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Rapid Calculation of the Price of Guaranteed 
Minimum Death Benefit Ratchet Options 
Embedded in Annuities 

Eric R. Ulm* 

Abstractt 

This paper presents a new method of obtaining quick and accurate values 
and deltas for discrete lookback options using Taylor series expansions. This 
method is applied to the case of ratchet guaranteed minimum death benefits 
attached to annuity contracts, and the method is extended to include annuities 
where a fixed fund is attached to the variable account. Finally, both the speed 
and the accuracy of the method are compared to Monte Carlo simulation and 
the exact analytic solution. The Taylor expansion method is shown to be faster 
and, in most cases, more accurate than the alternative methods. 

Key words and phrases: Taylor series, multivariate normal, lookback option, 
Monte Carlo simulation, risk, lognormal distribution, Black-Scholes formula, ge
ometric Brownian motion 

1 Introduction 

One of the biggest developments in the life insurance industry in the 
last decade or so has been the invention and growth of various equity 
options embedded in variable annuity contracts. These options range 

*Eric UIm, Ph.D., F.S.A., is a visiting assistant professor of actuarial science at the 
University of Central Florida. He has previously worked for several years as an actuary 
in the corporate actuarial department of a U.S. insurance company. 

Dr. Ulm's address is: Department of Statistics and Actuarial SCience, University of 
Central Florida, Orlando FL 32816, U.S.A. E-mail: eulrn@rnail.ucf.edu 

tThe author would like to thank Steven Craighead for useful discussions and as
sistance in implementing the necessary programs and Lijia Guo and Morgan Wang for 
helpful discussions. In addition, the author thanks several anonymous referees for 
comments that have improved the presentation of the paper. 

169 



170 Journal of Actuarial Practice, Vol. ", 2004 

from simple (e.g., guaranteeing the return of principal invested should 
the annuitant die), to complex options such as a minimum guaranteed 
fund amount equal to some function of the past history of the fund 
should the annuitant choose to annuitize at guaranteed purchase rates 
(Milevsky and Posner, 2001). 

The market for customers of variable annuities is competitive, and 
one of the ways producers attempt to distinguish themselves both from 
mutual fund providers and other variable annuity providers is by in
cluding a death benefit option with the contract. The cheapest and 
simplest case is one where the insurance company promises to payout 
at least a return of the premium paid into the contract on the death of 
the contract owner, regardless of the actual performance of the under
lying funds. The death benefit is commonly made more complicated, 
as well as more valuable and more expensive in several ways. Many 
companies offer not only a return of the premiums paid but an accu
mulation of the premiums at a minimal interest rate on death of the 
contract owner. 

Even more generous provisions exist including reset and ratchet 
benefits. Death benefits on contracts with a reset provision will be reset 
to the fund value at various times during the life of the contract and 
can move up or down, but usually not below the return of premium. 
Death benefits on ratchet contracts ratchet to the value of the fund at 
various times during the life of the contract, but only if the resulting 
benefit is higher than the one in force before the ratchet. Otherwise, 
the death benefit remains where it was before the ratchet date. A good 
overview of the state of the market is contained in Milevsky and Posner 
(2001). 

Many companies market and sell annuity products without recog
nizing the need to hedge the underlying risk and thereby expose them
selves to unnecessary levels of equity risk. In addition, financial papers 
frequently present results for more traditional traded options that are 
not easily transferred to an insurance environment where the options 
are embedded in other contracts. Also, analytic results are not obtain
able in all cases. When they are, they frequently require the calcula
tion of the multivariate cumulative normal distribution function. This 
function is not directly computable. Although approximations do ex
ist, they are slow in practice. Therefore, insurance companies usually 
resort to Monte Carlo simulations to value these options. It can be 
time-consuming to obtain even a passable value for all the options in 
all inforce contracts by this method. The situation becomes even worse 
when simulating the option value along many paths for cash flow test
ing or ALM purposes. The value of the option must be obtained by 
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simulation at each time period along each testing path that could lead 
to billions of required simulations. 

