, the least squares estimation, 
and the maximum likelihood estimation. This paper focuses on the 
maximum likelihood approach because, under certain conditions, max­
imum likelihood parameter estimates have many desirable properties 
including: uniqueness, consistency, asymptotic unbiasedness, asymp­
totic normality, and asymptotic efficiency; see, for example, Bain and 
Engelhardt (1992, Chapter 9.4, page 316). 

The fact that most insurance data are incomplete (i.e., the data in­
clude left-truncated or right-censored observations) the method of the 
maximum likelihood estimation must be carefully applied. The like­
lihood function must be properly specified to reflect the presence of 
left-truncated or right-censored observations. 

The follOwing are necessary notations needed to write an expression 
for the likelihood function when the data are incomplete. Let 

n = Number of losses; 

Yi = Size of ith loss (incurred value); 
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Di = Deductible for the ith loss; 

PLi = Policy limit for the ith loss; 

! (Yi; e, cp) = Probability distribution function (pdf) of the loss amount 
random variable for complete data; and 

F (Yi; e, cp) = Cumulative distribution function (cdf) of the loss amount 
random variable for complete data; where 

e is the parameter of interest to the investigator and cp is the vector 
of incidental parameters. Note that the incidental parameters in cp are 
often referred to as nuisance parameters by statisticians. 

The functional form of the likelihood function for a given loss de­
pends upon whether (i) there is an applicable deductible, and (ii) whether 
the loss is capped by the policy limit. Hence, the contribution of a loss 
to the likelihood function may be one of the four mutually exclusive 
and exhaustive cases, written as Ln, LiZ, LB, and Li4 as defined below. 
In addition, four indicator variables are introduced-on, 0i2, OB, and 
Oi4-in order to write a succinct expression for the likelihood function 
of the sample. These four cases are considered next. 

Case 1: No deductible and loss below policy limit (neither left-truncated 
nor right-censored), the complete data case: 

Ln = !(Yi; e, cp) 

0- ={ 1, ifDi=OandYi<PLi 
tl 0, otherwise. 

Case 2: A deductible and loss below policy limit (left-truncated) data: 

L- _!(Di+Yi;O,CP) 
Q - 1-F(Di;e,cp) 

0- = {1' if Di > ° and Yi < PLi 
t2 0, otherwise. 

Case 3: No deductible and loss capped by policy limit (right-censored) 
data: 
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Li3 = 1 - F(PLi; e, <p) 

{) = { 1, if Di = 0 and Yi ~ PLi 
t3 0, otherwise. 

Case 4: A deductible and loss capped by policy limit (left-truncated 
and right-censored) data: 

L. _ 1 - F(Di + PLi; e, <p) 
t4 - 1-F(Di;e,<p) 

{) . = { 1, if Di > 0 and Yi ~ PLi 
t4 0, otherwise. 

In each of these four cases, the contributions of the ith loss to the 
likelihood function (Li) and the log-likelihood function (ld are 

4 

and li = InLi = I {)ijlij 
j=1 

respectively, where lij = InLij. The likelihood and log-likelihood func­
tions for the sample are given by: 

3 Using Rating Variables in Curve-Fitting 

In statistical data analysis, one commonly assumes that sample data 
are a realization of random variables that are independent and identi­
cally distributed. The assumption of identically distributed random 
variables is usually not tenable with insurance data. Insurance risks 
are normally heterogeneous. Each risk has its own characteristics and 
its own propensity to produce a potential loss. Thus, we expect the loss 
distribution for fire for a small, unprotected frame building to be differ­
ent from a large, highly protected, and fire-resistant building. It is de­
sirable to have loss distributions that account for these differences. To 
a certain extent, underwriting rating factors reflect risk characteristics. 
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For this reason, risks with same values pertaining to their underwriting 
attributes are grouped together to form "homogeneous" classes for the 
purpose of rating. 

The traditional approach for obtaining loss distributions dependent 
upon risk attributes is to segment losses into subgroups. Then, for each 
subgroup, a separate fitted loss distribution is obtained. For instance, 
in fire insurance, losses may be classified broadly by construction as 
frame, masonry, and fire-resistant. Three fitted loss distributions can 
be obtained according to the types of construction. When we utilize 
more than one rating factor (say, the three rating factors construction, 
protection, and occupancy) and allocate losses to cells formed by com­
mon values of rating factors, then the problem of fitting separate dis­
tributions to many cells becomes more complicated. This is due to the 
fact that if we use a separate parametric loss distribution for each cell, 
then the total number of parameters used may be too large in compari­
son to the number of observations. One principal advantage of using a 
statistical modeling approach to fitting distributions to losses, in pres­
ence of rating factors, is that fewer parameters in total are used and all 
of the losses are utilized to estimate model parameters simultaneously. 
This is the approached used in this paper. 

Our approach to incorporate rating variables into the curve-fitting 
process is an extension of the generalized linear models (GLM) method­
ology. McCullagh and NeIder (1989) provide an excellent account of the 
theory and applications of GLM. The GLM approach, as originally devel­
oped, was intended only for complete data. 

Loss distributions dependent upon rating variables have important 
implications for underwriting selection and determination of rates. By 
including the rating variables, one generally improves the fit to the data. 
A statistical modeling approach to curve fitting enables one to assess 
the effect of rating variables on loss distributions by performing statis­
tical tests of hypotheses. 

The GLM methodology consists of three components: the random 
component, the systematic component, and the link function . 

• The random component pertains to the distribution of the ran­
dom variable of interest, Y (e.g., loss or a transformation of the 
loss). We assume Y has a distribution belonging to the exponen­
tial family of distributions. The general form for the density of 
the exponential family is 

(ey - b(e)) 
j(y; B, cp) = exp[ a(cp) + c(y, cp)] 
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where a(.), b(.), and c(.) are real valued functions, () is the pri­
mary parameter of interest, and cp is a vector of parameters often 
referred to as nuisance parameters. Some distributions belonging 
to the exponential family are normal, gamma, and inverse Gaus­
sian. 

• The systematic component of a GLM specifies the explanatory 
variables, Xl, ... , xp (e.g., rating variables). The explanatory vari­
ables may only influence the distribution of the Y through a single 
linear function called the linear predictor, '7, 

• The link function, g(.), specifies how the mean of Y is related to 
the linear predictor, i.e., 

p 

g(IE [Y]) = '7 = I: fjjXj. 
j~O 

The form of the link function varies by the type of distribution 
within the exponential family of distributions. Thus, the GLM 
method has a formal approach for relating the explanatory vari­
ables to a parameter of a distribution. 

This paper uses a lognormal with parameters iJ and ()2 to repre­
sent the underlying loss distribution. There are several reasons for this 
selection. First, it is easy to interpret the parameters of a lognormal 
distribution. By taking the logarithm of the losses, the iJ parameter 
represents the location parameter (mean), and the () parameter is the 
scale (standard deviation). Second, lognormal distribution has been 
previously used to describe the distribution of fire losses (Benckert and 
lung 1974). Third, by transforming lognormal into normal, a member 
of the exponential family of distributions, the methodology developed 
for GLM can be applied to the problem. For the normal distribution, 
the appropriate link function is the identity map, i.e., 9 (y) == y, which 
leads to 

IE [In(Y)] = iJ = '7 = I: fjjXj. 
j 
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In GLM, each explanatory variable is considered either as a factor 
(categorical) or as a covariate (quantitative). For example, gender, con­
struction type, and protection may be considered as categorical in na­
ture, while age and the amount of insurance are considered to be quan­
titative. For the ith loss, the linear predictor, I'h, can be written as 

p P 

rJi = xi P = I Xij15j = 150 + I PjXij (1) 
j=O j=l 

where 15 is a (p + 1) x 1 vector of unknown parameters, and Xi is a 
(p + 1) x 1 vector of known constants, XiO, Xil, ... , Xip with XiO = l. 
Hence the constant term Po is the intercept in the expression for the 
linear predictor. The other xijs components, 1 :s; j :s; p, are used to 
represent rating variables. 

The value of p is partially dependent upon the number of categorical 
rating factors included in the model, as well as their respective number 
of levels (values). In addition, p depends upon the number of quantita­
tive rating variables in the model. When rating variables are not taken 
into consideration or when the information about them is not available, 
then p = 0. 

Following are examples of the types of linear predictors, rJi, dis­
cussed throughout this paper. In fire insurance, some commonly used 
categorical rating factors are construction, protection, and occupancy. 
The amount of insurance (Le., the value of the insured building) is taken 
as a measure of exposure and is quantitative. Here, for illustrative pur­
poses only, the focus is mostly on construction and building value. 

Assume there are three possible construction types (or levels): frame, 
masonry, and fire-resistant. In regression analysis, as well as in GLM, 
the contribution of a categorical variable to a linear predictor comes 
from specifying dummy variables. For the construction rating factor, 
two dummy variables Cil and Ci2 are introduced defined as follows: 

Cil = { 
1, if the ith risk is a frame; 
0, otherwise, 

Ci2 = { 
1, if the ith risk is a masonry; 
0, otherwise. 

For the ith loss, let BVi denote the amount of insurance purchased 
by the policyholder to cover damages arising from peril of fire to the 
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building. For a fire policy, the policy limit for the building cover is con­
sonant with the building value. Because there is a wide range of vari­
ability among building values, one can use the logarithm of the building 
value instead of building value as our covariate in the linear predictor. 
For these two variables (construction and building value), six linear pre­
dictors are defined yielding six statistical models: 

Model A: '7i = f30 

Model B: '7i = f30 + f31Cil + f32 Ci2 

Model C: '7i = f30 + f311n( BVi) 
Model D: '7i = f30 + f311n(BVi) + f32 Cil + f33 Ci2 

Model E: '7i = f30 + f3 1 1n(Di) + f32 1n(BVi) + f33 Cil + f34 Ci2 

Model F: '7i = f30 + f311n( BVi) + f32 Cil + f33 Ci2 + f34 Cil ln (BVd 
+ f3sCil ln(BVi) 

The linear predictor given by Model A is used when either one does 
not consider the information given by rating variables or when no in­
formation on rating variables is available. In these instances, one fits 
a distribution to the data that does not account for rating variables. 
Model A is our base model (distribution). The base distribution is used 
as a benchmark to gauge the relative improvement in fit by including 
rating variables. 

Model B is appropriate if construction is the only rating factor used. 
Using the statistical methodology developed here, all data are used to 
estimate the values of the parameters f3o, f31, f32 simultaneously. This 
approach is different from the one in which the data are segmented into 
three groups according to types of construction. 

Model C is used when one wishes to exanline only the effect of ex­
posure size (building value) on loss distribution. Model D accounts for 
both construction and building value. In this case, the vector 

xi = (l,ln(BVi), Cil, Ci2) 

represents the contribution of the ith risk's attributes to the linear pre­
dictor, and p has the value of three. 

Model E is an extension of Model D. Here, one wishes to determine 
whether, in the presence of construction and building value, the de­
ductible affects the distribution of losses. Finally, Model F is another 
extension of Model D that includes interaction terms for construction 
and building value. 
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To each linear predictor, there corresponds a statistical model with 
parameters /3, a vector of regression coefficients, and (52. Procedures 
for estimating model parameters are discussed below. 

A criterion used to compare alternative statistical models is Akaike's 
information criterion, AIC (Akaike 1973), which is defined as 

AlC = -2 x (Maximized Log-Likelihood - No. Estimated Parameters). 

When two models are compared, the model with a smaller AlC value 
is the more desirable one. The AIC is based on log-likelihood, and it 
penalizes the log-likelihood by subtracting for the number of param­
eters estimated. Two other model selection criteria used in statistics 
are Schwarz's Bayesian information criterion (BIC) (Schwarz 1978) and 
deviance as used in generalized linear models (McCullagh and NeIder 
1989). These three criteria are based on the value of maximized log­
likelihood function. 

The linear predictors given by Models A through D provide examples 
of nested models. For nested models, some models are a special case 
of a more general model. The linear predictors Models A, B, and C are 
special cases of the linear predictor Model D. For the linear predictor 
Model D, one can entertain the following statistical tests of hypotheses 
in order to assess the effect of rating variables: 

Hci1
): Ih = fh = f33 = 0 

Hci2): f32 = f33 = 0 

Hci3): f31 = O. 

The null hypothesis Hci1) is used to test if either construction or 
building value (exposure size) has any effect on loss distribution. The 
failure to reject Hci1), subject to the usual interpretation of errors prob­
ability type, suggests that the rating variables have no appreciable influ­
ence on the loss distribution. The rejection of hypothesis Hcil) implies 
that the inclusion of building value or construction in the linear pre­
dictor gives a superior model as compared to the fit by the base distri­
bution, Model A. The failure to reject the null hypothesis Hci2) suggests 
that in the presence of building value, the addition of the construction 
factor does not improve the fit. The null hypothesis Hci3) can be simi­
larly interpreted. 

For Models A and D, the null hypothesis Hcil), can be tested using the 
likelihood ratio test. The asymptotic distribution of these test statistics 
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is X2 with degrees of freedom being equal to the number of f3iS set to 
zero, which, in this case is three. In Section 5, this test and similar tests 
are conducted, based on the data given in Table Al of the appendix. 

4 Maximum Likelihood Estimation of Parameters 

4.1 Software Considerations 

The estimation of parameters of the underlying distribution serves 
two purposes. First, the complete specification of a fitted distribution 
requires replacing the model parameters with their respective parame­
ter estimates. Second, the effect of rating variables on the loss distri­
bution can be assessed by using a likelihood ratio test statistic whose 
value is dependent upon maximum likelihood estimates of parameters. 

Two methods are provided to estimate the maximum likelihood esti­
mate (MLE) of parameters. The conventional approach to computation 
of the MLE of parameters is based on writing an expression for the likeli­
hood or log-likelihood function. The partial derivatives of the likelihood 
or log-likelihood function with respect to parameters are computed and 
equated to zero. The solution of the system of nonlinear equations is 
achieved by using iterative numerical procedures. 

An alternative method for computing the MLE of parameters is to 
use a solver, i.e., a black box approach. There are several software 
packages that are capable of computing MLEs including SAS®, SYSTAT®, 
and S-Plus®. In addition Microsoft Excel®has a solver that can be used 
as an optimizer to compute MLE of parameters. We have relied on a 
standard function, ms, available in the S-Plus®program, to compute the 
MLE of parameters. The codes for a program to determine the MLE of 
parameters of Model D, using lognormal as the underlying distribution, 
are given in Exhibit A of the appendix. 

The S-Plus® solver program requires as input the specification of ini­
tial values for model parameters f3 and (]'2. The program outputs con­
sist of the MLE of parameters as well as the value of negative maximized 
log-likelihood function. Obtaining the MLE of parameters using a solver 
does not require the calculation of partial derivatives of the likelihood 
function. Thus, the MLEs of parameters are obtained with little com­
putational effort on the part of the user. Another advantage of relying 
upon the S-Plus®solver, based on the author's experience, is that the 
algorithm used is not sensitive to the specification of initial values of 
the model parameters. 
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The solver (black box) approach for computing the MLE, however, 
has some limitations. First, to determine large sample (asymptotic) con­
fidence intervals for the f3 jS, it is necessary to compute Fisher's matrix 
(Tanner 1993). An estimate of Fisher's matrix involves the computation 
of first and second order partial derivatives of the likelihood function, 
which is not normally available if one uses a solver to compute the 
MLE. Second, the conventional approach for calculating the MLE can be 
further extended (as described in Section 4.2) to develop the notion of 
generalized residuals. 

4.2 Direct Calculation of MLEs 

An iterative procedure for calculating the MLE of parameters is now 
provided; it does not require the use of a solver. 

The probability distribution functions (pdf), j, and the cumulative 
distribution functions (cdf), F, of the lognormal are 

where 

cp(y) = ~e-y2/2 and <I>(y) = J:oo cp(t) dt 

i.e., cp(y) and <I>(y) are the pdf and cdf, respectively, of the standard 
normal random variable. The parameter J.l is the same as the e param­
eter of the density function, as defined in Section 2. It is the mean of 
random variable In(Y). The nuisance parameter (J corresponds to the 
cp parameter. 

The statistical modeling approach used here relates the rating vari­
ables (explanatory variables) to the J.l parameter of the lognormal. The 
link function is the identity map in the case of normal distribution, and 
17i is defined in equation (1). 

The basis log-likelihood functions are: 
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(In(Yi) - Pi)2 
lil = constant -In(o-) - 20-2 

1 t t I () (In(Di + Yi) -Pi)2 I (1 if> (In(Dd -Pi)) 
i2 = cons an - n 0- - 20-2 - n - '¥ 0-

li3 = In ( 1 - <P cn(PL~ - Pi) ) 

li4 = In ( 1 - <p Cn(Di + !Li) - Pi)) -In ( 1 - <p cn(D~ - Pi) ) . 

Using the fact that 

0Pi Olir olir - -x" and - -x··­
o/3j - tj o/3j - tj 0Pi 

for r = 1,2,3,4, it follows that 

olil SiXij 
o/3j = c;-
olil = l (s? - 1) 
00- 0- t 

~i~ = x:; (ti - h(Ui)) 

OliZ = l (t? - 1 - Uih(U')) 
00- 0- t t 

Oli3 Xijh(Vi) 

o/3j 0-

0li3 Vih(Vi) 
00- = 0-

0li4 Xij 
o/3j = a (h(Wi) - h(Ui)) 

Oli4 1 
00- = 0- (Wih(Wi) - Uih(Ui)) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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where 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

The function h (y) is referred to as the hazard rate as used in the anal­
ysis of survival data; see, for example Cox and Oakes (1984, Chapter 2, 
page 14). It follows that 

n 
= L Xij [OilSi + Oi2(ti - h(Ui» + Oi3h(Vi) 

i ()" 

+ Oi4(h(Wi) - h(Ui» ] (16) 

for j = 0,1, ... ,po 
To solve for the maximum likelihood estimates, S jS, one has to 

equate each of the (p + 1) equations in equation (16) to zero. This 
involves the daunting task of solving simultaneously a system of non­
linear equations for the S jS. 

One approach to circumvent this difficulty is to define a new variable, 
Zi, and replace the problem of solving a system of nonlinear equations 
by that of regressing the ZiS on the XijS iteratively. As software for 
performing multiple regression is readily available in many computing 
environments, these iterations should be easy to perform. Thus equa­
tion (16) can be rewritten as 

(17) 
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for j = 0,1,2, ... ,p. This suggests that we define 

(T2 4 alir 
Zi = J.li + - L 8ir-

Xij r=l a{3j 

= J.li + (T [8ilSi + 8i2(ti - h(Ui)) + 8i3h(Vi) + 8i4(h(Wi) - h(ud)] 

= 8 il ln(Yi) + 8dln(Di + Yi) - (Th(Ui)] + 8dJ.li + (Th(vd] 

(18) 

for i = 1,2, ... n. 
Setting the (p + 1) partial derivatives in equation (17) equal to zero 

yields 

(19) 

for j = 0,1,2, ... ,p. We can write equation (19) in the matrix form as 

(20) 

which resembles the normal equations in ordinary regression analysis. 
This equation yields the solution 

(21) 

provided the design matrix X has full rank, Le., provided (XT X) -1 ex­
ists. If the vector Z does not depend on the parameters {3 and (T2, then 
equation (20) [or, equivalently, equation (21)] gives the least squares 
estimate of (3. It is worth noting, when the data are complete, we have: 

8 il = 1, 8i2 = 8 i3 = 8 i4 = 0, and Zi = In(Yi) 

and Z does not depend on model parameters. The least squares esti­
mate of {3 can be obtained by regressing Z only once on X by solving 
the normal equation (20). 

When the data are incomplete, however, Z is dependent on {3 and 
(T2. The procedure to estimate {3, equation (20), is an application of the 
method known as iteratively re-weighted least squares (IRLS). The IRLS 
method has been applied to derive maximum likelihood estimates and 
robust regression coefficients; see Green (1984). 

The essence of the IRLS procedure is as follows: 
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1. Select initial values for 13 and (J'2. 

2. Use these initial values of 13 and (J'2 to compute Z. 

3. Regress Z on X to obtain an updated estimate of 13. 

4. Update the value of (J'2 and use the updated values of 13 and (J'2 

to re-compute Z. 

5. Repeat this procedure, i.e., updating 13 and (J'2 until there is no 
appreciable change in the values of updated parameters. 

To proceed formally, a procedure is needed to re-compute or update 
the values of (J'2. To update the initial estimate of (J', we note that 

(Zi - J.li)2 = 6il (In(Yi) - J.li)2 

+ 6d(ln(Di + Yi) - J.li) - (J'h(Ui»)2 

+ 6i3[(J'2h2(Vi») + 6i4[(J'2(h(Wi) - h(Ui»2) (22) 

which leads to 

where 

ol ,,1 2 
~ = L -2 (Zi - J.ld - DF 
U(J' . (J' 

t 

(23) 

DF = I 6il + 6i2(1 + h(Ui)(Ui + h(Ui) - 2(ln(Di + Yi) - J.li») 
i (J' 

+ 6i3[h(Vi)(h(Vi) - vd) 

+ 6i4[(h(Wi) - h(Ui»2 - Wih(Wi) + Uih(Ui»). (24) 

Setting equation (23) to zero gives 

Li (Zi - Pi)2 

DF 
(25) 

where Pi = xi /3 . This expression for {r (in equation (25», as found in 
many multiple regression texts, is derived from an expression similar 
to equation (25). The differences are: 

• Instead of ZiS, the observed values of the dependent variables are 
used; and 
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• In place of DF, as defined by equation (24), the degrees of freedom 
used is (n - p - 1). 

