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Optimal Dividend Strategies: Some Economic 
Interpretations for the Constant Barrier Case 

Maite Marmol, * M. Merce Claramunt, t and Antonio Alegre:f 

Abstract§ 

We consider the surplus process of a non-life insurance portfolio with a 
dividend component represented by a constant dividend barrier strategy. The 
optimal dividend barrier is known when individual claim amounts follow an 
exponential distribution. This result for the optimal dividend barrier is used 
to develop combinations of the levels of the insurer's initial surplus and of the 
barrier which, under certain economic and financial criteria, can be regarded 
as optimal. 
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Introduction 

In the classical compound Poisson model of risk theory, an insur
ance company's surplus can increase without bounds. This is unreal
istic, because the company could reinvest its excess surplus in search 
of even bigger returns or could simply pay them out as dividends to 
its shareholders. Thus, to make the classic model more realistic, we 
should include dividend payments. 

The question of how much and when to make dividend payments 
first was studied by De Finneti (1957). He found that the optimal strat
egy to maximize the expected sum of the discounted dividends must be 
a barrier strategy, and he showed how the optimal level of the barrier 
can be determined. Blihlmann (1970, p. 164) proved that the introduc
tion of a constant barrier in the classical model leads to certain ruin. 

The problem of finding the optimal dividend-payment strategy as
suming a constant barrier was discussed extensively by several other 
authors. Gerber (1972, 1979) and Blihlmann (1970) analyze the prob
lem in the context of the classical risk model. The random variable 
representing the present value of dividends also has been analyzed in 
the discrete case: Claramunt, Marmol, and Alegre (2003) obtain a gen
eral solution of its expectation, and Dickson and Waters (2004) obtain 
higher order moments in the discrete and continuous case. Recently, 
authors have modified the risk process by considering a Brownian mo
tion risk model; see, for example, Asmussen and Taskar (1997), Paulsen 
and Gjessing (1997) who include a stochastic interest on reserves, and 
Gerber and Shiu (2004) who obtain the moments of the present value 
of dividends. Other forms of the barriers have been conSidered, for ex
ample a linear barrier was studied by Gerber (1981) and Siegl and Tichy 
(1999) while a non-linear dividend barrier was first introduced by Ale
gre, Claramunt, and Marmol (2001) and generalized by Albrecher and 
Kainhofer (2002). 

In this paper we study optimal dividend strategies for a non-life in
surance portfolio under a compound Poisson model with a constant 
barrier. We provide combinations of the levels of the initial surplus 
and levels of dividend barriers that, under certain economic and finan
cial criteria, can be regarded as optimal. For simplicity we assume the 
individual claim amounts are independent and identically distributed 
exponential variables, which makes our analysis easier. The analysis of 
optimal dividend strategies with other individual claim amount distri
butions can be performed with simulations or discrete risk models. 

The paper is organized as follows: Section 2 gives the main char
acteristics of the model with a constant barrier. Section 3 contains an 



Marmol et al. Optimal Dividend Strategies 217 

analysis of the function of the expected present value of dividends, and 
in Section 4 the optimal combinations are proposed. 

2 The Constant Barrier Model 

2.1 The Modified Surplus Process 

In the classical model of risk theory, the surplus at a given time t, 
U(t), is defined as 

U (t) = u + ct - S (t) 

for t > 0 with U (0) = u being the insurer's initial surplus. The term 
S (t) represents the aggregate claims in (0, t) modeled as a time ho
mogeneous compound Poisson process with rate ,\ and J1 the expected 
claim amount. The rate at which the premiums are received is c = 

,\J1 (1 + e), where e > 0 is the security loading. 
The imposition of a constant dividend barrier b ~ u modifies the 

behavior of the surplus process because, when the surplus reaches the 
level b, all premium incomes are paid out as dividends to shareholders, 
and the modified surplus process remains at level b until the occurrence 
of the next claim. The modified surplus process, OCt) is given by 

a (t) = U(t) - D (t) (1) 

where D (t) is the aggregate of dividend payments in the interval (0, t], 
Le., for infinitesimally small dt, 

D (t + dt) - D (t) = { ~dt ifU(t)<b 

ifU(t)~b. 
(2) 

Ruin is said to occur at time T if a (T) < 0 and a (t) ~ 0 for t < T with 
the understanding that T = 00 if a (t) ~ 0 for all t > O. 