Much work has been done to attempt to value these options. An ex
act analytic solution was obtained for an individual discrete lookback 
put by Collin-Dufresne, Keirstad, and Ross (1997) by using a change 
of numeraire, which is theoretically valuable, but involves the cumu
lative multivariate normal distribution-a distribution that is difficult 
and time-consuming to evaluate in practice. In addition, the result has 
been obtained for a variable fund only, while this paper addresses the 
addition of a fixed fund to the account as well. Tiong (2000) uses the 
method of Esscher transforms pioneered by Gerber and Shiu (1994) to 
obtain analytic solutions for cliquet options in equity indexed annuities. 
Also, Milevsky and Posner (2001) have recently valued lookback guaran
teed minimum death benefit (GMDB) options analytically in the specific 
case of an at-the-money continuous lookback option on a variable fund 
only, when mortality follows some simple analytic forms. 

Why is there a need for a new paper on this subject? The approach 
of this paper addresses some of the major shortcomings in the practical 
implementation of the methods described above. The analytic solution 
is theoretically valuable but there are two major drawbacks involved 
with using it. First, it is time-consuming. There is no easy way to evalu
ate the function quickly and accurately because of the large number of 
multivariate normal functions that must be evaluated. The evaluation 
of the cumulative multivariate normal function has been addressed by 
many authors, including Gupta (1963), Wang and Kennedy (1990), Wang 
(1991), Terza and Welland (1991), Genz (1992), and Genz (2004). The 
method used in the actual comparisons is that of Somerville (1998a, 
1998b). Second, the result has been obtained for a variable fund only, 
while this paper addresses the addition of a fixed fund to the account 
as well. 

This paper describes a method to compute the Taylor coefficients of 
the value of a discrete lookback put option, a method that can easily be 
extended to the case of a ratchet GMDB where the value of the contract 
at death is the maximum value of the contract at any policy anniversary 
or the account value at death if larger. It can also be extended to fit the 
general case an insurance company faces where the variable account is 
attached to various other accounts that earn a fixed rate independent 
of equity performance. 

While a Taylor series expansion is not as theoretically appealing as 
a closed form solution, it is just as valuable in practice, especially if 
it produces relatively quick and accurate results. The major problem, 
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however, is determining the coefficients of the Taylor series expansion. 
The next section addresses this issue. 

2 Taylor Expansion of Discrete Lookback Put 

2.1 Black-Scholes Case 

This paper primarily addresses the ratchet GMDB where the death 
benefit is the maximum value the contract attains on any policy anniver
sary or the contract value at death, whichever is greater. This is analo
gous to a series of discrete lookback puts where the notional amount of 
the put is equal to the original fund multiplied by the probability that 
the annuitant dies at that point without having previously lapsed his or 
her policy. This requires a model of surrender and mortality that also 
affects the GMDB value. We begin by valuing an arbitrary discrete look
back put and then show how it can be extended to cases more relevant 
to insurance company annuities. 

Consider a put issued at time to and coming due at some known and 
fixed time tN. Its value at time tN is the maximum of the underlying 
fund values at times tl < t2 < t3 ... < tN-l < tN and the initial strike 
Xo. We want to determine Vo (the ratchet GMDB value at time to) given 
Fo (the total fund value at time to), Xo (the strike at time to), and P f 
and Pv (the initial percentages invested in fixed and variable accounts). 
In addition, the risk free rate (r), stock volatility (a"), asset charges (q), 
which are analogous to dividends in the analysis, and fixed growth rate 
(g) are assumed known. For n = 1,2, ... " we assume Vn is of the form: 

b;j (S). (S ) k 
Vn = Fn ~k Iikn In I: 4>~ I: 

), 

(1) 

where In is the adjusted strike price given by 

Sn is the stock index at time tn, Fn is the account value at time tn that 
behaves as 
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(2) 

where Pin and PVn are the percentages of the fund in the fixed and 
variable account at time tn with Pin + PVn = 1, and 

in = exp (g (tn+1 - t n ») - 1. 

Note that In is equivalent to the strike on the variable fund only, taking 
out the effect of the fixed account. Assume the Taylor series coefficients 
of !jkn are known, we show that if Vn is of the form given in equation (1) 
then so is Vn-I. As VN-l is simply the Black-Scholes result and can be 
shown to be of the form given in equation (1), then Vo can be shown to 
be of the same form by induction. The values of the Taylor coefficients 
are derived automatically during the induction step. 