Let p(k) and (j(k) denote the estimates of f3 and (Y obtained at the 
kth iteration. The steps needed to compute the maximum likelihood 
estimates of model parameters based on the IRLS procedure are as fol­
lows: 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Initially, regress In(Di + Yi) on the rating variables XijS. Com­

pute p(O) as the initial estimate for f3 derived from the multi­
ple regression coefficients. The square root of mean sums of 
squares (MSE) from the multiple regression output is used to 
determine (j(0), the initial estimate for (Y. We refer to these 
initial values, p(O) and (j(O), as naive estimates of f3 and (Y2. 

These estimates are ordinary least squares estimates, which 
do not account for the incompleteness of the data. 

~ (0) (0) Use f3 and (j to compute ZiS. 

Use p(O) and (j(0) from Step 2 to compute ZiS [equation (18)]. 
~ (1) 

Regress ZiS on XijS and compute a new estimate f3 based 
upon regression coefficients. Use equation (25) to calculate 
(j(l), a new estimate for (Y. 

~ (1) ~ (0) 
If f3 = f3 and (jO) = (j(O), then stop. Otherwise, replace 
~(O) ~O) f3 and (j(O) by f3 and (jO) and return to Step 2. 

In order for the iterations to stop, we use the following rule. Stop at 
the kth iteration, if 

max I (3(.k) - (3(k-1) I ::; f, and I (y(k) - (y(k-1) I ::; f (26) 
bj:5p J J 

for, say f < 0.0005. A numeric application of this procedure is given in 
Section 5. 

A few remarks should be made about the convergence procedure. 
First, the above algorithm may not always converge for initial values 

of the parameters p(O) and (j(O) as determined from Step 1. Second, the 
maximum likelihood estimates p and {j may not be unique. These prob­
lems occur when the maximum likelihood estimates are derived from 
an iterative numerical method (Tanner 1993). To prove the uniqueness 
of the MLE requires further research and is not within the scope of the 
present paper. 
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4.3 Generalized Residuals Defined 

Akaike's information criterion, as defined earlier, is a measure of 
overall fit of distribution and is used to compare alternative statistical 
models. In regression analysis, the residuals are used to check model 
assumptions and detect outliers. The usual definition of residuals as 
used in ordinary regression is not applicable here as we have a regres­
sion problem with incomplete data. The notion of generalized residu­
als is developed to deal with regressions using truncated and censored 
data. 

In the case of complete data, Z does not depend upon the value of P 
and (J". In this case let e denote the vector of residuals. When the data 
are incomplete, let e* denote vector of generalized residuals, i.e., 

e=Z-x/3 (27) 

and 

e* = Z - x/3 (28) 

where Z is defined by equation (18) with P and (J" replaced by their re­
spective maximum likelihood estimates. The generalized residuals con­
cept is an extension of the notion of adjusted residuals as defined by 
Lawless (1982). Lawless defined adjusted residuals for regression mod­
els with right-censored observations in the case of lognormal. The no­
tion of adjusted residuals, as defined by Lawless (1982), is extended to 
regression problems subject to left-truncated as well as right-censored 
observations. The generalized residual, as defined here, is an exploratory 
data analysis tool for an informal assessment of fit. 

5 Numerical Illustrations 

Examples are now provided on the following: 

1. MLE of model parameters using a "solver"; 

2. An example to illustrate the use of iteratively re-weighted least 
squares (IRLS) method to estimate MLE of parameters; 

3. AsseSSing the effect of rating variables on loss distributions; and 

4. Plotting the generalized residuals as an explanatory data analysis 
tool. 
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The data used in numerical examples 1), 3), and 4) above are based on a 
sample of commercial fire losses as given in Table Al of the appendix. 
The example 2) above, the application of IRLS procedure, uses the data 
in Table A2 of the appendix. For both sets of data, the lognormal is 
used as the underlying loss distribution 

5.1 MLE of Model Parameters 

For the data in Table Al and the Model D, we have the naive estimate 
of f3 and (J, i.e., the least squares estimate of f3 and (J as 

f35S = 4.568, f3Is = 0.238, f3~s = 1.068, f3~s = 0.040, and (JLS = 1.322. 

The superscript LS is used to emphasis that these are least squares 
estimates of parameters. The least squares estimates do not account 
for some observations being subject to either truncation or censoring. 
The least square estimates are also the initial estimates of parameters 
for the S-Plus®program. The S-Plus'"program is given in Exhibit A of the 
appendix. 

The MLE for Model D parameters (see the S-Plus®program) are given 
as: 

So = 1.715, Sl = 0.332, S2 = 2.155, S3 = 0.411, and {j = 1.899. 

In addition, the negative of the maximized log-likelihood function has a 
value of 892.710. The above MLE of parameters were determined using 
a solver function ms of S-Plus®. 

Consider an insured risk (building) valued at $1,000,000 and a con­
struction type that is masonry. The average severity (ground up) value 
based on the MLE of parameters is $4993. If one uses the naive es­
timate of the parameters (least squares), the average severity for the 
same risk is $6440. Thus, the average severity based on the naive es­
timate is 29 percent larger than the true estimate (based on the MLE 
of parameters). Such a difference has practical implications for pricing 
insurance products. 

An example is provided where the MLE of the model parameters 
is computed by the IRLS method. This procedure requires regressing 
the vector Z on the design matrix X a number of times, as outlined 
in Section 4. Although this procedure is theoretically sound, based 
on the author's experience the method is sensitive to the selection of 
initial value of parameters. For illustrative purposes only, this method 
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Table 1 
MLE of Model D Parameters Using Table A2 

And the Linear Predictor l7i = {3o + (31ln(BVi) + {32Cil + {33Ci2 
Iteration So Sl S2 S3 {} 

0 5.9645 0.1435 0.4677 -0.0602 1.7147 
1 5.6912 0.1313 0.7006 -0.2138 1.8738 
2 5.5884 0.1205 0.8420 -0.2591 1.8967 
3 5.5659 0.1136 0.9160 -0.2762 1.9475 
4 5.5573 0.1081 0.9668 -0.2778 1.9672 
5 5.5570 0.1044 0.9984 -0.2762 1.9858 
6 5.5570 0.1017 1.0201 -0.2731 1.9946 
7 5.5579 0.1000 1.0341 -0.2705 2.0020 
8 5.5583 0.0989 1.0435 -0.2684 2.0059 
9 5.5587 0.0982 1.0497 -0.2669 2.0089 

10 5.5589 0.0977 1.0538 -0.2657 2.0106 
11 5.5590 0.0973 1.0565 -0.2650 2.0119 
12 5.5591 0.0971 1.0582 -0.2645 2.0126 
13 5.5591 0.0970 1.0594 -0.2641 2.0132 
14 5.5591 0.0969 1.0602 -0.2639 2.0135 
15 5.5591 0.0968 1.0607 -0.2637 2.0137 
16 5.5591 0.0968 1.0610 -0.2636 2.0139 

is applied to the data in Table A2 of the appendix based on Model D. 
Table 1 illustrates the intermediate value of estimates of {3 and (J"2 at 
different iterations before the convergence to values j3 and {} occurs. 

5.2 Assessing the Effect of Rating Variables 

Section 3 defined six linear predictors that corresponded to six sta­
tistical models. For the data in Table Al of the appendix, based on 
lognormal, the estimates of linear predictors and the negatives of max­
imized log-likelihood functions for each model are presented in Table 
2. 

Nested models can be compared based upon the values of likelihood 
ratio statistics. The only difference between Model E and Model D is the 
inclusion of the deductible term in the linear predictor equation. Using 
Model E, we can consider the null hypothesis 
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Table 2 
Summary of Model Fitting Information 

Model A Pi = 5.887, 
{j = 2.302, -lnL = 897.8 

Model B Pi = 5.537 + 1.938Cil + 0.161Ci2, 
(j = 2.142, -lnL = 894.8 

Model C Pi = 3.162 + 0.252In(BVi), 
{j = 2.126, -lnL = 896.8 

Model D Pi = 1.715 + 0.332In(BVd + 2.155Cn + 0.411Ci2, 
(j = 1.899, -lnL = 892.7 

Model E Pi = 2.215 - 0.483In(Di) + 0.478In(BVi) + 2.604Cn 
+0.416Ci2, 

(j = 2.088, -lnL = 891.8 
Model F Pi = 2.350 + 0.284In(BVi) + 0.758Cn + 0.0707Ci2 

+0.112In(BVdCn + 0.0238In(BVi) Ci2 

(j = 1.899, -lnL = 892.7 

H64
): /h = 0 

To testH64) the following likelihood ratio statistic is used: -2 (lnLD-
InLE), where LD and LE correspond to the values of maximized likeli­
hood function for Models D and E, respectively. The asymptotic distri­
bution of this test statistic is a X2 distribution with 1 degree of freedom. 
At the 5 percent significance level we cannot reject the null hypothesis 
H64

). Thus, we can drop the deductible term and use the simpler Model 
D instead of Model E. 

Next, we compare Model D with Model F. The difference between the 
two models is the inclusion of interaction terms between exposure size 
and construction. We can test for the effect of interaction terms based 
on Model F by considering the following test of hypothesis: 

The likelihood ratio test statistic used is -2(lnLD - InLF) where LD 
and LF correspond to the values of maximized likelihood function for 
Models D and F, respectively. The asymptotic distribution of this test 
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statistic is X2 with 2 degrees of freedom. This observed value does not 
fall in the reject region when the significance level is 5 percent. Again, 
we can drop the interaction terms and use the simpler Model D. 

Finally for nested Models A, B, C, and D, Table 3 provides useful 
statistics. 

Table 3 
Nested Hypotheses Based On Model D 

Hypothesis 
Ho 
/h = f32 = f33 = 0 
f32 = f33 = 0 
f31 = 0 

Likelihood Ratio xa Distribution 
Test Statistic d 95th Percentile 

-2 (lnLA -lnLD) = 10.11 3 7.81 
-2(lnLc -lnLD) = 8.24 2 5.99 
-2(lnLB -lnLD) = 4.25 1 3.84 

Notes: d denotes the number of degrees of freedom for the X2 . In addition 
LA , LE, Le and LD correspond to the values of maximized likelihood function 
for Models A, B, C, and D respectively. 

The results in Table 3 should be interpreted carefully. First, the 
distribution of test statistics for performing tests of hypotheses is not 
exact. The large sample (asymptotic) distribution of the likelihood ratio 
statistic, i.e., X2 distribution, is used. Second, the sample is relatively 
small in size. With these qualifications in mind, let us interpret the 
results of Table 3. 

First, the observed test statistics are larger than 95th percentiles of 
respective X2 distributions. The implications are that each null hypoth­
esis should be rejected at a 5 percent significance level. Hence, rating 
variables are useful in the description of loss distributions. Second, 
Model D has relatively the largest value of likelihood function, repre­
senting the best fit among the four models. 

5.3 Generalized Residuals: A Diagnostic Tool 

By examining the various plots of generalized residuals against fit­
ted values and explanatory variables, an informal assessment of fit is 
made. Also, the plot of these residuals is helpful in determining ex­
treme observations. If the plots of generalized residuals exhibit a sys­
tematic pattern, then the implication is that some assumption about 
the regression model is violated. In these instances, one has to make 
appropriate corrections to the regression model. We can write equation 
(18) as 
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e7 = Zi - Pi 

= Oil (In(Yi) - Pi) + odln(Di + Yi) - (Pi + (J" h(Ui)] 

+ Oi3[ (Pi + 6" h(Vi) - Pd 

+ Oi4[(Pi + 6" h(Wi)) - (Pi + 6" h(Ui))] (29) 

Ui, Vi, and Wi are obtained from equations (13), (14), and (15) by re­
placing f3 and (J"2 by their MLE j3 and 6"2. 

For a normal random variable, X , with mean J.1 and variance (J"2, the 
conditional mean of X is 

lE [XIX> a] = f x j(xlX > a) dx 

1 foo 
= 1 _ F(a) a X j(x) dx 

a-J.1 
= J.1 + (J"h(--). (J" (30) 

where a is a constant and h is the hazard function in equation (10). 
We re-interpret equation (29), in light of the properties of normal 

distribution given by equation (30), in Table 4 below. The four cases 
defined in Table 4 correspond to cases as defined for the likelihood 
function in Section 2. 

Table 4 
Interpretation of Residuals for Various Cases 

Case Description Actual Fitted 
1 Di = 0, Yi < PLi Xi = In(Yi) Pi = lE [Xd 

2 Di > 0, Yi < PLi Xi = In(Di + Yi) lE [XdXi > In(Di)] 
3 Di = 0, Yi 2': PLi lE [Xi IXi > In(PLi)] Pi = lE [Xd 
2 Di > 0, Yi 2': PLi lE [Xi IXi > In(Di + PLi)] lE [Xi IXi > In(Di)] 

Notes: Xi - N(Pi, 0- 2 ) where Pi and 0- 2 are maximum likelihood estimates of 
Pi and u 2 . 

Figure 1 shows three straight lines superimposed on the scatter plot 
of fitted against actual values as defined in Table 4. The middle line is 
the 45-degree line. If a point is on the line, then its fitted and actual 
value will be the same. For the points off the 45-degree line, the vertical 
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Figure 1 
A Scatter Plot of Actual Vs. Fitted in Model D 

10 II 12 13 14 

Actual 

distance from any point to the 45-degree line represents the general­
ized residual value. The other two parallel lines in Figure 1 represent 
lines that are a distance of ± 2 ftgres above or below the 45-degree line, 
where ftgres is sample standard deviation of generalized residuals. By 
analogy with ordinary regression theory, we would expect that the ma­
jority (95 percent) of scatter points to lie between the two lines. Finally, 
no systematic pattern is observed in Figure 1 when the actual values 
are plotted against the fitted values. 

6 Summary and Conclusions 

This paper addresses issues that are germane to fitting parametric 
loss distributions to insurance data. The presence of deductibles and 
policy limits renders the insurance data incomplete and complicates 
both fitting and assessing the fit of these distributions. Two procedures 
are stated for determining the parameters' MLEs. 

A new methodology is introduced for incorporating rating factors 
into the curve fitting process. It is shown that the likelihood ratio test 
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statistic can be used to assess the effect of rating factors on loss distri­
butions. The concept of generalized residuals is developed as a vehicle 
for informally assessing the quality of the fit. This new methodology is 
illustrated via a numerical example. 

We conclude that improper estimation of the parameters of a loss 
distribution can result in substantial errors in pricing the underlying 
insurance product. Also, the inclusion of rating factors can provide a 
better fit to insurance loss data. 
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Appendix 

Exhibit A 
An S-Plus®program to Compute MLEs for Model D 

lognormal .model.D<- funetion(bO,b1,b2,b3,sigma, 
data. matrix) 

{ D <- data.matrix[,l] 
PL <- data.matrix[,2] 
y <- data.matrix[,3] 

enst <- data.matrix[,4] 
Z <- D+(y*(y<PL)+PL*(y>=PL)) 
C1 <- enst == 1 
C2 <- enst == 2 

d <-D+(D == 0)*1 
mu <- bO+b1*log(PL)+b2*C1+b3*C2 

del tal <- (D == O)*(y < PL) 
delta2 <- (D > O)*(y < PL) 
delta3 <- (D == O)*(y >= PL) 

delta4 <- (D > O)*(y >= PL) 
L1 <- dlnorm(z,mu,sigma) 
L2 <- dlnorm(z,mu,sigma)/(l-plnorm(d,mu,sigma)) 
L3 <- 1-plnorm(z,mu,sigma) 
L4 <- (l-plnorm(z,mu,sigma))/ 

(l-plnorm(d,mu,sigma)) 
logL <-delta1*log(L1)+delta2*log(L2) 

+delta3*log(L3)+delta4*log(L4) -logL } 
min.model.D<-ms(-lognormal.model.D(bO,b1,b2,b3, 

sigma,TableA), 
start=list(bO=4.568,+b1=0.238, b2=1.068,b3=0.0403, 

si gma=l. 322)) 
min.model.D 
value: 892.7099 
parameters: 

bO b1 b2 b3 si gma 
1.715296 0.3317345 2.154994 0.4105021 1.898501 

formula: lognormal.model.D(bO, b1, b2, b3, 
sigma, TableA) 

100 observations 
eall: ms(formula = - lognormal.model.D(bO, b1, b2, b3, 

sigma, TableA), 
start +list(bO = 4.568, b1 = 0.238, b2 =1.068, 

b3 = 0.0403, sigma = 1.322)) 

123 
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Table Al 
Insurance Company Data (in Dollars) 

Construction 
i Di PLi Yi Code 
1 1,000 57,000 502 2 
2 250 41,000 31,971 1 
3 1,000 1,000 367 1 
4 250 60,000 698 2 
5 100 10,000 4,863 2 
6 250 24,000 834 2 
7 250 16,000 646 1 
8 250 60,000 198 2 
9 1,000 66,000 275 2 
10 250 36,000 500 1 
11 100 53,000 1,518 2 
12 250 70,000 2,430 2 
13 250 51,000 357 1 
14 250 79,000 2,008 2 
15 500 139,000 3,044 1 
16 250 155,000 238 2 
17 250 150,000 3,244 2 
18 250 98,000 850 2 
19 250 100,000 198 2 
20 100 110,000 110,000" 1 
21 250 115,000 1,191 1 
22 250 100,000 1,852 3 
23 5,000 153,000 4,433 1 
24 250 120,000 100 2 
25 250 100,000 2,501 2 
26 250 350,000 1,057 2 
27 250 373,000 180 1 
28 1,000 208,000 9,385 1 
29 1,000 600,000 2,300 3 
30 1,000 284,000 5,589 1 
31 1,000 263,000 652 2 
32 250 312,000 3,975 1 
33 250 280,000 485 2 
34 1,000 312,000 2,092 2 
35 2,500 250,000 250,000* 1 

Notes: * Denotes a censored observation. 
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Table Al (Continued) 
Insurance Company Data (in Dollars) 

Construction 
i Di PLi Yi Code 
36 250 300,000 250 2 
37 500 625,000 1,305 3 
38 1,000 319,000 6,729 3 
39 500 9,214,000 185 2 
40 250 43,000 75 2 
41 1,000 1,000 865 3 
42 100 33,000 206 2 
43 250 7,000 2,303 1 
44 250 64,000 11,760 2 
45 250 45,000 402 2 
46 500 30,000 3,352 1 
47 250 2,000 511 1 
48 0 10,000 1,115 2 
49 250 52,000 237 2 
50 250 3,000 1,197 2 
51 100 50,000 7,107 2 
52 250 89,000 535 2 
53 1,000 200,000 5,959 2 
54 250 100,000 1,224 3 
55 250 85,000 85,000* 1 
56 250 103,000 2,358 2 
57 250 110,000 31,243 2 
58 500 110,000 1,488 1 
59 250 175,000 2,702 3 
60 1,000 154,000 850 2 
61 250 100,000 300 2 
62 250 134,000 930 2 
63 500 125,000 305 2 
64 1,000 115,000 190 2 
65 250 630,000 1,875 1 
66 1,000 402,000 5,075 2 
67 500 204,000 972 2 
68 250 300,000 271 3 
69 250 350,000 87 1 
70 500 595,000 625 2 

Notes: * Denotes a censored observation. 
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Table Al (Continued) 
Insurance Company Data (in Dollars) 

Construction 
i Di PLi Yi Code 
71 1,000 275,000 20,934 1 
72 250 290,000 609 1 
73 250 560,000 325 2 
74 1,000 371,000 6,012 1 
75 1,000 362,000 860 2 
76 250 317,000 2,720 2 
77 500 6,817,000 1,040 3 
78 1,000 3,010,000 48,762 1 
79 1,000 3,000,000 22,930 3 
80 1,000 800,000 498 3 
81 500 838,000 990 2 
82 250 1,400,000 5,491 3 
83 1,000 1,500,000 1,185 3 
84 500 36,819,000 6,032 2 
85 250 1,282,000 13,775 2 
86 250 1,000,000 150 3 
87 1,000 6,127,000 4,536 2 
88 100 1,140,000 298 3 
89 1,000 1,910,000 335 2 
90 5,000 6,023,000 20,576 1 
91 250 700,000 230 2 
92 1,000 1,000,000 200 2 
93 500 1,442,000 1,247 1 
94 1,000 2,000,000 10,000 2 
94 1,000 2,526,000 4,525 3 
96 500 65,065,000 16,981 2 
97 1,000 1,236,000 4,911 2 
98 1,000 5,000,000 81,692 2 
99 250 2,275,000 21,447 2 
100 1,000 2,700,000 992 2 

Notes: * Denotes a censored observation. 
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Table A2 
Insurance Company Data (in Dollars) 

