
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Journal of Actuarial Practice 1993-2006 Finance Department

2005

Journal of Actuarial Practice, Volume 12, 2005
Colin Ramsay , Editor
University of Nebraska - Lincoln, cramsay@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/joap

Part of the Accounting Commons, Business Administration, Management, and Operations
Commons, Corporate Finance Commons, Finance and Financial Management Commons, Insurance
Commons, and the Management Sciences and Quantitative Methods Commons

This Article is brought to you for free and open access by the Finance Department at DigitalCommons@University of Nebraska - Lincoln. It has been
accepted for inclusion in Journal of Actuarial Practice 1993-2006 by an authorized administrator of DigitalCommons@University of Nebraska -
Lincoln.

Ramsay, Colin , Editor, "Journal of Actuarial Practice, Volume 12, 2005" (2005). Journal of Actuarial Practice 1993-2006. 12.
http://digitalcommons.unl.edu/joap/12

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fjoap%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/joap?utm_source=digitalcommons.unl.edu%2Fjoap%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/financedept?utm_source=digitalcommons.unl.edu%2Fjoap%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/joap?utm_source=digitalcommons.unl.edu%2Fjoap%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/625?utm_source=digitalcommons.unl.edu%2Fjoap%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=digitalcommons.unl.edu%2Fjoap%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=digitalcommons.unl.edu%2Fjoap%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/629?utm_source=digitalcommons.unl.edu%2Fjoap%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=digitalcommons.unl.edu%2Fjoap%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/645?utm_source=digitalcommons.unl.edu%2Fjoap%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/645?utm_source=digitalcommons.unl.edu%2Fjoap%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=digitalcommons.unl.edu%2Fjoap%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/joap/12?utm_source=digitalcommons.unl.edu%2Fjoap%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Actuarial Practice Volume 12, 2005 

ARTICLES 

Risk-Based Regulatory Capital for Insurers: A Case Study 
Christian Sutherland-Wong and Michael Sherris ........................................ 5 

A New Hybrid Defined Benefit Plan Design 
Wayne E. Dydo ........................................................................................... 47 

A Primer on Duration, Convexity, and Immunization 
Leslaw Gajek, KrzysztoJOstaszewski, and Hans-Joachim Zwiesler ........ 59 

Modeling Clusters of Extreme Losses 
Beatriz Vaz de Melo Mendes and Juliana Sa Freire de Lima .................. 83 

Modeling Insurance Loss Data: The Log-EIG Distribution 
Uditha Balasooriya, Chan Kee Low, and Adrian Y W Wong ................ 101 

A Modern Approach to Modeling Insurances on Two Lives 
Maria Bilikova and Graham Luffrum ..................................................... . 12 7 

On the Pricing of Top and Drop Excess of Loss Covers 
Jean-Fram;ois Walhin and Michel Denuit .............................................. 137 

An Application of Control Theory to the 
Individual Aggregate Cost Method 
Alexandros A. Zimbidis and Steven Haberman .......................................... 159 

.Reputation Pricing: 
A Model for Valuing Future Life Insurance Policies 
Rami YoseJ ...................................................................................................... 181 

Ultimate Ruin Probability for a Time-Series Risk 
Model with Dependent Classes of Insurance Business 
Lai Mei Wan, Kam Chuen Yuen, and Wai Keung Li ................................ 193 

Optimal Dividend Strategies: Some Economic 
Interpretations for the Constant Barrier Case 

. Maite Marmol, M Merce Claramunt, and Antonio Alegre ...................... 215 



Journal of Actuarial Practice 

EDITORIAL POLICY 

The aim of this international journal is to publish articles pertaining to the "art" and/or 
"science" involved in contemporary actuarial practice. 

The Journal welcomes articles providing new ideas, strategies, or techniques (or articles 
improving existing ones) that can be used by practicing actuaries. One of the goals of the 
Journal of Actuarial Practice is to improve communication between the practicing and 
academic actuarial communities. In addition, the Journal provides a forum for the 
presentation and discussion of ideas, issues (controversial or otherwise), and methods of 
interest to actuaries. 

The Journal publishes articles in a wide variety of formats, including technical papers, 
commentaries/opinions, discussions, essays, book reviews, and letters. The technical 
papers published in the Journal are neither abstract nor esoteric; they are practical and 
readable. Topics suitable for this journal include the following: 

AIDS 
annuity products 
asset-liability matching 
cash-flow testing 
casualty ratemaking 
credibility theory 
credit insurance 
disability insurance 
expense analysis 
experience studies 
FASB issues 

REVIEW PROCESS 

financial reporting 
group insurance 
health insurance 
individual risk taking 
insurance regulations 
international issues 
investments 
liability insurance 
loss reserves 
marketing 
pensions 

pricing issues 
product development 
reinsurance 
reserving issues 
risk-based capital 
risk theory 
social insurance 
solvency issues 
taxation 
valuation issues 
workers' compensation 

A paper submitted to the Journal first is screened for suitability. If it is deemed suitable, 
copies are sent to several independent referees. The name of the author(s) of the paper 
under consideration is usually anonymous to the referees, and the identities of referees 
are never revealed to the author(s). 

The paper is reviewed for content and clarity of exposition. Papers do not have to contain 
original ideas to be acceptable. On the basis of the referee reports, the editor makes one 
of the following decisions: (1) accept subject to minor revisions, (2) accept subject to 
major revisions, or (3) reject. 

The editor sends the author(s) of the decision and along with copies of the referees' 
reports. The referee process is expected to take three to four months (depending on the 
length of the paper). 

See inside back cover for instructions to authors. 



Robert Brown 
University of Waterloo 

Cecil Bykerk 
Mutual of Omaha 

Ruy Cardoso 
Actuarial Frameworks 

Samuel Cox 
Georgia State University 

David Cummins 
University of Pennsylvania 

Robert Finger 
Retired 

Charles Fuhrer 
The Segal Company 

Farrokh Guiahi 
Hofstra University 

Steven Haberman 
City University 

Merlin Jetton 
Retired 

Eric Klieber 
Buck Consultants 

Edward Mailander 
Wellpoint Health Networks 

Charles McClenahan 
Mercer Oliver Wyman 

Colin Ramsay 
Managing Editor 

EDITOR 

Colin Ramsay 
University of Nebraska 

ASSOCIATE EDITORS 

Robert Myers 
Temple University 

Norman Nodulman 
Retired 

Franc;;ois Outreville 
United Nations 

Timothy Pfeifer 
Milliman USA 

Esther Portnoy 
University of Illinois 

Robert Reitano 
John Hancock Financial Services 

Alice Rosenblatt 
Wellpoint Health Networks 

Arnold Shapiro 
Penn State University 

Elias Shiu 
University of Iowa 

Michael Sze 
Sze Associates Ltd. 

Joseph Tan 
National Actuarial Network 

Ronnie Tan 
Great Eastern Life 

Richard Wendt 
Tower Perrin 

© Copyright April 2005 
Absalom Press, Inc. 

Margo Young 
Technical Editor 

P.O. Box 22098, Lincoln, NE 68542-2098, USA. 

Journal of Actuarial Practice ISSN 1064-6647 





journal of Actuarial Practice Vol. 12, 2005 

Risk-Based Regulatory Capital for Insurers: A Case 
Study 

Christian Sutherland-Wong* and Michael Sherris t 

Abstract* 

We study the issues in determining regulatory capital requirements using 
advanced modeling by assessing and comparing capital requirements under 
the two alternative approaches. A dynamic financial analysis (DFA) model is 
used for this case study. These issues are of current international interest as 
regulators, insurers, and actuaries face the significant issues involved with the 
introduction of risk-based capital for insurers. 

Key words and phrases: insurer solvency, standardized solvency assessment, 
advanced modeling, dynamic financial analysis 
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Introduction 

1.1 Background 

Capital is defined as the excess of the value of an insurer's assets 
over the value of its liabilities. In practice, the value of the assets and 
liabilities is reported using statutory and regulatory requirements. Reg­
ulatory requirements are used for solvency assessment. Methods of de­
termining economic capital have become the focus of insurers in recent 
years. Regulatory capital requirements for banks and insurers increas­
ingly are becoming risk-based to reflect the economic impact of balance 
sheet risks. Giese (2003) discusses the concept of economic capital 
along with the recent developments in economic capital models. 

However determined, capital provides a buffer that allows insurers 
to pay claims even when losses exceed expectations or asset returns fall 
below expectations. As described by the IAA (International Actuarial 
Association) Insurer Solvency Assessment Working Party (2004) a level 
of capital provides, among other things, a "rainy day fund, so when bad 
things happen, there is money to cover it." 

Cummins (1988) and Butsic (1994) discuss the need for regulation in 
insurance. Butsic (1994) argues that if markets were perfectly efficient, 
capital regulation would not be necessary. Insurers could determine 
their own level of capital, and market forces would price premiums 
depending upon the riskiness of an insurer becoming insolvent. Fully 
informed consumers would diversify their insurance policies across in­
surers taking into account the risk of insurer default. Taylor (1995) and 
Sherris (2003) use economy wide models to explore equilibrium insur­
ance pricing and capitalization. Sherris (2003) shows that in a complete 
and frictionless market model the level of capital will be reflected in the 
market price of premiums for insurance and there is no unique optimal 
level of capital for an insurer. 

In reality the complete and perfect markets assumptions do not 
hold. There is information asymmetry between consumers and insur­
ers. As the costs of insurer insolvency can be significant, insurers do 
not report their level of default risk even though this is often assessed 
by rating agencies. For this form of market failure, as described by 
Frank and Bernanke (2001, pp. 297-312), an efficient way for insurers 
to demonstrate financial soundness is to meet regulated levels of capital 
prescribed. This regulatory capital serves as protection for consumers 
against the adverse effects of insurer insolvency. 

Another factor that is important in practice is the existence of gov­
ernment or industry-based guarantee funds that compensate policy-
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holders in the event of insurer insolvency. There is no formal arrange­
ment of guarantee of insurers in Australia. These guarantee funds are 
taken into account in considering the risk-based capital that insurers 
hold where they exist. They also may generate moral hazard if the cost 
of such guarantee funds is not reflected in the premiums charged to 
insurers. This is an area that is not addressed in detail in this paper. 
If they were to be included in the model, then the capital requirements 
would be the requirements after allowing for the government or indus­
try support. 

The IAA Insurer Solvency Assessment Working Party has developed 
a global framework for risk-based capital for insurers. In their 2004 
working paper entitled "A Global Framework for Insurer Solvency As­
sessment," the working party advocates two methodologies for regu­
latory capital determination: the standard approach and the advanced 
approach. The standard approach applies industry wide risk factor 
charges to the calculation of the insurer~s capital reqUirement, while 
the advanced approach allows insurers to use a dynamic financial anal­
ysis (DFA) model to calculate their capital requirement, better reflecting 
the insurer's risks. 

Banks have been increasingly moving to the use of internal models 
for capital requirements under Basel. l Insurers in a number of coun­
tries will be faced with similar requirements as regulators adopt a more 
risk-based capital approach to regulation. Against this background, the 
issues in implementing risk-based capital are of significant interest to 
insurers and actuaries at an international level. 

1.2 Capital Regulation in Australia 

The Australian Prudential Regulation Authority (APRA) is the pri­
mary capital regulator of non-life (property and casualty) insurers in 
Australia. APRA reviewed its approach to regulating non-life insurance 
companies and recently released a new set of prudential standards. 
These standards contain a new methodology for determining a non-life 
insurer's minimum capital requirement. The new capital requirements 
more closely match regulatory capital to an insurer's risk profile, oth­
erwise known as risk-based capital. 2 

1 See Basel Committee on Banking Supervision papers "Operational Risk" (January 
2001), "Overview of the New Basel Capital Accord" (January 2001), and "Working Paper 
on the Regulatory Treatment of Operational Risk" (September 2001). Full details are 
available from the Bank for International Settlements web site <http://bi 5.0 rg>. 

2For further information on the background to the APRA general insurance reform, 
refer to Gray (1999 and 2001) and lAA Insurer Solvency Assessment Working Party 
(2004). 
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Non-life insurers are able to calculate the minimum capital required 
in one of two ways: 

An insurer may choose one of two methods for determin­
ing its minimum capital requirement (MCR). Insurers with 
sufficient resources are encouraged to develop an in-house 
capital measurement model to calculate the MCR (this is re­
ferred to as the internal model based method (IMB)). Use of 
this method, however, will be conditional on APRA's and the 
Treasurer's prior approval and will require insurers to sat­
isfy a range of qualitative and quantitative criteria. Insurers 
that do not use the 1MB method must use the prescribed 
method.3 

APRA's prescribed method is in line with the standard approach of 
the IAA Insurer Solvency Assessment Working Party's, while the 1MB 
method is in line with the advanced approach. The solvency benchmark 
for the new APRA standards is a maximum probability of insolvency in 
a one year time horizon of 0.5%. 

The IAA Insurer Solvency Assessment Working Party considers that 
the prescribed method should produce a more conservative (higher) 
value for the minimum capital requirement, as it should determine a 
minimum level applicable to all insurers licensed to conduct business. 
The 1MB method should produce a lower minimum capital requirement 
but would only be available as a capital calculation methodology to 
larger, more technically able insurers with effective risk management 
programs. 

1.3 The Purpose of this Study 

This paper presents the results of a case study of the assessment 
of regulatory capital for non-life insurers in Australia. The case study 
highlights the issues involved in determining the capital requirements 
advocated by the IAA Insurer Solvency Assessment Working Party and 
demonstrates the challenges of the internal model based approach for 
insurers. It also highlights shortcomings of the prescribed method. The 
comparative levels of capital required under the prescribed method and 
the 1MB method are important for insurers considering the use of in­
ternal model-based methods. Regulators adopt an approach such that 
insurers using either method should meet minimum levels of capital 

3 APRA's Prudential Standard GPS llO. 
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that ensure a consistent probability of insolvency across different in­
surers. This may have shortcomings when the probability of ruin over 
a single year horizon is used as a risk measure. In practice most insur­
ers that develop internal models will consider risk measures that take 
into account the ruin probability and the severity of ruin. It is also im­
portant to consider longer horizons than the one year adopted by the 
regulators and used in this study. 