First, we derive the Taylor expansion for a Black-Scholes put at time 
tN-I with payoff at time tN, While this expansion could be obtained by 
repeated differentiation of the Black-Scholes formula, it will be derived 
in a more complicated manner similar to algorithmic differentiation 
[see Wengert (1964)] to illustrate some of the general concepts used in 
the inductive step. Let SN be the stock level and FN be the fund level at 
time tN. Assume risk-neutral valuation, 11 = r - q - u 2/2, and define 

and 

rn = (tn+1 - t n ) r, 

Iln = (tn+1 - t n ) 11, 

Un = U~(tn+1 - t n ), 

with in and cf>n defined as above. Then XN-l is the strike on the fund 
at time tN-I, and the put obeys the equation: 

(3) 

where x+ = max(O, x), and lESN _1 denotes expectation condition on (Le., 
given) SN-I. We will assume the stock index follows a geometric Brow
nian motion so that Yn is normally distributed with mean Iln-I and 
variance U~-I' Le., Yn ~ N(lln-l, ULI)' The integral for the value of 
this put option is given by: 
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where 

(5) 

Equation (4) can be explained by assuming the option is on the vari
able fund only (hence the Pv term in front of the integral), the stock 
market is normalized to 1 at time tN-I, and the adjusted strike on the 
variable fund drops by ¢N-I due to an increase in the relative size of 
the fixed fund between tN-I and tN, Equation (4) can be divided into 
two integrals, one involving e-~N-I and the other involving eYN • The 
terms independent of YN can be pulled outside the integral. The re
maining terms can be expanded into their individual Taylor expansions 
and multiplied term by term. This creates two integrals to evaluate: 

() ( ) 2 1 J1N-I 1 J1N-I 2 
x[l+ -2- YN+- -2- YN+···]dYN 

(TN-I 21 (TN-I 
(6) 

and 
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The integrals in expressions (6) and (7) can be split into two integrals, 
the first one from - 00 to 0 and the second one from 0 to - ~N -1. A Taylor 
expansion in ~N-1 can be obtained for the integral from 0 to -~N-1 by 
multiplying the internal expansions in YN term by term, integrating 
term by term and substituting -~N-1 at the upper bound. Evaluation 
at the lower bound gives zero. The integrals from -00 to 0 can be done 
exactly from equation (4) without any expansions: 

/2 2 ef1~-1 /2(j~_1 FAr (_ JiN-1 ) 'V 1TO'N_1 J'I 
O'N-1 

for expression (6) and 

~21T0'~_1 e(f1N-l+(j~_1)2/2(jL N(- (~~=: +O'N-1)) 

for expression (7). 
Finally, the Taylor expansion for the integral in expression (6) can 

be multiplied by the expansion of e-'I;N-l term by term, then added 
to the expansion for the integral in expression (7). Define a function 
lXN-1 (~N-1) such that 

VN-1 = FN-1PVN_l lXN-1 (~N-1) 

= FN-1PVN_llXN-1 (-In[]N-1/SN-1 - <PN-r]). (8) 

To put this into the form of equation (1), we will assume the parameter 
<PN-1 / (]N-1 / SN-r) is sufficiently small so that all expansions are valid. 
(This parameter is small if the percentage of funds in the fixed fund is 
small.) In Section 3 we show how to expand the radius of convergence 
if this parameter is not small. 

First, we expand the logarithm: 

where 

VN-1 = FN-1PVN_l lXN-1 (In e:=~) -In ( 1 - JN~~S~-l)) 
= FN-1PVN_l lXN-1 (In e:=~) + !/J ) 

00 ,J,. k 
'" 1 ( '/-'N-1 ) !/J-L.,-

- k=l k IN-1/SN-1 



176 Journal of Actuarial Practice, Vol. 11, 2004 

As cf>N-l/(]N-l/SN-d is small so is tfJ. A Taylor series expansion of 
OI.N-l about In (Sn-l Ifn-Il yields: 

VN-l = FN-IPVN_l [ OI.N-l (In e~=~)) + k~l 0I.~~1 (In e~=~)) ~k] , 
where 0I.~~1 denotes the kth derivative of OI.N-l. Rearranging this ex
pression for VN-l as a power series in cf>N-l/(]N-l/SN-d gives 

{ ( ( SN-l)) (1) ( (SN-l)) cf>N-l 
VN-l = FN-IPVN_l OI.N-l In IN-l + OI.N- 1 In IN-l IN-l/SN-l 

+ [!OI.jJ~l (In (SN-l)) + !OI.jJ~l (In (SN-l ))] ( cf>N-l )2 
2 IN-l . 2 ]N-l IN-l/SN-l 