Construction 
i BVi Yi Di Code 
1 250,000 1,809 250 2 
2 84,000 614 0 2 
3 10,000 10,000" 0 1 
4 4,798,000 676 1,000 2 
5 125,000 346 1,000 2 
6 100,000 95,542 250 2 
7 350,000 801 1,000 2 
8 14,000 14,000* 0 2 
9 28,000 255 0 1 
10 2,320,000 145 100 1 
11 250,000 2,988 5,000 2 
12 1,800,000 2,725 0 1 
l3 123,000 2,288 1,000 1 
14 350,000 3,648 1,000 1 
15 750,000 2,803 0 1 
16 100,000 1,451 1,000 2 
17 150,000 538 0 2 
18 212,000 8,559 100 1 
19 16,000 913 1,000 2 
20 155,000 424 250 2 
21 360,000 270 500 3 
22 4,500,000 42,797 1,000 3 
23 700,000 294 1,000 2 
24 25,000 25,000" 1,000 1 
25 162,000 5,115 5,000 2 
26 650,000 2,249 250 1 
27 10,000 3,600 100 2 
28 7,222,000 12,338 1,000 2 
29 150,000 156 250 2 
30 347,000 28,380 25,000 2 
31 200,000 1,703 250 2 
32 10,885,000 1,636 1,000 2 
33 1,848,000 1,658 0 3 
34 950,000 166 500 3 
35 598,000 126 0 2 

Notes: ;, Denotes a censored observation. 
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Table A2 (Continued) 
Insurance Company Data (in Dollars) 

Construction 
i BVi Yi Di Code 
36 72,000 328 100 1 
37 47,000 41,128 100 3 
38 185,000 350 0 2 
39 600,000 2,295 1,000 1 
40 3,500,000 3,529 250 3 
41 125,000 107 250 2 
42 1,320,000 378 100 2 
43 135,000 3,197 250 3 
44 30,000 572 0 1 
45 240,000 4,067 500 3 
46 50,000 79 1,000 1 
47 270,000 6,413 1,000 3 
48 250,000 610 0 1 
49 67,000 67,000* 250 1 
50 10,000 9,364 1,000 2 
51 500,000 1,323 100 2 
52 572,000 980 1,000 2 
53 700,000 632,003 50 1 
54 416,000 5,366 500 2 
55 22,000 1,854 0 2 
56 350,000 2,131 500 2 
57 20,000 447 1,000 2 
58 650,000 5,974 1,000 2 
59 4,000,000 3,591 250 3 
60 2,200,000 1,584 500 3 
61 550,000 1,066 500 2 
62 5,000 1,902 1,000 1 
63 270,000 490 1,000 1 
64 3,652,000 950 250 3 
65 875,000 5,090 0 2 
66 120,000 2,171 500 2 
67 50,000 282 0 3 
68 1,636,000 7,352 100 2 
69 700,000 1,424 0 2 
70 50,000 488 100 1 

Notes: ;, Denotes a censored observation. 
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Table A2 (Continued) 
Insurance Company Data (in Dollars) 

Construction 
i BVi Yi Di Code 
71 47,000 730 0 2 
72 170,000 451 250 3 
73 18,000 251 0 2 
74 23,000 3,490 2,500 2 
75 2,200,000 525 1,000 3 
76 1,000 195 250 3 
77 50,000 19,572 1,000 2 
78 24,000 599 500 3 
79 450,000 * 450,000 1,000 1 
80 150,000 670 1,000 3 
81 500,000 163,704 250 3 
82 250,000 2,632 250 2 
83 1,000 887 250 3 
84 747,000 902 0 1 
85 15,000 336 ° 2 
86 350,000 51 ° 2 
87 1,401,000 4,750 1,000 2 
88 1,556,000 484 0 3 
89 160,000 838 0 2 
90 750,000 3,368 1,000 1 
91 2,103,000 1,844 1,000 1 
92 135,000 847 250 3 
93 624,000 113,749 10,000 2 
94 186,000 153 0 2 
95 1,756,000 12,867 ° 2 
96 75,000 4,144 0 1 
97 550,000 6,664 1,000 2 
98 79,000 258 500 2 
99 5,000 114 0 2 
100 17,139,000 1,952 1,000 2 

Notes: * Denotes a censored observation. 
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In this paper we consider linear empirical Bayes estimation of survival prob­
abilities with partial data from right-censored and possibly left-truncated ob­
servations. Such data are produced by studies in which the exact times of 
death are not recorded and the length of time that each subject may be under 
observation cannot exceed one unit of time. We obtain asymptotically optimal 
linear empirical Bayes estimators, with respect to the squared error loss func­
tion, under the assumption that the probability of death under observation in 
a unit time interval is proportional to the length of observation. This assump­
tion is sometimes implied by Balducci's assumption and sometimes is implied 
by the assumption of uniform distribution of deaths. 
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1 Introduction 

Consider the problem of estimating the mortality rate qx or Px with 
partial data from right-censored and possibly left-truncated observa­
tions1 from a study Of n individuals. Suppose the i th individual comes 
under observation at age x + Yi and is scheduled to be under observa­
tion for Ui years until age x + Si, where Ui = Si - Yi and 0 ::; Yi < Si ::; l. 
The data are partial in the sense that the exact times of death are not 
recorded. For each i, the data only show whether the ith individual did 
or did not die under observation. Here the observable random variables 
are 8 1, ... ,8n where 

8i = {I if the i th person dies under observation; and 
o otherwise. 

Thus a typical record of data would contain i, x, Yi, Ui, and 8i. 

Because the times of death are not known, one cannot find the 
product-limit estimator with these data. Even when the exact times of 
death are known, the product limit estimator based on left-truncated 
observations (Klein and Moeschberger, 1997, pp. 114-115) can produce 
an unreasonable estimate of Px. 

The maximum likelihood method does not provide a compelling so­
lution in this case either. The maximum likelihood method requires 
a distributional assumption that makes it possible to write u;qx+r; in 
terms of qx. The three well-known assumptions that actuaries use for 
0::; t ::; 1 are: (i) the Balducci assumption, i.e., I-tqxH = (1 - t)qx; (ii) 
the assumption of uniform distribution of deaths, Le., tqx = tqx; and 
(iii) the constant force of mortality, Le., tqx = 1 - (1 - qx)t. Under each 
of these assumptions, except for trivial cases, the likelihood equation 
dL / dqx = 0, where 

n 
L = n (1 - u;qx+r;) 1-0; (u;qX+rJO; 

i=1 

does not have a closed form solution unless n is small. When there is no 
closed form solution, one may find a solution by numerical methods. As 
the likelihood equation dL/dqx = 0 may have multiple roots, it is diffi­
cult to determine, however, if the solution obtained by numerical meth­
ods is the value of the root that has optimal large sample properties. 

1 An observation is said to be right-censored if the individual being observed is alive 
when the study ends. An observation is said to be left-truncated if the individual entered 
the study after age x. 
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Because maximum likelihood estimators are justified mainly by their 
desired large sample properties, the maximum likelihood approach in 
this case may not be appealing. 

Another method of estimation is the method of moments. This 
method is one of the oldest statistical estimation methods. One of its 
biggest advantages over other statistical estimation methods is that it 
produces easy-to-compute estimates. One of its disadvantages is that 
it may produce an estimate that is outside the possible range of the 
parameter. Another disadvantage of the method of moments is that it 
may produce multiple estimators for the same parameter. 

To demonstrate this, consider, for example, estimation of qx with 
partial data as described above under the assumption that 

(1) 

for each i. The assumed equality in equation (1) is the exact form 
of the approximation given in equation (6.3) of London (1988). Note 
that equation (1) cannot be satisfied without restrictions on ri and 
Ui. Specifically, equation (1) without restrictions on ri and Ui gives 
o.sqx = o.sqx+o.s = 0.5qx, which, for qx > 0, contradicts the identity 

The equality in equation (1) is practically plausible in three cases 
only: (i) with Si = 1 and ri = 0 for all i in which case the equality is 
trivially true; (H) under Balducci's assumption with Si = 1 for all i; and 
(Hi) under the uniform distribution of deaths assumption with Yi = 0 
for all i. Under these three cases London (1988) (equations (6.7), (6.10), 
(6.13)) proposes the method of moments estimator given by 

(2) 

which is obtained by setting the random variable L~l Di equal to its 
expected value and solving for qx. Another observable random variable 
that one can equate to its expected value to yield a method of moments 
estimator is L~l Ui1Di, which has expected value equal to nqx. This 
method of moments estimator is given by 
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(3) 

Note that ilia) and il;:) are linear estimators of qx. In general let 
WI,· .. ,Wn be non-negative weights such that 2:~1 Wi = 1. Because 

the method of moments estimator is given by 

(4) 

Clearly ilia) and il;:) are special cases of iliW ). 

Because iliW ) is linear in the 6i/UiS, tt is natural to ask if there are 
better linear estimators than ilia) and il;:). From a Bayesian perspective, 
one can achieve a better result using the linear Bayes estimator, which 
is presented in Section 2. As will be seen, the linear Bayes estimator 
depends on the first two moments of the prior distribution. When these 
moments are known the linear Bayes estimator is available. If these 
two moments are unknown, however, they must be estimated and one 
can use the linear empirical Bayes estimator described in Section 3, 
which also contains a discussion of the asymptotic optimality of linear 
empirical Bayes estimators of qx. 

2 The Linear Bayes Estimator 

In a Bayes estimation problem, one is faced with a data set consisting 
of n observable k-dimensional random vectors (k can be 1), Xl, ... ,Xn , 

and an unobservable random variable or vector e. Given e, Xl, ... ,Xn 
are mutually independent. 

The loss function L(t, e) specifies the loss of estimating (predict­
ing) e by t = t(XI, ... ,Xn ). Bayesians are interested in estimators that 
minimize the expected loss in some sense. 
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Definition 1. An estimator 8 = 8(XI,'" ,Xn ) is called a Bayes estimator 
if 

where lE [] denotes the expectation with respect to the joint distribution 
of all of the random variables involved. 

In other words, a Bayes estimator for a given loss function is an 
estimator that minimizes the expected loss over all estimators. As the 
basic method of moments estimators are linear (see equation (4)), we 
will consider linear Bayes estimators. 

Definition 2. An estimator 8* is called linear Bayes if 

n 
for t a linear function of the data, i.e., t = ao + L: aiXi. 

i=l 

Observe that for the squared error loss function given by L(8, 0) = 

(8-0)2, we have L(I-e, 1-0) = (8-0)2 = L(8, 0). Hence an estimator 
8 is a Bayes (linear Bayes) estimator of 0 if, and only if, (1- 8) is a Bayes 
(linear Bayes) estimator of (1 - 8). Therefore, the linear Bayes (linear 
empirical Bayes) estimator of Px is automatically found when we find 
the linear Bayes (linear empirical Bayes) estimator of qx. 

The following assumption gives a formal description of the model 
for our estimation problem. 

Assumption 1. Let 0 = qx and Xi = 6i/Ui, then 0, Xl, ... ,Xn are 
random variables such that 

1.1 lP'[0:$ 0:$ 1] = 1, lP'[0 = 1] < 1, andlP' [0 = 0] < 1; 

1.2 Given 0, the random variables Xl, ... ,Xn are uncorrelated; and 

1.3 UiXi is a Bernoulli random variable taking the values 0 or 1 such 
that 

where 0 < Ui :$ 1 is a known constant for i = 1, ... ,n. 
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Assumption 1.3 corresponds to the assumed equality given in equa­
tion (1). Under Assumption 1, lE [XiI8] = 8, and Var [XiI8] = Ui8(1 -

Ui 8 )/Ur 
Let J1 = lE [8] and (J"2 = Var [8]. Then we have lE [Xd = J1 and 

Var [Xd = lE [Var [XiI8]] + Var [lE [XiI8]] = Ui1J1- J1 2. Therefore 

(5) 

and, for i f. j, 

lE [XiXj] = lE [lE [XiXjI8]] = lE [82
] = J12 + (J"2. (6) 

The following theorem gives the linear Bayes estimator of 8, Le., of 
qx. Its proof is given in the appendix. 

Theorem 1. Under Assumption 1 the linear Bayes estimator e * of 8 un­
der the squared error loss is given by 

where 

n 

e* = q~ = boJ1 + L biXi 
i=l 

lXi = [ui1J1- (J12 + (J"2)]-1, 

n 
bi = (1 + (J"2 L lXi)-1(J"2lXi' 

i=l 

n 
for i = 1, ... ,n, and bo = 1 - I bi. 

i= 1 

(7) 

(8) 

(9) 

The next question is the determination of J1 and (J"2. To a purely 
Bayesian actuary, the prior density of 8, rr(8), is completely known; 
hence, J1 and (J"2 are known so that e* can be determined easily from 
equation (7). An actuary who is not a pure Bayesian, however, would 
not have an explicitly known prior distribution. In this case the actuary 
may use either the uniform distribution as a non-informative prior for 
8 or use the empirical Bayes approach to estimate J1, (J"2, lXi, and bi 
in equation (7). The empirical Bayes approach is described in the next 
section. 

Examples of priors for 8 (Le., for qx) are: 
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• Tr(e) = 1 for 0 < e < 1. This is a non-informative prior because it 
reflects the actuary's complete ignorance of any prior information 
on qx. This is an extreme case. 

• Suppose a mortality study is done every three years on a block of 
policies. In the year 2000 study the actuary feels that mortality 
has dropped between, say, five and 25 percent from its previous 
level of q1199

7) in 1997. In the absence of further information the 
actuary's prior would be 

for 0.75q11997
) < e < 0.95Q11997

) 

otherwise. 

The model described in Assumption 1 is similar to the credibility 
theory model of Biihlmann (1967); it reduces to the Biihlmann (1967) 
model when Ui = 1 for i = 1, 2, ... ,n. 

3 Linear Empirical Bayes Estimators 

In the empirical Bayes approach pioneered by Robbins (1955), one 
is faced with m independent copies of the same decision problem. In 
the ith problem there is a random pair (Xi, ei) where Xi is observable 
and ei is not observable. Conditional on e i = e, Xi has a specified 
density f (', e) for every i. In some of the variations of the empirical 
Bayes estimation that were later developed (e.g., Biihlmann and Straub 
(1970) and its generalization in Sundt (1983), or Ghosh and Meeden 
(1986» in the ith problem there is an observable random vector Xi = 

(Xil, ... ,Xini) where niS are not necessarily equal. There is a non­
negative loss function L(t, e). The unobservable eiS are assumed to be 
LLd. with unknown common distribution function G(·). 

To put this in the context of a mortality study, suppose there are m 
similar portfolios of insured lives, and the ith portfolio consists of ni 

lives. The ph individual in the ith portfolio comes under observation at 
age x + Yij and is scheduled to be under observation for Uij years until 
age x + Sij, where Uij = Sij - rij and 0 ::; rij < Sij ::; 1. For each j, the 
data only show whether the ph individual in the ith portfolio did or did 
not die under observation. Here the observable random variables are 
Oil, ... ,Oini where 
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(k = { I if the ph person in i th portfolio dies under observation; and 
J 0 otherwise. 

Each individual in the i th portfolio is characterized by an unobservable 
random mortality rate e i = q;J) and the eis are values of an unobserv­
able random sample from the same distribution. The data consist of 
the available observations as shown in Table 1. The random variables 
Xi} are defined by 

for j = 1,2, ... ,ni and i = 1,2, ... ,m. The problem is the simultane­
ous estimation of the eis. 

Table 1 
illustration of the Empirical Bayes Problem 

Mortality Outcome Death or Survival 
Portfolio Rate Observations Period 

1 el 8 n 8 ln1 Un Uln1 

i e i 8il 8in; Uil Uin; 

m em 8m l 8 mnm Uml u mnm 

To avoid needless complications, Robbins assumes the existence of 
a Bayes decision function te such that 

Robbins shows that when G is not known (and, hence, te is not directly 
available) for each problem, one may use asymptotically optimal deci­
sion rules that use the data from all of the m decision problems. These 
decision rules asymptotically give us the same risk that we would have 
with the knowledge of te. According to Robbins' definition, a sequence 
of decision rules tm ( .) = tm (Xl, ... ,Xm ; .) is asymptotically optimal 
relative to G as m - 00 if 
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JE [L(tm(Xm ), 8m )] -JE [L(tc(Xm ), 8m )] ~ 0 as m~ 00, 

where JE [] denotes the expectation over all random variables. Though 
tm (.) is a decision function and not an estimator, its value tm (Xm ) = 

tm(Xl, ... ,Xm;Xm) is an empirical Bayes estimator for the m th estima­
tion problem, and, in the context of this paper, its value tm (Xk) = 

tm(Xl, ... ,Xm;Xk) is the empirical Bayes estimator for the kth problem, 
k = 1,2, ... ,m.2 

In the linear empirical Bayes estimation problem considered by Rob­
bins (1983), the minimizing rule is the linear Bayes rule in the sense that 
it minimizes the Bayes risk for the ith problem within the class of all 
estimators of the form aXi + b. Thus, tm is asymptotically optimal if 
the excess of risk of using tm over the risk of using the linear Bayes 
rule converges to zero as the number of problems m increases. 

Many variations of the linear empirical Bayes approach have been 
used by statisticians; see, for example, Morris (1983) for a list of some 
remarkable examples. These variations usually occur in cases where 
there are many similar independent estimation problems and the num­
ber of observations in each problem is small. In such cases one can do 
significantly better by borrowing strength from data from other prob­
lems. The strength is obtained through estimation of the prior distri­
bution (in unrestricted empirical Bayes) or estimation of the necessary 
moments of the prior distribution (in the case of linear empirical Bayes) 
by using similar data. A notable example of linear Bayes (linear empir­
ical Bayes approach) well known to actuaries is the Buhlmann (1967) 
approach in credibility theory. 

The variation that we are conSidering is slightly different from Rob­
bins' empirical Bayes or linear empirical Bayes in the sense that our m 
problems are not identical when the sample sizes are different or when 
the durations of time that different subjects are under observation are 

2It must be emphasized that although tm (Xkl = tm (Xl, ... ,Xm;Xk) is an estimator 
for the klh problem, k = 1,2, ... ,m in the context of this paper, it is not true for what 
Robbins does. Robbins (1955) uses so-called delete bootstrap rules because he has posed 
his problem in a non-parametric unrestricted empirical Bayes context. Non-delete boot­
strap rules, although desirable, are difficult to use in the non-parametric unrestricted 
empirical Bayes context. In this paper, however, we consider a linear empirical Bayes 
estimation problem, which can be solved through the estimation of only the first two 
moments of the prior distribution. This has allowed us use the more desirable non­
delete rules. Specifically, we have used all of the observations to find estimators for the 
first two moments of the prior distribution and hence the shape of the decision rule. 
We then have used observations from each problem to find the linear empirical Bayes 
estimator for that problem. This is not what RobbinS (1955) has done. He conSiders 
empirical Bayes estimators for the m th problem only. 



140 Journal of Actuarial Practice, Vol. 9, 2001 

not equal. Still, we may define the linear empirical Bayes estimators 
erB, ••• , e~ to be asymptotically optimal if, with e7 denoting the linear 
Bayes estimator for the i th problem, for each i = 1, ... ,m we have 

IE [(erB - Bi)2] -IE [(e7 - Bi)2] - 0 as m- 00. 

The model we are conSidering is formalized in the following assump­
tion. 

Assumption 2. (Xll, ... ,Xlnjl BI>, ... , (Xml. ... ,Xmnm , Bm) are in­
dependent random vectors such that 

2.1 Bl, ... , Bm are identically distributed random variables with 
lP'[0:::.; Bi :::.; 1] = 1, lP'[Bi = 1] < 1, andlP'[Bi = 0] < 1; 

2.2 Conditional on Bi, the Xil, ... ,Xin; are uncorrelated and; 

2.3 UijXij is Bernoulli with parameter UijBi where 0 < U* :::.; uij :::.; 1 
are known numbers; and 

2.4 There exists a K such that 2 :::.; ni :::.; K < 00 for all i. 

Assumption 2 is similar to BOblmannand Straub (1970). In the Biihlmann 
and Straub model (Bl,Xll, ... ,Xlnj ), ... , (Bm,Xml, ... ,Xmnm ) are m 
independent random vectors such that the BiS are unobservable and 
Xij is observable for i = 1, ... , m and j = 1, ... , ni. There are functions 
PI and u such that 

and 

where the PirS are known constants. In Biihlmann-Straub the niS are 
equal. In later variations, however, niS are not necessarily equal. Ob­
serve that when UijS are all equal our model satisfies the above as­
sumptions by choosing pdB) = B, and u(B) = u- l B(1 - uB), and 
Pij = 1, with U being the common value of the UijS. Also note that 
in the Biihlmann (1967) model the conditional distributions are not 
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completely specified. In our model the conditional distributions are 
completely specified to be Bernoulli. 

Assumption 2 is used throughout the rest of this paper and there­
fore we will not mention it in the statement of every lemma or theorem. 
In the remainder of this paper all incompletely described limits are as 
m ~ 00 through positive integers. 