Our study aims to compare the MCRs under the two methodolo­
gies.4 In order to do this we use techniques that insurers would use 
in practice. The approach used is as follows. We develop a model of 
a typical, large non-life insurer with five business lines: (i) domestic 
motor, (ii) household, (iii) fire and industry-specific risk (ISR) , (iv) pub­
lic liability, and (v) compulsory third party (CTP) insurance. A dynamic 
financial analysis (DFA) model is used for the 1MB method capital re­
quirement, and this is compared to capital levels calculated under the 
prescribed method. The DFAmodel is used to allocate capital to each 
of the risks considered using a method adopted by practitioners. The 
model insurer's business mix, asset mix and business size are changed 
to examine the effect on capital requirements. 

The main results of the analysis are as follows: Based on the liability 
volatility assumptions developed by leading industry consultants, the 
1MB method was found to produce a higher MCR than the prescribed 
method. From the insurer's perspective, this indicates a possible in­
centive to use the prescribed method in practice. It was also found 
that the prescribed method capital requirements were inadequate to 
ensure a ruin probability in one year of less than 0.5% for the entire 
general insurance industry. This illustrates the difficulty in developing 
prescribed method requirements that reflect insurer differences. 

Finally, the liability volatility assumptions have a Significant impact 
on the results produced by the internal model. There was no consensus 
on insurance liability volatility assumptions suitable for capital require­
ments for the Australian business. Consulting firms had developed and 
published estimates using their own experience and knowledge. A rig­
orous study is required to quantify these assumptions more precisely. 
This is an important area for future research. The assumptions adopted 
in this study and examined for sensitivity, however, are the best esti­
mates available. 

From an international perspective this study identifies challenges 
for risk-based capital requirements in insurance. Prescribed methods, 
although easier to apply, are more difficult to develop, especially if con-

4Readers are referred to Collings (2001) and IAA Insurer Solvency Working Party 
(2004) for prior work in this area. 
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sis tent treatment of different insurers is important. On the other hand, 
implementing internal model-based capital requirements requires that 
the issue of the calibration of models and consistency in assumptions 
used for different classes of business be properly addressed. An inter­
nal model can deal with the many interactions between the assets and 
liabilities and many of the most important risks, but this will only be 
the case if the models are based on a sound estimation of risks from 
actual data. This is an area that requires attention before regulators 
can use this approach with the confidence that is necessary for such an 
important aspect of insurer risk management. 

2 The Prophet DFA Model 

This study uses a DFA model to determine the capital requirement 
under the 1MB method. The DFA model used was developed using 
Prophet, a DFA software package produced by Trowbridge Consulting. 
The Prophet DFA model is used by several large non-life insurers in Aus­
tralia for internal management purposes. Other DFA software packages 
commonly used in the Australian non-life insurance industry include 
Igloo (developed by The Quantium Group), Moses (developed by Classic 
Solutions) and TASPC (developed by Tillinghast Towers-Perrin Consult­
ing). Although these various software packages have different features, 
we do not expect significant differences in the results from using a dif­
ferent DFA software package based on the simplified assumptions used 
in the model. 

The Prophet DFA model calibrated for this study uses typical as­
sumptions for this purpose. It was not developed to meet the require­
ments for approval by APRA and the Treasurer for use in the 1MB method. 
The Prophet model is broadly representative of current industry best 
practice in general insurance DFA modeling. 

2.1 Description 

The Prophet DFA model consists of an economic model and an insur­
ance model. The key interaction between the two models is inflation, 
which affects both the asset returns in the economic model and the 
claims and expenses in the insurance model. We describe the main fea­
tures of the DFA model for completeness. Other models will differ in 
details but are broadly similar to the model described here. 
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2.1.1 The Economic Model 

Prophet uses The Smith Model® (TSM®) to model the economic en­
vironment. TSM® is a proprietary economic model that forecasts a 
range of economic variables including bond yields, equity returns, prop­
erty returns, inflation and the exchange rate. The key features of the 
model are that TSM® ensures that all initial prices and projections are 
arbitrage-free and that markets are efficient. Historical data are used to 
calibrate TSM® to derive the necessary parameters for the projections, 
including the risk premium and covariance matrix parameters that en­
sure efficiency in markets.5 We should emphasize that we are not ad­
vocating the use of any particular model or software. We use typical 
software and assumptions as would be used by an insurer in practice in 
order to assess the impact of capital requirements and to draw conclu­
sions about the alternate approaches. The economic model used may 
impact the results through the assumptions made about inflation and 
how this is incorporated into the liability model. 

2.1.2 The Insurance Model 

The insurance model is dis aggregated into separate models for each 
of the insurer's business lines' liabilities. Assets, liabilities not relating 
to a specific line, and interactions between business lines are modeled 
at the insurer entity level. 

Opening Financial Position: The opening financial position for the in­
surer is an input and covers the details of the insurer's liabilities 
and assets. From this opening position projections are simulated 
for the insurer's asset returns, claims for each business line, ex­
penses, and reinsurance recoveries. 

Asset Returns: Asset returns are projected based on the assumed asset 
allocation and the simulations from the economic model. 

Claims: There are four stochastic claims processes in the model: run­
off claims (outstanding claims); new attritionallosses; new large 
claims; and new catastrophe claims. Attritional and large claims 
are modeled separately for each business line, while catastrophe 
claims are modeled by the catastrophe event. 

• Run-off Claims: The opening value for the outstanding claims 
reserve equals the expected discounted value of the inflated 

5For further details on The Smith Model· visit <http://thesmi thmode 1 . com>. 
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run-off claims. The expected run-off claims are input into 
the model in the form of a run-off triangle. For each accident 
year the run-off claims are assumed to follow a lognormal 
distribution with a variance parameter for each business line 
and each accident year as input into the model. 
Run-off patterns used in DFA model case study also are avail­
able from the authors. These were developed from assumed 
industry run-off patterns. A summary of the key factors is 
given in Table 1. 

Table 1 
Cumulative Payment Development 

Patterns by Business Line (Uninflated) 
Business Line 

Period Motor Home F&ISR Pub. Liab. CTP 
1 81% 86% 20% 11% 5% 
2 100% 98% 90% 23% 11% 
3 100% 99% 95% 37% 24% 
4 100% 99% 98% 54% 41% 
5 100% 100% 99% 69% 59% 
6 100% 100% 100% 81% 73% 
7 100% 100% 100% 88% 82% 
8 100% 100% 100% 92% 88% 
9 100% 100% 100% 95% 93% 
10 100% 100% 100% 97% 96% 
11 100% 100% 100% 98% 98% 
12 100% 100% 100% 99% 99% 
13 100% 100% 100% 99% 99% 
14 100% 100% 100% 99% 100% 
15 100% 100% 100% 100% 100% 
Notes: Period = Development Period. F&[SR = Fire & [SR. 
Pub. Liab. = Public Liability . 

• New Attritional Losses: Ultimate attritionallosses from new 
claims are assumed to follow a lognormal distribution. with a 
specified payment pattern. Inflation and superimposed infla-
tion also are included. Correlations between business lines 
are modeled by a specified correlation matrix that is put into 



Sutherland-Wong and Sherris: Risk-Based Regulatory Capital 13 

the model. Parameters for attritionallosses are given in Table 
2. 

Table 2 
Attritional Claims Parameters 

Lognormal Distribution Claims as a Percentage of GEP 

f.1 (T 
Motor Home F&ISR Pub. Liab. CTP 
-25.4% 

22.4% 

-81.7% 

30.6% 

-70.8% 

26.0% 

-74.8% 

27.0% 

-36.3% 

20.9% 

Notes: F&[SR = Fire & [SR, Pbl. Liab. = Public Liability. 

• New Large Claims: A collective risk model is used to model 
large claims. The frequency of claims is modeled as a Poisson 
process, and a lognormal distribution is used to model large 
claims severity as, for example, in Klugman, Panjer, and Will­
mot (1998, Chapter 4, pp. 291-384). Let Kf be the number of 
large claims for business line i, Xfk the size of the kth large 
claim in business line i, Zf is the aggregate large claims for 
business line i with 

Kf ~ Poisson (Ad 

Xfk ~ Lognormal (f.1i' (Tn 
Kf 

zf = I Xfk 
k=l 

and parameter values given in Table 3. The assumptions 
for the large claims payment pattern, inflation and superim­
posed inflation are identical to those used in the modeling of 
attritional claims. 

• New Catastrophe Claims: Catastrophe claims are modeled 
based upon similar principles to the collective risk model 
with some modifications. Four catastrophe types are mod­
eled separately. For each catastrophe, a Poisson frequency 
process was used to model the number of catastrophe events 
per year, and an empirical distribution was used to model the 
claim severity from the event. For each event, there is a pri­
mary and a secondary severity process modeled, with the pri­
mary process being larger than the secondary process. The 
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Table 3 
Poisson Frequency and Lognormal Severity 

Fire & ISR Public Liability CTP 
A 0.53 1.36 1.42 
/.1 7.72 8.22 8.67 
() 0.46 0.25 0.22 
Notes: F&ISR = Fire & ISR, Pbl. Liab. = Public Liability. 

key difference between the modeling of large and catastro­
phe claims is that catastrophes are considered as events and 
are not specific to any business line. We assume 

KJ ~ Poisson (Aj) 
XJk ~ Empirical Distribution 

YjS I XJk ~ Empirical Distribution. 

Each business line is assigned a fixed percentage of either the 
primary severity or the secondary severity for each catastro­
phe type. 

PCij = pJ X Ai 

SCij = SJ X Bi 

where PCij is the aggregate primary claims for business line 
i from catastrophe type j, 100Ai% of primary severity for 
business line i, pJ is the aggregate primary severity for catas-

KJ 
trophe type j which equals 2:: XJk' SCi} is the aggregate sec­

k=l 
ondary claims for business line i from catastrophe type j, 
100Bi% of secondary severity for business line i, 

KJ 
SJ = I YjS I XJk 

k=l 

is the aggregate secondary severity for catastrophe type j, 
Kf is the number of catastrophe events for catastrophe type 
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j, XJk is the primary severity of the kth event for catastro­

phe type j, and Yj~ I XJk is the secondary severity of the kth 

event for catastrophe type j. Estimated parameters for the 
catastrophe model used in the base case DFA model are as 
follows: 

- for the small catastrophe claims parameters the Poisson 
frequency was i\. = 4.3 and mean and standard deviation 
of the empirical severity of GEP were 0.88% and 0.43%, 
respectively, and 

- the impact to each line of business as percentage of sever­
ity was motor (50%), home (100%), and Fire & ISR (190%). 

The other parameters used are given in Table 4. 

Table 4 
Large Catastrophe Type Claims: 

Parameter Impact on Each Business Line 
Type Motor Home Fire & ISR 
1 % Primary Severity 6 8 
1 % Secondary Severity 64.6 
2 % Primary Severity 9 8 
2 % Secondary Severity 1.6 
3 % Primary Severity 85 84 
3 % Secondary Severity 33.8 

Expenses: There are three categories of expenses in the model: acquisi­
tion expense; commission; and claims handling expense. Acquisi­
tion expense and commission are expressed as a fixed percentage 
of premiums. Claims handling expense is a fixed percentage of 
claims. Expenses vary across business lines. 

Reinsurance: The model allows for individual excess of loss (XoL) rein­
surance to cover large claims and catastrophe reinsurance to cover 
catastrophes. Proportional reinsurance is not explicitly modeled, 
so in effect attritional claims can be viewed to be net of propor­
tional cover. For both reinsurance contracts there is a cost of 
cover, a deductible amount, an upper limit, and a specified num­
ber of reinstatements for the contract. 
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2.2 Key Interactions and Correlations 

An important aspect of DFA modeling is accounting for the many in­
teractions and correlations between variables in the model. It is partic­
ularly important when considering the tail-end of the distribution of in­
surance outcomes given that extreme losses are often driven by several 
variables behaving unfavorably. For example, a one in two hundred year 
loss for an insurer could occur when both a catastrophe event causes 
very high insurance claims and at the same time asset markets under­
perform. In the Prophet DFA model there are four key interactions that 
are modeled: between assets and liabilities; claims and expenses; at­
tritional claims across business lines; and between catastrophe claims 
across business lines. 

Relationship between Assets and Liabilities: Inflation is important in 
the relationship between assets and liabilities. Consumer price 
index (CPI) and average weekly earnings (AWE) inflation are pro­
jected by TSM®. Inflation impacts asset returns, as TSM® assumes 
markets are efficient and incorporates a risk premium and covari­
ance matrix to relate inflation with other asset prices. The impact 
of TSM"'s projected inflation on liabilities is through claims infla­
tion in the insurance model. 

Relationship between Claims and Expenses: Claims handling expen­
ses are modeled as a fixed percentage of claims. Thus, claims 
handling expenses are perfectly correlated with claims incurred. 

Relationship between Attritional Claims across Business Lines: A cor­
relation matrix is specified to model the relationship between the 
attritional claims of different business lines. The parameter val­
ues for the correlation matrix (based on the Tillinghast study) used 
for the DFA study base case are given in Table S. This gives the Pi} 

for the correlation between line of business i and line of business 
j. 

Relationship between Catastrophe Claims across Business Lines: As 
catastrophes are modeled as events that can impact multiple busi­
ness lines, there exists a correlation between catastrophe claims 
across different business lines. For business lines that are im­
pacted by either the primary or secondary severity distribution 
of a given catastrophe event, there will be perfect correlation be­
tween claims from that catastrophe event. In the case where one 
line is impacted by the primary severity distribution and another 
is impacted by the secondary severity distribution, there will be a 
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Table 5 
Parameter Values for the Correlation Matrix 

Motor Home F&ISR Pub. Liab. CTP 
Motor 1.00 0.75 0.40 0.00 0.55 
Home 0.75 1.00 0.35 0.00 0.00 
Fire & ISR 0.40 0.35 1.00 0.00 0.00 
Public Liability 0.00 0.00 0.00 1.00 0.35 
CTP 0.55 0.00 0.00 0.35 1.00 
Notes: F&ISR = Fire & ISR, Pub. Liab. = Public Liability. 

positive correlation (but less than one). Lines that are not affected 
by a given catastrophe event will have zero correlation with lines 
that are affected. Modeling of dependence in insurance is a topic 
of current research. We have not included more detailed models 
of dependence in this case study. We aimed to use current in­
dustry practice which is currently largely based on correlations. 
Even using correlations is problematic because there is no current 
agreement on the assumptions to use. 

3 The Data and DFA Model Assumptions 

The data sources used to create the model insurer came from: 

• APRA's June 2002 Selected Statistics on the General Insurance In­
dustry (APRA statistics); 

• Tillinghast's report "Research and Data Analysis Relevant to the 
Development of Standards and Guidelines on Liability Valuation 
for General Insurance;" 

• Trowbridge's report "APRA Risk Margin Analysis;" 

• Allianz Australia Insurance Limited (Allianz); 

• Promina Insurance Australia Limited (Promina); and 

• Insurance Australia Group Limited (lAG). 