[ ! (1) (1 (SN-l)) ! (2) (1 (SN-l)) ! (3) (1 (SN-l ))] + 3 OI.N-l n J + 201.N- 1 n J + 601.N-l n J N-l N-l N-l 

( cf>N_l)3 1 x + . . . (9) 
IN-l/SN-l 

As the Taylor coefficients of OI.N -1 are known from the term by term 
integrations of expressions (6) and (7), so are those of the OI.~~ 1 s. From 
the definition of cf>N-l the quantity PVN-I can be expanded as: 

Pv = 1 = 1- cf>N-l + (cf>N_l)2 _ (cf>N_l)3 +... (10) 
N-I 1 + ,?N-I iN-l iN-l iN-l 

tN-I 

assuming Icf>N-l/iN-ll < 1. Substituting equation (10) into (9) then 
multiplying term by term, and summing gives: 

k0 k 

VN-l = FN-l ~k fikN-l (In e~=~ ) ) cf>~-l e~=~ ) (11) 
), 

as hoped. Equation (10) dominates the convergence properties, and, 
therefore, equation (11) converges only for P fN-1 / PVN-I < 1. 

2.2 The Induction Step 

For the induction step, it is important to know how variables at time 
tn depend on those same variables at tn-I. For instance: 
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(12) 

and 

,+. = (l+in -l) (.in),+. _. 
'Vn eYn tn-I 'Vn I (13) 

Writing the integral for the ratchet put at time tn-I gives: 

f 
ks,j ((S)). (S )k] 

= e-
rn

-
1 ESn - 1 Fn t !jkn In f: ¢~ f: 

00 

= Fn_Ie-rn- 1 f [Pfn-l (1 + in-I) + PVn_l eYn ] 
-00 

(14) 

During the time interval (tn-I, t n ), the strike Xn-I remains the same. 
The adjusted strike, however, falls from fn-I to fn-I - ¢n-'-ISn-1 be
cause the fixed fund has risen the time interval (tn-I, t n ) and takes 
up a larger percentage of the strike X n - I . If Xn-I > Fn-I then the 
strike does not rachet to a higher value and fn = fn-I - ¢n-ISn-1 if 
Sn < fn-I - ¢n-ISn-l. If Fn-I > Xn-l, then the strike does ratchet, and 
fn = Sn when Sn > fn-I - ¢n-ISn-l. So: 
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xe- (Yo -,.-.) , ""'-, dYn]. (15) 

Let us introduce a new dummy variable 8 such that 8 = 1 if an integral 
in equation (15) is a variable integral (Le., the third and fourth integrals), 
and 8 = 0 if an integral in equation (15) is a fixed integral (Le., the first 
and second integrals). For a given arbitrary j and k, each of the integrals 
in equation (15) is proportional to: 

-00 

where ~ is defined in equation (5). Changing variables to v = Yn + ~n-l 
in the integral in expression (16) and ignoring external constants gives: 

e [J- (6+J.ln-l/(T~_I) ]~n-l e-~~-l /2(T~_1 

o 
x I exp[~n~lV + (J1~-1 +8+k-j)vJfJkn(V)e-V2/2(T~":ldV. 

-00 CTn - 1 CTn-l 

(17) 

Using the expansions: 
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[ ~n-lv] ~ k exp -2- = L. ak (~n-l v) 
(Tn-l k=O 

and 

and multiplying these expansions term by term yields the following 
integral: 

o f [(aobo) + (albo~n-l + aobd v + (a2bo~~_1 + albl ~n-l + aob2) v 2 

-00 

The det:inite integral for each independent power of v can be found by 
integration by parts and the normal integral. This turns this integral 
into a power series in ~n-l: 

ao [bo (If) (Tn-l + b l (-(T~-l) + b2 (If) (T~_l + ... J 
+ al [bo (-(T~-l) + bl (If) (T~_l + b2 (-2(T~_1) + ... J ~n-l 

+ a2 [bo (If) (TLI + bl (-2(T~_1) + b2 (31f) (T~-l + ... J ~~-l 
+ ... (19) 

Unfortunately, the interior coefficients are sequences in bn . Several 
methods are available for accelerating the convergence ot these terms, 
but it is still necessary to compute a substantial number of them. Ex
pression (19) can then be multiplied term by term with the Taylor ex
pansions of the external terms in expression (17). This gives: 

[ 

ksj 

Vn-l = Fn-l Pfn-l (1 + in-d L <P~-lgj,k,n-l,8=o (~n-l) 
j,k 
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k5j 1 
+ PVn-l I cf>~-lBj,k,n-l,8=1 (~n-d . (20) 

j,k 

Some of the external coefficients have been pulled into the function B 
in equation (20). 