Let J.l and (T2 denote the mean and variance of (:h, respectively. Ob­
serve that under Assumption 2 we have 

Similar to equations (5) and (6), we have 

and for k -1= j 

(10) 

Let 

ni m 

Xi. = I WijXij, N = I ni, and 
j=l i=l 

1 
Yi = (ni) I XijXik, 

2 l,,;j<k,,;ni 

where the WijS are non-negative weights such that L.j~l Wij = 1. We 
propose using the following estimates for J.l and (T2 

p = X •• (11) 

and 

(12) 

respectively, where 

1 m 
y=-IYi. 

m i=l 
(13) 
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The linear empirical Bayes estimator of ei, based on these estimators 
of jJ and (52 is given by 

where 

and 

ni 

efB = qJ:l = biOP + I bijXij 
j=l 

&'j = { u;} {l- ({l2+6"2 l 

° 
ni 

if ui/- (P 2 + (52) > ° 
otherwise 

b~ (1 ~2" ~ )-1~2~ ij = + (5 L.. (Xij (5 (Xij, 
j=l 

for i = 1, ... ,m and j = 1, ... ,ni, and 

ni 

biO = 1 - I bij. 
j=l 

(14) 

(15) 

(16) 

(17) 

It can be proved (see Theorem 2 in the appendix) that the efBs are 
asymptotically optimal linear empirical Bayes estimators in the sense 
that for every i = 1, ... ,m 

(18) 

where et is the linear Bayes estimator of ei. 
If we choose (5 = 0, so that the class of prior distributions under 

consideration reduces to the class of point priors (the traditional fre­
quentist approach) then with m = 1, the linear empirical Bayes estima­
tors in equation (14) will be the same as the estimator qiWl in equation 
(4). 

A natural question to ask now is how do we choose the WijS? Ob­
serve that according to Theorem 2 every choice of WijS provides an 
asymptotically optimal estimator. However a smaller variance of X •• 
means a better speed of convergence. Because the variance of x .. is 
minimized when variance of each Xi. is minimized and 
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ni ( 2 2) '" 2 /1-Uij(/1 +(J") 2 
= L.W.. +(J" 

~J U" ' 
j-I . 0 

we need to minimize 

subject to the constraint 2.:.;~I Wij = 1. Writing the Lagrangian 

and setting the partial derivatives equal to zero yields the minimizer 

where 

Uij 
Cij = ----",:,----=­

/1 - Uij (/12 + (J"2) . 

(19) 

(20) 

As wt depends on the unknown parameters, it is not available. 
Note, however, that /1 2 + (J"2 = IE [e 2 ]. Therefore in cases when e2 is so 
small that its expectation becomes negligible we have 

The above argument also shows that the choice of weights in the mo­
ment estimator of equation (2) is a reasonable choice when qx is small. 
One can also use the Chebychev's inequality, similar to the proof of 
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consistency of X •• , to show that 41a
) of equation (2) converges in prob­

ability to qx as n- 00. Thus when there is a large homogeneous sam­
ple available for estimation of qx there is not much to gain by using 
the linear empirical Bayes method. The problem, however, is that it is 
not always feasible to have a large sample of homogeneous subjects. 
When there is a large sample of subjects that can be broken into many 
homogenous groups, one can show by using a variation of the weak 
law of large numbers (Hannan and Fabian (1985), Theorem 2.3.9) that 
using the estimator of equation (2) will provide a weighted average of 
the failure probabilities of the homogenous groups that are in the large 
sample. An actuary who uses such a weighted average in the determina­
tion of premiums can expect to face some anti-selection by those who 
feel the premium is unfair to them. Breaking the large sample into many 
homogeneous groups on the other hand may leave a small number of 
subjects in each homogeneous group. In such a case one can gain by 
using a linear empirical Bayes estimator instead of using the moment 
estimator of equation (2) for each homogenous sample separately. 

4 Concluding Remarks 

In this paper we obtain an asymptotically optimal linear empirical 
Bayes estimator of 8i, with the yardstick of performance being the risk 
of the linear Bayes estimator. The main reason for using linear empir­
ical Bayes estimators instead of the empirical Bayes estimators is that 
linear empirical Bayes estimators exist under milder conditions and are 
usually much easier to compute. When it is possible to reduce the risk 
of an asymptotically optimal linear Bayes estimator with a simple ad­
justment, one should not hesitate to do so. 

It is easy to see that by construction we have efB :2:: 0. It is possible, 
however, that the value of e[B could become more than 1. Let er be 
equalto efB when efB ::; 1 and let er = 1 otherwise. The 8iS are known 
to be in [0,1]; therefore, we have lE [(e7* - 8i)2] ::; lE [(efB - 8i)2] be­

cause ler - 8i l ::; le[B - 81. 
We started this paper by considering the survival probabilities as 

related to life insurance. The method of estimation that we present, 
however, may find more applications in the casualty insurance. Con­
sider, for example, the case when an insurer who has insured a large 
number N of drivers is interested in assessing the risk due to severe 
accidents that cannot happen to a person more than once. Examples 
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of such accidents include fatal accidents and accidents resulting in a 
severe disability so that the person will not be able to drive again. 

Suppose that the insurer is able to classify the N policy holders 
according to factors such as age, area, etc. into m homogeneous groups 
with ni drivers in the ith group for i = 1, ... ,m such that m is large 
and each ni is small. Also suppose that it is reasonable to assume the 
probability of an accident for the ph driver in the i th class during the 
policy period is equal to Uij (h where Uij is the duration of time the 
person is insured and ei is the probability of an accident by a typical 
member of the i th class in a unit interval of time. Let Bij denote the 
amount of loss the insurer will suffer if the ph driver in the ith class 
faces an accident. 

In this case because each ni is small and also because when the UijS 

are not equal the probabilities of accident during the policy period for 
different drivers are not equal, the Poisson distribution or the negative 
binomial distribution will not give a good approximation for the dis­
tribution of the number of accidents in each group. Therefore, using 
a compound Poisson model or compound negative binomial model for 
each class will not be accurate. In such a case, using the individual risk 
model (Bowers et aI., 1986) for each class can produce more accurate 
results. In order to use the individual risk model, however, the insurer 
would need an estimate of ei for i = 1, ... ,m. In such a case, the 
method presented in this paper can be used to obtain the desired esti­
mates when the insurer has experience data for these m classes from 
a past year. 

A very important question that every practitioner may ask before us­
ing any variations of the empirical Bayes approach is how large should 
m be? Because answering this question accurately requires knowledge 
of the rate of convergence of the risk of the empirical Bayes estimator, 
this question is often a good cause for further research when asymp­
totic results are obtained through application of convergence theorems 
such as the Lebesgue Dominated Convergence Theorem. For some re­
sults that provide a step for further research in this direction, see Hes­
selager (1992). 

Appendix: The Proofs 

In order to prove Theorem 1, we note the following: Suppose that 
(i) e, Xl, ... ,Xn are random variables with finite second moments (so 
that they all belong to the L2 space, and (ii) the loss function is the 
squared error loss function given by L(t, e) = (t - e)2). Then, from the 
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definition of the L2 projection (see, for example, Brockwell and Davis 
1987, Chapter 2), the Bayes estimator of e is the L2 projection of eon 
the set of all functions of Xl, ... ,Xn that belong to the L2 space. The 
linear Bayes estimator ofe is the L2 projection of e on the closed span 
of {l,XI, ... ,Xn }. 

Proof: Because lP' [0 =:; e =:; 1] = 1, lP' [e = 1] < 1, and lP' [e = 0] < 1, we 
have /J = IE [e] > IE [e 2 ] = /J2 + (J"2. Because 0 < Ui =:; 1, it follows 
that each Oli is well defined and greater than zero. We must show that 
e* is a version of the L2 projection of e on the closure of the linear 
span of {l,XI, ... ,Xn }. Thus it is enough to check that (e* ~ e) is L2 
perpendicular to 1 and to Xi for i = 1, ... ,n because, if IE [e* - e] = 0 

and IE [(e* - e)Xi] = 0, then for all ao, ... ,an 

so that e* - e is perpendicular to every element of the closed span of 
{l,XI, ... ,Xn }. We have 

n n 

IE [e* - e] = (1 - L bi)/J + L h/J - /J = O. 
i= I i= I 

So it remains to show that IE [(e* - e)Xi] = 0 for each i = 1, ... ,n. 
Because IE [eXd = IE [IE [eXile]] = IE [elE [Xile]] = IE [e 2 ] = /J2 + (J"2, it 
is enough to show that IE [e* Xi] = /J2 + (J"2. We have 

IE [e* Xi] = bW2 + L bjlE [XjXi] + bilE [xl] . (21) 
Hi 

Thus, from equations (5) and (6) and by definition of Oli, it easily follows 
that the right side of equation (21) is equal to 

and Theorem 1 is proved. o 
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Lemma 1. Let p be as defined in equation (11) and (;-2 be as defined in 
equation (12). Then 

(22) 

and 

(23) 

Proof: Because UijXij is Bernoulli and Uij ;::: U*, we have ° ::; Xij < 
U;l. This gives ° ::; Xi. ::; U;l and hence Var [Xi.] ::; IE [xl.] ::; U;2 
Therefore 

Var [X •• ] = (~ ni) -2 ~ n;var [Xi.] < m-1 Ku,' -". O. (24) 

Hence, equation (22) follows from equation (24), from Chebychev's 
inequality, and from the fact that IE [X •• ] = f.l. 

From equation (10), it follows that IE [Y] = f.l2 + (J"2. Because ° ::; 
Xij ::; U;l, we have Yi ::; U;2 and, hence, Var[(Yd ::; U;4. Therefore 

Var [Y]) ::; m-1u;4 .!... 0. By Chebychev's inequality it follows that 
- p 2 2 - P -2 P 2 
Y - f.l + (J" . Because X •• - f.l, it follows that X •• - f.l and, hence, 
Y - X; • .!... (J"2. Because (J"2 ;::: 0, continuity of the function 9 (x) 
max(O, x) gives equation (23). 0 

Lemma 2. Suppose p .!... f.l and (;-2 .!... (J"2. Let {Xij be given by equation 

(15) and OI.ij = [ui]f.l- (f.l2 + (J"2)]-1. Let bij be as in equation (16) and 

ni 

bij = (1 + (J"2 L OI.ij)-1(J"201.ij. 
j~l 

~ ni ~ ni 
Let bw = 1 - I bij and bw = 1 - I hj. Then for each i = 1, ... ,m 

j~l j~l 

and k = 0,1, ... ,ni, 

(25) 



148 journal of Actuarial Practice, Vol. 9, 2001 

Proof: We prove the lemma by first showing that 

A P 0 
(Xij - (Xij - . 

Because 0 < Uii :::; U; 1 we have 

(26) 

( P. ( A 2 A 2) ) 1 P. - J.1 ( A 2 2) ( A 2 2) P 0 (27) -- J.1 +0- --=--- J.1 -J.1 - 0- -0- -+ • 

Uu (Xu Uu 

If am and a~ are two sequences such that am ;::: a > 0 and am -
a~ - 0, then eventually a~ ;::: a/2 > O. Hence, eventually 

Therefore, because (Xii;::: J.1- (J.12 + 0-2) > 0, equation (26) follows from 
equation (27) by the fact (Bilingsley, 1986, p. 274; Royden, 1968, p. 93) 
that a sequence am converges in probability to zero if and only if every 
subsequence of am has a further subsequence that converges to zero 
with probability l. 

ni 

Let E > 0 and i E {I, ... , m}. Observe that I I (Xij - (Xij I > E only 
j=l 

if for some j E {I, ... , nd, 

I A I -1 K- 1 (Xu - (Xij > n i E > E. 

Thus we have 

lP' [I I (Xij - I (Xij I > E] :::; lP' [J~_i1 I (Xij - (Xu I > E] (28) 
j=l j=l 

ni 

:::; LlP'[I(Xij-(Xijl >K-1EJ-0 (29) 
j=l 

by equation (26) and the assumption that ni :::; K. This means that 
ni ni p 
I (Xij - I (Xij - 0 and, hence, 
j=l j=l 

nj nj 

(1 + 0- 2 L (Xij) - (1 + 0- 2 L (Xu) .£. o. (30) 
j=l j=l 
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ni 
Because 1 + (T2 L (Xij :::: 1 it follows from equation (30) that 

j=l 

ni ni 

149 

(1 + 0- 2 2: eXij)-l - (1 + (T2 2: (Xij)-l .!.. O. (31) 
j=l j=l 

It follows from equations (26) and (31) that for j = 1, ... ,ni, we have 
~ p 
bij - bij - O. Because ni ::; K, it follows that 

ni ni 

2: hij - 2: bij .!.. 0 
j=l j=l 

which means we also have hiO - biO .!.. 0, and the proof is complete. 0 

Theorem 2. . Let P be as in Lemma 1. For j = 0, 1, ... ,ni let hij be 
,.. ,.. ni " ,.. 

as defined in Lemma 2. Let efE = biOP + L bijXij. Then efE is an 
j=l 

asymptotically optimal linear empirical Bayes estimator in the sense that 
for every i = 1, ... ,m with et denoting the linear Bayes estimator of ei , 

(32) 

~EB ~ p 
Proof: From Lemma 2, it easily follows that ei - et - O. Because 
o ::; Xij < U;l, we obtain that e[E and et are both bounded. We also 
have 0 ::; ei ::; l. Therefore 

~EB 2 ~ 2 _ ~EB ~* ~EB ~* P IWi -ei) -Wt-ei) I - lei +ei - 2eil.lei -eil-o. 

Because (erB - e i )2 - (et - ei)2 is bounded, the assertion of the theorem 
follows by the bounded convergence theorem. 0 



150 Journal of Actuarial Practice, Vol. 9, 2007 

References 

Billingsley, P. Probability and Measure, Second Edition. New York, N.Y.: 
Wiley, 1986. 

Bowers, N.L., Gerber, H.U., Hickman, ].C, Jones, D.A., and Nesbitt, c.J. 
Actuarial Mathematics, Schaumburg, Ill.: Society of Actuaries, 1986. 

Brockwell, P.]. and Davis, R.A. Time Series: Theory and Methods. New 
York, N.Y.: Springer-Verlag, 1987. 

Buhlmann, H. "Experience Rating and Credibility." ASTIN Bulletin 4 
(1967): 199-207. 

Buhlmann, H. and Straub, E. "Glaubgwu.rdigkeit fUr Schadensatze." Bul­
letin of the Swiss Association of Actuaries 70 (1970): 111-133. En­
glish translation by C.E. Brooks. 

Fabian, V. and Hannan, J. Introduction to Probability and Mathematical 
Statistics. New York, N.Y.: John Willey & Sons, 1985. 

Ghosh, M, and Meeden, G. "Empirical Bayes Estimation in Finite Popu­
lation Sampling." journal of the American Statistical Association 81 
(1986): 1058-1062 

Klein, ].P. and Moeschberger, M.L. Survival Analysis. New York, N.Y.: 
Springer-Verlag, 1997. 

London, D. Survival Models and Their Estimation, Third Edition. Win­
sted, Conn.: Actex, 1997. 

Hesselager, O. "Rates of Risk Convergence of Empirical Linear Bayes 
Estimators." Scandinavian Actuarial journal (1992): 88-94. 

Morris, C.N. "Parametric Empirical Bayes Inference: Theory and Appli­
cations." journal of the American Statistical Association 78 (1983): 
47-59. 

Robbins, H. "An Empirical Bayes Approach to Statistics." Proceedings of 
the Third Berkeley Symposium of Mathematical Statistics Probability 
1 (1955): 157-164. 

Robbins, H. "The Empirical Bayes Approach to Statistical Decision Prob­
lems." Annals of Mathematics and Statistics 35 (1964): 1-20. 

Robbins, H. "Some Thoughts on Empirical Bayes Estimation." Annals of 
Statistics 11 (1983): 713-723. 

Royden, H.L. Real Analysis, Second Edition. New York, N.Y.: Macmillan, 
1968. 

Sundt, B. "Parameter Estimation in Some Credibility Models." Scandi­
navian Actuarial journal (1983): 239-255. 



Journal of Actuarial Practice Vol. 9, 2001 

Controlling the Solvency Interaction Among a 
Group of Insurance Companies 

Alexandros Zimbidis* and Steven Habermant 

Abstract 

Pooling of risks is an efficient risk management technique used by large em­
ployee benefit schemes of multinational companies to self-insure their retire­
ment and other benefit obligations. This technique forms a basis for formu­
lating a general control theoretic model for the interaction between insurance 
companies within a pooling network. The objective of these insurance compa­
nies is to avoid insolvency yet maintain stable premium and surplus processes. 
A general control system of equations that is used as a model for the inter­
action of m insurance companies within the network is first analyzed. An 
analytic solution is provided. Questions concerning the stability and optimal 
parameter design for the system are investigated. The special case of two 
identical companies is analyzed in detail. 
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1 Introduction 

Since the 1980s, the rise in numbers, size, and shape of large multi­
national corporations have created a demand for special insurance prod­
ucts. As parent corporations exerted more control over their subsidiaries, 
the demand for insurance to cover contingencies in different countries 
grew. Insurance companies have responded to this demand by con­
structing multinational insurance networks. These networks are estab­
lished through special reinsurance agreements between affiliated insur­
ance companies (William M. Mercer, 1988). 

One of the most important products sold through these networks 
is the pooling arrangement. Pooling is a special kind of self-insurance 
established to manage risks. For example, a multinational corporation 
with employee benefit schemes in two or more countries may use self­
insurance to cover benefits as they are needed for all of their employees 
(Hart et al., 1996). 

Two basic problems arise with developing models of pooling ar­
rangements: 

• Specifying a model to describe the premium rating process asso­
ciated with sharing the claims experience of each insurance com­
pany in the pool; and 

• Specifying a model for describing the interaction of the surpluses 
among the insurance companies participating in the pool. 

The specification of these models is used as a starting point in the for­
mulation of an optimal control theoretic model of the overall interac­
tions among the group of insurance companies in the network. 

Optimal control theory was developed in the late 1950s by scien­
tists and engineers to investigate the properties of dynamic systems of 
difference or differential equations. As it is often difficult to obtain ana­
lytic solutions for many dynamic systems, control theory is concerned 
with the examination of the qualitative properties of these systems. 
One of the important qualitative properties is the stability of the sys­
tem. 

The stability of a system refers to the way the system reacts to dif­
ferent external input signals, the way it returns to its initial state or to 
a designated state, and whether or not it remains within an acceptable 
region of this state. In the insurance context, stability is directly related 
to the level of the surplus. A stable insurance system can react effec­
tively by anticipating the appropriate premium (output variable) to any 
claim (input variable) pattern in order to maintain (in the long run) the 
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surplus (state variable) and consequently maintain the insolvency risk 
at an acceptable level. 

Since 1980, actuaries have applied the results of control theory to ac­
tuarial problems. Balzer and Benjamin (1980), Martin-LOf (1983,1994), 
Vandebroek and Dhaene (1990), Loades (1998), Runggaldier (1998), ScMI 
(1998), Chang (2000), and Zimbidis and Haberman (2001) have pro­
duced interesting actuarial papers using control theory methods and 
techniques to solve practical actuarial problems. Control theory may 
be used in other problems in which there exists an interaction between 
two or more insurance companies or between different lines of insur­
ance businesses. 

We have two main objectives for this paper: (i) to provide a compre­
hensive and convenient model for the interaction of the surplus among 
a group of insurance companies within the pooling network and the 
associated control actions that may be necessary for the management 
of the network; and (ii) to analyze the resulting system of eq\lations 
that arise when we consider the control theory approach to solving this 
insurance problem. 

The paper is organized as follows: Section 2 describes the assump­
tions and notation used throughout the paper. Section 3 introduces the 
general control model with m insurance companies in the network and 
the resulting system of equations and its solution. Certain properties of 
the solution, such as stability and optimality, are discussed in Section 
4. Section 5 provides a detailed study of the model and its solution in 
the simpler case of two identical insurance companies in the network. 
A summary and conclusions are provided in Section 6. The appendix 
provides an algorithm for computing the determinant for a key matrix 
used in our analysis. 

2 Assumptions and Notations 

Suppose there are m insurance companies participating in a multi­
national insurance network that operates in m countries (one insurance 
company per country) covering the risks associated with the benefit 
payments from the multinational corporation's international employee 
benefits scheme. A typical employee benefits scheme may include some 
or all of the following benefits: term life insurance, accidental death and 
dismemberment insurance, permanent/temporary disability insurance, 
and medical benefits. 

At the end of each year the accumulated surplus (whether it is pos­
itive or negative) is redistributed within the network of insurance com-
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panies under a specific set of rules. The course of action mandated by 
these rules is enforced by the holding company or by a neutral central 
unit that coordinates the network in order to smooth the operational 
result and solvency requirement of each company. 

The insurance companies all use the same experience rating proce­
dure to calculate annual premiums. The experience rating procedure 
has the following characteristics: 

• Experience rating is based on the most recently available claims 
experience; 

• There is a time delay of f years, i.e., it takes f years for incurred 
claims to be fully reported, processed, and settled. Thus the avail­
able claim information at the beginning of the nth year (or at the 
end of (n - 1) th year) refers to the experience of the years n - f -1, 
n - f - 2, n - f - 3, ... , 2, 1, 0, i.e., years prior to and inclusive 
of year n - f - 1; 

• Premiums are calculated annually at the beginning of each year 
according to a base premium and a profit sharing scheme; 

• The base premium is calculated using the most recently available 
claims experience and taking into account the necessary expense 
margins; 

• The profit-sharing scheme mandates an extra modification of the 
base premium through a refund (charge) to the policyholder a cer­
tain percentage of the benefit scheme's total accumulated surplus 
(deficit). This correction is aimed at driving the accumulated sur­
plus to zero in the long run; and 

• Each company passes to the other (m - 1) companies a pre-deter­
mined percentage of its accumulated surplus at the end of each 
year. 