The model insurer created is not representative of any of the insur­
ers that provided data for the study. Full details of the model assump­
tions are provided in Sutherland-Wong (2003) and available from the 
authors on request. Brief details are provided below. 
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The following data items were used for the model insurer: 

Number of Business Lines: Five business lines were included. This 
was considered large enough for an in-depth analysis without un­
duly complicating the analysis. To ensure a broad mix of business 
lines, two of the five were chosen to be short tail (Domestic Motor 
and Household), two long tail (Public Liability and CTP), and one 
of intermediate policy duration (fire and ISR). The largest business 
lines from the APRA statistics (by gross written premium) for each 
of these categories were chosen. 

Size of Business Lines: The business size was set so that the model 
insurer had a 10% market share from the APRA statistics (by gross 
written premiums) in each business line. 

Expected Claims: The expected claims for each line of business were 
set to a level to produce an expected afterctax return of 15% on 
capital based on an assumed capital level of 1.5 times the MCR 
calculated under the prescribed method. The payment pattern, 
premium assumptions, and inflation assumptions were used to 
solve for the expected claims for each business line to meet this 
target. 

Claims Volatility: The volatility assumption used for each business line 
determines the insurance outcome at the 99.5 th percentile and 
therefore directly impacts the MCR. Rather than using individual 
insurer data for these assumptions, we used statistics that were 
more representative of the broader Australian general insurance 
industry. 

The Tillinghast and Trowbridge reports both include estimates of 
the coefficients of variation (CVs) of the insurance liabilities of the 
Australian general insurance industry. The reported CVs in these 
reports were vastly different, however, with the Tillinghast num­
bers being generally twice as large as the Trowbridge numbers. 
Table 6 provides details of CVs used in this DFA case study based 
on the Tillinghast report. 

Thomson (2003) outlines the initial risk margins that insurers 
have adopted since the new standards came in force from July 
2002. He reports that for short tail lines, insurers were generally 
aligned with the lower Trowbridge numbers. For 101l1S tail lines, 
the numbers were consistently lower than the Tillinghast report. 
There was a great deal of variation in the risk margins adopted 
within each business line, however, suggesting that there is no 
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Table 6 
Liability CVs by Business Line 

Type of Liability CV 
Outstanding Claims Premium 

Motor 12.4% 

Home 18.9% 

Fire & ISR 18.9% 

Public Liability 23.7% 

21.7% 

33.1% 

28.4% 

29.6% 

27.2% CTP 21.8% 

real consensus among the industry on the appropriate level for 
risk margins. It generally would be in the interest of insurers to 
adopt lower risk margins in order to report a lower liability value 
and also a lower capital requirement. 

The Tillinghast numbers were used in the analysis, as they rep­
resented a more conservative view of variability in the industry. 
The Trowbridge numbers were used as an alternative scenario in 
the analysis to determine the impact of these assumptions. 

Payment Pattern: The payment pattern data were derived from typical 
insurer data. 

Asset Mix: The asset mix for the model insurer was representative of 
the industry average investment mix. Details on the asset mix 
assumed are given in Table 7 for the base case. 

Table 7 
Asset Mix 

Cash 
Equities 
Fixed Interest 
Index Bonds 
Total 

Proportion 
Invested 

15% 

20% 

55% 

10% 

100% 

Reinsurance: The reinsurance for each business line was based upon 
typical insurer data. For the long tail lines, individual XoL con-
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tracts were designed to cover most of the large claims. For the 
short tail lines (including fire and ISR), catastrophe XoL contracts 
were designed to set the maximum event retention (MER) of the 
insurer to equal $15 million. 

Superimposed Inflation: The external factors that affect the run-off 
claims are inflation and superimposed inflation. The inflation 
level is derived from the economic model, while superimposed 
inflation is modeled as a stochastic two-state process. The super­
imposed inflation process consists of a normal superimposed in­
flation state and a high superimposed inflation state, with a transi­
tion probability matrix determining the movement between these 
two states. The process is described as follows: Let P denote the 
transition probability matrix where Pij is the probability of mov­
ing from state i to state j, IN is the superimposed inflation rate in 
the normal state, IH is the superimposed inflation rate in the high 
state with 

P = (POO POI) 
PIO Pll 

IN ~ U(aN,bN) and IH ~ U(aH,bH). Using typical insurer data, 
the estimated parameter values used in the model are: 

P = (0.9 0.1) 
0.2 0.8 

IN ~ U( -0.02,0.04) and IH ~ U(0.05, 0.15). 

4 Assessment of the DFA model 

The model was designed to broadly represent best practice in apply­
ing DFA models to capital analysis and to be consistent with the way 
that practitioners would model the business lines. The parameters of 
the model were set to capture the features of a typical insurer. The 
model also can be assessed against APRA's Guidance Note GGN 1l0.2, 
which sets out the qualitative and quantitative requirements for an in­
ternal model. The key quantitative risks that an internal model must 
capture, as specified by the Guidance Note, fall under the broad cate­
gories of investment risk, insurance risk, credit risk, and operational 
risk. 
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TSM® is used in Prophet to capture the dynamics of the economic 
market and the subsequent impact on an insurer's investment portfolio. 
While no stochastic asset model currently available is perfect, TSM® is 
representative of best practice in economic forecasting and assessment 
of investment risk. 

The Guidance Note specifies a range of risks relating to the insur­
ance business that need to be included in the model. These risks in­
clude outstanding claims risk, premium risk, loss projection risk, con­
centration risk, and expense risk. Prophet allows for these risks using 
the assumed variability in its three claims processes: attritional, large 
and catastrophe claims. Attritional claims are assumed to follow a log­
normal distribution. This assumption is common industry practice for 
modeling claims. The lognormal assumption can be inadequate for cap­
turing the true variability in claims processes, particularly when analyz­
ing the tail-end of the distribution of claims. Modeling dependencies 
between business lines with a standard (linear) covariance assumption 
may not adequately capture the dependence in tail outcomes. Although 
not commonly used in industry practice, copulas are an increasingly 
useful method of measuring tail dependencies. Venter (2001) and Em­
brechts, McNeil, and Straumann (2000, Chapter 6, pp. 71-76.) provide 
a good coverage of the use of copulas in modeling tail dependencies in 
insurance. 

The Prophet DFA model does attempt to capture the variability in 
claims at the tail-end of the distribution by including separate models 
for large claims and catastrophe claims. Dependencies between busi­
ness lines in these tail outcomes are captured in part by the impact of 
catastrophe events on multiple business lines. The catastrophe model 
has a similarity to frailty models used to construct copulas. How well 
the model captures the tail risk in practice is an empirical issue that 
needs further research. 

Concentration risk is a component of loss projection risk relating 
to the uncertainty of the impact of catastrophic events. This risk is 
accounted for by the catastrophe model. The excess of loss catastrophe 
reinsurance assumptions in the model limit the impact of concentration 
risk. 

Expense risk is accounted for because claims handling expenses are 
expressed as a percentage of claims incurred. Although some unex­
pected expense increases may be independent of the amount of claims, 
there is normally a significant level of correlation between claims and 
claims handling expenses. Assuming expenses and claims are perfectly 
correlated results in a conservative allowance for the expense risk of the 
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insurer-under circumstances in the tail when claims are higher than 
expected, so too will be claims handling expenses. 

Like all businesses, insurers face the credit risk that parties who owe 
money to them may default. For an insurer, the key sources of credit 
risk arise from their investment assets, premium receivables, and rein­
surance recoveries. Credit risk relating to investment assets is implic­
itly covered in The Smith Model. The Prophet DFA model calibrated 
in this study does not account for the risk of default in premiums or 
reinsurance owed. Thus, the MCR calculated by the 1MB method using 
the Prophet DFA model will not include a charge for these risks. To 
compensate for this, in calculating the total MCR for the 1MB method, 
the charge from the prescribed method for outstanding premiums and 
reinsurance recoveries is included. 

Guidance Note GGN 110.2 highlights operational risk as a quantita­
tive risk that should be included in an insurer's capital measurement. 
Operational risk, however, is a particularly difficult risk to quantify and 
is an area of ongoing research in both insurance and banking. APRA's 
prudential standards include a Guidance Note for operational risk, GGN 
220.5, which outlines the qualitative measures an insurer should pur­
sue to manage operational risk, but does not provide any guidance on 
how to quantify the risk for capital calculation. 

The Prophet DFA model calibrated in this study does not account 
for operational risk. There is no well-accepted model nor sufficient data 
and analysis to properly assess insurer operational risk. The prescribed 
method does not have a charge for operational risk. The Basel Commit­
tee's Working Paper on the Regulatory Treatment of Operational Risk 
(2001) reports that operational risk should make up 12% of a bank's 
minimum required capital. Giese (2003) uses a survey of banks and 
non-life insurers to report that on average banks allocate approximately 
30% of their capital to operational risk, while non-life insurers allocate 
approximately 16%. In the absence of an agreed approach to allocating 
capital to operational risk for non-life insurers, however, it was decided 
that no additional charge would be made. Given the comparative na­
ture of this study, this assumption does not impact on the conclusions 
drawn or the significance of the results. 

5 Methodology 

A model insurer was created to be representative of a typical large 
non-life insurer operating in Australia. The Prophet DFA model was 
used to project future insurance outcomes under different assump-
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tions. Six thousand (6000) simulations were performed for each set of 
assumptions and used to estimate the reqnired capital to ensure a ruin 
probability over a one year horizon of 0.5%. The number of simulations 
was determined so that the standard error of the capital requirement 
estimate was small compared to the capital amount. The capital re­
quirement calculated by the Prophet DFA model was then compared to 
the MCR under the prescribed method for the model insurer.6 A sum­
mary of the prescribed method capital charges for Australia is provided 
in Tables 8 and 9. 

Table 8 
Outstanding Claims and Premium Liability 

Capital Charges for Direct Insurers 

Class of 
Business 
Home, Motor, and Travel 
F&ISR and Others 
CTP, Liability, and Professional Indemnity 

Risk Capital Factor 
Outstanding Premium 

Claims Liability 
9% 13.5% 

11% 16.5% 
15% 22.5% 

Notes: Motor includes commercial and domestic; Liability includes public, em­
ployer, and product liabilities; F&ISR and Others include Fire & ISR, Marine, Avia­
tion, Consumer Credit, Mortgage, Accident. 

The following five sets of assumptions were examined to assess their 
impact on different types of insurers with different balance sheet struc­
tures. As the assumptions for the liability volatilities currently used 
differ significantly, it was important to examine the impact of these 
differences. In each case, only the assumption listed is changed from 
the base case. 

6See APRA GPS 110 for the insurance and investment risk capital charges. 
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Table 9 
Investment Capital Charges 

Type of Charge Charge 
Cash and debt obligations of the commonwealth government, 0.5% 
an Australian state or territory government, or the national gov-
ernment of a foreign country where the security has a Grade 1 
counterparty rating or, if not rated, the long-term foreign cur-
rency counterparty rating of that country is Grade 1; GST re-
ceivables (input tax credits); 
Any debt obligation that matures or is redeemable in less than 1.0% 
one year with a Grade 1 or 2 rating; cash management trusts 
with a Grade 1 or 2 rating; 
Any other debt obligation that matures or is redeemable in one 2.0% 
year or more with a Grade 1 or 2 rating; reinsurance recoveries, 
deferred reinsurance expenses, and other reinsurance assets 
due from reinsurers with a Grade 1 or 2 counterparty rating; 
Unpaid premiums due less than six months previously, un- 4% 
closed business, any other debt obligation with a rating of Grade 
3; reinsurance recoveries, deferred reinsurance expenses, and 
other reinsurance assets due from reinsurers with a counter­
party rating of Grade 3; 
Any other debt obligations with a counterparty rating of Grade 6% 
4; reinsurance recoveries, deferred reinsurance expenses, and 
other reinsurance assets due from reinsurers with a counter­
party rating of Grade 4; 
Any other debt obligations with a counterparty rating of Grade 8% 
5; reinsurance recoveries, deferred reinsurance expenses, and 
other reinsurance assets due from reinsurers with a counter­
party rating of Grade 5; listed equity instruments (including 
subordinated debt), units in listed trusts, unpaid premiums due 
more than six months previously: 
Direct holdings of real estate, unlisted equity instruments (in- 10% 
cluding subordinated debt), units in unlisted trusts (excluding 
cash management trusts listed above), other assets not speci-
fied elsewhere in this table; 
Loans to directors of the insurer or directors of related entities 100% 
(or a director's spouse), unsecured loans to employees exceed-
ing $1,000; assets under a fixed or floating charge; 
Goodwill (including any intangible components of investments 0% 
in subsidiaries), other intangible assets, future income tax ben-
efits, assets in this category are zero weighted because they are 
deducted from Tier 1 capital when calculating an insurer's cap-
ital base; see GGN 110.1. 
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1. Alternative Liability Volatility Assumptions: The model was run 
using the Trowbridge volatility assumptions. This was to indicate 
the sensitivity of the capital requirements to a change in volatility 
based on an alternative view on the variability of business lines. 
As both sets of volatility assumptions have been proposed it is of 
interest to examine the resulting difference. 

2. Riskier Asset Mix Assumption: The model was run with the in­
surer having a significantly higher proportion of investment as­
sets in equities. This was designed to indicate the MCR required 
for insurers in the industry holding significant levels of riskier 
assets. This also allows a comparison of the significance of the 
investment capital charge for the 1MB and prescribed methods. 

3. Short Tail Insurer Assumption: The insurer was assumed to only 
sell short tail business lines. Assets and liabilities were scaled 
back to reflect the smaller overall insurer size, while all other as­
sumptions remained unchanged. Because some insurers have pre­
dominantly short tail business, this will identify the significance 
of the short tail capital charge for the comparison between the 
1MB and prescribed methods. 

4. Long Tail Insurer Assumption: The insurer was assumed to only 
sell long tail business lines. Assets and liabilities were scaled back 
to reflect the smaller overall insurer size, while all other assump­
tions remained unchanged. This will identify the significance of 
the long tail capital charge. And, 

5. Smaller Insurer Assumption: In this case the insurer was as­
sumed to have premiums equal to 2.5% of the gross written pre­
miums from the APRA statistics. The liability variability assump­
tions were adjusted according to the Tillinghast report to account 
for the smaller business size. Assets and liabilities were also 
scaled back and all other assumptions remained unchanged. 