The second and fourth integrals in equation (15) can be treated sim
ilarly: 

(1 + in-l)j (,in )j cf>~_le-Il~-1/2(J'~-lhkn (0) 
tn-l 

foo (8-j+¥)Yn 21 2 
X e "n-l e-Yn 2(J'n-1dYn. (21) 

-~n-l 

The integral in expression (21) can be separated into an integral from 0 
to 00 and an integral from -~n-l to O. The exponential functions inside 
the integral from -~n-l to 0 can be expanded, multiplied term by term, 
and finally integrated term by term analogous to the procedure intro
duced above. The constant of integration is obtained by calculating the 
integral from 0 to 00 exactly: 

~27T0"~_le[lln-l+(J'~-1(8-j)1/2(J'~-I:N (J1n-l + 0 _ j) I 

O"n-l 

finally giving: 

Vn-l = Fn-l {Pfn-l (1 + in-d 

k5j ,[ (( 1 )) 
x I cf>~-l Bj,k,n-l,O In ] IS - cf> 

j,k n-l n-l n-l 

+ hj,k,n-l,O (In Cn-l/Sn~l - cf>n-l))] 

k5j ,[ (( 1 )) + PVn-l I cf>~-l Bj,k,n-l,l In ] IS - cf> 
hk n-l n-l n-l 

+ hj,k,n-l,l (In Cn-l/Sn~l - cf>n-J) l}· (22) 
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We now define the function G = 9 + h, which can be expanded similarly 
to the method in equations (8) to (9) yielding: 

{ 

b;j 

Vn -1 = Fn -1 Pfn-l (1;- in-d ~ cJ>~-1 [Gj,k,n-1,0 (In (~:=~)) 
), 

+ dl) _ (In (Sn-1)) ( cJ>n-1 ) 
),k,n 1,0 fn-1 fn-1/Sn-1 

+ .! (G<.l) + G\2) ) ( cJ>n-1 )2 
2 ),k,n-1,0 ),k,n-1,0 fn-1/Sn-1 

+ (.!G<.l) + .!G<.2) + .!C<.3) ) ( cJ>n-1 )3 + ... ] 
3 ),k,n-1,0 2 ),k,n-1,0 6 ),k,n-1,0 fn-l/Sn-l 

ksj 

+ PVn-l ~ cJ>~-1 [ Gj,k,n-l,l (In e:=~ ) ) 
), 

+ G<.l) _ (In (Sn-l)) ( cJ>n-1 ) 
),k,n 1,1 fn-l fn-1/Sn-l 

+.! (G<.l) + G<.2) ) ( cJ>n-l )2 
2 ),k,n-l,l ),k,n-l,l fn-l/Sn-l 

+ (.!G\l) + .!G<.2) + .!G\3) ) ( cJ>n-l ) 3 + ... J} 3 ),k,n-1,1 2 ),k,n-l,l 6 ),k,n-l,l fn-l/Sn-l 

(23) 

where the superscript (k) denotes kth order differentiation. We can 
then group like terms as: 

(24) 

where 
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j 

Qj,O,n-I,c5 = L Gj,k.n-I,c5 
k=O 

Qj,l,n-I,c5 = Qj::I,O,n-I,c5 

Q ' = ! (Q(,ll + Q(,2) ) J,2,n-I,c5 2 J-2,O,n-I,c5 J-2,O,n-I,c5 

1 (1) 1 (2) 1 (3) 
Qj,3,n-I,c5 = 3Qj-3,o,n-I,c5 + ZQj-3,O,n-I,c5 + 6Qj-3,o,n-I,c5' 

etc. Finally, we substitute equation (10) into (24), which leads to: 

V F [(
cpn-l CP~-l CP~-l ) (1 ' ) n-l = n-l -.- - -'2- + -'3- -... + tn-l 
tn-l tn-l tn-l 

X (! Qj,k,n-I,O (In (JSn=I)) (J (cf>~~l)j )k) 
J,k n I n-l n-l 

+ (1 _ CPn-1 + CP~-l _ CP~-l + ... ) 
in-l i~-l i~-l 

(k~ (1 (Sn-l)) (CPn-d
j 

)] x ~ Qj,k,n-l,l n J----=- (J /5 )k . 
J~ n I n-l n-l 

(25) 