Figure 1 shows a typical sample path of U (t), a (t), and D (t) where 
Ti for i = 1,2, ... denotes the time of occurrence of the ith claim. Notice 
that whenever the surplus U (t) reaches b, dividends are paid out to the 
shareholders with intensity c, and the surplus remains on the barrier 
until the next claim occurs. 

Let W (u, b) denote the expected present value of the discounted 
aggregate dividend payments up to the moment of ruin T, Le., 

W(u, b) = E U: e-OtdD(t)] 
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Modified surplus process, il(l) 

= Aggregate dividend process, D(I) 

- Constant barrier, IJ 

T, 

Time 

Figure 1: Typical Sample Path of U (t), a (t), and D (t) 

where <5 ~ 0 is the force ofinterest.l Buhlmann (1970, p. 173), assuming 
an exponential distribution for the individual claim amount, obtained 
an expression for W (u, b), Without loss of generality, we assume the 
claim size unit is scaled so that the expected claim size is 1. Buhlmann's 
result can be rewritten as, 

(3) 

1 Note that the surplus process is not discounted in order to obtain a tractable model. 
This is consistent with an economy where the rate of inflation is equal to the rate of 
return on investment income. 
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where rl > r2 are the roots of 

A (1 + 8) r2 - (6 - A8) r - 6 = O. 

It is easy to demonstrate rl > 0 and r2 < 0 and that the following 
relationships hold between the two roots: 

1. (6 - A8) > 0 implies -1 < r2 < 0 < rl < 00 and Ir21 < Irll; 

2. (6 - A8) = 0 implies -1 < r2 < 0 < rl < 1 and Ir21 = Irll; and 

3. (6 - A8) < 0 implies -1 < r2 < 0 < rl < 1 and Ir21 > Irll. 

Note that (A8 - 6) is the difference between the income rate from 
the security loading and the force of interest used to discount the div
idends. 

2.2 Some Properties of W(u, b) 

By considering the other parameters (A, 8, 6, u) as fixed, let us find 
the b* that maximizes W(u, b). Btihlmann (1970) minimized the de
nominator of equation (3) to give 

b* = _I_In (rf(l + r1)) 
r2 - rl r} (1 + r2) 

- 00 < b* < 00. (4) 

We can observe that b* doesn't depend on u, so b* can be less than 
u and even be negative. When u exceeds b*, the optimal level of the 
barrier is b = u (Dickson and Waters, 2004, p. 63). 

If u ~ b*, then b* is a maximum point of W (u, b). Interestingly, as 
b increases to b* the time that it takes for the surplus to reach the bar
rier and dividend payments to begin is lengthened; however, W (u, b) 
increases because the time to ruin is increased thereby allowing divi
dend payments to be made over a longer period. When b gets beyond 
b*, the dividend payments made in the distant future have less impact 
on the expected present value of the dividends due to the presence of 
the discount rate. 

It is easy to see that 

When 0 ~ u ~ b, let u * denote the optimum value of the initial surplus 
that maximizes the expected present value of the dividend payments 
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for a given barrier value h, i.e., is u * = h. Thus we must explore the 
function W (u * , h) = W (h, h). For convenience we use the notation 
W(k) = W (k, k), i.e., 

Note that 

while 

1+r1 e(r1+r2)k (rl - r2)2 
Wi (k) = 1+r2 > 0, 

( _ 1 + rl rler1k + r 2er2k ) 2 
1 + r2 

Le., W (k) is monotonically increasing. The upper bound of W (k) is 
easily seen to be W (00) = l/rl. 