In order to compare the 1MB and prescribed methods, it is necessary 
to allocate the MCR to lines of business. To do this we use a technique 
adopted by practitioners. Myers and Read (2001) have proposed an 
allocation of capital to lines of business based on marginal changes 
in business mix. Sherris (2004) shows that, under the assumptions of 
complete and frictionless markets, there is no unique capital allocation 
to line of business unless an assumption about rates of return or sur­
plus ratios also is made. In this case study we have set the liability 
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parameters to generate a constant rate of return across lines of busi­
ness. 

A numerical estimation procedure was used to allocate capital to 
line of business. The procedure was as follows: 

Step 1: The size of business line 1 was reduced by 1%. 
Step 2: The marginal change in the MeR was calculated, and this 

amount was allocated to business line l. 
Step 3: Steps 1 to 2 were repeated for business lines 2 to 5. 
Step 4: Steps 1 to 3 were repeated 100 times until all the business 

line sizes were reduced to zero and the MeR was reduced to 
zero. 

The capital allocated to each line was calculated as the sum of all of 
the marginal capital allocations for each line of business. Using a 1% 
reduction each time was sufficiently small so that the capital allocation 
was found to be independent of which line was reduced first. In addi­
tion, the capital allocated to each line of business is such that, as an 
additional small amount of each liability is added, the overall insurer 
one year ruin probability is maintained. This is equivalent to using the 
ruin probability for the total company as a risk measure when deter­
mining capital allocation. In other words, the capital allocated to each 
line of business is such that for the insurer the overall ruin probability 
is constant. 

6 Capital Requirements and Model Results 

6.1 Model Insurer-Base Case 

The model was run for the base case assumptions. The Prophet 
DFA model produced a distribution of insurance outcomes. For each of 
these outcomes, the amount of assets in excess of the technical reserves 
required at the start of the year to ensure that the insurer's assets are 
equal to their liabilities at the end of the year was determined. This 
represents a distribution of capital requirements. The Prophet MeR 
was determined as the 99.5 th percentile of this distribution of capital 
requirements. By taking this capital requirement, the probability that 
total assets will exceed liabilities at the end of the year will be 99.5%, us­
ing the same simulations. This value was $309.4M with a standard error 
of $1O.9M. The standard error was calculated using the Maritz-Jarrett 
method. Details of the method for computing the standard error are 
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in Wilcox (1997, Chapter 3, p. 41). The distribution of capital require­
ments is shown in Figure 1. 

Distribution of Capital Requirements 

~ ~ ~ ~ ~ 
~ 

~ ~ ~ ~ ~ ~ ~ 

Capital Required (t=O) 

Figure 1: Distribution of Base Case Prophet Capital Requirements 

The results of the determination of the MCR by both the internal 
model and the prescribed method are given in Table 10. As the Prophet 
DFA model does not make an allowance for credit risk, the overall MCR 
for the model insurer was determined as the sum of the internal model 
capital requirement plus the credit risk capital charge from the pre­
scribed method. This capital requirement is the MCR calculated under 
the 1MB method and is shown in Table 10. 

Table 10 
Base Case Minimum Capital Requirement (MCR) 

Comparison Between 1MB Method and Prescribed Method 
Base Case 

1MB Method 
Prophet MCR 
Adjustment for Credit Risk 
Total MCR 
1MB Standard Error 

Prescribed Method 
Total MCR 

309,396,000 
28,705,000 

338,101,000 
10,912,000 

233,323,000 
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The MCR calculated by the 1MB method was found to be significantly 
larger than the MCR under the prescribed method. The MCR calculated 
by the 1MB method represents the risk-based level of capital required 
to ensure a ruin probability in one year of 0.5%. The prescribed method 
is found to produce a capital requirement insufficient to ensure a prob­
ability of ruin over a one year time horizon of 0.5%. 

To understand each method's treatment of the various risks, we 
break down each of the MCRs by line of business and by risk type. The 
capital charge components that make-up the prescribed method's MCR 
are presented in Table 11. 

Table 11 
Prescribed Method MCR Capital Charges (in $1,OOOs) 

Motor Home F&ISR PbI. Liab. CTP Totals 
Risks 

Invest. 
Credit 
Concen. 

Liabilities 
OCLMS 
Premium 

Total 

5,314 
20,696 

2,381 
9,192 

3,740 
8,335 

10,188 
6,160 

69,667 
17,258 

36,687 
28,705 
15,000 

91,290 
61,640 

233,323 
Notes: F&ISR = Fire & ISR, Pb!. Liab. = Public Liability, Invest. = Investment, Cone en. = 

Concentration, OCLMS = Outstanding Claims Liability. 

Under the prescribed method, the total capital charges relating to 
liability risks (outstanding claims, premium, and concentration risk) 
equal $167.9M. The long tail business lines account for 61.5% of this 
charge, while the short tail lines (including fire and ISR) account for 
38.5% of the charge.? The Prophet internal model capital requirement 
was allocated to individual business lines using the numerical approach 
set out earlier. The reSUlting allocation is shown in Table 12. For the 
MCR calculated by the 1MB method, long tail lines account for 67.4% of 
capital while short tail lines (including fire and ISR) account for 32.6%. 
Although this allocation gives a slightly higher capital weighting to long 
tail lines than the prescribed method, the differences are small. 

There are, however, significant differences in capital allocations for 
each business line. The prescribed method allocates the same percent-

7The concentration risk charge is allocated only to the short tail and fire & ISR lines. 
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Table 12 
Base Case Allocation of 

1MB Method MCR to Business Lines 

Business Line 
Motor 
Home 
Fire & ISR 
Public Liability 
CTP 
Total 

Capital Allocated Percent 
In $1 ,000s Of Total 

28,291 9.1 
60,965 19.7 
11,550 3.7 

7,266 2.3 
201,323 65.1 
309,396 100.0 

age charge to both household and motor insurance. As the model in­
surer has approximately half the level of household insurance as motor 
insurance, the prescribed method capital charge is approximately half. 
The allocation of the MCR calculated by the IMB method to the house­
hold line, however, is more than double the capital allocated to the 
motor line. This is due to the higher CV of 33% for household insur­
ance vs. 22% for motor based on the Tillinghast report. The difference 
between the capital allocations under the two methods is illustrated in 
Figure 2. 
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Figure 2: Relative Short Tail Capital Allocations 
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In considering these allocations of capital it is worth emphasizing 
that we are comparing a prescribed method with a method that was 
designed to ensure an equal expected rate of return to capital across 
lines of business. These differences will only be of real significance 
if company management were to use these results in their business 
strategy or decision making. In practice, these allocations are used for 
a variety of purposes including pricing as well as decisions about which 
lines of business to grow and to limit. 

Long Tail Allocations 
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Figure 3: Relative Long Tail Capital Allocations 

For public liability and CTP insurance the prescribed method gives 
the same allocation of capital charge percentages to each of these lines 
so that the difference in the prescribed method capital charged for the 
model insurer is due to the relative sizes of the business lines (51.8% 
of capital is allocated to CTP with 9.7% allocated to public liability). For 
the internal model allocation the capital allocated to CTP is much higher 
(65.1%). For public liability it is much smaller (2.3%). 

Figure 3 illustrates the differences between the capital allocations 
under the two methods for the long tail lines. The difference in this 
case is driven largely by the diversification effects from each line. Pub­
lic liability insurance has a moderate correlation (35%) with CTP and 
zero correlation with all other business lines. This results in the public 
liability line providing large diversification benefits to the model in­
surer. CTP on the other hand is assumed to have a 50% correlation with 
motor insurance so the diversification benefits to the model insurer are 
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diminished and a higher level of capital, therefore, is allocated to this 
line. 

The prescribed method has difficulty handling correlations between 
lines of business and differences in insurer business mixes. This is 
a strength of the internal model, although the assumptions underlying 
the correlations between business lines need to be considered carefully. 

6.2 Alternative Assumptions 

Table 13 summarizes the results from the alternative assumptions. 
The table shows the capital requirements from the 1MB and prescribed 
methods for the base case and for each of the alternative assumptions. 

6.2.1 Alternative Volatility Assumptions 

Adopting the lower CVs from the Trowbridge report dramatically 
reduces the MCR calculated under the 1MB method by $214.8M. The 
internal model results are extremely sensitive to the volatility assump­
tions for the insurance liabilities. An insurer who uses the Trowbridge 
CVs for the volatility of their business will require an MeR under the 
1MB method that is Significantly lower than the MCR calculated under 
the prescribed method. Without an extensive study of liability volatility 
to validate these assumptions, it is open to insurers who can use the 
internal model approach to adopt volatility assumptions in line with 
these levels. 

6.2.2 Riskier Asset Mix 

As expected, the MCR under both the 1MB and prescribed meth­
ods increase when the insurer's proportion of invested assets in eq­
uities is increased to 80%. There is a difference in increase for each 
method, however. Under the 1MB method, the MCR increases by $61.0M, 
while under the prescribed method the increase was much less at only 
$49.0M. The capital charge for equities in the prescribed method may 
not be sufficient to allow for the impact of these securities on ruin prob­
abilities.8 Because asset risk, especially asset mismatch risk, is a major 
risk run by insurers, a prescribed method should not encourage insur­
ers to adopt a riskier investment strategy. The above result suggests 
that the prescribed method in Australia may have an incentive for in­
surers to invest in equities. 

8This is based on the assumption that TSM@ is a realistic model of asset returns. 



Table 13 
Summary of MCR Comparisons for Alternative Assumptions 

Prescribed Method MCR Capital Charges in $l,OOOs 
Base Trowbridge 80% Tail Only Small 
Case CV Equities Short Long Insurer 

1MB Method 
Prophet 309,396 94,586 370,414 209,196 228,828 139,951 

Credit Risk 28,705 28,705 28,705 10,745 12,513 5,577 
Total 338,101 123,291 399,119 219,941 241,341 145,528 

Standard Error 10,912 3,469 13,517 5,221 9,056 5,413 
Prescribed Method 

Investment Risk 36,391 36,391 85,366 9,517 22,656 9,098 
Credit Risk 28,705 28,705 28,705 10,745 12,513 5,577 

OSC Liability 91,290 88,237 91,290 7,890 80,999 28,808 
Premium Liability 61,641 59,415 61,641 30,885 23,789 15,876 

Concentration 61,641 59,415 61,641 30,885 23,789 15,876 
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It is interesting to note that had the Trowbridge CV assumptions 
been used, then changing the asset mix from 20% equities to 80% eq­
uities would have increased the MCR by a greater amount of $83.7M. 
The reason for the larger increase under the Trowbridge assumptions 
is related to the relative size of the various risks and their impact on 
ruin probability. 

The Trowbridge assumptions have lower insurance liability volatil­
ity, so that fewer of the outcomes at the 99.5 th percentile of the capital 
required distribution are due to high claims costs. Instead, the out­
comes at the 99.5 th percentile are more often due to low asset returns. 
This leads to a higher proportion of the overall capital under the 1MB 
method being attributed to asset risk when insurer liability volatility as­
sumptions are lower. This in turn creates a greater disparity between 
the prescribed method's and 1MB method's charges for asset risk. 

6.2.3 Short Tail Insurer 

Removing the long tail lines from the insurer reduces the overall 
insurer's size along with the MCR. Under the 1MB method the MCR re­
duces by $1l8.2M, while under the prescribed method the reduction is 
significantly larger at $159.3M. The internal model allocates more cap­
ital to each of the insurer's liabilities than is charged by the prescribed 
method. Rather than comparing absolute changes in MCR, it is more 
interesting to compare the relative changes. The same will hold for the 
long tail and small insurer scenarios. 

Figure 4 illustrates the MCRs under the different assumptions rel­
ative to the base case. For the short tail insurer, the 1MB method has 
a reduction in its MCR of 65% of its original size, while under the pre­
scribed method the MCR reduces to 32% of its original size. The inter­
nal model is allocating a greater amount of capital to a purely short tail 
insurer compared to the prescribed method. The reasons for this high­
light some further shortcomings of the prescribed method. By reducing 
the number of lines of business, diversification benefits are lost. This 
is accounted for in the 1MB method but not by the prescribed method, 
which has constant capital charges independent of the business mix. 
The result is that the capital calculated under the 1MB method is higher 
than under the prescribed method. 

The short tail capital charges (relative to other capital charges) un­
der the prescribed method also may charge less for the risk of those 
lines than the internal model. This would be consistent with Collings's 
(2001) finding that as an insurer increases its business mix with short 
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Figure 4: Alternative Assumptions MCRs as Percentage of Base Case 

taillines,9 it will have a relatively larger capital increase under the 1MB 
method than the prescribed method. 

This means that insurers will have an incentive to write short tail 
lines if they are using the prescribed method. If there is a relative ad­
vantage in capital required for short tail lines, this also may lead to 
underpricing of these lines. 

6.2.4 Long Tail Insurer 

In Figure 4 we note that the MCR calculated by the 1MB method re­
duces to 71% of its original size, while under the prescribed method the 
MCR reduces to 60% of its original size for the case of a long tail insurer. 
The internal model allocates a higher level of capital to a purely long 
tail insurer than the prescribed method. 

The same two effects as for the short tail insurer appear to apply 
to the case of the long tail insurer. Once again there is a loss of some 
diversification benefits for the purely long tail insurer leading to the 
higher relative MCR under the 1MB method than under the prescribed 
method. The long tail capital charges (relative to other capital charges) 
under the prescribed method charge less for the risk of those lines than 
the internal model. This is inconsistent with Collings (2001) findings 

9Collings (2001) used motor insurance as an example of a short tail line. 
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that increasing the business mix with long taillines 10 led to a greater 
relative MCR under the prescribed method than under the 1MB method. 

Regardless of the relative impact of long tail lines of business, how­
ever, it is clear that the prescribed method can not deal adequately with 
differences among business mix of insurers. Applying the prescribed 
method will lead to incentives for insurers to change their business mix 
to optimize their regulatory capital position. Lines of business with too 
low capital charges will be increased, leading to potential price cuts that 
can not be justified if proper risk allowance were to be made. 

6.2.5 Small Insurer 

Figure 4 also shows the effect of changing the size of the insurer. In 
this case the insurer is assumed to reduce to 25% of its original size. 
Under the prescribed method, the MCR reduced by a similar amount to 
32% of its original size.1 1 The percentage capital charges under the pre­
scribed method are independent of insurer size. For the 1MB method, 
while the size of the insurer decreased, the overall volatility of each of 
the business lines is assumed to increase. This is based on the assump­
tion that smaller business portfolios have greater independent variance 
and that pooling of insurer risks reduces relative volatility within a class 
of business. The volatility assumptions in an internal model should de­
pend on the size of the business line, with higher volatility assumed for 
smaller lines. The overall MCR under the 1MB method reduced to 43% 
of its original size. 