In general the predetermined percentages are not equally divided 
and are defined by a matrix A, called the harmonization matrix, that 
governs the surplus exchange. That is 

A = [Ai}] E jRmxm 

where Ai} > ° is the predetermined percentage of surplus that the ith 

company passes to ph company. This obviously implies that 
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m 

L Aij = 1 for i = 1,2, ... ,m. 
j=l 

(1) 

The quantity Au, i = 1,2, ... ,m determines the percentage of surplus 
retained by the ith company. It is further assumed that each company 
has its own operational parameter values for expenses, feedback, accu­
mulation, and inflation factors. 

The following notations are used throughout the paper: 

m = Number of insurance companies participating in the multinational 
network. 

f = Length of time delay (measured in years). 

ek = Expense factor for the k th company, i.e., (1- ek) x Gross Premium 
is the margin for expenses. The expense factor vector is e = 

(el,e2, ... ,em). 

Rk = Accumulation factor (Rk = 1 + jk), using an annual rate of in­
vestment return of A) for the kth company. The vector for the 
accumulation factor is R = (Rl,R2, ... ,Rm). 

h= Inflation factor (h = 1 + inflation rate) of the kth company. This 
factor indicates internal growth of the total annual claims, at­
tributable to inflation or to business growth. The vector for in­
flation is F = (Fl,F2, ... ,Fm). 

Interaction factor, i,j = 1,2, ... ,m, is the proportion of surplus 
that the ith company passes to the ph company and constitutes 
the harmonization matrix A = (Aij) 

Profit sharing factor (feedback factor) for the kth company, which 
includes both the local and international premium repayments 
and determines the percentage of accumulated surplus repaid to 
the policyholders. The vector of profit sharing factors is E = 

(El,E2, ... ,Em). 

Ck,n = Actual total amount of annual incurred claims for the kth company 
in the nth year, for k = 1, ... ,m. 

Ck,n = Estimated total expected annual incurred claims in year n, i.e., in 
(n - 1, n). There is a delay of f years in updating information. 
The Ck,n is a weighted average of the inflation-adjusted claims 
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over the two most recent years where data are available, i.e., for 
k= 1, ... ,m 

(2) 

where 

(3) 

is a normalizing constant. 

Pk,n = Gross annual premium paid at the end of the nth year for the 
kth company. The gross premium is determined as an expense­
adjusted premium pi~~ less the surplus adjustment, where 

p(e) = C + (1 _ e )p(e) = Ck,n 
kn k,n k kn . , , ek 

It follows that 

(4) 

for k = 1,2, ... , m. Equation (4) is also called the decision function. 

Sk,n = Accumulated surplus at the end of the nth year for the kth com­
panywhere 

Sk,n = Rk I t..ikSi,n-l + ekPk,n - Ck,n 
i=l 

for k = 1,2, ... ,m. 

(5) 

The quantities m, j, ek, Rk, Ek, and t..ij are assumed to be constant over 
time. 

This set of assumptions is used as a basis to derive a model and 
a system of equations and to examine the analytical solution of this 
system, its stability, and the optimal parameter design with respect to 
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the interaction arising from the surplus exchange process. The formu­
lation of the problem is similar to that of Balzer and Benjamin (1980), 
Balzer (1982), Benjamin (1984), and Zimbidis and Haberman (2001). 
These authors have investigated the stability and parameter design of 
a single company, consequently without the presence of any interaction 
phenomenon. 

3 The Model and System of Equations 

From the point of view of control theory, claims may be considered 
as an input variable, the surplus as a state variable, and premiums as 
an output variable. The whole system (Le., the multinational company's 
employee benefit scheme) starts from an initial value for the first year's 
premium, then claims data provide the input background for the devel­
opment of the surplus level-the surplus represents the state of the 
system. Finally, using both claims (directly) and surplus information 
through a feedbackl mechanism, a decision function is built for pre­
mium development. The amount of feedback action is not obviously 
determined. The level of the state variable and how much is fed back 
to the system must be evaluated carefully in order to achieve and/or 
maintain the required stability. 

For the kth company, the nth year's premium and surplus are deter­
mined using the following model: 

(6) 

and 

for k = 1,2, ... ,m. 
Each of the m insurance companies generates its own system of 

equations. These systems, however, cannot be solved independently 

1 In this context, a feedback mechanism can be used to measure the surplus level 
and calculate how much of this surplus (defiCit) should be refunded (charged) to poli­
cyholders. In other words, through a feedback mechanism we decide how much of the 
state information must be fed back to the system. 
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because of the existence of the interaction factor Ai}. Combining equa­
tions (6) and (7) leads to a system of 2m simultaneous equations that 
describes the premium rating, the surplus process, and the interaction 
within the group of companies: 

SI,n RIAuSI,n-1 + ... + RIAmISm,n-1 
F2+.f F!+.f 

+~CI,n-i-2 + k! CI,n-i-1 
-eIEISI,n-i-1 - CI,n 

Sm,n 
(8) 

Pm,n 

Let Xn denote the state vector, Yn denote the output vector, and Un 

denote the input vector for the system, i.e., 

Xn = 

SI,n 

SI,n-1 

SI,n-i 

Sm,n 

Sm,n-I 

Sm,n-i 

P2,n 

[ 

PI,n I 
, Yn ~ P~,n and, Un ~ 

CI,n-i-2 

C2,n-i-2 

Cm,n 

Cm,n-I 

Cm,n-i-2 
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where Xn E ]Rm(l+ j), Yn E ]Rm, and Un E ]Rm(3+ j). 

It must be understood that the inputs, Un, are determined using the 
actual Ck,n- jS when they are available or t\'n-jS when the actual Ck,n-jS 

are not available. In other words the following substitution is used: 

. S is replaced by Ck,n- j for j = 0, 1, ... ,f; 
Ck,n-] l remains unchanged for j = f + 1,f + 2, .... 

For ease of exposition, we introduce four matrices A, B, C, 0 whose 
elements are themselves matrices. 

A = [ ~:: 
AmI Am2 

AIm 1 A2m 
: E]Rm(I+j)X]Rm(l+j), 

Amm 

[ 

Bu 
B21 

B = B~I 
BI

m 1 B2m 
: E ]Rm(l+ j) X ]Rm(3+ j) , 

Bm2 ... Bmm 

C = [Cl. C2, ... ,Cm ] E ]Rm X ]Rm(l+ j), 

The elements of the super-matrices A, B, C, and 0 are defined below: 

Ril\ii 0 0 0 -eiEi 

1 0 0 0 0 
0 1 0 0 0 

Aii = E ]R(l+j) X ]R(l+j) , 

0 0 0 0 0 
0 0 0 1 0 

[ RiAji 
0 ... 

r 1 E R(J+fl xR(J+fl, 
0 0 ... 

A· -t,] - . 

(i#j) ~ 
0 
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0 0 0 0 
0 0 0 0 

0 0 0 0 E]Rm x ]R(l+f) , Ci = 
0 0 0 -iii 

0 0 0 0 

0 0 0 0 

-1 0 0 
Fl+.f F2+.f 
:..L- _,_ 

Mi Mi 

0 0 0 0 0 E ]R(l+ j) x ]R(3+ f), Bit = 

0 0 0 0 0 

with Bij = 0 for i i= j, and 

0 0 0 0 
0 0 0 0 

0 
0 0 0 0 

Di= Fl+.f F2+f E ]Rm x ]R(3+ j). 

0 0 :..L- :..L-
Miei Miei 

0 0 0 0 

0 0 0 0 

The system (equation (8» can now be written as: 

Xn = Axn-l + Bun} 
Yn = CXn-l + DUn . 

(9) 

Following Cadzow (1973), the analytical solution to equation (9) is given 
by: 
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(10) 

4 Properties of the Solution 

Obtaining the analytical solution, equation (10), is not always nec­
essary in order to understand the important properties of the system. 
We will now explore the stability of the system. This requires extensive 
use of eigenvalues and the characteristic function of a matrix. 

The expression IpI - AI, which is the determinant of matrix (pI -A), 
can be expressed as a polynomial of p. This polynomial, ¢m (p), is 
called the characteristic polynomial of A and is written as 

m(j+l) 

¢m(P) = L arpr. 
r=O 

(11) 

It follows that Pr is an eigenvalue of the matrix A if and only if ¢m (Pr) = 

IPrI - AI = O. 
The necessary definitions, theorems, and results of linear algebra 

used in the remainder of the paper may be found in Healy (1995). The 
appendix contains an algorithm for calculating the characteristic func­
tion of A. 

4.1 Stability Analysis 

For a dynamic system of the form described in equation (9), a point 
x* is called an equilibrium point if and only if x* satisfies the equation 

This equation clearly has at least one solution, i.e., the zero solution. 
Under certain conditions, however, the zero solution is the unique so­
lution. Specifically, if det(A) =t= 0, then zero solution is the unique 
solution. 

This statement is proved by considering the determinant of matrix 
A and confirming that det(A) differs from zero. 
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It is easy to show (see Section 5.2 for an outline of this) that 

which is different from zero for er , Er f. 0 for r = 1,2, ... ,m. Conse­
quently, in most practical situations 0 is the only equilibrium point of 
the system. 

According to Cadzow (1973, Chapter 3, page 106), a dynamic system 
of the form described in equation (9) is said to be stable at a state point 
x (also called a stability point) if and only if the trajectory of the system 
that starts within a neighborhood of x remains close to x at all future 
times. The mathematical implication of this definition is that a state 
point x is a stability point if and only if all the roots of the characteristic 
polynomial of the A matrix have modulus less than unity. 

It follows that the dynamic system of equation (9), is stable if the 
modulus of each eigenvalue of x is less than unity, Le., 

(12) 

for r = 1,2, ... ,m(1 + f) where Pr is the rth eigenvalue of A. It follows 
that the system is unstable if IPrl > 1 for any k. Hence a sufficient 
condition for the system to be unstable is f1~=(i + j) I Pr I > 1. But, as 

m(l+j) 

cJ>m(P) = n (p - Pr), 
r=l 

a sufficient condition for the system to be unstable is I cJ>m (0) I > 1. 
It is easy to prove that the first and last coefficients of cJ>m (p) are 

am(l+ j) = 1 and ao = ele2 ... emEIE2 ... Em. Applying the above crite­
rion for instability requires 

m(l+j) m 

n IPrl = n lerErl > 1. (13) 
r=l r=l 

In practice, expenses and profits will almost always be such that 
o < er < 1 and 0 < Er < 1 for r = 1,2, ... , m, so most practical 
systems will not satisfy equation (13)'s criterion for instability. This 
does not mean, however, that the system will automatically be stable. 
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4.2 Optimal Parameter Choices 

The criterion for parameter optimality is defined in terms of the 
fastest response time of the system to different input signals.2 A set of 
the parameter values is optimal if and only if the state vector moves 
to a desirable state (normally toward a stability point) faster than un­
der any other choice of the parameter values, irrespective of the form, 
nature, or magnitude of the input vector. Below we describe a method 
that is useful in finding the approximate values of the optimal set of 
parameters. 

Let s = (e, E, R, A) denote a particular choice for the parameter val­
ues and § denote the closed set of all possible choices for s. Define 
A(s) be the A matrix derived from the choice of s. If Pres) is the rth 

eigenvalue of A(s), let pillax(s) be the maximum absolute value of the 
eigenvalues of matrix A(s), i.e., 

then the speed of the response of the system depends on the maximum 
absolute value of the eigenvalue, pmax(s). The smaller the value of 
pillax(S), the faster the response of the system. 

Suppose there is an s* E § such that 

it follows that 

m 
p* 2: m(1+f) n erEr. 

r=l 

(14) 

(15) 

The minimization of the maximum root of ¢m (p) is easily obtained 
in two special cases: 

Case 1: If ¢m(P) has a single real root with multiplicity m(l + j), 
i.e., 

2The response time refers to the time it takes for the system output (or state) vari­
ables to return to the initial state or move to a designated point. 
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( 

m ) m(l\j) 

P* = n erEr 
r=l 

Using a binomial expansion yields 

m(l+jl ( ) 
A... () '" m(I + f) ( *)m(l+fl-r r 
'Pm P = L.. r - P P , 

r=O 

i.e., the coefficient of pr is ar where 

(
m(I + f)) ( )m(l+ fl-r a r = -Po r 

for r = 0,1, ... ,m(I + f). This gives a system ofm(I + f) + 1 
equations for ar that contains m 2 + 3m (control) parameters, 
i.e., el, ... ,em, EI, ... ,Em, RI, ... ,Rm , Au, ... , Amm. Some of 
these may be fully controlled (the E vector and the A matrix) 
or partially controlled (the e and R vectors). Our aim should 
be the optimal selection of all the controlled parameters such 
that the system becomes solvable. 

Case 2: If ¢m (p) is such that all of its roots lie on the circumference 
of the circle in the complex plane centered at the origin and 
with radius p * , where 

* _ (m )~ p - n erEr 
r=l 

In this case ¢m (p) has the form 

m 
¢m(P) = pm(l+fl + n erEr 

r=l 
(16) 

and its roots are proportional to the complex roots of m(l + fR, 
Le., 
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Pj = P* (cos (~I-+I~~) + ism (~~I++I~~)) 
where j = 1,2, ... ,m(I + f). Notice that this case appears 
when 

a m (l+ f)-l = am(l+ j)-2 = ... = a2 = a1 = 0, (17) 

i.e., all the ar coefficients are zero except the first and last 
ones. 

For large values of m the system of equations is rather complicated 
and there is no obvious choice of a choice of s* that results m a root 
with multiplicity m(I + j). In such situations, we are forced to follow 
a trial and error procedure to determme s*. In other words, if § is the 
set of all practical parameter choices then we can calculate pillax (s) for 
each s E § then choose the s* that produces the minimum pillax(S). 

5 The Special Case of Two Identical Companies 

To further illustrate the ideas described m Section 4, let us consider 
a simple situation with two msurance companies (m = 2) in the network 
and a one year delay factor (f = 1). In order to facilitate the calculations, 
we assume that the companies are identical with respect to operational 
parameters, i.e., e1 = e2 = e, R1 = R2 = R, F1 = F2 = F, M = F2 + F3, 
E1 = E2 = E, and A12 = A21 = A. As we assumed each company passes 
the same percentage A of its surplus fund to the other company, the 
harmonization matrix A is 

A=[ I-A 
A 

These operational assumptions are reasonable because multmational 
networks tend to be composed of similar companies with respect to op­
erational matters. The assumption of identical companies is necessary 
m order to obtam closed form analytical solutions and results. 
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5.1 The Solution 

The matrix A is given by 

_ ( R (11- AI 
-eE RA 0 

). 0 0 0 
A- RA 0 R (1 - A) -eE 

0 0 1 0 

and its characteristic polynomial is 

p-R(I-A) eE -RA 0 

¢2(P) = 
-1 P 0 0 

-RA 0 p-R(I-A) eE 

0 0 -1 P 

Developing this determinant across the second row, yields 

¢2(P) = (p2 -Rp + eE)(p2 -R(1- 2A)p + eE). 

The four roots of this quartic polynomial are 

R ± JR2 - 4eE 
PI. P2 = 2 (18) 

and 

R (1 - 2A) ± ~R2 (1 - 2A)2 - 4eE 
P3, P4 = 2 . (19) 

We now examine the behavior of the system with respect to three 
types of inputs: spike signals, step signals, and sine signals assuming 
the zero initial condition Xo = 0 and Yo = 0 for any situation. 

5.1.1 Spike Signals 

Let us assume that a spike signal3 appears as the input of the first 
subsystem while the second subsystem has a zero input, Le., 

3In practice, a spike input signal may be interpreted as the appearance of an isolated 
unexpected claim into the system. 
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Cl n = ' {
In = 0 

. 0, n=1,2, ... 

and C2.n = 0 for n = 0,1, .... The input vectors are 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

Uo = 
0 ' Ul = 0 ' U2 = 0 ' U3 = 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

and Un = 0 for n = 4,5, .... Substituting these values of Un for n = 

0,1,2, ... in the general solution given in equation (10) gives: 

Xn = Anxo + An-lBuO + An- 2Bul + An-3Bu2 + A n- 4Bu3 

Yn = CAn-lxo + CAn-2BuO + CAn- 3Bul 

+ CAn- 4Bu2 + CAn- 5Bu3 

for n = 5,6, .... Because Xo = 0, and BUI = 0, the solution takes the 
form 

xn 

(20) 

Yn 

If the modulus of each of the eigenvalues of A is less than unity, Xn and 
Yn in equation (20) will converge to zero as n increases to 00. 
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5.1.2 Step Signal 

We assume a step signal4 for the first input variable while zero for 
the second one, i.e., 

{ 0, n<O 
and C2,n = 0 forn=I,2, ... CI,n = 1, n;::O 

then, 

1 1 1 1 
0 1 1 1 
0 0 1 1 
0 0 0 1 

for n;:: 3. Ua = 0 ' UI = 0 
,U2 = 

0 ,Un = 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

Thus BUa = BUI, and BUn = 0, n ;:: 3. The latter equality holds as 
M = F2 + F3. The solution can be written as 

(21) 

for n = 5,6, .... If the modulus of each of the eigenvalues of A is less 
than unity, Xn and Yn in equation (21) will asymptotically converge to 
zero as n increases. 

5.1.3 Sine Signal 

Let us consider the case where the input variable can be expressed 
as a sine signal. The assumption of a sine input signal may be more 

4A step signal may be interpreted as a claim of size one occurring annually. 
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realistic in some cases as it may represent the underlying underwriting 
cycle that occurs in many insurance markets (Berger 1988). 

For n = 0,1, ... , let C1,n = sin(w1 n + <PI) and C2,n = Sin(W2 n + <1>2) 

with wI = w2 = IT, <PI = -i and <P2 = :g:. This leads to the following: 

n o 1 

1 -1 

Consequently the input vectors, 

uo = 

-0.5 
o 
o 
o 
1 
o 
o 
o 

, U1 = 

0.5 
-0.5 

o 
o 

-1 
1 
o 
o 

2 3 

1 -1 

,U2 = 

U2k+1 = 

0.5 
-0.5 

0.5 
-0.5 

-1 and U2k+2 = 

1 
-1 

1 

for k = 1,2, .. " It follows that 

[ 

0.5 ] [ -0.5 ] [ 
Buo = ~1 ,Bu! = ~ ,Bu, = 

4 

-0.5 
0.5 

-05 
o 
1 

-1 
1 
o 

-0.5 
0.5 

-0.5 
0.5 

1 
-1 

1 
-1 

and 

0.5 (1 - ~'n I 
-(1~;:;) , 
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for k = 1,2, .... As we observe for the vectors calculated before BUl = 
-Buo and BUk+l = -BUk for k = 2n + 1, n ~ 1. Now assuming again 
the zero initial condition, i.e., Xo = 0 and Yo = 0, we obtain the general 
solution for the state of the system 

Xn = An-lBuO - An-2BuO + A n - 3Bu2 + An-4Bu3 - A n- 5Bu3 + ... 

+ (_1)n-l ABu3 + (-1)nBu3. 

Rearranging the terms of this equation we obtain 

Xn = A n- 2 (A -I) Buo + A n- 3Bu2 + (An - 4 - A n- 3 + ... 

+ (-1) n I) BU3. 

It follows that 

Xn = A n- 2 (A - I) Buo + An- 3Bu2 

+ (I + A 2 + ... + A n-3) (A - I) BU3 if n is odd; 

Xn = An- 2 (A - I) Buo + An- 3Bu2 

+ [(A - I) (A + A 3 + ... + A n-3) + I] BU3; if n is even. 

If the modulus of the eigenvalues of A are less than unity, then Xn 
does not converge as n increases. In fact it fluctuates between two 
limits 

X n - {
Q(A-I)BU3 ifn=2k+1andk-00, 
[(A -I) AQ + I] BU3 if n = 2k + 1 and k- 00, 

where Q = I + A 2 + A 4 + .... It can be easily proved via the appropriate 
definition of a norm that as n goes to infinity the sequence of solutions 
Xn is bounded. 
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5.2 Stability and Optimality 

5.3 The Zero Stability Point 

171 

First we will establish that the system has only one equilibrium point 
at the zero pOint, O. 

RIAll 0 0 -elEl RIA21 0 ... 0 0 
1 0 0 0 

0 
0 0 0 0 
0 0 1 0 

A= 
R2A12 0 0 0 R2A22 0 0 -e2E2 

1 0 0 0 

0 
0 0 0 0 
0 0 1 0 

= [ All 
A21 

A12 ] 
A22 

where All, A12, A21, A22 E lR(l+ f)x(l+ f) are defined in an obvious man­
ner. Developing det(A) across the second row and again the minor 
across the second row continuously after j-steps we obtain 

det (A) = (_1)f o A22 

o 
or 

Similarly, we develop det(A22) and obtain: 
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5.3.1 Conditions on the Roots 

To investigate the stability of the system, we focus on the pairs of 
roots (PI. P2) and (P3, P4) separately. There are two cases to consider for 
each pair of roots. As the analysis is similar for each pair, we provide 
a detailed treatment only for the pair (PI, P2). 