Next we will establish that W(k) has a point of inflection. Let 

h(k) 1 + rl r1k r2k = ---e +e 
1 + r2 

so that W (k) = h (k)/h' (k). Differentiating W (k) twice with respect 
to k and equating this derivative to zero gives 

[hi (k)]2 h" (k) + h (k) hi (k) h'" (k) - 2h (k) [h" (k)]2 = O. (5) 

The solution to equation (5) is k = ki where 

(6) 

We see that k = ki is a point of inflection because W" (ki) = 0 and 
W'" (kd "* O. Thus we have just established the following proposition: 

Proposition 1. For k > 0, 

1. W (k) is positive monotonically increasing; 

2. limk_oo W (k) = 1 /rl; and 

3. W (k) has a point of inflection at k i given in equation (6). 
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From equations (6) and (4), 

k i - b * = _1_ (In -r2) , 
r2 - rl Yl 

(7) 

which leads to the following results: 

1. (8 - Ae) > 0 implies b* < ki < 0; 

2. (8 - Ae) = 0 implies b* = ki < 0; and 

3. (8 - Ae) < 0 implies -00 < ki < 00 and ki < b*. 

3 Criteria for Choosing k 

We now investigate three criteria for choosing k based on: (i) per
centiles, (ii) the maximum marginal increase, and (iii) recouping the 
initial investment. 

The Percentile Criterion 

From Proposition 1, there exists no value of k that maximizes W (k). 
As W (k) has an upper limit, I/Yl, which is independent of the initial 
surplus level and the barrier level, an obvious question is what is the 
value of k that allows us to achieve a specified percentage (100()(%) of 
this limit? Let kex denote this value, Le., kex satisfies W (k ex ) = ()(/rl. It 
can be proved that 

k - _1_ In ( (1 - ()() x rl + rl ) 
ex - r2 - Yl Yl - ()(r2 1 + r2 . 

(8) 

In Table 1 we provide some numerical results: 

The Maximum Marginal Increase Criterion 

Proposition 1 states that the greater the value of the initial reserve 
and barrier k, the greater the expected present value of the dividends. 
It is costly, however, for companies to keep increasing the level of k 
because of the opportunity cost of tying up the company's capital in its 
surplus. So the question then becomes how large should k be? 

Let M (k) denote the marginal rate of increase in the expected present 
value of the aggregate dividends paid given a barrier at k and initial re
serve k, Le., M(k) = W' (k). This criteria states that investors set k to 
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Table 1 
k()( for Various Values of 0< 

(8 = 0.03, " = 1, 8 = 0.5) 
0< kex W (k()() 

0.1 0.262 1.839 
0.2 1.343 3.677 
0.3 2.258 5.516 
0.4 3.101 7.354 
0.5 3.930 9.193 
0.6 4.799 11.032 
0.7 5.778 12.870 
0.8 7.002 14.709 
0.9 8.882 16.547 

maximize M(k), i.e., k is such that M' (k) = 0 and M" (k) < O. In other 
words the criteria to set k = ki' the point of inflexion of the function 
W (k), with w'" (kd < O. The resulting expression for W is: 

1 ( 1 1 ) W(kd = - - + - . 
2 rl r2 

(9) 

In Section 2.2 we obtained the values of ki and b* according to 
(8 - "8). If ki < b* , for ki' b* > 0, on the combination (ki, kd we 
can raise the level of the barrier (which involves no extra effort in the 
initial investment), converting it into (ki, b*). We attain a combination 
that can be regard as optimal for the decision maker, with 