7 Risk-Based Capital Regulation of Insurers 

7.1 Impact of Volatility Assumptions 

Our results show a strong dependence of an internal model's output 
on the insurance liability's volatility assumptions. Of all the sensitiv­
ities performed, the greatest change in MCR resulted from changing 
from the original Tillinghast insurance liability CVs to the Trowbridge 
CVs. 

Insurers would be expected to prefer to have a lower regulatory cap­
ital requirement. Insurers in the industry that have liability volatility 

lOCollings (2001) used public liability insurance as an example of a long tail line. 
llThe MCR under the prescribed method did not reduce to 25% of its original size 

because the risk margins for a smaller insurer are higher and the concentration charge 
was assumed to remain constant at $15M. 
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similar to the Tillinghast CVs are unlikely to adopt an internal model to 
calculate their MCR. Insurers that have liability volatility similar to the 
Trowbridge CVs have an incentive to adopt an internal model to lower 
their MCR. As yet no insurer in Australia has elected to use an internal 
model-based approach. This may be for a number of reasons. One of 
these could be that the prescribed method produces lower capital re­
quirements than would be required if they were to adopt an internal 
model. If this were the case, then those insurers who use these lev­
els of capital to price their insurance contracts could be undercharging 
compared to the premium rate required to generate the level of ruin 
probability considered appropriate by APRA using the internal model 
approach. 

The importance of the assumed CVs in determining an insurer's MCR 
indicates a clear need for an assessment of the level of volatility across 
business lines and an understanding as to how this varies across com­
panies. Thomson (2003) commented on APRA's disappointment with 
the general lack of justification by actuaries in the risk margins they 
adopted for their first reporting under the new APRA requirements. It 
appears that Australian insurers have yet to understand fully the true 
level of volatility in their businesses and have yet to reach agreement 
on best practice in calculating volatility. This is expected to be an im­
portant issue for any regulator to address, regardless of country, in the 
introduction of risk-based regulatory capital requirements. 

7.2 Issues with the Prescribed Method 

Considering the results in Figure 4, it is evident that the prescribed 
method does not prescribe a level of capital that is adequate to ensure 
a ruin probability of 0.5% for all insurers, regardless of size or mix of 
business. This is based on the presumption that the internal model 
used in this study represents an insurer's realistic business situation. 
The model used has been developed to be close to the realistic situation 
and reflects industry best practice. The MCR calculated by the internal 
model should be representative of the actual level of capital required to 
ensure a ruin probability in one year of 0.5%. Although the IAA Insurer 
Solvency Assessment Working Party (2004) state that the prescribed 
method should be conservative to make sure that it is representative of 
all insurers that conduct business, in the Australian general insurance 
industry this does not appear to be the case. 

An important part of implementing the risk-based capital require­
ments is the calibration of the prescribed method capital charges. APRA 
calibrated the current capital charges at an industry-wide level so that 
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the total MCR of the industry increased by a factor of 1.4 to 1.5 times the 
previous level. This was a substantial increase in capital requirements 
across the industry. The impact of the changes differs between insurers 
depending on their experience relative to the industry. Insurers with 
lower volatility experience are effectively treated the same as those with 
higher volatility experience. Even if the charges are adequate for the 
average insurer, they may be inadequate for insurers with greater than 
average volatility. Assuming APRA wants to secure an industry-wide 
solvency requirement of a 0.5% ruin probability in one year, then it will 
need to increase the prescribed capital charges for insurance liabilities. 
Given that the last change in regulatory requirements increased the cap­
ital requirement in the industry by around 50%, a further increase is a 
politically contentious issue. 

This is the situation that is likely to face many regulators at an inter­
national level when they consider the introduction of these risk-based 
capital requirements. There are likely to be poorly capitalizedinsurers 
that will no longer be able to operate under these more stringent re­
quirements. At the same time capital strong insurers will be expected 
to meet the requirements. Given the difficult capital situation that has 
been faced by the insurance industry at an international level, the adop­
tion of risk-based capital for insurers may take longer and require more 
attention to capital-weak insurers than otherwise. 

An important issue for the Australian regulator will be to consider 
the liability capital charges that should be increased and to what extent. 
Collings (2001) found that short tail lines had a relatively higher capital 
requirement under the 1MB method compared to the prescribed method 
and vice versa for long tail lines. While the results from this study are 
broadly consistent with this, the differences between long tail and short 
lines are less distinct. 

At an individual line level, our internal capital allocation showed that 
the household line was allocated a significantly larger amount of capital 
than the motor line. This was driven by the higher CV assumption 
for household from the Tillinghast report. Differences in household 
and motor volatility suggest that it is inappropriate for household and 
motor to have identical capital charges. 

Differences in the capital allocations between CTP and public liabil­
ity were assumed to be driven largely by diversification effects. Smaller 
insurers and insurers with less diversified business mixes are under­
charged under the prescribed method to a greater extent than larger 
and well-diversified insurers. This strongly indicates the need to in­
clude diversification benefits in the capital requirements, concentration 



38 Journal of Actuarial Practice, Vol. 72, 2005 

charges for less diversified insurers, or varying capital charges based 
upon business size. 

Further sophistication to the prescribed method must be weighed 
against the benefits of simplicity in the method. It is clear, however, that 
using a prescribed method that is out of line with the actual risk-based 
capital requirements will produce incentives for insurers to behave out 
of line with the economics of the business. This is a critical issue if 
this approach leads to an incentive for insurers to underprice or grow 
riskier business lines. 

7.3 Investment Risk Capital Charges 

Our results demonstrated that the capital required for higher levels 
of equity investment was greater under the 1MB method than under the 
prescribed method. The prescribed capital charge for equities under 
the model assumptions is insufficient to cover the risk This is con­
sistent with the findings of Collings (2001) that the prescribed method 
is less responsive to increases in equity investment than is the 1MB 
method. An adequate charge to cover equity risk at the 99.5 th per­
centile would need to be larger than the current prescribed charge of 
8%,12 particularly for insurers with investment portfolios that are not 
well diversified. 

On the asset side, the prescribed method provides little incentive for 
insurers with a well-diversified investment portfolio. As an example to 
illustrate this point consider the property investment capital charge. 
The capital charge for property investment is 10%, while the capital 
charge for listed equity is 8%. For insurers that perceive there to be 
relatively higher risk-adjusted returns to be gained from equity than 
from property, there is an incentive to overweight their investment in 
equity. This is despite the fact that there can often be considerable di­
versification benefits of holding equity and property together. Collings 
(2001) provides another example by considering the diversification and 
immunization benefits of holding appropriate amounts of government 
bonds and cash. While there is an optimal amount of each of these secu­
rities to hold that minimizes overall volatility for the insurer, the capital 
charges under the prescribed method do not distinguish between the 
two asset classes and charge a constant amount of 0.5%. 

In order to ensure the MCR under the prescribed method provides 
an industry-wide solvency requirement of a 0.5% ruin probability in 
one year, APRA will need to change the investment capital charges. 

12 8% is the prescribed capital charge for listed equity securities. 
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For risky assets such as equity, the current capital charges should be 
increased. APRA also should provide inc~ntives for insurers to hold 
well-diversified asset portfolios. This could be achieved by offering 
diversification discounts or alternatively a more stringent investment 
concentration charge. 13 

7.4 Incentive to Use an Internal Model 

The opening section of APRA's capital standards states that APRA 
encourages insurers with sufficient resources to adopt an internal model 
for calculation of their MCR. APRA has a desire for insurers to begin to 
adopt the 1MB method in line with its aim for insurers to more closely 
match their capital requirements with their individual risk character­
istics. The results of the analysis of the capital requirements that we 
have undertaken indicate that there is no incentive to adopt the 1MB 
method, especially if an insurer has insurance liability CVs in line with 
the Tillinghast report. The prescribed method's capital charges would 
need to increase to the extent that the internal model would produce a 
lower MCR. Alternatively there needs to be a much closer examination 
of the volatility of insurer liabilities and a more careful calibration of 
the prescribed method capital charges. 

There are other reasons why insurers would not adopt an internal 
model for the MCR calculation. Even though risk management and mea­
surement techniques in non-life (property and casualty) insurance have 
vastly improved over the last decade and DFA modeling has become an 
important part of internal management for many large insurers, devel­
opments in these areas are still occurring. The 1MB method requires an 
internal model with a very high degree of sophistication to adequately 
address all the material risks of an insurer and their complex interre­
lationships. There also needs to be the actuarial and risk management 
human resource skills to ensure proper implementation and interpreta­
tion of results. The internal model used in this study was based on sim­
plifying assumptions, and the internal model for a real-world insurer 
would be far more complex. Even with an adequate internal model, the 
assumptions required in the model need far more careful attention. A 
greater understanding and consensus of the underlying volatility of in­
surance liabilities is a major requirement for non-life insurers in order 
to adopt an internal model for MCR calculation. 

Even as actuaries develop the necessary skills and capabilities to 
adequately implement an internal model for the 1MB method, there will 

13The current investment concentration charge only applies to Grades 4 and 5 debt 
and does not apply to concentrated holdings in other securities. 
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no doubt exist further obstacles from other stakeholders in the general 
insurance industry. The black-box stigma attached to internal models 
is likely to be an area that actuaries will need to overcome in order to 
convince general insurance senior management and the regulators to 
trust the internal model's output for management purposes and MCR 
calculation. 

Industry experts have identified another obstacle to the 1MB method. 
Financial analysts involved in the trading of general insurance company 
shares may not have the confidence in the insurer's management to 
rely on them determining their own regulatory capital requirements. 
Financial analysts may not be willing to rely upon the MCR calculated 
under the 1MB method. 

Differences in approaches to internal modeling also may make it 
difficult to compare the MCR output from one insurer's internal model 
with another insurer. Comparison across different insurers is impor­
tant for regulatory reasons and to avoid opportunistic insurers tak­
ing advantage of differences in models. Financial analysts and regula­
tors may prefer to make MCR comparisons based upon the prescribed 
method where the formula is fixed and insurer judgment does not 
impact the results. This leaves open the need to develop prescribed 
method charges that are more risk-based. 

8 Closing Comments 

8.1 Summary and Conclusions 

The IAA Insurer Solvency Assessment Working Party (2004) has ad­
vocated two methods for non-life insurers to calculate their capital 
requirement: the standard approach and the advanced approach. In 
Australia, these dual capital requirements are known as the prescribed 
method and the 1MB method. This study explores the implications of 
these new capital requirements. 

From APRA's perspective, the aim is to meet a regulatory objective 
of requiring that insurers hold a level of capital to ensure a minimum 
ruin probability across the industry. It is important that the prescribed 
method adequately charges risks to meet this objective for all non-life 
insurers licensed to do business in Australia. 

This study compared the MCRs calculated under the two methods 
and analyzed the prescribed method's capital charges using a model 
representative of industry best practice. Despite this, simplifying as-
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sumptions were made in the model's calibration. A lack of consensus 
remains as to the insurance liability volatility assumptions. 

The results of this study, however, have highlighted some significant 
issues for both regulators and insurers. For the model insurer studied, 
the MeR calculated under the 1MB method was significantly larger than 
the MeR under the prescribed method. The implication of this result 
is that despite APRA's desire for insurers to adopt an internal model 
for MeR calculation, there is an incentive for insurers to use the pre­
scribed method to produce a lower MeR. This also highlights the need 
to develop prescribed methods that are consistent with the underlying 
risk of the insurer. To do this, the need for a diversification allowance 
is very important. 

The results were shown to be highly sensitive to the insurance lia­
bility volatility assumptions. It is arguable, however, that the current 
capital charge levels in Australia are too low in order for the prescribed 
method to ensure a ruin probability in one year of less than 0.5% across 
the entire general insurance industry. This is likely to be very difficult 
to achieve. Differences between insurers of different sizes and with dif­
ferent business mixes should at least be considered more carefully in 
any revision of the prescribed method capital charges. 

There is a strong case for including either diversification benefits or 
more stringent concentration charges in the prescribed method to ad­
dress the risk reduction associated with a well diversified business mix 
and asset portfolio and to give a more consistent treatment of insurers 
with different characteristics. 

The internal model's results rely heavily on its volatility assump­
tions. There is a major need for a study to be carried out using insurer 
level data to develop a consensus in the industry as to the level of in­
surance liability volatility that should be allowed in internal models for 
capital determination. 

We can only conclude that there is much to be done by regulators 
and insurers if they are to adopt risk-based capital requirements. Some 
countries have taken a step along this path already. Australia has been 
one of the first countries to introduce a risk-based regulatory regime 
for non-life insurers, and its experience is no doubt of great interest to 
insurers, actuaries and regulators internationally. We have analyzed the 
capital requirements with a view to identifying lessons for others. There 
is still a long way to go before insurers will be in a position to confidently 
adopt the 1MB method for the MeR calculation even in Australia. 
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8.2 Areas for Further Research 

Our results depend to some extent on the degree to which the model 
and the assumptions used are representative of actual insurers. Our 
aim has been to use an internal model that broadly represents the in­
surer's business situation and parameters and assumptions based on 
industry best practice. We would expect any insurer that used a model 
similar to the one that we have used for the 1MB approach would come 
to similar conclusions. 

In this study, many simplifying assumptions were made in the model's 
calibration. We are not aware of any comprehensive study that has been 
completed that examines and assesses the appropriate insurance liabil­
ity volatility assumptions taking into account actual insurer data and 
allowing for insurer-specific characteristics. This is a critical area of re­
search required for risk-based regulatory capital if internal models are 
to be used with any confidence. 

The modeling of claims correlation is another important area for 
further research. Dependency models need to be further considered. 
Brehm (2002) outlines a formal quantitative approach for estimating 
correlation from data. The Tillinghast and Trowbridge reports use a 
much more qualitative approach. Copulas also have great potential for 
modeling insurance liability dependencies, especially for tail events. 