Case 1: The roots PI, P2 are real, i.e., R2 - 4eE > 0. Here we want 
I PI I < 1 and I P21 < 1. This implies that 

I 
R ± JR2 - 4eE I < 

2 - 1, 

i.e., R < 1 + eE. Hence the pair of roots are real with absolute 
value less than one if and only if 

Case 2: When PI, P2 are complex roots, i.e., R2 - 4eE < 0, 
the complex conjugate roots are 

R .J4eE-R2 
PbP2 = "2 ± 1. 2 

and consequently 

which implies that 

and 

(22) 

(23) 
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For the second pair of roots P3 and P4, we follow the same procedure 
and replace R with R (1 - 2i\) to give 

4eE < (R(1 - 2i\»2 < (1 + eE)2 (24) 

for real roots, and 

(25) 

for complex roots. 

5.3.2 Fastest Response Solution 

Next we turn our attention to the determination of the optimal pa­
rameter values according to the fastest response criteria. Suppose we 
require a solution to the system such that the solution has no oscilla­
tions. 

The speed at which the state variables respond to the different input 
signals depends on the maximum modulus of the eigenvalues of A: 
the smaller the maximum modulus of the eigenvalues, the faster the 
response. We note that the minimum value of maximum modulus of the 
eigenvalues is obtained when the quadratic polynomials have double 
roots, i.e., when 

This may occur if and only if i\ = 0 or i\ = 1, i.e., when there is either 
no interaction or full interaction between the two insurance companies, 
and in either case we have a root of multiplicity four: 

R 
PI = P2 = P3 = P4 = "2. (26) 

In practical situations we cannot choose i\ = 0 or i\ = 1, yet we still have 
to minimize the maximum modulus of the roots. This means that we 
must choose which of the equations R2-4eE = 0 andR2(1-2i\)2-4eE = 
o is more important and minimize the maximum modulus of the roots 
according to the chosen equation. 

If we choose the equation R2 - 4ec = 0 then PI = P2 = R/2 while 
P3, P4 are complex numbers such that IP31, Ip41 < R/2. The root with 
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the maximum absolute value is the real double root at R/2. As there 
are two complex roots, there will be oscillations in the solution. 

The other option of choosing R2(1 - 2A)2 - 4ef = 0 produces four 
real roots, a double root 

PI. P2 = 
R(1-2A) 

2 

and two different roots 

R ± -JR2 - 4eE 
P3,P4= 2 

The root with the maximum absolute value is 

R + -JR2 - 4eE 
P3 = 2 

As there are no complex roots, there will be no oscillations in the solu­
tion. 

Thus we can conclude that: 

1. The fastest response with oscillations occurs if we choose R2 -
4eE = O. In this case the maximum modulus is R/2; and 

2. The fastest response with no oscillations occurs if we choose (1 -
2A)2R2 - 4eE = O. In this case the maximum modulus is (R + 
-JR2 - 4eE)/2 > R/2. 

Note that the overall fastest response with or without oscillations oc­
curs when R2 - 4eE = 0, i.e., it yields oscillations. 

A compromise is thus needed to reduce the oscillations to an ac­
ceptable level, but without unduly reducing the speed. The approach 
suggested is to choose the fastest overall response (i.e., R2 - 4eE = 0) 
and then choose A to reduce the amplitude of the oscillations caused 
by the two complex conjugate roots 

P3, P4 = ~ [(1 -2M ± i~4 (A - A2)] . 

= ~ (cos e ± i sin e) (27) 
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where 

.Ji\ - i\2 
tan 8 = 0.5 _ i\ . 

175 

(28) 

The choice of i\ affects both the frequency and amplitude of the oscil­
lations. 

At this point we digress in order to discuss the importance of 8 in 
connection with the general solution of the system. If 21, 22 are complex 
eigenvalues of matrix A of a dynamic system, then the general solution 
Yn contains a linear combination of the powers of 21 and 22, i.e., 

where 

and 

J.l1 = a (cosf3 + isin(3) 
21 = 2 (cos 8 + isin8) 
J.l2 = a (cos f3 - i sin (3) 

22 =2(cos8-isin8), 

Yn = 2a2n cos (n8 + (3) . 

5.4 Numerical Example 

This example illustrates the methodology for the special case of two 
identical companies described in Section 5.1. The system of difference 
equations is: 

Sl,n = R(1 - i\)Sl,n-l + Ri\S2,n-1 
p3 p2 

+ M CI,n-3 + M Cl,n-2 - eESI,n-2 - CI,n 

S2,n = Ri\SI,n-1 + R(1 - i\)S2,n-l 

p3 p2 
+ M C2,n-3 + M C2,n-2 - eES2,n-2 - C2,n 

p3 p2 
PI,n = Me Cl,n-3 + Me Cl,n-2 - ESI,n-2 

p3 p2 
P2,n = Me C2,n-3 + Me C2,n-2 - ES2,n-2 
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The parameters used are Rl = R2 = R = 1.04, el = e2 = e = 0.8, 
Fl = F2 = F = 1, and feedback factor El = E2 = E = 0.34, in order to 
obtain the fastest response as indicated in Sections 5.1. The interaction 
parameter A is allowed to vary and the time horizon is n = 20 years. 

A spike input of 1 is used to model the claim variable of the first 
company. The mean and variance of the surplus variables of the two 
companies are calculated over the twenty years for several values of A. 
The question of interest is: How does the system (Le., the surplus vari­
ables) react to the occurrence of an unexpected claim in the first com­
pany? 

Tables 1 and 2 show the development of Sl,n and S2,n. Observe 
that both surplus variables return to the stability point O. Finally, we 
also observe that the summation of the variances in Tables 1 and 2 
(Var [Sl,n] + Var [S2,n]) is minimized for A = 0.8. The last result means 
that for A = 0.8 the system has the optimal behavior with regard to 
solvency requirements. 

6 Summary and Conclusions 

We construct an input/output control model of multinational pool­
ing arrangements. A key aspect of these types of arrangements is the 
interaction of their premium, claims, and surplus processes. The ob­
jectives of this interaction are to: 

• Smooth, as far as possible, the fluctuations of the surplus fund of 
each company participating in the pool; and to 

• Spread each company's premium income and claims experiences 
to the block of the other companies. 

The specific modeling also may be used generally for subsidiary insur­
ance companies whose parent company wants to smooth the solvency 
requirement of each individual company. It can also be used for capital 
allocation between different lines of business. 

We have derived several important results: 

• Given el f=. 0, e2 f=. 0, ... , em f=. ° and El f=. 0, E2 f=. 0, " ., Em f=. 0, 
which is normally the case in practice, the general model (for any 
value of f and m) has one equilibrium point, the zero point, and 
consequently one potential point of stability. If 
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Table 1 

Sl,n for Various Values of .\ 

n 0 0.1 0.2 0.3 0.4 

0 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 

1 -1.0400 -0.9360 -0.8320 -0.7280 -0.6240 

2 -0.3112 -0.1165 0.0349 0.1431 0.2080 

3 0.4576 0.6238 0.6820 0.6593 0.5825 

4 0.5600 0.5981 0.5113 0.3783 0.2553 

5 0.4587 0.3872 0.2511 0.1538 0.1286 

6 0.3256 0.2081 0.1139 0.1048 0.1485 

7 0.2146 0.1023 0.0709 0.1036 0.1316 

8 0.1351 0.0512 0.0581 0.0817 0.0765 

9 0.0825 0.0290 0.0452 0.0481 0.0365 

10 0.0493 0.0188 0.0297 0.0237 0.0212 

11 0.0289 0.0130 0.0165 0.0122 0.0150 

12 0.0168 0.0087 0.0083 0.0077 0.0094 

13 0.0096 0.0055 0.0042 0.0051 0.0049 

14 0.0055 0.0032 0.0024 0.0031 0.0025 

15 0.0031 0.0018 0.0015 0.0016 0.0015 

16 0.0017 0.0009 0.0009 0.0008 0.0009 

17 0.0010 0.0005 0.0005 0.0004 0.0005 

18 0.0005 0.0002 0.0003 0.0003 0.0003 

19 0.0003 0.0001 0.0001 0.0002 0.0001 

20 0.0002 0.0001 0.0001 0.0001 0.0001 

lE [Sl,n] 0.0000 0.0000 0.0000 0.0000 0.0000 

Var [Sl,n] 0.1546 0.1422 0.1254 0.1092 0.0951 
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Table 1 (continued) 

Sl,n for Various Values of A 

n 0.5 0.6 0.7 0.8 0.9 1.0 

0 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 

1 -0.5200 -0.4160 -0.3120 -0.2080 -0.1040 0.0000 

2 0.2296 0.2080 0.1431 0.0349 -0.1165 -0.3112 

3 0.4788 0.3750 0.2983 0.2755 0.3338 0.5000 

4 0.1759 0.1513 0.1703 0.1993 0.1821 0.0400 

5 0.1617 0.2166 0.2562 0.2671 0.2824 0.4056 

6 0.1910 0.2003 0.1813 0.1611 0.1451 0.0444 

7 0.1256 0.1030 0.0924 0.0982 0.1077 0.1828 

8 0.0600 0.0583 0.0688 0.0737 0.0721 0.0211 

9 0.0363 0.0444 0.0448 0.0399 0.0374 0.0692 

10 0.0267 0.0265 0.0228 0.0238 0.0266 0.0082 

11 0.0158 0.0132 0.0143 0.0153 0.0139 0.0241 

12 0.0078 0.0081 0.0090 0.0081 0.0084 0.0029 

13 0.0044 0.0052 0.0046 0.0048 0.0050 0.0080 

14 0.0029 0.0027 0.0027 0.0028 0.0026 0.0010 

15 0.0016 0.00l4 0.00l6 0.0015 0.0016 0.0025 

16 0.0008 0.0009 0.0009 0.0009 0.0008 0.0003 

17 0.0005 0.0005 0.0005 0.0005 0.0005 0.0008 

18 0.0003 0.0003 0.0003 0.0003 0.0003 0.0001 

19 0.0002 0.0001 0.0001 0.0002 0.0001 0.0002 

20 0.0001 0.000l 0.0001 0.0001 0.0001 0.0000 

lE [Sl,n] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Var [Sl,n] 0.0834 0.0742 0.0675 0.0637 0.0644 0.0777 
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Table 2 

SZ,n for Various Values of A-

n 0 0.1 0.2 0.3 0.4 

1 0.0000 -0.1040 -0.2080 -0.3120 -0.4160 

2 0.0000 -0.1947 -0.3461 -0.4543 -0.5192 

3 0.0000 -0.1662 -0.2245 -0.2017 -0.1250 

4 0.0000 -0.0381 0.0487 0.1817 0.3047 

5 0.0000 0.0715 0.2076 0.3048 0.3301 

6 0.0000 0.1175 0.2118 0.2208 0.1771 

7 0.0000 0.1123 0.1437 0.1110 0.0830 

8 0.0000 0.0840 0.0771 0.0534 0.0587 

9 0.0000 0.0536 0.0373 0.0344 0.0460 

10 0.0000 0.0304 0.0196 0.0256 0.0280 

11 0.0000 0.0160 0.0124 0.0167 0.0139 

12 0.0000 0.0081 0.0084 0.0091 0.0073 

13 0.0000 0.0041 0.0054 0.0045 0.0047 

14 0.0000 0.0023 0.0031 0.0024 0.0030 

15 0.0000 0.0013 0.0016 0.0015 0.0016 

16 0.0000 0.0008 0.0008 0.0009 0.0008 

17 0.0000 0.0005 0.0004 0.0005 0.0005 

18 0.0000 0.0003 0.0003 0.0003 0.0003 

19 0.0000 0.0002 0.0002 0.0001 0.0002 

20 0.0000 0.0001 0.0001 0.0001 0.0001 

lE [S2,n] 0.0000 0.0000 0.0000 0.0000 0.0000 

Var [S2,n] 0.0000 0.0060 0.0166 0.0268 0.0352 
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Table 2 (continued) 

S2,n for Various Values of A 

n 0.5 0.6 0.7 0.8 0.9 1.0 

1 -0.5200 -0.6240 -0.7280 -0.8320 -0.9360 -1.0400 

2 -0.5408 -0.5192 -0.4543 -0.3461 -0.1947 0.0000 

3 -0.0212 0.0825 0.1593 0.1820 0.1238 -0.0424 

4 0.3842 0.4087 0.3897 0.3607 0.3779 0.5200 

5 0.2969 0.2421 0.2025 0.1916 0.1763 0.0531 

6 0.1346 0.1253 0.1443 0.1645 0.1805 0.2812 

7 0.0890 0.1116 0.1223 0.1164 0.1069 0.0318 

8 0.0752 0.0768 0.0664 0.0614 0.0631 0.1141 

9 0.0462 0.0382 0.0377 0.0426 0.0451 0.0133 

10 0.0226 0.0228 0.0264 0.0254 0.0227 0.0411 

11 0.0131 0.0157 0.0147 0.0136 0.0151 0.0049 

12 0.0089 0.0086 0.0078 0.0087 0.0084 0.0139 

13 0.0052 0.0044 0.0050 0.0048 0.0046 0.0017 

14 0.0026 0.0027 0.0028 0.0026 0.0029 0.0045 

15 0.0014 0.0016 0.0015 0.0016 0.0015 0.0005 

16 0.0009 0.0008 0.0009 0.0009 0.0009 0.0014 

17 0.0005 0.0005 0.0005 0.0005 0.0005 0.0002 

18 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 

19 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001 

20 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

lE[S2,n] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Var [S2,n] 0.0417 0.0464 0.0499 0.0530 0.0577 0.0726 
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m n erEr > 1 
r=l 
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then the system is unstable regardless of the other parameter val­
ues, i.e., the surplus and premium levels fluctuate, with the sur­
plus diverging to infinity. 

• For the special case of two identical companies with time delay of 
one year f = 1 the exact condition for stability (assuming typical 
values for R and (\, i.e., 0 < R < 2 and 0 < (\ < 1, and considering 
equations (22) through (25» is R - 1 < eE < l. 

• For the case of the two identical companies (m = 2), we show 
that the ultimate surplus level converges to zero under each of 
the spike and step input signals. This is a highly desirable result 
because it means that the system reacts properly and returns to its 
initial state. For the sine signal we show that the ultimate surplus 
fund fluctuates between two levels. 

• For the special case (m = 2), full investigation has been done 
with respect to the fastest response and oscillatory form of the 
solution. It has been shown that the fastest response is obtained 

h * R2 W en E = 4e. 

• For the special case of the two identical companies and consid­
ering the optimal choice for the feedback factor E*, we also have 
shown that amplitude and frequency of the oscillations depend 
on the interaction factor (\. 
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Appendix: The Characteristic Polynomial ¢m (p) 

First we calculate the form of the ¢z (p) then we may generalize our 
result for any value of m. 

¢z (p) = [Hu 
H2l 

HlzJ = 0 
Hzz 

where 

p - RlAu 0 0 elEl 
-1 p 0 0 

Hu = 
0 0 p 0 
0 0 -1 P 

-RlA2l 0 0 0 
0 0 0 0 

HlZ = 
0 0 0 0 
0 0 0 0 

-RZAlZ 0 0 0 
0 0 0 0 

HZl = 
0 0 0 0 
0 0 0 0 

p - RzAzz 0 0 ezEz 
-1 p 0 0 

Hzz = 
0 0 p 0 
0 0 -1 P 

The analytical development of ¢z (p) is difficult, but we can find the 
final form if we follow a simple rule and a recursive procedure. The 
simple rule is to develop the major determinant ¢z (p) or the minor 
ones (which are produced by deleting rows and columns) across the 
(first) row or column that has the greatest number of zero elements. 
The recursive procedure is described with the following steps. 
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Step 1: Develop the 4>2 (p) across the second row that has only two 
non-zero elements the -1 and p, 

4>2 (p) = (-1) (-1) Bi2
) + p'¥{2) 

where Bi2) is the minor determinant of 4>2 (p), produced by 
deleting the first column and the second row of 4>2 (p) and 
'¥{2) is the minor determinant of 4>2 (p), produced by deleting 
the second column and the second row of 4>2(P). [The (2) 
superscript of Bl and '¥l refers to the case m = 2.] 

Step 2: Develop the minor determinant Bf) across the first column 
(having one non-zero element the -1). 

Step 3: Continue the development of B?) 

Bi2
) = (-1) (-1) Bi~)l 

for i = 2, 3, ... ,f - 1 with Bi being the minor determinant of 
Bi-l, produced by deleting the first column and second row 
of Bi and 

elCl 0 0 

By) = 
0 

4>1 (p) 

0 

or 

Step 4: Combine equations in Steps 1, 2, and 3 to obtain 
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Step 5: Develop the minor determinant 'I'?) across the second row 
(having only one non-zero element, p). 

Step 6: Continue the development of the determinants across the 
second row (similarly with 'I'i 2

)) 

for i = 2,3,. " ,f -1, where 'I'i(2) is the minor determinant of 
'I'i~i, produced by deleting the second column and the second 
row and 

p - Ru\u -RIA21 0 0 
-R2A12 

'I'?) = 0 ¢l (p) 

o 

Step 7: Combining from Steps 5 and 6, we obtain 

Step 8: Develop 'I'?) across the third row that has two non-zero ele­
ments -1 and p. 
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0 

p - RIAll -RIA21 

-R2A12 

+p 0 

o 

0 

'Y(I) 
1 

;:;(1) 
~1 

... 

... 0 

0 

(The (1) superscripts of SI and 'Yl refers to <PI (p ).) sP) and 
'Yi1) are produced similarly to sf) and 'Yi2) from <P2 (p). So 
we follow similar steps and finally, 

p - RIAll 0 0 
'Y(2) -f - -R2A12 0 e2C2 

0 -1 P 

p - RIAll -RIA21 0 
+ pf-1 -R2A12 P - R2A22 e2C2 

0 0 p 

which implies 

(2) 
'Yf = e2c2 (p - RI All) 

+ pf [(p - RIAll) (p - R2(22) - RIR2AI2A2d. 

Step 9: Develop <PI (p) Similarly with <P2 (p) and obtain 

Step 10: Combining the equations from Steps 7, 8, and 9 so that we 
finally obtain the following equation 
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4>2 (p) = ele2ElE2 + elElpi (p - R2A22) + pI e2E2 (p - RIAlr) 

+ p2I (p - RIAu) (p - R2A22) - p2IRIR2A12A21. 

(29) 

We observe that 4>2 (p) is a polynomial with a 2(1 + j) = 1 (co­
efficient of p2(1+j)) and ao = ele2ElE2 (constant term). It is 
straightforward to generalize the above procedure and obtain 
from the equation that appears in Step 4: 

Finally, 4>m(P) is a polynomial with am(l+j) = 1 (coefficient 
of Pm(l+ I)) and ao = ele2··· em EIE2 ... Em (constant term). 
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Abstractt 

This paper presents an analysis of the parameters used in a multi-state 
model for permanent health insurance (PHI). The model is a simplification of 
that used in the United Kingdom. To avoid using duration dependent proba­
bilities, the model splits the sick state into several sub-states to act as a proxy 
for duration spent in a particular state. This enables a Markov approach to 
be adopted. Lapses are incorporated within the model, and the net premium 
for a particular policy is tested for sensitivity to the various parameters used, 
including their interaction with the lapse rate. One of our conclusions is that 
the net premium is insensitive to changes in the lapse rate. 
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1 Introduction 

1.1 Overview of the U.K. PHI Business 

Permanent health insurance (PHI) has been written in the U.K. for 
over 100 years. The business was a natural extension of the fraternal 
(Friendly Society) weekly sickness benefit paid to its members. The 
rise of the welfare state in the early part of the twentieth century saw 
the state assume some of the responsibilities of the fraternal societies. 
Consequently, the amount of business written by private insurers was 
limited. 

The PHI business has increased since World War II, with individual 
and group business being written by a number of insurers. The market 
consists of a few specialist direct insurers and reinsurers to support 
their operations. 

The U.K. government still provides a small long-term disability ben­
efit. Recovery rates of state claimants are low; the benefit is a substitute 
for unemployment benefits. Anyone earning more than national aver­
age earnings needs to insure, but there is considerable underinsurance. 
Increasingly the PHI business is being referred to as income protection 
insurance. 

PHI benefits are built around the U.K. pension system and are often 
expressed in amounts per week or per month. These benefits cease at 
state pension age, which is currently age 65 for males and age 60 for 
females. Some limited benefit period business also is written. 

The contracts are similar to those issued in North America, but the 
terminology differs. For example, the elimination period is referred 
to as the deferred period in the U.K. There are similar exclusions, but 
benefits are paid in full for behavioral health problems. In addition, 
benefits are paid whether the cause of disability is due to an accident 
or to sickness. The major change in the last 20 years has been the 
switch in individual business from non-cancelable individual business 
to guaranteed renewable. 

The primary difference between group and individual PHI business 
is the impact of tax on premiums and benefits paid. Under group busi­
ness, the employer generally pays the premiums, which are tax de­
ductible, and the benefits paid to the employees are taxed as salary. 
Under the indiVidual business, there is no tax relief on the premiums 
paid, but the benefits are paid free of income tax. Waiver of premium 
is included as a benefit provision. The most common deferred periods 
are one week, four weeks, 13 weeks, 26 weeks, and 52 weeks. 
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Benefit limitations apply related to pre-disability income. Benefits 
from all sources are taken into account, including other group and indi­
vidual insurances and pensions received. Various disability definitions 
are offered, including inability to follow any occupation. 