This yields as a final result through interchange of summation indices: 

k~ k 

Vn-l = Fn-l ~k Iikn-l (In G:=~ ) ) CP~-l (~:=~ ) (26) 
J, 

where 

f'kn-l = ± (_l)(l-j) Ql,k,n-:,l 
J, 'l=k (in_d(J-l) 

j-l 

+ L (_1)(l-j+1) ~l'k,n()~~) (1 + in-d. 
l=k;k<j {tn-d 

Once the function can be shown to be of the form: 

ksj k 

Vn = Fn ~k !jkn (In G:=~) ) CP~-l G:=~ ) 
J, 
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k5,j 
= Fn 2. !jkn (~n) <p~e-k~n, 

j,k 

183 

(27) 

the final term exponential term can be expanded, multiplied term by 
term, and then summed over k to give: 

Vn (~n, <Pn) = Fn 2.fJn (~n) <p~ 
j 

(28) 

where the functions fJn result from the Taylor series expansions and 
from the functions !jkn and, therefore, are known. 

The biggest practical issue in the determination of the coefficients is 
the summation of the series in equation (19). We found that keeping 128 
terms and using several iterations of Euler's method followed by one 
iteration of Levin's method from Fessler, Ford, and Smith (1983) worked 
best. Accuracy of the coefficients, and, therefore, of the final result, 
might be improved further by the use of infinite precision arithmetic. 

3 Comparison to Monte Carlo Results 

The first issue that needs to be addressed when comparing the re
sults of the Taylor expansion to the results of Monte Carlo simulation 
is the issue of convergence of the series. As each step involves only 
functions that are analytic everywhere, it seems reasonable that the fi
nal function for the lookback value should also be analytic everywhere. 
In practice, however, the convergence range might be limited. In nearly 
all cases, the agreement is poor outside of the range 0.5 < S / X < 2.0, 
and, in m~ny cases, the effective range of convergence is even smaller 
than this. 

3.1 Increasing the Range of Convergence to +00 

The convergence radius can be extended to infinity on both ends by 
considering the limits. The limit ~ - +00 corresponds to an extremely 
low strike. In this case, the strike is nearly certain to ratchet to the fund 
value at time tl' This implies a value at time to of: 

f
oo . e-(YI-po)2/20'6 

Vo(oo,<p) =e-rtl FI2.<P{fJdO) ~ dYl. (29) 
-00 j 21T0'6 

As Fl and <PI are defined in equations (12) and (l3), this gives: 
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The integral can be evaluated directly. Remembering to expand P f and 
Pv as in equation (11) and multiplying term by term gives: 

where 

Ho = e-qt1 fOI (0) 

HI = [e(g-r)t1 - e-qt1 ] fOI. (0) + e-qt1 fll (0) (1 + io) (~1) e-fJOe-a6/2 
to to 

H2 = [e- qt1 - e(g-r)t j
] fo~t) + e-qt1 f21 (0) (l + io)2 C~ f e- 2fJO 

+ [e(g-r+a2)t1 _ e-qt1] fll, (0) (1 + io) (~1) e-fJoe-a6/2 
to to 

and 

H3 = [e(g-r)t j _ e-qt1 ] fOl.
3
(0) 

to 

+ [e- qt1 - e(g-r+a
2
)tl] !I~t) (1 + io) C~) e- fJO e-0"6!2 

+ [e(g-r+2a2)t1 _ e-qt1] f21. (0) (1 + io)2 (~1)2 e-2fJo 
to to 

+ e-qt1 f31 (0) (1 + io)3 C~) 3 e-3fJoe-a6 /2. 

To extend the convergence of the function to the entire range 0 :s; ~ < 00, 

we can create a multipoint Pade approximant [see Baker and Graves
Morris (1996, pages 335-361)] for the functions fjo (~) - Hj. A multi
point Pade approximant is a rational function of two polynomials whose 
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values and derivatives agree to given, possibly different, orders at two 
different points. The points chosen at this stage are ~ = 0 and ~ = +00. 

The Taylor expansions are known at ~ = 0, and the limiting behav
ior must decay to 0 as ~ - +00. It seems likely that the asymptotic 
expansion near +00 should be 0 as the probabilities depend on the cu
mulative normal distribution that has this asymptotic expansion. The 
approximant that has these features is simply the reciprocal of the Tay
lor expansion of the reciprocal, and this is the function we will use for 
comparison purposes in the range 0 :::; ~ < 00. 