Despite these issues, the case study presented here identifies the is­
sues and gives guidance for any insurer considering internal modeling 
for risk-based capital. There are important lessons at an international 
level because the approach adopted in Australia is similar to that pro­
posed at the international level. 
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Traditional defined benefit plans can be difficult to understand and com­
plex to administer. Hybrid plans (cash balance and pension equity) arose in 
part to address the former issue, but at a price of greater administrative and 
litigation risk. I introduce a design for defined benefit pension plans that is 
easy to communicate to participants, allows for accrual patterns that closely 
replicate those of the two most common forms of hybrid pension plans, and 
avoids the controversial nondiscrimination issues that currently trouble spon­
sors of hybrid plans. The design defines the benefit as a fixed percentage of 
pay payable over a period of time, which period is built up over a participant's 
employment. When translated into a lifetime pension commencing at normal 
retirement age, an interesting pattern of accrual rates develops. Numerical ex­
amples and illustrations are provided, along with suggested uses for this type 
of plan. 
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1 Introduction 

A nontraditional or hybrid defined benefit plan exhibits some of 
the characteristics of a defined contribution plan from the perspective 
of the participant, but is funded and administered like a traditional de­
fined benefit plan. The benefit formulation under a hybrid plan is some­
thing other than a lifetime annuity commencing at normal retirement 
age. The cash balance hybrid establishes a notional account for each 
participant that each year is credited with a percentage of pay and an 
interest credit, both at plan-specified rates. The pension equity hybrid 
defines the benefit as a lump sum equal to an accumulated percentage 
of final average earnings. The accumulated percentage results from an­
nual percentage credits that generally vary by age or a combination of 
age and service. 

The popularity of hybrid plans can be traced to two features: (0 the 
presentation of the benefit as a lump sum that participants understand, 
and (ii) the accrual pattern, i.e., the way the benefits build up during 
a participant's employment with the plan's sponsor. A hybrid plan's 
accrual pattern typically provides more benefit during the earlier years 
of employment than is the case with traditional defined benefit designs. 

Despite the popularity and appeal of hybrid designs, the courts, reg­
ulators, and politicians are attempting to significantly alter the utility 
of these types of plans. For example, in July 2003 the federal district 
court for the southern district of Illinois ruled in the Cooper v. IBM 
case l that both the penSion equity plan and the cash balance formulas 
in IBM's plan violate federal age discrimination law because the rate of 
accrual for the age 65 annuity benefit declines with age. This decline 
occurs because of the time value of money: $1,000 invested at age 25 
will produce a higher lifetime annuity at age 65 than $1,000 invested 
at age 45, assuming a positive investment return each year. 

In this paper I introduce a new defined benefit plan design, called 
an annuity certain plan, which employers may find appealing given the 
current legal and political complications surrounding hybrid defined 
benefit plans. The annuity certain plan design has several attractive 
attributes: 

• it reduces mortality risk for the sponsor, 

• it simplifies the plan valuation, 

• it encompasses a simple benefit formulation that participants can 
understand, and 

1 Cooper v. IBM Personal Pension Plan, 274 F.Supp.2nd 1010 (S.D. Ill. 2003). 
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• its benefit formulation depends solely on service and annuity fac-
tors at normal retirement age. 

This last feature implies that benefit accrual rates do not decrease on ac­
count of age, thus avoiding a principal objection currently being raised 
against hybrid plans. 

The paper is organized as follows: Section 2 gives an overview of 
the annuity certain plan design. More details of the design and uses of 
annuity certain plan are described in Section 3. Closing comments are 
given in Section 4. 

2 Annuity Certain Plans 

2.1 An Overview 

By law, 2 a tax-qualified defined benefit plan is required to provide 
a lifetime benefit commencing at retirement. As this commitment ex­
tends over decades, it subjects both the plan and the participant to 
mortality risk, albeit in opposite ways. The plan could end up paying 
benefits over longer than expected time periods if the participant lives 
longer than expected, whereas a participant who dies prematurely for­
feits substantial benefit value. Providing a lump sum option, however, 
allows the plan to remove the mortality risk if the participant chooses 
the lump sum option, but at a high cost to the plan, especially in a low 
interest rate environment. 

The annuity certain plan attempts to reduce the employer's mortal­
ity risk by defining the benefit as a temporary, but guaranteed, benefit. 
The plan may be thought of as an extended severance plan. The par­
ticipant receives a defined percentage of pay (career average or final 
average) payable for a fixed period of time commencing at normal re­
tirement age. As the payments continue whether the participant is alive 
or dead, these payments are called an "annuity certain." The period of 
time over which the benefit is paid will vary by the amount of time the 
employee has worked for the employer (service): the longer the service, 
the longer the benefit will be paid. If benefits are allowed to start be­
fore normal retirement age, the size of the retirement benefit is reduced 
using a fixed interest rate. 

A defined benefit plan must express the plan's benefit as a lifetime 
annuity commencing at normal ~etirement age, which for the remain­
der of this paper is assumed to be age 65. This benefit is called the 

2Section 411(a)(7) of the Internal Revenue Code of 1986, as amended; Treas. Reg. 
Section 1.411 (a)· 7(a)(l). 
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accrued normal retirement benefit. The accrued normal retirement ben­
efit would be determined from the pension benefit payable for the cal­
culated period of time (I refer to this as the annuity certain benefit) 
using an actuarial equivalence assumption set of unisex mortality (as 
prescribed in section 417(e) of the Internal Revenue Code) and a fixed 
low interest rate (possibly different from the rate used to reduce the 
benefit for early commencement). 

Determining the participant's monthly retirement benefits paid from 
the termination of employment is not particularly difficult. At the mo­
ment of the termination of employment, let 

n = Participant's years of service; 

Ben = Participant's monthly retirement benefits; 

165 = Fraction of participant's final average monthly salary; 

m = Number of months credited for each year of service; and 

N = Total number of months credited. 

The participant's monthly retirement benefits paid from the termina­
tion of employment is 

Ben = 165 x Final Average Monthly Salary, (1) 

which is paid for N = mn months. 
For example, suppose the plan pays 165 = 45% of the participant's 

final average monthly salary for m = 4 months for each year of service, 
commencing at age 65. A participant with n = 20 years of service would 
lead to N = 80 months of pension payment, with each payment equal to 
45% of the participant's monthly final average salary. These payments 
would start when the participant reaches age 65 and continue thereafter 
for the 80-month period irrespective of the survival of the participant. 

A short period of payment for the short-service employee may seem 
inadequate, but keep in mind that the payments are substantial, equal­
ing 45% of average monthly salary. Below I show that the equivalent 
lifetime annuity benefit for an employee with 5 years of service is 5.65% 
of average salary, which is a typical lifetime pension for short service. 

Commencement of retirement benefits at 55 or later could be al­
lowed, but the annuity certain benefit must be reduced for each year 
retirement age precedes age 65. If i is the discount interest rate, let Ix 
denote the fraction of participant's final average monthly salary at ter­
mination of employment at age x that is used to determine the benefit 
paid. It follows that 
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Ix = 165 X (1 + i)-(65-x). 

For example, if the discount rate were i = 6%, then instead of the 45% 
of average salary payable at 65, the monthly benefit would be reduced 
to 25.13% of average salary if payments were to commence at age 55. 
The length of the certain payment period does not change. 

As noted above, a tax-qualified defined benefit plan must express 
an accrued normal retirement benefit in the form of a lifetime annu­
ity. This accrued normal retirement benefit is defined as the actuarial 
equivalent of the accrued annuity certain benefit payable at normal re­
tirement age (65) using 4% interest and section 417(e) mortality. The 
relatively low interest rate minimizes the likelihood of section 417(e)­
required benefit improvements. 

Specifically, section 417(e) of the Internal Revenue Code requires the 
present value of any optional form of benefit that is not paid over the 
lifetime of the participant be at least as great as the present value of 
the normal retirement benefit computed using the prescribed mortality 
table and interest rate (currently the 30-year Treasury security rate). For 
the annuity certain plan this means the annuity certain benefit under 
the plan must be at least as great as the actuarially equivalent annuity 
certain benefit computed from the accrued normal retirement benefit 
using the section 417(e) required interest and mortality. 

If the annuity certain plan provides a benefit only at normal retire­
ment age, section 417(e) will be satisfied so long as the plan's actuarial 
equivalent interest rate is less than or equal to the section 417(e) rate. 
A 4% plan rate should satisfy this requirement. If a reduced annuity 
certain benefit is provided before normal retirement age, then section 
417(e) will be satisfied as long as the early commencement discount 
rate is not too large. A careful examination of the actuarial formulas 
involved in determining whether or not section 417(e) is satisfied will 
show that the rate needs to be tested only at the earliest retirement age 
and for the longest expected annuity certain period under the plan. 

Table 1 shows the age-55 ratio of the minimum annuity certain ben­
efit under 417(e) to the annuity certain benefit under the plan formula. 
Various section 417(e) interest rates and plan early commencement dis­
count rates are illustrated. The certain period is 15 years and the plan's 
actuarial equivalence rate is 4%. A ratio of 100% or lower means that 
section 417(e) is satisfied. For example, if the plan uses a 6% early com­
mencement discount rate and allows benefit commencement as early 
as age 55, then for all plan benefits less than or equal to 15 years in 
duration, section 417(e) is satisfied so long as the section 417(e) rate is 
5.1% or higher. Notice that if the plan's formula allows for four months 



52 Journal of Actuarial Practice, Vol. 72, 2005 

of payment for each year of service, then 45 years of service would be 
needed to accrue the IS-year period benefit. 

Table I 
Ratio of 4I7(e) Minimum Benefit to Plan Formula Benefit 

For I5-Year Annuity Certain Benefit at Age 55 
417(e) Early Commencement Discount Rate 
Rate 4.50% 5.00% 5.50% 6.00% 6.50% 7.00% 

4.50% 92.9% 97.5% 102.2% 107.2% 112.3% 117.7% 
4.75% 90.2% 94.6% 99.2% 104.0% 109.0% 114.3% 
5.10% 86.6% 90.8% 95.2% 99.8% 104.6% 109.6% 
5.25% 85.1% 89.2% 93.5% 98.1% 102.8% 107.7% 

The accrued normal retirement benefit, expressed as a percentage 
of final average annual pay, can be determined as follows: let 

n = Number of years participant has worked for employer; 

m = Number of months of payment earned for each year of 
employment; and 

x = Participant's retirement age, x = 55,56, ... ,65; 

r = Actuarial equivalence rate, which is the interest rate used 
in converting a benefit from one form to another; 

fx = Percentage of average monthly earnings payable at age x. 
Generally, if i denotes the early commencement discount 
rate and 65 is the normal retirement age, then 

fx = f65(1 + i)-(65-x); 

P(x, n) = Participant's accrued retirement benefit percentage at age 
x; and 

k = (1 + r)-m/l2. 

Note that the actuarial equivalence rate, r, is an effective annual 
rate specified in the plan document that is used to determine the value 
of a benefit form under the plan in order to convert the form into an 
equivalent form. The quantity a~~121 r is the value of 1 payable in equal 
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monthly installments at the beginning of each month for m months at 
an effective annual rate r. Thus 12fxa~;12IY represents the value of 
the benefit earned for the first year of service expressed as a percentage 
of final average monthly earnings and payable monthly beginning at age 
x. The value of the benefit earned for the second year of service is k 
times this amount because k represents the discounted value (at rate 
r) of 1 deferred for m/12's of a year. Similarly, the value of the benefit 
earned for each successive year of service is k times the value of the 
benefit earned for the prior year of service. Dividing by 12a112

) converts 
the benefit into a lifetime annuity at age x. It follows that 

( 

.. (Y) ) 

P(x,n) = fx x a~y (1 + k + ... + kn - 1) 

(2) 

Formula (2) presents the participant's accrued lifetime annuity bene­
fit payable at age x as a percentage of final monthly average earnings 
given the participant has n years of service. Formula (2) shows that each 
year's accrual is k times the previous year's accrual and is independent 
of the age of the participant when the benefit is accrued. The factor k 
is the ratio of the annual accrual in one year to the annual accrual in 
the prior year for a given commencement age. So the series of accrual 
rates for a given commencement age forms a decreasing geometric se­
ries: the longer the payment period per year of service, the greater the 
rate of decrease. This decreasing series of accrual rates ensures that 
the accrual rules of section 411(b) are satisfied and also distinguishes 
this type of plan from other hybrids. Also notice that these accrual 
rates (percentages of final average pay paid as a lifetime annuity) de­
pend only on service and age at commencement, not current age, so 
the plan satisfies the requirement of the law that the rate of accrual is 
independent of age (e.g., the accrued normal retirement benefit for a 
40-year-old with ten years of service is the same as for a 50-year-old 
with ten years of service). 

Table 2 shows the accrued normal retirement benefit expressed as 
a percentage of final average annual pay using the above example of 
the plan paying f65 = 45% of monthly average pay, m = 4 months of 
payment per year of service, r = 4% actuarial equivalence rate, i = 6% 
early commencement discount rate. 
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Table 2 
P(x, n) for Various Years of Service (n) 

And Commencement Ages (x) 

Years of Commencement Age (x) 

Service (n) 65 62 60 55 
1 1.16% 0.90% 0.76% 0.51% 
5 5.65% 4.38% 3.71% 2.49% 

10 10.95% 8.49% 7.19% 4.83% 
20 20.55% 15.94% 13.51% 9.07% 
30 28.98% 22.47% 19.05% 12.79% 

3 Design and Uses of Annuity Certain Plans 

3.1 Other Design Features 

The key variables of the plan are the pay replacement percentage, j; 
the period of payment per year of service, m; and the normal retirement 
age, 65. The replacement percentage could be integrated, (e.g., 30% for 
average pay up to covered compensation and 45% for excess pay). The 
periods of payment could vary by years of service, e.g., six months of 
payment for the first five years of service and four months thereafter, 
depending upon the desired accrual pattern. 

Optional annuity forms probably should be restricted to the straight 
life and 50% joint and surviving spouse forms. With respect to pre­
annuity-commencement death benefits, there are a number of choices. 
As a minimum, the plan would need to provide the pre-retirement sur­
viving spouse annuity required under the law: 50% of the accrued nor­
mal retirement benefit, reduced to an early commencement date se­
lected by the spouse using plan actuarial equivalence assumptions, and 
converted into a 50% joint and survivor annuity as if the participant had 
survived to that date and selected the 50% jOint and survivor annuity 
as the optional form. Or the plan could provide the full accrued annu­
ity certain benefit to the spouse, if the spouse survives to the earliest 
retirement date for the participant. Or the plan could provide the full 
annuity certain benefit to any designated beneficiary. 
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3.2 Comparison with Cash Balance and Pension Equity Plans 

A typical age-graded cash balance plan might have the benefit struc­
ture shown in the first row of Table 3. With respect to a pension equity 
plan, the second row of Table 3 shows a reasonable age-graded design, 
where the entries in the table are the points (percentages) of final five­
year average pay that serve to define the lump sum value under the 
plan. 