1.2 Objectives 

The objective of this paper is to introduce a practical mathematical 
model of a U.K. style PHI system. Specifically, the PHI system is modeled 
using a multi-state process in which, as a healthy individual ages, he or 
she may become sick then recover, become sick again, etc., until death.l 
Thus the individual's health fluctuates between two states (sickness and 
health) until death. If healthy, sick, and dead are viewed as separate 
states, the probability that a policyholder moves from the sick state 
to the dead state or to the healthy state depends on the time spent in 
the sick state. In other words, the transition probabilities depend on 
duration in a particular state as well as the age of the policyholder. 

It is possible to incorporate the duration-dependence aspect in the 
model, which leads to a much more complicated model. This is the 
approach used in the 1991 Continuous Mortality Investigation Report 
No. 12 (eMIR 12). To obtain numerical values for the transition forces 
within the PHI model, eMIR 12 splits the sick states into 781 sub-states, 
each relating to a different duration of sickness. eMIR 12 then cal­
culates probabilities at every 1/ 156th of a year of age for duration of 
sickness up to 5 years in all (making 780 sub-states) and all sickness 
periods beyond 5 years are aggregated. eMIR 12 (Part D) shows how it 
is possible to obtain numerical values for probabilities, annuities, etc. 
Clearly, eMIR 12 provides a thorough and complex model. 

The approach taken in this paper is to develop a simpler model, one 
with only three (healthy, sick, and dead) states, then split the sick state 
into a small number of sub-states. We adopt the approach based on 
Jones (1994). Though the eMIR 12 technique of splitting the sick states 
into sub-states pre-dates Jones, Jones' approach is simpler because it 
uses constant forces of transition assumption for transition from state 
to state. This maintains the Markov property of the model. Increas­
ing the number of states makes the state space more complicated, but 
maintaining the Markov process keeps the calculations tractable. 

One advantage of using the simpler model described in this paper is 
that it can easily be used by actuaries who do not have access to com­
plex models such as eMIR 12 or the detailed data required to use such 

1 For a detailed discussion on the use of multi-state models in disability insurance, 
see, for example, Haberman and Pitacco (1999). 
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models. It also can be used as an initial practical model for actuaries 
who are interested in rough estimates for net premiums for PHI models. 

The paper is organized as follows: Section 2 introduces the model 
of the various transition probabilities. Expressions are derived for the 
transition probabilities required to obtain actuarial present values. Sec­
tion 3 explains the connection between the parameters used in the 
model and those that are derived using data contained in CMIR 12. 
The data contained in CMIR 12 are used to test the sensitivity of the net 
premium to some of the parameters involved in the transition prob­
abilities. Section 4 describes the results, while Section 5 provides a 
summary and conclusions. 

2 The Model 

2'.1 The States and Transition Probabilities 

The PHI model has six states labeled one to six. 

• State 1 (Super Healthy): This is the state in which new policyhold­
ers enter the model when their policy commences. Because they 
have provided satisfactory medical evidence, new policyholders 
are deemed to be select lives and therefore healthier than other 
insured lives of the same age. We describe these lives as super 
healthy. 

• State 2 (Ultimate Healthy): It is likely that, in time, the selection 
effect will disappear and that the super healthy lives will move 
to the ultimate form of the healthy state from which they may 
become sick enough to make a claim under the PHI policy. 

• State 3 (Short-Term Sick): It is possible to recover from the short­
term sick state 3 and, therefore, to return to state 2. 

• State 4 (Long-Term Sick): It is not possible to recover from the 
long-term sick state. Death is the only mode of exit from this 
state. 

• State 5 (Lapse): We assume that only super healthy policyholders 
will lapse their policy because policyholders in any other state 
would find it worthwhile to continue their PHI policy. 

• State 6: Death. 
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A diagrammatic representation of the multi-state model adopted in this 
paper is displayed in Figure 1. 

It is possible to introduce more sickness states as a proxy to a greater 
number of durations of sickness. This has not been done, however, be­
cause it is difficult to choose parameter values for the transition forces 
between the different sick states. In addition, having more states would 
increase the computational problems, albeit not insurmountably. 

The forces of transition between states in PHI are continuous func­
tions that depend on many factors including such factors as age, sex, 
income, and the time spent in a state. Though the exact mathemati­
cal form of these functions is unknown, we are sure that they are not 
constant. 

Figure 1 
Outline of PHI Model 

U1UITlate Healthy 
(State 2) 

1-'\5 

1-'\6 

Short TerITl Sick 1-'36 

(State 3) 

Long TerITl Sick 
(State 4) 

1-'56 
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Due to the mathematical difficulties inherent in using continuously 
varying forces, however, we will adopt the general methodology de­
scribed in Jones (1994), i.e., we assume that the forces of transition are 
piecewise constant over each age interval instead. 

Suppose there are n states labeled 1,2, ... ,n. Let J-lij(x + t) denote 
the force of transition from state i to state j at age x + t, for i, j = 

1,2,3, ... ,n, x = 0,1,2, ... , and ° ::0; t ::0; 1. If state j is not linked 
directly to state i then J-lij (x + t) == 0. It is convenient also to define, 
for each i, 

n 

J-lu(x + t) = - L J-lij(X + t), 
j=l 
Hi 

where i = 1,2,3, ... ,n, x = 0,1,2, ... , and 0::0; t ::0; 1. 
The piecewise constant force of transition implies that 

(1) 

J-lij(X + t) = J-lij(X) for x = 0,1,2, ... and 0::0; t < 1. (2) 

One implication of the piecewise constant transition intensities assump­
tion is that the length of time already spent in the current state has no 
effect on the future length of time that the policyholder will remain in 
the state, i.e., a memoryless property exists. [See Haberman (1992) for 
more on the memoryless property of multi-state processes with con­
stant transition intensities.] 

Next, let Pij (t, x) be the probability that a life currently exact age x 
in state i will be in state j in t years time. The common approach2 to 
deriving an expression for Pij (t, x) is to use the Chapman-Kolmogorov 
backward system of difference-differential equations as contained in 
Cox and Miller (1965, Chapter 4). The backward system of equations is 
derived by considering the interval (0, t + h] as comprising subintervals 
(0, h] and (h, t + h] and letting h ~ 0. 

(3) 

for i,j = 1, ... ,n, x = 0,1, ... , and ° ::0; t ::0; 1. These equations lead 
to a set of difference-differential equations. For illustration purposes, 
some of the differential equations are presented below: 

2See, for example, Ramsay (1989), Jones (1994), and Haberman (1995). 
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ttPl1(t) = - (/J12 + /JIS + /J16) PIr(t) 

ttPI2(t) = -(/J12 + /JIS + /J16)PI2(t) + /J12P22(t) 

ttP22(t) = -(/J23 + /J26)P22(t) + /J23P32(t) 
d 
dtP23(t) = -(/J23 + /J26)P23(t) + /J23P33(t) 

ttP33(t) = /J32P23(t) - (/J32 + /J34 + /J36)P33(t) 

ttP32(t) = /J32P22(t) - (/J32 + /J34 + /J36)P32(t) (4) 

ttP44(t) = -/J46P44(t) 

ttP46(t) = -/J46P46(t) + /J46P66(t) 

ttPSs(t) = -/JS6PSS(t) 

ttPS6(t) = -/JS6PS6(t) + /JS6P66(t) 

tt P66 (t) = 0 

The easiest way to solve the system of differential equations given in 
equation (3) is to follow the method outlined by Cox and Miller (1965), 
which involves matrix manipulation. First define the following n x n 
matrices 

M(x) = {/Jij(x)}fj=1 = The forces of transition matrix; 

P(t,x) = {Pij(t,x)}fj=l = The transition probability matrix; and 

p' (t,x) = {~Pij(t,X)}rj=l. 

The Chapman-Kolmogorov backward system of equations may be writ­
ten as 

p' (t,x) = M(x)P(t,x) (5) 

for x = 0,1, ... , and 0 ::; t ::; 1, with boundary condition P(O, x) = I 
(where I is the identity matrix). 

It is easily seen that equation (5) has the solution 

00 k 

P(t,x) = etM(x) = I + k~l ~! (M(x))k. (6) 

If it is known that M(x) has distinct eigenvalues dl (x), d2 (x), ... , d n (x), 
then 
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M(x) = A(x)D(x)A(x)-l (7) 

where D is the diagonal matrix 

D = diag(ddx),d2(x), ... ,dn(x)) 

and the ith column of A(x) is the right-eigenvector associated with 
di(x) (Cox and Miller 1965, Chapter 4.5). Equations (6) and (7) lead 
to the following expression for P(t,x): 

P(t, x) = A(x)diag(etddx ), ... ,etdn(x) )A(X)-l. (8) 

In this paper equation (8) is used to compute P(t,x). 
Once P(t, x) is known for x = 0,1, ... , and ° ::; t ::; 1, we must 

develop an expression to compute Pij(t, x) for x = 0,1, ... , and t > 1. 
Suppose t = k + 5 where k = 1,2, ... and 0::; 5 < 1. It follows that 

P(k+ s,x) ~ (f-\ P(1,x +r -1)) P(s,x + k). (9) 

Next, as premiums and benefits are paid m times per year, we need 
expressions for transition probabilities at m thly intervals. Consider the 
form of pu(1/m,x + him) where h = 0,1, ... ,m -1. Under the piece­
wise constant assumption of equation (2) Pij(1/m,x + him) is inde­
pendent of h for h = 0,1, ... ,m - 1. Let us define yii) (x) as 

(m) 1 h 
Yij (x) = Pij(-,X + -). m m 

(10) 

In other words, yii) (x) is the probability that a person currently age 
x + him and in state i will be in state j at age x + (h + 1) 1m where 
h = 0,1, ... ,m - 1. We now define the n x n matrix 

r(m) = {y~~) (x)}n 
x t) i,j=l' (11) 

It follows that, for t = k + him, k = 0,1, ... , and h = 0,1, ... ,m -1, 
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P (k + ~ x) = (nk ([(m) )m) ([(m) )h 
~' x+r-l x+k 

r=l 
(12) 

and Pij (t, x) can be determined. There is no real advantage to using 
equation (12) over equation (9) except when ~ is large. If ~ is large, 
say ~ = 52 (Le., weekly payments), we can approximate yit) (x) as 
follows: 

if i -!= j; 
if i = j. 

2.2 Determination of the Net Premium 

(13) 

Premiums are assumed to be payable weekly in advance. A premium 
is only payable if the policyholder is either in state 1 (super healthy) or 
state 2 (ultimate healthy) at the start of the week in the policy year under 
consideration if premiums are waived during periods of sickness. 

The annual net premium P is determined by equating the actuar­
ial (expected) present value of future net premiums and the actuarial 
(expected) present value of future benefits at policy inception. To de­
termine the net premium we need an expression for an ~ thly annuity 
due payable for z years whenever x is in state j, which is: 

zm-l 
.. (m) 1 L rim ( r ) --a - - v P-- - x 

tj x:Zl - ~ tj ~' 
r=O 

(14) 

and an expression for an ~ thly annuity immediate payable for z years 
whenever x is in state j, which is: 

zm 
__ a(m) = ~ "'" vrlmp __ (~ x). 
tj x:Zl ~ L Lj ~' 

r=l 
(15) 

It follows that the actuarial present value (APV) of the future premium 
is 

APV of Future Premiums = P (lla(~ + 12a(ng) . 
X:ZI X:ZI 
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The PHI benefit is assumed to be paid weekly during periods of sick­
ness at the rate of $B per year. The PHI benefit is only payable if the 
policyholder is in either state 3 (short-term sick) or state 4 (long-term 
Sick) at the end of the week in the policy year under consideration. 
Hence, the actuarial present value of the PHI benefits is 

APV of Future Benefits = B (13a~~ + 14a~~) . 
Therefore, we can find P from 

B ( a(m) + a(m)) 
13 x:Zl 14 x:Zl 

P = -(-:-'--.. -( m-)---.. -( m-)-:-)'­
uax:Zl + 12 a x :Zl 

3 PHI Data and Parameter Values 

(16) 

The parameter values used in this model have been influenced by 
the data contained in CMIR 12. As the data used in CMIR 12 are some­
what outdated, it is not necessary to input into our model precisely the 
output values emanating from CMIR 12.3 Therefore CMIR 12 is simply 
used as a guide to choosing parameter values for this paper. 

For convenience the ages are grouped into 5-year age bands with the 
forces of transition assumed to be constant over each 5-year age band. 
The age bands are 30-34, 35-39, ... ,60-64. Next we describe the way 
in which each parameter value has been chosen. 

J.123 (x) (Unstable Healthy - Short-Term Sick): This parameter is based 
on the sickness inception rate, o"x, described in Part C of CMIR 12. 
We use the values of o"x for a deferred period of 13 weeks because 
the data sets for the shorter deferred periods (Le., one week and 
four weeks) may be less typical of the general insured population. 
The values for the deferred period of 13 weeks are found in Table 
C16 of CMIR 12 (p. 74). 

The force of sickness, 0" x , in CMIR 12 should be applied to the 
whole of the healthy population (Le., states 1 and 2 combined) 
whereas J.123 (x) is a force that operates only on lives in state 2 (Le., 

3CMIR 12 is based on data collected between 1975 and 1978. Subsequent work by 
Clark and Dullaway (1995), Haberman and Walsh (1998), and Renshaw and Haberman 
(2000) have suggested that PHI experience has changed since 1978. 
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the healthy state). It could be argued, therefore, that the values 
of (5x taken from eMIR 12 should be adjusted. Because eMIR 12 
is being used merely as a guide, no adjustments have been made, 
Le., J123 (x) = (5 X· 

J116(X) (Super Healthy - Dead): Under eMIR 12 the morality rate for 
healthy lives is assumed to be that of male permanent assur­
ances 1979-82, duration O. The rates are shown in Table El7 (p. 
132) under the column headed m(x). In our model, we have di­
vided healthy lives into super healthy and ultimate healthy states. 
Because lives in the latter state will experience higher mortal­
ity rates than those in the former, we have decided to assume: 
J116 (x) = 0.80m(x), Le., 80 percent of the mortality rates for male 
permanent assurances of 1979-82, duration O. 

J126(X) (Ultimate Healthy - Dead): We assume J126(X) = 1.20m(x), 
Le., 120 percent of the mortality rates for male permanent as­
surances of 1979-82, duration 0.4 

J132 (x) (Short-Term Sick - Ultimate Healthy): Recovery rates are de­
scribed in Section 3, Part B of eMIR 12. On page 34 of eMIR 
12 various values of Py+z,z, the transition intensity from sick to 
healthy at current age y + z and current duration of sickness z, 
are displayed. These recovery rates vary markedly by duration 
of sickness (measured in weeks). In view of the relatively simple 
approach adopted in our model, we will use a constant parameter 
value, Le., J132 (x) = 2.5 at all ages. 

J136(X) (Short-Term Sick - Dead): These mortality intensities are de­
scribed in Section 6, Part B of eMIR 12. On page 39 of eMIR 12 
the values of Vy+z,z at various ages are displayed where Vy+z,z 

is the transition intensity from sick to dead at current age y + z 
and current duration of sickness z measured in weeks. For our 
calculations, we will use the values at 15 weeks duration of sick­
ness, which is when the transition intensities reach their peak, i.e., 
J136(X) = VX,lS· Interpolated values have been used where neces­
sary. 

J134(X) (Short-Term Sick - Long-Term Sick): eMIR 12 does not provide 
explicit parameter values for J134 (x). Having considered the or-

4The overall effect of the mortality assumptions for /JIG (x) and /J26 (x) can be con­
sidered to be broadly consistent with CMIR 12. As suggested by Cordeiro (1995), net 
premium values are likely to be less sensitive to the parameter values chosen for the 
forces of mortality. 



200 Journal of Actuarial Practice, Vol. 9, 2007 

der of magnitude of all the other forces in the model, we assume 
J.134(X) = 0.1 at all ages. 

J.146(X) (Long-Term Sick ~ Dead): We can again consider the mortal­
ity intensities vy+z,z that were described under J.136 (x) above. It 
seems appropriate to use these intensities at a suitably long sick­
ness duration. We will use the values at duration five years (260 
weeks) that are shown on page 39 ofCMIR 12, Le., J.146(X) = VX ,260. 

J.1S6 (x) (Lapse ~ Dead): Because only super healthy policyholders lapse 
their policies, we will assume that J.1s6(X) = J.116(x). 

J.112 (x) (Super Healthy ~ Ultimate Healthy): CMIR 12 is not able to pro­
vide explicit parameter values for J.112 (x). It seems reasonable, 
however, to ensure that our estimates of J.112 (x) should be such 
that the aggregate mortality rates implied within our model ap­
proximately reflect the U.K. Male Permanent Assurances 1979-82 
(duration 0) mortality table. The values for J.112 (x) that meet this 
constraint are, for Simplicity, chosen by inspection. 

J.11S (x) (Super Healthy ~ Lapse): Finally, having set the other parame­
ters, J.11S (x) is varied in order to investigate its effect on the net 
premium rate. 

Table 1 displays the parameter values. Table 2 shows the number of 
lives in each state at various sample ages given 100 super healthy lives 
entering state 1 at age 30, using the data in Table 1 and assuming 
J.11S (x) = 0.05 for all x. s For example, Table 2 shows that, by age 
65, 12.0 percent of the lives would have died, 50.6 percent would have 
lapsed, and none of the lives would still be in the super healthy state. 

The next step is to calibrate the model, Le., to check if the model 
can produce the expected proportions of lives that are healthy, sick, 
or dead at various ages similar to those shown in CMIR 12 (Table E14, 
page 126). Table 3 displays these comparisons. The proportions are 
similar, particularly up to age 55. In Section 4.1 we will make another 
reasonableness check by comparing the net premium implied by our 
model with that implied by CMIR 12. 

5The assumption /115 (x) = 0.05 is consistent with the assumption of Sanders and 
Silby (1986) who use a lapse rate of 5 percent per annum for policy duration greater 
than two years. 
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Table 1 
Summary of Parameters 

Age x J.l16(X) J.l26 (x) J.l46(X) J.l36(X) J.l23 (x) J.l12 (x) 

30-34 0.0003 0.0005 0.0172 0.1108 0.1982 0.0270 
35-39 0.0004 0.0006 0.0190 0.1180 0.1766 0.0150 
40-44 0.0006 0.0010 0.0215 0.1251 0.1560 0.0480 
45-49 0.0011 0.0017 0.0239 0.1379 0.1408 0.1100 
50-54 0.0019 0.0028 0.0271 0.1507 0.1337 1.1000 
55-59 0.0031 0.0046 0.0303 0.1694 0.1375 1.5000 
60-65 0.0049 0.0073 0.0343 0.1880 0.1576 2.0000 

Notes: We have assumed (i) constant forces of transition over successive S-year age 
bands (Le., .age 30-34, 3S-39, ... , 60-64); and (ti) /1S6(X) = /116 (x), /132 (x) = 2.S, 
and /134 (x) = 0.1 for all x. 

Table 2 
Percent of lives in Each State at Sample Ages 

State 
Age 1 2 3 4 5 6 
30 100 0 0 0 0 0 
31 92.6 2.5 0.1 0 4.8 0 
32 85.7 4.7 0.3 0 9.3 0 

50 13.4 30.3 1.5 1.5 50.0 3.3 

65 0 32.4 1.9 3.1 50.6 12.0 

Notes: Using the data from Table 1 and /115 (x) = O.OS. 
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Table 3 
Comparing Percentages of Healthy, Sick and Dead lives 

Under CMIR 12 (Table E14) with Our Model 
eMIR 12 (Table E14) Our Model 

Age Healthy Sick Dead Healthy Sick Dead 
35 98.4 1.1 0.5 98.8 0.9 0.3 
40 97.3 1.4 1.3 97.6 1.4 1.0 
45 95.8 1.9 2.3 96.0 2.1 1.9 
50 93.2 2.8 4.0 93.7 3.0 3.3 
55 88.9 4.4 6.7 90.4 4.1 5.5 
60 81.6 7.4 11.0 87.1 4.5 8.4 

Notes: Our model uses the data from Table 1 and J.ilS(X) = 0.05. 

4 The Main Results 

The PHI policy under consideration here is a 35-year term policy 
issued to a life age 30. The sickness benefit is paid weekly during pe­
riods of sickness at the rate of £1,000 per annum. Premiums are paid 
weekly and are waived during periods of sickness. Benefits are paid 
on a weekly basis. There is no deferred period, and the benefits and 
premiums cease at the age of 65. The valuation rate of interest is set to 
6 percent per year. The forces of transition used are given in Table 1. 

4.1 Sensitivity of Net Premiums to Various Parameters 

Sensitivity of P to Ji15 (x): Figure 2 shows how the net premium varies 
as the lapse rate Ji15 (x) takes values between 0 and 1. The net 
premium is relatively insensitive to the lapse rate. For example, 
the net premium decreases from £33.79 per annum to £26.36 per 
annum as the lapse rate increases from 0 to 0.2. This relative in­
sensitivity is due to the fact that only super healthy lives lapse 
their policies, and their reserves are relatively small. Lapse rates 
of more than 0.4 would be unrealistic. For example, it can be 
shown that if Ji15 (x) = 0.4, over 83 percent of the insured popu­
lation age 30 at the outset would have lapsed their policy during 
the first five years of the policy. 
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It is surprising that the net premium decreases rather than in­
creases as the lapse rate increases, which is counter-intuitive. Stan­
dard actuarial logic suggests that the net premium should in­
crease, because when the lapse rate is small, there are large num­
bers of lives in the system who are in the super healthy state and 
therefore continue to pay premiums without receiving any PHI 
benefit payments. This tends to suppress the net premium aver­
aged over all the policyholders in the system. As the lapse rate 
increases, more of the super healthy lives leave the system by laps­
ing, which will tend to increase the average premium payable in 
respect of the remaining, relatively unhealthy, insured population. 