1 

W (ki' b*) = rl + r2 [ (r2)r~ ] "2-"1 

rl-r2 (-rd 2 

If ki 2 b* we are in a situation in which ki' b* < 0, and therefore 
the optimal combination as a function of the values of ki and b* is 
meaningless. We then should focus on the value of k()( , which, fixing 
the percentage that we consider acceptable to obtain on the maximum 
of the expected present value of the dividends, 0<, leads us to choose 
u = b = k()( as the optimal combination. 
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Recoup the Initial Investment Criterion 

Another way to choose k is for investors to require total recovery of 
their initial investment of k through future expected dividends, Le., 

W (k) ~ k. (10) 

Let ke satisfy the equality W (ke) = ke. We call ke the efficiency thresh
old when the dividends are discounted at a rate 8. At ke the insurer's 
rate of return, which we shall represent as e, coincides with the rate 8. 
It is easy to prove the existence of a unique efficiency threshold, ke, and 
that k > W (k) for k > ke while k < W (k) for k < k e. It follows that 
the insurer's rate of return is less than 8 for k > ke while it is greater 
than 8 for k < ke . Thus the investors will demand that the insurer set 
k < k e . 

Given that k < ke, it is natural to ask whether there exists a k that 
maximizes W (k) - k. We refer to such a k as k*, Le., 

k* = sup {W (k) - k} 
O"k"k, 

It is easy to prove that k* = b*. Thus k* > 0 only when (8 - i\.e) < O. 
Under this condition, we therefore can affirm that the optimal value of 
the expected present value of the dividends according to this criteria is 
obtained for k = k* = b* giving 

W (k*) = Yl + Y2 = i\.8 - 1. 
YIY2 8 

For the case in which (8 - i\.e) ~ 0 leads to k* < 0 and ki > k*, the 
maximum difference for k ~ 0 will be with a zero initial investment, 
which is meaningless from an economic standpoint. 

Table 2 provides some numerical results as examples of the maxi
mum marginal increase and the recouping of the initial investment cri
teria presented above. Using i\. = 1, 8 = 0.03 and 8 = 0.05, and e = 0.2 
and 8 = 0.5, we indicate the resulting values of the roots, b*, the in
flection point ki' the efficiency threshold ke and the expected present 
value of dividends for the combinations of u and b. 

For example, assuming 8 = 0.03 and e = 0.2, under the maximum 
marginal increase criteria, we first choose u = b = ki = 1.417, which 
gives W (1.417) = 2.833. Then, without any extra increase in the initial 
investment, we can raise the level of the barrier in order to increase the 
expected present value of dividends, W (1.417, 3.923) = 3.088. While 
under the recouping of the initial investment criteria, we have to choose 
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Table 2 
An Example Using the Maximum Marginal 
Increase and the Recouping of the Initial 

Investment Criteria with A = 1 
6 = 0.03 8 = 0.05 

e = 0.2 e = 0.5 e = 0.2 e = 0.5 
rl 0.102 0.054 0.151 0.086 
rz -0.244 -0.368 -0.276 -0.386 

b* = k* 3.923 7.844 1.740 5.135 
ki 1.417 3.316 0.327 1.963 

W(k{) 2.833 7.833 1.500 4.500 
W (ki, b*) 3.088 10.669 1.567 5.595 

ke 8.752 18.350 5.677 11.429 
W (k*) 5.667 15.667 3.000 9.000 

u = b* = k* = 3.923 giving the expected present value of dividends as 
W (3.923) = 5.667. 

4 Summary 

We analyzed the expected present value of dividend payments un
der a constant dividend barrier, when the aggregate claim amount is as
sumed to follow a compound Poisson process and the individual claim 
amount has an exponential distribution. Under these assumptions, we 
provide some economic/financial criteria for deciding the optimal com
bination of the initial surplus and the level of the barrier. 

An area for further research is to consider other distributions for the 
individual claim amount, using simulations or discrete approximations. 
Further research could be done with other models of the risk process 
such as the Erlang process or Brownian motion (Gerber and Shiu, 2004). 
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