Table 3 
Pay Credits for a Typical Age-Graded Plan Design 

Plan Age Groups 
< 30 30-34 35-39 40-44 45-49 50-54 ~ 55 

CBP 5% 6% 7% 8% 9% 11% 13% 
PEP 5% 6% 8% 9% 11% 14% 18% 
Notes: CBP "" Cash balance plan, and PEP = Pension equity plan. 

Table 4 
Months of Payment Accrual 

For a Service-Graded Annuity Certain Plan 
Service (in Years) 1-5 6-10 11-15 16-20 21-25 ~ 26 
Accrual (in Months) 6 6 5 5 4 3 

Now consider a service-graded annuity certain plan as defined in Ta­
ble 4. Assume that the benefit is 40% of final five-year average pay and 
a 4% interest rate is used to define the reduction for pre-65 commence­
ment and to determine actuarial equivalence. If the value of the annuity 
certain at ages under 65 were to be paid as a lump sum using the 4% 
rate and if the cash balance plan credits 5% interest each year at year 
end and pay credits are also made at year end, then the lump sum value 
of the annuity certain plan, the accumulated value of the cash balance 
account, and the value of the account under the pension equity plan for 
an employee hired at age 35 and achieving 4% annual pay increases are 
almost identical as shown in Figure 1. Similar results (almost identical 
value curves) are obtained for other hire ages. 

These examples show that the annuity certain plan can be designed 
to produce benefits that have lump sum values similar to those pro­
duced by the two most popular types of hybrid plans. 
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Figure 1: End of Service Value as a Percentage of Final Average Pay 

With respect to valuation, the determination of funding and expense 
amounts could be handled easily in a spreadsheet. If no pre-retirement 
decrements were assumed and retirement were assumed to occur only 
at normal retirement age, the normal cost would simply be the dis­
counted value (at valuation interest rate) of the number of projected 
payments expected to be earned during the year. Actuarial accrued lia­
bility would be the discounted value of the number of payments earned 
to date. 

3.3 Uses of Annuity Certain Plans 

Annuity certain plans might be appealing to professional service cor­
porations whose defined contribution plans' contribution limits have 
been reached. An annuity certain plan would be a straightforward way 
for the corporation to defer additional compensation, especially be­
cause of the guaranteed series of payments (assuming he or she does 
not convert to a lifetime annuity) and the relative ease of valuation. 
Investment risk could be reduced significantly if the plan were to be 
funded with conservative fixed-income investments of appropriate ma­
turities. 

This design might also be used for a supplemental executive retire­
ment plan for a larger company. Suppose, for example, that the com­
pany wished to encourage executive retirement at age 60, and that its 
qualified penSions plans (either defined benefit or defined contribution) 
provided no subsidies for pre-age 65 retirement. A 60% plan with six 



Dydo: A New Hybrid Defined Benefit Plan Design 57 

months of payment for each year of service, with a maximum of 15 years 
counted, would allow for such early retirement by allowing the execu­
tive to defer commencement of his qualified benefits for up to 7.5 years. 
Used in this manner, the annuity certain plan might be viewed as a way 
to provide early retirement subsidies not available in the qualified plan. 

In general, then, the annuity certain plan may be beneficial for ex­
ecutives retiring at earlier than typical ages. Executives tend to retire 
at earlier ages than other employees and the annuity certain form of 
payment provides a bridge that would allow the executives to manage 
their investments more aggressively over a longer period or, perhaps, 
delay commencement of benefits provided by other plans until normal 
retirement age 

Also, the simplicity of the design should make it easy for execu­
tives and their financial planners to place a value on the benefit. It has 
been our experience that financial planners are often confused by tra­
ditional defined benefit plans. Measuring the value of the benefit from 
an annuity certain arrangement does not require any background in life 
contingencies. 

The current legal and regulatory objections to hybrid plans do not 
apply to the annuity certain plan because benefits are based solely on 
service and are converted into a single life annuity using only an age-55 
annuity factor. Larger corporations looking for a defined benefit plan 
with a hybrid-like accrual pattern coupled with an easy-to-understand 
formulation should consider a plan of this type. 

Finally, a plan of this type could be designed to complement a com­
pany's 401(k) plan by allowing deferral of the date of benefit commence­
ment for the 401(k) plan. This deferral period could provide employees 
a safeguard against market decline in the several years immediately be­
fore and after retirement. 

4 Closing Comments 

Defining a retirement benefit as a limited number of monthly pay­
ments, paid regardless of survivorship, linked to both the time period 
of employment and the earnings either throughout or near the end of 
the employment period, and commencing on a fixed date are the defin­
ing features of an annuity certain plan. This type of defined benefit 
plan can provide value accrual patterns similar to those of today's typ­
ical hybrid plans. In addition, it should not run afoul of actual and 
proposed legal restrictions. 
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1 Introduction 

The concepts of duration and convexity are commonly used in the 
field of asset-liability management. They are important because they 
provide key measures of sensitivity of the price of a financial instru­
ment to changes in interest rates and they help develop methodologies 
in interest rate risk management. Traditional approaches used by finan­
cial intermediaries often allowed for borrowing at short-term interest 
rates, relatively lower, and investing at longer-term interest rates, rela­
tively higher, hoping to earn substantial profits from the difference in 
the level of the two interest rates. Interest rate risk management utiliz­
ing the concepts of duration and convexity helps point out the dangers 
of such a Simplistic approach and develops alternatives to it. Thus, the 
thorough understanding of these two concepts must be an important 
part of the education of today's actuaries. In North America, the in­
troduction of the concepts of duration and convexity now occur fairly 
early in the actuarial examination process. The new Society of Actuaries 
examination system starting in May 2005 will introduce these concepts 
in the new Financial Mathematics (FM) examination at the level of old 
Course 2 Society of Actuaries examination. They also are presented in 
the Society of Actuaries Course 6 examination, as well as Casualty Ac­
tuarial Society Examination 8, based on the more theoretical approach 
of Panjer (1998) and the more practical ones of Fabozzi (2000) or Bodie, 
Kane, and Marcus (2002). 

There is a split in the way duration and convexity are generally pre­
sented in the finance and actuarial literature: from a theoretical per­
spective as rates of change or from a practical perspective as weighted 
average time to maturity (for duration) or weighted average square of 
time to maturity (for convexity). These two perspectives are naturally 
connected, but the nature of connection are not explicitly discussed in 
the educational actuarial literature. 

The objective of this paper is to fill the existing void and give a gen­
eral overview of the two fundamental concepts. This paper is presented 
at the level where it is accessible to students who have completed three 
semesters of calculus and one or two semesters of probability, Le., at 
the level of the current Course P Society of Actuaries examination on 
probability, and have a working knowledge of the theory of interest 
as presented in the text by Kellison (1991). We hope that this paper 
will allow future actuaries to combine the theoretical and the practical 
approaches in their education and training. 
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2 Duration 

2.1 Duration as Derivatives 

Duration is a measure of the sensitivity of a financial asset to changes 
in interest rates. It is based on the assumption of using only one interest 
rate, which commonly is interpreted as a flat yield curve assumption. 
As a change in an interest rate amounts to a parallel shift in a flat yield 
curve, use of duration also commonly is said to assume a parallel shift 
in the yield curve. 

For a given interest rate i, let 8 denote the corresponding force of 
interest, which satisfies 8 = In(l + i). Thus if P is the price of a financial 
asset, we often write P as a function of the interest rate i as P(i) or as 
a function of the force of interest 8, P(8). This notation is necessitated 
by the simultaneous use of the interest rate and the force of interest in 
our presentation. 

Definition 1. The duration of a security with price P is 

1 dP d 
D (P) = --- = --In(P) 

P di di . (1) 

We should emphasize the following features of this definition: (0 it 
makes no assumptions about the type or structure of the security; (ii) it 
applies whether or not the cash flows of the security are dependent on 
interest rates; (iii) it applies whether or not the security is risk-free; and 
(iv) it applies whether or not the security contains interest rate options. 
This definition applies to all securities, including bonds, mortgages, 
options, stocks, swaps, interest-only strips, etc. Later in this paper we 
will analyze this definition under some specific assumptions about the 
security. 

The term -dP /di usually is termed the dollar duration of the secu­
rity. We propose to abandon this term for a less restrictive one: mone­
tary duration, which we believe to be better because of lack of reference 
to a specific national currency. 

Because of the standard approximation of the derivative with a dif­
ference quotient, we see that for sufficiently small tli: 

P(i-tli)-P(i) 

D (P) ~ P (i - tli) - P (i) = ___ P---,--(t-,-') __ 
P (i) tli tli 

(2) 

Equation (2) means that duration gives us the approximate ratio of the 
percentage loss in the value of the security per unit of interest rates, a 
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commonly used approximation. Note also that because the loss in the 
value of the security [P (i - t.i) - P (i) 1 / P (i) is expressed as percent­
age and t.i is in percent per year (if the interest rate used is annual, a 
common standard), the unit for duration is a year (or, in general, the 
time unit over which the interest rate is given). 

Instead of defining duration in terms of the derivative with respect 
to the interest rate, one could define duration with respect to the force 
of interest as follows: 

Definition 2. The Macaulay duration of a security with price P is 

1 dP d 
DM (P) = -Ii do = - do InP. 

Clearly these two definitions of duration are connected because 

Hence it follows that 

dP dP do 
di do de 

1 
D (P) = -1 -.DM (P). 

+ t 

(3) 

(4) 

Suppose we have n securities, and let Dur (Pk) be either the duration 
or Macaulay duration of the kth security whose price is Pk > 0, for 
k = 1,2, ... , n. If a security has price P > ° that is a linear combination 
of the prices of these n securities, i.e., 

(5) 

where the bkS are constants, then it follows directly from the definition 
of duration or Macaulay duration that 

(6) 

2.2 Duration as Weighted Averages 

Let At denote the known non-zero cash flow at time t produced 
by a security under consideration, and let T denote the set of future 
time points at which the security's cash flow occurs. For simplicity we 
further assume that At does not depend on i. Throughout this paper 
we say a security has deterministic cash flows when its cash flows do 
not depend on the interest rate. At first, we will assume that the cash 
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flows are discrete and that there is only one interest rate regardless of 
maturity (Le., the yield curve is flat). 

Then the present value of the security, Le., its price, is: 

P = L At t. 
tel (1 + i) 

In this case, monetary duration is given by: 

dP tAt 1 
- di = L (l+d+1 = (l+i) L tPV(At), 

tel tel 

where 

At 
PV(At ) = t 

(1 + i) 

(7) 

(8) 

is the present value of the cash flow At. The duration of this security 
is therefore: 

1 tAt 1" 
D (P) = P- L . t+1 = -(1 ') L tWt 

tE'l (1 + t) + t tE'l 
(9) 

where Wt is the weight function 

Wt = PV(Atl/P. (10) 

Thus duration turns out to be a weighted average time to maturity, mod­
ified by the factor 1/(1 + i). For this reason, the concept of duration 
as introduced in equation (1) is commonly called modified duration for 
securities with deterministic cash flows. For securities with cash flows 
that are dependent on interest rates, which causes the cash flows to be 
random in nature if interest rates are random, duration is most often 
termed effective duration. For such securities, however, duration still 
is defined as in equation (1). 

The weighted average time to maturity concept is actually the orig­
inal idea of duration. For a security with deterministic cash flows, 
Macaulay (1938) defined duration as 

1" tAt " DM (P) = - L t = L t Wt· 
P tE'l (1 + i) tE'l 

(11) 

If the weights Wt are positive, we can introduce a discrete random vari­
able T with probability distribution with IF' (T = t) = Wt. It then be­
comes clear from equation (11) that the Macaulay duration is the ex­
pected value of T for this probability distribution, Le., DM (P) = lE (T). 
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We quickly can see from equation (11) that the duration of a single 
payment at a future time t is t I (1 + i) and its Macaulay duration is t. 

2.3 Duration Using Nominal Rates 

Duration can be calculated with respect to nominal interest rates, 
such as semi-annual rates (i(2)), quarterly rates (i(4)), or (i(l2)). Recall 
the definition of a nominal rate, i(m), as given in Kellison (1991): 

(1 + i:)) m = (1 + j)m = 1 + i = eO 

where j = i(m) 1m. Therefore 

~ _ ( i(m))m-l 
di(m) - 1 + m 

and 

do do di 1 

1 + i 
1 

Urn) 

+m 

The definition of duration with respect to i(m) is 

It is easy to prove that 

D(m) (P) = _ 1 ~ 
Pdi(m)' 

D (m) = 1 + i 1 
--'=(mC7) D = '(m) DM. 1+_[_ 1+_[_ 

m m 

(12) 

(13) 

(14) 

(15) 

It is not common to consider the case of continuous stream of pay­
ments for calculation of duration, because such securities do not exist 
in reality. We briefly consider such hypothetical securities for purely 
theoretical purposes. Suppose a security has continuous cash flows of 
Atdt in (t, t + dt), with a constant force of interest O. The security's 
price, P, is given by 

00 

P (0) = fe-to Atdt 
o 

assuming the integral exists. Its Macaulay duration is: 

(16) 
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'" f te-tc'i Atdt 
DM (P (8)) = - pi (8) = -:c0",:--__ 

P (8) f e-tc'i Atdt 
(17) 

° 
2.4 Some Examples 

Thus far we have assumed that the security's cash flows do not de­
pend on the interest rate. What if there is such dependence? We will 
now consider a few examples of such securities. 

Example 1. Consider a discrete security paying a cash flow At = etli 

at a single time t. Its price (present value) is P = 1. As -dP Id8 = 0, 
and the duration of this security is zero. From equation (6), any linear 
combination of instruments like this, paying the accumulated value of 
a monetary unit at a given interest rate, also will have durati.on of zero. 

Example 2. Similarly, if a discrete security with a single cash flow of 
At = e(t-l)c'i at time t, its price is P = e-c'i and duration of 1. 

These two examples illustrate the well-known fact that floating rate 
securities1 indexed to a short term rate (Le., rate that resets somewhere 
between times 0 and 1 year) have durations between 0 and 1. By using 
the same argument, one can show that the duration of a floating rate 
security that resets every n-years and with no restrictions on the level 
of the new rate after reset (so that the new rate can fully adjust to the 
market level of the interest rates) is the same as the duration on an 
otherwise identical n-year bond. 