So why does the net premium decrease as the lapse rate increases? 
Figure 3 shows how the numerator and the denominator of the 
right side of equation (16) vary as the lapse rate increases. We 
show scaled versions of the numerator and the denominator in 
order to fit them on the same graph. Both numerator and the de­
nominator decrease, as would be expected, because the effect of 
lapses is to remove lives from state 1 before they have an oppor­
tunity to enter states 2, 3, or 4. The rate of decrease is the result 
of the complicated interaction between the different forces within 
the model. It can be seen that the numerator decreases at a faster 
rate than the denominator, and, therefore, the overall effect is that 
the net premium decreases. 

Finally, before discussing other sensitivity issues, it is worth com­
paring the net premiums calculated using the model described in 
this paper with those derived from the data in eMIR 12. The data 
contained in Table F1 on page 228 of eMIR 12 suggest that the 
net premium for a policy similar to that described earlier in this 
section, but with premium and benefit payments made continu­
ously and with a deferred period of one week, should be £24.24 
per annum. The net premium figures shown in Figure 2 are of 
the same magnitude and hence provide some comfort that our 
model (including the parameter values chosen) is consistent with 
the model described in eMIR 12. 

Sensitivity of P to /-l12 (x): Figure 4 shows how the net premium changes 
when the parameter values for /-l12 (x) given in Table 1 are in­
creased or decreased 10 percent. If /-l12 (x) is increased 10 percent, 
the net premium increases between 4.9 percent (when the lapse 
rate, /-lIS (x) = 0) and 8.4 percent (when /-lIS (x) = 1.0). If /-l12(X) 

is reduced 10 percent, the net premium decreases between 5.1 
percent (when /-lIS (x) = 0) and 8.7 percent (when /-lIS (x) = 1.0). 
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Figure 2 
Sensitivity of Net Premium to Lapse Rate, /.lIS 
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The net premium is expected to move in the same direction as 
J.l12(X). An increase in J.l12(X) causes more lives to move from 
the super healthy to the ultimate healthy state where they are 
exposed to the risk of sickness inception, which, in turn, will lead 
to an increase in the premium required. 

Sensitivity of P to J.l23 (x): Figure 5 shows how net premiums change 
when the parameter values for J.l23 (x), the sickness inception rate, 
are altered 10 percent. The net premium increases approximately 
8.6 percent when the J.l23 (x) values are increased 10 percent and 
decreases approximately 8.9 percent when the J.l23 (x) values are 
decreased 10 percent. These results (in terms of relative sensi­
tivities) are largely unaffected by the level of lapse rate assumed. 
As expected, an increase in the sickness inception rate causes an 
increase in the net premium required. 

Cordeiro (1995) extends the work described in CMIR 12 by consid­
ering the effect on net premiums in changes in the sickness incep­
tion rates for various deferred periods and entry ages. Cordeiro 
finds that, for the CMIR 12 model and data, if the sickness incep­
tion rate is doubled, the net premium is approximately doubled. 
The results of this paper are therefore consistent with those of 
Cordeiro (1995). 

Sensitivity of P to J.l32(X): Figure 6 shows how net premiums change 
when the parameter value for J.l32(X), the recovery rate, is in­
creased or decreased 10 percent (Le., changed from 2.5 at all ages 
to 2.75 or 2.25, respectively). 

The net premium increases approximately 8.3 percent when the 
recovery rate is reduced 10 percent and decreases approximately 
7.2 percent when it is increased 10 percent. Again, the level of 
lapse rate has little effect on these relative sensitivities. It is to 
be expected that an increase in the recovery rate should lead to a 
reduction in the amount of PHI premium required. 

Cordeiro (1995) has investigated the effect that changes in the re­
covery rates have on net premiums based on the CMIR 12 model 
and data. Cordeiro discovers that a 10 percent increase in the 
recovery intensity leads to a 27.6 percent reduction in the net 
premium for entry age 30 and deferred period one week. There­
fore, the net premium is less sensitive to a change in the recovery 
intensity under the model described in this paper than under the 
model used by Cordeiro (1995). 
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Figure 4 
Net Premium Sensitivity to a ±10% Change in J.!12(X) 

36 

34 
Legend 

32 -- 10% Increase 

30 
....•... No Change 
... " ... , ..... " I 0% Decrease 

S 28 
.§ 26 
~ 

t:>.. 24 ., 
:z 22 

20 

18 

16 
0 0.2 0.4 0.6 0.8 

Lapse Rate 

Figure 5 
Net Premium Sensitivity to 

A ± 10% Change in the Sickness Inception Rate J.!23 (x) 
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Sensitivity of P to /.134 (x): Figure 7 shows the changes in net premi­
ums when the parameter values for /.134 (x) are increased or de­
creased 10 percent. 

It can be seen that the net premium is relatively insensitive to 
changes in /.134 (x) because a 10 percent increase/decrease in the 
latter causes only a 4.0 percent increase/decrease in the net pre­
mium. As expected, an increase in the long-term sickness incep­
tion rate leads to an increase in the net premium required. 

4.2 The Relationship Between J.112(X) and J.132(X) 

In Section 3, we explain how the parameter values for /.112 are chosen 
so that the aggregate mortality rates within the model broadly reflect 
the male permanent assurances 1979-82, duration O. We now analyse 
how sensitive the values of /.112 (x) are to a change in the other parame­
ters, in particular to a 50 percent increase in the recovery rate, /.132 (x). 
In other words, we retain all the parameter values summarized in Table 
1 except for /.132 (x), which we increase from 2.5 at all ages to 3.75, and 
/.112 (x), which we need to recalibrate in order to ensure that the aggre­
gate mortality rates still reflect the mortality table mentioned above. 
The results are summarized in Table 4. 

Table 4 
Comparison of /.112 (x) Values 

When /.132 (x) Increases 
/.112 (x) Values when 

Age /.132(X) = 2.5 /.132(X) = 3.75 
30-34 0.027 0.045 
35-39 0.015 0.025 
40-44 0.048 0.074 
45-49 0.110 0.180 
50-54 1.100 1.500 
55-59 1.500 1.900 
60-64 2.000 2.400 

A 50 percent increase in /.132 (x) requires an increase in /.112 (x) of 
approximately the same order of magnitude up to age 50 in order to 
leave the aggregate mortality rates within the model unaltered. 
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Figure 8 
Impact on Net Premium of Increasing J.132 (x) 

(From J.132 (x) = 2.50 to J.132 (x) = 3.75) 
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This result involving changes to (.134(X) and (.112 (x) contrasts with 
the result in Section4.2 where increasing (.132 (x) and recalibrating (.112 (x) 
has a neutral effect on the net premium. This feature further illustrates 
how complicated the interaction between the transition intensities is 
within the model. 

5 Closing Comments 

An objective of this paper is to develop a simple, practical U.K. style 
PHI model that can be used by actuaries who do not have access to 
complex models such as eMIR 12 or the detailed data required to use 
such models or who are interested in rough estimates for net premiums 
for PHI models. 

One of the main difficulties that needs to be overcome in maintain­
ingthe simplicity of the model, however, is that the forces of transition 
between different states may depend not only on the age of the poli­
cyholder, but also on the time spent in the current state. For example, 
the longer a policyholder remains in the sick state, the less likely he 
or she is to recover. That is, there is duration-dependence. This factor 
usually leads to a semi-Markov model being used. However, convenient 
expressions for the transition probabilities are then hard to obtain. 

The problem of duration-dependence is handled, in part, by increas­
ing the number of states to differentiate between short-term and long­
term stays in a particular status. This enables the model to be Markov 
rather than semi-Markov and therefore leads to tractable solutions. The 
model also includes lapses. 

Using a particular policy, we test the sensitivity of the net premium 
to changes in the most significant model parameter values «(.112 (x), 
(.115 (x), (.123 (x), (.132 (x), and (.134 (x)). Not surprisingly, the net premium 
is relatively insensitive to changes in the the lapse rate «(.115 (x)) because 
only the most healthy lives are assumed to lapse their poliCies and they 
have small reserves. We also find that when any of the forces of tran­
sition, P23(X), (.132(X), or (.134(X), are increased, the resultant change in 
the level of net premium depends little on the level of the lapse rate. 
As a result, actuaries may initially ignore lapse rates when considering 
rough estimates for net premiums for PHI models. 

By contrast, however, when the force of transition from the super 
healthy to the ultimate healthy state «(.112 (x)) is increased, the extent 
to which the net premium increases depends on the level of the lapse 
rate. This shows that actuaries should probably spend more of their 
energies trying to obtain accurate estimates of P12 (x). 
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Let Pir = lE [XiJ for r = 1,2, .... The firstthree cumulants of Set) are 

m 

Kl = t ~ i\iPil, 
i=l 

m 

K2 = t ~ i\iPi2, 
i=l 

and 
m 

K3 = t ~ i\iPi3. 
i=l 

Using the SDS principle, the accumulated risk premium received in 
(0, t) (ignoring interest) is rrSDS[S(t)] = rrSDS (t), where 

1 1 

rrSDS(t) = Kl + (XIKi + (X2Ki. (6) 

It must be pointed out that although rrSDS(t) is the accumulated risk 
premium received in (0, t), it does not specify the amount of premium 
received in an intermediate period (0,5) for ° < 5 < t. Let rrSDS(s\t) 
denote the accumulated risk premium received in (0,5) for ° < 5 < t. 
All that is known is rrSDSCO\t) = ° and rrSDS(t\t) = rrSDS(t). How must 
rrSDS (5 \ t) be defined for fixed t? There are several possibilities, for 
example, 

o<s<t 

or 

° < 5 < t. 

where Ct is a constant for fixed t. As premiums are usually collected at 
a constant rate, we propose the second approach with 

rrSDS(t) 
Ct = ---

t 
(7) 

Let e (t) denote the relative security loading in rrSDS (t) so that 

and 
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Notice that for fixed (Xl and (X2, O(t) ~ 0 as t ~ 00. This property 
of O(t), i.e., converging to zero for long-term contracts, also exists for 
other premium calculation principles such as the standard deviation 
principle and makes these premium calculation principles unsuitable 
for long-term contracts. 

Consider a time horizon of t years. Let U(T) denote the surplus at 
time T (0 < T < t), then 

U(T) = U + CtT - S(T) 

with U(O) = U ;::: 0 being the initial surplus. The ruin probability within 
t years given an initial surplus of u, ljJ(u, t), is defined as 

IjJ(U, t) = lP' [T(u) ~ t] (8) 

where T(u) = min{T : T > 0 and U(T) < O}. It is evident that the 
function IjJ depends on the size of u, Ct, and the time horizon t. 

For a compound Poisson process with a fixed relative security load­
ing on the risk premium, two well-known results are that the probability 
of ruin depends only on the size of the relative security loading, and 
that it increases as the size of the loading decreases. These results are 
used to determine Ct. 

Specifically, to determine the premium rate Ct, we set IjJ of equation 
(8) at an acceptable level and then solve the resulting equation for Ct. 

If E is our acceptable probability of ruin (typically, E < 0.05), we must 
solve the equation 

IjJ(U, t) = E. 

As ljJ(u, t) is a complicated function of the premium rate, Ct is deter­
mined directly through simulations. Note that for fixed U and t, ljJ(u, t) 
decreases as the relative security loading increases, i.e., as Ct increases. 
This inverse relationship enables us to search for solutions using the 
bisection method. 

4 The Determination of Parameters £Xl and £X2 

The Ct obtained using Simulations is actually the premium rate needed 
to cover m classes of risks at the acceptable level of the probability of 
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ruin. Hence, the value of Ct t is an aggregate of m classes of premi­
ums collected over t years. The question here is how do we allocate Ctt 

among these m classes? Though there are several approaches that can 
be used, we opt for the one that allows us to set the m premiums via 
the SDS premium calculation principle, Le., we choose the parameters 
so that the ()(IS are the same for each class and the ()(2S are the same for 
each class (()(l and ()(2 may be different). This means that the premium 
for each class satisfies the SDS premium calculation principle. 

Let Cit denote the premium allocated to the i th class. Set 

m 

Ctt = I Cit 
i=l 
m 

= I (l'IiPil t + ()(J{l'IiPi2 t) ~ + ()(2 (l'IiPi3 t)} ) . (9) 
i=l 

Because we only have one equation but two unknown parameters, we 
need to impose a relation between ()(l and ()(2. We assume that 

(10) 

where ;y > 0 is a known constant. In practice, ;y can be chosen in 
accordance with the insurers' preferences and claim experiences. 

Combining equations (9) and (10), we get 

m 

Ct t = I (l'IiPil t + ;Y()(2 (l'IiPi2 t) ~ + ()(2 (l'IiPi3t) ~ ) . (11) 
i= I 

For a given ;y, we can easily solve equation (11) for ()(2. Then, ()(l can be 
obtained using equation (10). 

4.1 Simulation Assumptions 

The following assumptions are used: 

• There are two classes, Le., m = 2. 

• The time horizons used are t = 10,50,100. 

• The t-year ruin probability is set to be 0.05. 

• The initial reserves used are u = 10,20,30. 
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• The premium is paid continuously at a constant rate of Ct per year. 

• For i = 1,2, Ni(t) is a Poisson process with Ai = 10. Hence, the 
claim number process N (t) is a Poisson process with A = 20. This 
implies that the inter-occurrence time random variables (Le., the 
times between successive claims) are exponential with mean 1/ A; 
see Bowers et al., (1997, Chapter 13.3). 

• Two pairs of claim size distributions are used. They are specified 
in two cases: 

Case 1: (Exponential-Lognormal Pair) The claim size Xlj has an 
exponential distribution with density fJ{x) = e-x , and 
X2j has a lognormal distribution, i.e., InX2j ~ N(f.l, 0- 2 ), 

where f.l = -In(2) /2 and 0-2 = In 2. In this case, Pu = 1, 
P12 = 2, P13 = 6, and P21 = 1, P22 = 2, P23 = 8; and 

Case 2: (Gamma-Pareto Pair:) The claim size Xlj has a gamma 
distribution with density 

17lJxlJ-le-IJX 
h(x)= [(17) 

where 17 = 4. The claim size X2j has a Pareto distribu­
tion with density 

f2(X) = 13 + 1 _13_ 
( )

fJ+2 

13 f3+y 

where 13 = 3. In this case, Pu = 1, P12 = 1.25, P13 = 
1.875, and P21 = 1, P22 = 3, P23 = 27. 

The simulation is performed as follows. Let Tk denote the occur­
rence time of the kth claim (Zk) and define Vk = Tk - Tk-l with To = O. 
The VkS are called the inter-occurrence time random variables. Define 
Wk as 

k 

Wk = U + L (Ct Vr - Zr) . 
r=l 

Ruin occurs if Wk is ever negative for any k = 1,2, ... ,N(t) where N(t) 
is the total number of claims generated by the two classes in (0, t). 
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Step 1: As Tn = VI + ... + Vn for n = 1,2, ... , generate the sequence 
of inter-occurrence time random variables VkS until the con­
dition 

Tn;:"; t < Tn+l 

occurs, then stop; see Ross (1990) for more on generating 
pseudo-random variables; 

Step 2: Assign N(t) = nand Wo = u; 

Step 3: For k = 1 to N(t), do the following: 

1. Generate a uniform (0,1) random number U. If U < 'AI / 'A, 
then generate Zk from the claim distribution of class 1 
(Le., the distribution of Xlj), else generate Zk from the 
claim distribution of class 2 (i.e., the distribution of X2j); 

2. Compute Wk = Wk-l + CtVk - Zk; 

3. If Wk < 0, then ruin occurs. Return to Step 1 to start 
another simulation; 

4. If Wk ~ 0, then go back to Step 3.1 above to continue the 
loop; 

Step 4: If Wk ~ 0 for k = 1 to N(t), then ruin does not occur. Return 
to Step 1 for another simulation. 

For each of the two cases and for each u and t, we perform 10,000 
simulations. We choose the value of Ct that yields 500 ruins out of 
the 10,000 simulations (as the ruin probability is set to be 0.05). Then, 
based on equation (11), we use 

for Case 1, and 

Ctt = (10t+ Y()(2(12.5t)~ + ()(2(18.75t)j) 

+ (lOt + Y()(2(30t)~ + ()(2(270t)j) 

for Case 2, with y varying from 0 to 5 in steps of 0.1, to calculate ()(2. 

Once ()(2 is obtained, we compute ()(l using equation (10). 
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4.2 Numerical Results 

The results are summarized in Figures 1 to 4 and Tables 1 and 2. 
Figures 1 and 2 show that (Xl decreases as u increases, while Figures 3 
and 4 show that (Xl increases as t increases. Similar observations also 
hold for (X2 because of equation (10). Notice that in the first row of 
Table 1, the Ct values for t = 10,50,100 are the same. This suggests 
that in both cases, the Ct value with u = 10 and t = 10 is close to the 
largest premium for a probability of ultimate ruin of 0.05. The second 
observation is that for fixed t, the larger the value of u, the smaller the 
value of Ct. This is consistent with Figures 1 and 2. 

y 

u 
10 
20 
30 

0.1 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

Table 1 
Values of Ct for Various Values of u and t 

C~e1 C~e2 

Exponential-Lognormal Garnma-Pareto 
t = 10 t = 50 t = 100 t = 10 t = 50 t = 100 
27.40 27.40 27.40 29.94 29.94 29.94 
23.18 23.30 23.30 23.68 24.12 24.12 
21.39 22.16 22.18 21.79 22.39 22.39 

Table 2 
Values of Clt and C2t with u = 10 and t = 50 

Case 1 Case 2 
Exponential-Lognormal Gamma -Pareto 
(Xl Clt C2t (Xl Clt C2t 

1.0104 13.5535 13.8468 1.2435 13.0559 16.8853 
2.9879 13.6134 13.7869 3.7965 13.3845 16.5567 
3.9556 13.6427 13.7576 5.1071 13.5532 16.3880 
4.4343 13.6572 13.7431 5.7711 13.6387 16.3025 
4.7200 13.6659 13.7344 6.1724 13.6903 16.2509 
4.9097 13.6716 13.7287 6.4412 13.7249 16.2163 
5.0449 13.6757 13.7246 6.6337 13.7497 16.1915 
5.1461 13.6788 13.7215 6.7785 13.7683 16.1729 
5.2247 13.6812 13.7191 6.8912 13.7828 16.1584 
5.2876 13.6831 13.7172 6.9816 13.7945 16.1467 
5.3389 13.6847 13.7156 7.0556 13.8040 16.1372 
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Figure 1 
(Xl VS. y for Exponential-Lognormal with t = 50 
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Figure 2 
(Xl VS. y for Gamma-Pareto with t = 50 
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Figure 3 
(Xl Vs. y for Exponential-Lognormal with u = 10 
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Figure 4 
(Xl Vs. y for Gamma-Pareto with u = 10 
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Table 2 displays CH and C2t for u = 10 and t = 50. In both cases C2t 

exceeds CH. In the exponential-lognormal case, the third cumulant of 
the lognormal is slightly larger than that of the exponential so CH and 
C2t differ only by a small margin. Moreover, C2t exceeds CH because the 
lognormal is riskier (Le., has a heavier right tail) than the exponential. 
In the gamma-Pareto case, the differences are much larger because the 
Pareto has a larger second cumulant and a much larger third cumulant, 
Le., the Pareto is much riskier than the gamma. In both cases, C2t - CH 

decreases as y increases because (Xl (X2) becomes larger (smaller) when 
y increases, so a heavier (lighter) weight is put on the standard deviation 
(skewness) term. 

5 Closing Remarks 

There are three important points that must be addressed: 

1. Ruin probabilities are difficult to obtain because they do not usu­
ally have closed-form solutions, so the method of simulations is 
a natural way to deal with the problem. One advantage of sim­
ulation is flexibility. It can be used in practical situations with 
real insurance data as well as more complex models that include 
factors such as correlated risks and investment performance. 

2. From the practical point of view, the value of t should not be set 
too large because it leads to lower risk loading factors. If the in­
surance market is such that one can split the time horizon into 
smaller time periods, then the insurer may receive higher risk 
loadings over each period. For example, a la-year horizon may 
be split into five 2-year horizons. 

3. The question of allocating premiums among the m classes has no 
unique solution. For example, we can allocate the premiums ac­
cording to their proportion of the total risk loadings. Specifically, 
using equation (2), we define 

I 

(Xl + (X2'PI )O"i (~ l) 
Cit = i\iPil t + 1. (Xl K2 + (X2 K3 ,m :3 

L.i=l (Xl + (X2'Pi )O"i 

where 0"1 = Var [X] and 'Pi = IE [ (Xij -IE [Xij ])3] /O"l is the co­
efficient of skewness of Xij. As before, we set Ctt = I:I Cit· 
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