It is true that in the limit ~ - 00, 1>1 (J IS) is no longer small, as 
was assumed in the derivation of equation (9) and equation (23). This 
difficulty is solved in the same manner, by creating a multipoint Pade 
approximation in 1> at 1> = 0 and 1> = 00 from the coefficients in equa
tion (28). 

3.2 Increasing the Range of Convergence to -00 

Now, the limit ~ - -00 corresponds to an extremely high strike. 
In this case, the GMDB is unlikely to ratchet, and the value of the op
tion approaches the value of a simple Black-Scholes put. The Taylor 
expansion of this put is available by the same methods used in Section 
2.1 with tl = tN, the maturity of the option. Subtracting this expan
sion from the full Taylor expansion, an expansion for the value of the 
ratchet alone can be obtained. This value should drop to 0 as ~ - -00 

for the same reasons as the ~ - + 00 limit. The solution in the range 
- 00 < ~ < 0 will, therefore, be the sum of the exact Black-Scholes calcu
lation and the mUltipoint Pade approximant for the excess contribution 
of the ratchet. Figure 1 shows a comparison of these values to Monte 
Carlo simulations using 32,000 antithetic scenarios. We typically use 
a risk-free rate of 5%, risk fees of 115 bp consistent with the market 
survey in Milevsky and Posner (2001), a stock market volatility of 20%, 
a fixed fund return of 5%, and time between ratchets (excluding the first 
and last) of 12 months. We use terms up to ~64 and 1>2 and fixed fund 
percentages from 0% to 90% fixed in 10% increments. A range of strikes 
near 1 is presented to highlight the agreement, which is good, though, 
over the entire range - 00 < ~ < O. 

The final issue is how to connect the two approximations at ~ = O. 
The two functions are discontinuous if 1> f= O. Strikes greater than 1 
tend to produce greater agreement near ~ = 0, so the approximation 
for strikes less than one are scaled to this value. Figure 2 shows the 
comparison at low strike prices after the results have been rescaled. 
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Figure 1: Comparison of Simulation and Taylor Expansion of a 24 Month 
Lookback Option with the First Ratchet in 12 Months at High Strike 
Prices 
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Figure 2: Comparison of Simulation and Taylor Expansion of a 24 Month 
Lookback Option with the First Ratchet in 12 Months at Low Strike Prices 
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Accuracy in the calculation of the value of the option is not the 
only consideration in evaluating the approximation. It is frequently 
necessary to calculate the value of various derivatives of the function in 
order to hedge the option. Figures 3 and 4 show the comparison of delta 
with the Monte Carlo values. For low strikes, delta is positive because 
the option is likely to ratchet at its next opportunity. The higher the 
stock market, the higher the value to which the strike will ratchet. On 
the other hand, for high strikes, delta is negative, because the ratchet 
is less relevant and the lookback delta approaches the delta of a simple 
put. 

0.20 Strike 

0.00 

J! 
Q) 

-0.40 Q 

~ .c -0.60 .s 
-T.yIor 

• M(it!<'Ca"" 
ftI 

0:: -0.80 

-1.00 
{J%b~ 

-1.20 

Figure 3: Comparison of Simulation and Taylor Expansion of the Value 
of Delta for a 24 Month Lookback Option with the First Ratchet in 12 
Months 

Finally, we need to show the results of a full calculation of the ratchet 
value for all ranges of strikes using a series of puts with maturities from 
zero to 96 months weighted by their expected exercise probability in 
the double decrement model. We use a mortality rate equal to that in 
the 2000 GAM table and lapse percentages that rise from 0% in year one 
to a maximum of 22.5% in year nine and settling in at a long-term rate 
of 19.5%. Instead of weighting the values of the individuallookback 
puts, a weighted average of the Taylor expansions is used as the Taylor 
expansion of the full GMDB value. This results in a time savings of a 
factor of 100 or so and is a feature of the Taylor expansion method that 
cannot be duplicated by the simulation or analytic methods. The value 
of the GMDB is then calculated from this new expansion in a manner 
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Figure 4: Comparison of Simulation and Taylor Expansion of the Value 
of Delta for a 24 Month Lookback Option with the First Ratchet in 12 
Months at Low Strike Prices 

similar to that of the individual puts. Figure 5 shows comparisons of 
the approximation to the simulated values in a range of strike values 
near 1. Similar agreement is obtained over the entire range. Figure 
6 shows comparisons of delta to the simulated values. The values of 
delta show minor disagreements in the range of strikes between 1.5 
and 2 on the order of perhaps a few basis points. We would consider 
this disagreement to be minor, as it would be dwarfed by any errors in 
assumptions of risk-free rate, volatilitY,lapse rates, and mortality used 
in the approximation. 

3.3 Time Comparisons 

There are at least two advantages of using the Taylor expansion 
instead of Monte Carlo simulation. The first is that the expansion is 
more accurate in most cases because simulation contains random er
rors. This is by no means true in all cases, particularly those at high 
fixed fund percentages, as can be seen in the figures. The major ad
vantage, however, is the increase in speed obtained by using a function 
that can be quickly evaluated, rather than performing a large number of 
simulations. To demonstrate this, we compared the results of 69,120 
calculations of both the approximation and 32,000 antithetic Monte 
Carlo scenarios. We used ages ranging from 55 to 66, durations rang-
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ing from one to 96 months, fixed percentages ranging from 0% to 50% 
in steps of 10%, and ten different strike values. The computations were 
performed on a Dell Computer with 2.8GHz Pentium processor. It took 
40.203 seconds for the 69,120 Taylor series expansions to be computed 
for an average of 0.582 milliseconds per point. It took 199,606 seconds 
(2 days, 9 hours) to complete the 69,120 Monte Carlo simulations for 
an average of 2.888 seconds per point. This shows the approximation 
will improve runtimes by a factor of about 5,000 if 32,000 scenarios 
are used. Equivalently, the approximation runs about as fast as six to 
seven Monte Carlo runs. 

4 Comparisons to the Analytic Solution 

Now that we have shown the superiority of the Taylor expansion 
method over the most commonly used method of simulation, we wish 
to show its superiority over the analytic solution in Collin-Dufresne, 
Keirstad, and Ross (1997), hereafter referred to as CKR, in both speed 
and accuracy. First, the formulas will be reproduced here to prevent 
unnecessary cross-referencing. The price of a single discrete lookback 
put is given as: 

P - V n (5 X t t ... t ) - 5 -qtN X -rtN - DM 0, 0, N,(J",r,q, 1, ,N oe + oe (32) 

where 

N 

V n (5 X t t ... t ) - "H'I ·5 e(r-q)trrtN DM 0, 0, N,(J",r,q, 1, ,N - L J n-} ° 
j=l 

- Xo [ 1 - NN ( -dQ (XO, td , ... ,-dQ (XO, tN) ; {CH)} ) ] ' 
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and the covariance matrices are: 

C(2) -
ik -

tj+(i/\k) - tj 

tj+(ivk) - tj 
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The evaluation of one lookback put value requires the evaluation of 
2N· + 1 cumulative multivariate normal functions with an average of 
N /2 variables. They are evaluated in the comparison by the method of 
Somerville (l998a, 1998b). This by itself can be time-consuming. Using 
10,000 directions, a point with N = 2 requires on average 92 millisec
onds to compute and a point with N = 8 requires 1.52 seconds on the 
2.8GHz Dell. This should be compared with about 0.5 milliseconds per 
point for the Taylor expansions. Figure 7 shows comparisons of the 
values obtained from the Taylor expansion with the CKR results for a 
67 month lookback put 5 months after issue. No comparisons were 
done for any fixed fund percentages other than 0%, as the CKR func
tion doesn't apply to this case. The Taylor expansion agrees well with 
the exact solution, and the disagreements are primarily due to random 
errors in the evaluation of the multivariate normal functions. These 
errors could be reduced if more directions were used in the CKR eval
uation, but this would increase the time for a method that is already 
much slower than the Taylor expansion. 

Next, we use the CKR formula to evaluate a complete ratchet GMDB. 
In the case of the Taylor expansion, the coefficients could be weighted 
and summed prior to evaluation, which results in a substantial time sav
ings. There is no comparable procedure for the CKR formula. The value 
of the lookback put must be found every month and then multiplied by 
the probabilities of death and summed. A comparison of results for a 
55 year old one month after issue is found in Figure 8. The agreement 
in values is better than for the individual puts because the random er
rors in each put value have a tendency to cancel out. The evaluation 
time, however, has grown enormously. The average time to compute 
one point is 54.9 seconds, compared with 0.582 milliseconds for the 
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