Example 3. Consider a security that is an n-year certain annuity-imme­
diate with level payments of 11m made m times per year for n years, 
i.e., payments are made at times 11m, 21m, ... ,(nm - 1) 1m. Assuming 
a constant interest rate to maturity of i, the price of this security is 
P = a£ll. It follows that the Macaulay duration of this security is: 

nm k 
( m)) 1 I 1 . _!£ 

DM a,..,.,· = -- - . - . (1 + t) m 
nit aim) m m 

11ltk;1 

1 n 
(18) 

1 Floating rate securities are securities whose coupons reset, i.e., change in a manner 
consistent with the market level of interest rates. 
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I 
where d(m) = 1 - (1 + i)-iii. 

Example 4. On the other hand, if the security under consideration is a 
continuous annuity paid for n years, then its price is P = linl i and its 
Macaulay duration is 

DM (linli) = ~ - enon_l' (19) 

The price and duration follow directly from those in example 3 above 
by letting m ~ 00 in a¥ll and in equation (18). 

Note that the second terms in (18) and in (19) are identical. When 
n ~ 00, the limit is 1 I d(m), which is the price of a discrete perpetuity­
immediate, and 1 18, which is the price of a continuous perpetuity. Note 
that the duration of a continuous perpetuity is its price. 

Example 5. What would be the Macaulay duration of a perpetuity-due? 
As every payment of such a perpetuity arrives exactly an m th of a 
year before the corresponding payment of a perpetuity-immediate, its 
Macaulay duration is 

1 1 1 
----= 
d(m) m i(m)' 

Thus the Macaulay duration of a perpetuity-due is the price of the 
corresponding perpetuity-immediate, while the Macaulay duration of a 
perpetuity-immediate is the price of the corresponding perpetuity-due. 

Example 6. Finally, consider a security that is a risk-free bond with 
principal value of one dollar, maturing n years from now, paying an 
equal coupon of r(m) 1m per unit of principal value m times a year at 
the end of each mth of a year, with i(m) being the nominal annual yield 
interest rate compounded m times a year at the time of bond issue and 
i being the annual effective interest rate. The price of this bond is 

P = r(m)a0;) + (1 + i)-n 
nlf 

and its Macaulay duration, calculated here as a weighted-average time 
to maturity as in equation (11), is: 
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DM (P) = - L -. - . (1 + i)-iii + n . (1 + i)-n 1 [nm (k r(m) k ) 1 
P k=l m m 

= .!. [r(m) (Ia)(m! + n(1 + i)-n] 
P nlt 

1 [r(m) .. (m) (r(m)) . -n] 
= P i(m) anl i + i(m) - 1 n(1 + t) . (20) 

If the bond is currently trading at par then r(m) = i(m) so that the price 
of the bond is P = 1 and its Macaulay duration reduces to 

D (P) - .. (m) 
M - anl i' (21) 

2.5 Effective Du ration 

In the above examples there was a direct functional relationship be­
tween the cash flows and interest rate. In practice, however, securities 
have complex relationships between cash flows and interest rates, and 
one cannot generally write a direct functional relationship between the 
cash flows and interest rate. In such cases duration is usually estimated 
rather than directly calculated. 

The standard approximation approach is to use the Taylor series 
expansion of the price as a function of interest rate: 

P( ' A') P(') dP A , 1d
2
P(A')2 

t + ut = t + di ut + "2 di2 ut + ... (22) 

Ignoring terms involving (~i)2 and higher yields 

dP1 P(i)-P(i+~i) 

-diP"" (~i)P(i) (23) 

and 

dP1 P(i-~i)-P(i) 

- di P "" (~i) P (i) 
(24) 

We obtain a commonly used approximation of duration by averaging 
the right side of equations (23) and (24) yields 

D (P) "" P (i - ~i) - P (i + ~i) 
E 2P(i)(~i)' 

(25) 
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Because this approximation can deal with any interest rate and/or any 
default options embedded in the security, DE(P) is often called an 
option-adjusted duration or effective duration. 

3 Convexity 

For any security with price P, the quantity: 

1 d 2P 
e (P) = P di2 

is called the convexity of the security, and 

1 d 2P 
eM (P) = p d<F 

(26) 

(27) 

is called the Macaulay convexity of the security. As PDM (P) = -dP jd8, 
the monetary duration of the security, we also have: 

e (P) = -~!£ (p. D (P)) = D2 (P) _ dDM (P) 
M P d8 M M d8' (28) 

The quantity 

M2 (P) = d
2 

(In (P)) = _ dD (P) 
di2 di 

(29) 

is called the M -squared of the security, while 

M2 (P) = d
2 

(lnP) = _ dDM (P) = e (P) _ D2 (P) (30) 
M d8 2 d8 M M 

will be termed the Macaulay M -squared. 
For a security with discrete deterministic cash flows so that P 

LtE'l Ate-M , we have 

(31) 
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where Wt is defined in equation (10), 

and 

Mk (P) = ~ I (t - DM (P))2 e- Ot A t 
tE'J 

= I Wt (t - DM (p))2, 
tel 

dMk (P) = _~ I (t - DM (P))3 e- Ot At 
dc5 P tE'J 

= - I Wt (t - DM (p))3 . 
tE'J 

69 

(32) 

(33) 

Similar expressions can be developed for C (P), M2 (P), and dM2 (P) / di. 
Equation (32) allows for a relatively simple and intuitive interpreta­

tion of Macaulay duration, Macaulay convexity, and Macaulay M -squared 
of a deterministic security. As we stated before, assuming cash flows 
are positive, Macaulay duration is the expected time to cash flow with 
respect to the probability distribution whose probability function (or 
probability density function, in the case of continuous payments) is 
iT (t) = Wt. Macaulay convexity is the second moment of this random 
variable, and Macaulay M-squared is the variance of it. This means 
that Macaulay duration can be interpreted intuitively as the expected 
time until maturity of cash flows of a security, Macaulay M-squared is 
the measure of dispersion of the cash flows of the said security, and 
Macaulay convexity is a sum of Macaulay M-squared and the square of 
Macaulay duration. 

By the chain rule of calculus, 

and 

which means that 

dP 
di 

1 dP 
(1 + i) dc5 

d
2
P d ( 1 dP) 

di2 = di 1 + i dc5 
1 dP 1 d2P 

=- -+ --
(I + 0 2 dc5 (1 + i)2 dc52 ' 

C 1 D 1 C 
= (1 + 0 2 M + (1 + 02 M· 

(34) 

(35) 

(36) 
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For M2 = C - D2, we easily can prove that 

(37) 

For a security with discrete deterministic cash flows At (at time t) and 
price P given in equation (7), then 

111 c= 22:t(t+l)Wt= 2CM+ 2DM. (38) 
(1+i) t~O (l+i) (l+i) 

If this security consists of a single payment at time t, then its Macaulay 
convexity is t2 and its convexity is 

c = t 2 + t = t (t + 1) 
(l+i)2 (l+i)2 (l+i)2' 

(39) 

its Mk is 0, and its M2 is t/ (1 + i)2. 
Again, we suppose there are n securities. This time, however, we 

let Conv (Pk) be either the convexity or Macaulay convexity of the kth 

security whose price is Pk > 0, for k = 1,2, ... , n. If a security has price 
P > ° given by equation (5), where the hs are constants, then it follows 
directly from the definition of convexity or Macaulay convexity that: 

n P 
Conv (P) = 2: bk ; Conv (Pk) . 

k=l 
(40) 

If a security has embedded options (such as direct interest rate op­
tions, prepayment option, or the option to default), then the only prac­
tical calculation of convexity is as an approximation. Using the Taylor 
series expansion of equation (22) and ignoring terms in powers of (~i)3 
and higher yields 

P (. ~ ') P ( ') dP ~' 1 d
2 
P (~ ')2 

t + t - t ~ di t + "2 di2 t 

P (i - ~i) - P (i) ~ ~~ (-~i) + ~ ~:; (_~i)2 
which are summed to give the following approximation to 
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!:; (ili)2 "" P (i - ili) - 2P (L) + P (i + ili). 

It follows that 

c= d 2P! "" P(i-ili) -2P(i) +P(i+ili) 
di2 P P (i) (ili) 2 

(41) 

which is a popular approximation to C that is used for securities with 
interest sensitive cash flows. 

For nominal interest rates, the convexity measure with respect to 
i(m) is based on the following result: 

d
2
P d (dP) d ( 1 dP) 

d (i(m))2 = di(m) di(m) = di(m) 1 + i<;) d8 

1 d 2P 1 1 ( dP) 
= (1 + i<;)) 2 d82 + (1 + i<;)) 2 m - d8 . 

Therefore, convexity with respect to i(m), c(m), is 

c(m) - 1 C + lID (42) 
- (1 + i<;)) 2 M (1 + i<;)) 2 m M· 

It is worthwhile to note that for m - 00, equation (42) becomes equation 
(36). For m = 1, the right side of equation (42) reduces to CM, indicating 
consistency in both boundary cases. 

Let us illustrate the concepts of duration and convexity with a simple 
example. 

Example 7. Consider a bond whose current price is 105 and whose 
derivative with respect to the yield to maturity is -525. The yield to 
maturity is an annual effective interest rate of 6%. Then the duration of 
the bond is: 

1 dP 1 
-p . di = -105 x (-525) = 5. 

Because the effective measure of duration is equal to the Macaulay du­
ration divided by 1 + i, we also can calculate the Macaulay duration of 
this bond as 5 x 1.06 = 5.30. Now suppose that for the same bond, the 
second derivative of the price with respect to the interest rate is 6720. 
Then its convexity is: 

1 d 2P 1 
P . diZ = 105 x 6720 = 64. 
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4 Classical Immunization 

Assume that a financial intermediary has assets, A (i), and liabilities, 
L(O, that depend on the interest rates. Then the surplus, or capital, of 
the intermediary, S(i), is defined as 

S(i) =A(O -L(i). 

Though in practice the surplus value may be established not by the 
market, but by the regulatory or accounting prinCiples, it is important 
that managers of a financial intermediary understand the relationship 
of surplus value (market value) to interest rate changes. 

Redington (1952) proposed an integrated treatment of assets and lia­
bilities through the study of the surplus function S (i). Suppose the ob­
jective of the financial intermediary is to prevent the surplus level from 
changing solely due to interest rate changes. One possible approach to 
achieving this objective is to structure the assets and liabilities so that 
the change in the value of S to be close to zero for infinitesimal changes 
in interest rates, i.e., to have t:J.S "'" 0 for t:J.i "'" O. This implies that the 
financial intermediary must set 

dS dA dL 
di = di - di = 0, (43) 

i.e., the monetary duration of assets must be equal to the monetary 
duration of liabilities. If, additionally, the financial intermediary wants 
to ensure that slight interest rate changes yield an increase in the level 
of its surplus, the following condition must hold: 

dZS 
diz > 0, (44) 

Le., the surplus is a convex function of the interest rate. This convexity 
can be achieved by having assets of greater monetary convexity than 
that of liabilities. 

Suppose, instead, the intermediary was more concerned with pro­
tecting the ratio of its assets to liabilities, rather than protecting the 
actual surplus level. Z In such a case, the intermediary would be inter­
ested in setting the derivative with respect to the interest rate of the 
ratio of assets and liabilities to zero, while keeping its second deriva­
tive positive. As the natural logarithm is a strictly increasing function, 
however, we can transform this ratio as follows: 

2This may be a result of the common regulatory concern with capital ratio (i.e., ratio 
of surplus to assets) or management's desire to control risk by monitoring the capital 
ratio. 
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. (AU)) R (t) = In L (i) . 

To protect the surplus ratio level, we set dR/ di = 0, i.e., 

dln(A(i)) dln(L(i)) 

di di 
(45) 

or, equivalently, set the duration of assets equal to the duration of lia­
bilities and simultaneously set d 2 R/ di2 > 0, i.e., 

d 2 In(A(i)) d 2 In(L(i)) 
di2 > di2 ' 

(46) 

i.e., ensure that the M2 for the assets is greater than the M2 for the 
liabilities. When durations of assets and liabilities are equal, greater 
M2 is equivalent to greater convexity, so this condition can be restated 
as convexity of assets exceeding convexity of liabilities. The approach 
of equations (45) and (46) is the most common form of classical im­
munization and is considered to be the standard for applications of 
immunization. 

We should note that classical immunization has many critics, includ­
ing the present authors, because it violates the no-arbitrage principle of 
pricing capital assets (Gajek and Ostaszewski, 2002, 2004; Ostaszewski, 
2002; and Ostaszewski and Zwiesler, 2002, as well as Panjer, 1998, 
Chapter 3). The more commonly quoted criticisms of classical immu­
nization include the following: 

• Immunization assumes one interest rate, i.e., flat yield curve, which 
only moves in parallel shifts; 

• Immunization assumes only instantaneous infinitely small change 
in the yield curve, and, of course, such changes are not usually 
experienced in practice; and 

• Immunization requires continuous costly rebalancing due to the 
continuous changes in the underlying values of the assets and 
liabilities that result in changes in durations and convexities. 

Interestingly, many problems with immunization can be avoided 
with relatively small modification of the idea. Instead of trying to un­
realistically assure that 6.5 = 5 (i + 6.i) - 5 (i) is always nonnegative, 
one can instead try to bound 6.5 from below by a (possibly negative) 
quantity that can be made as large as possible via a proper choice of 
the asset portfolio. We will briefly outline this approach. Note that 
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605 = 5 (i + 6oi) -5 (i) = L 5t ( (1 + d - 1) (47) 
t>o(l+i)t (l+i+60d ' 

where 5t is the net surplus cash flow at time t. Hence, by the Schwartz 
Inequality, we have: 

6oS~-(L sl )~(L( (l+d _1)2)~ 
t>O (1 + i)2t t>O (1 + i + 60d 

(48) 

Therefore, the change in surplus value is bounded from below by 
a product of two quantities: the first one depending on the portfolio 
structure, and the second one depending only on the change in the 
interest rate. It is clear from (48) that 60S might be negative, but if we 
find a way to decrease the quantity: 

S2 
L(l t.)2t' 
t>O + t 

which can be termed the immunization risk measure, then we can re­
duce the risk of decline in surplus value, at least in the worst case sce­
nario. This approach is analyzed in detail by Gajek and Ostaszewski 
(2004). 

Suppose that your company is planning to fund a liability of $1 mil­
lion to be paid in five years. Assume that the current yield on bonds of 
all maturities is 4%. Your company can invest in a one-year zero-coupon 
bond or a ten-year zero-coupon bond to fund this liability. Find the 
amounts of the two bonds that should be purchased in order to match 
the duration of the liability. Will such duration-matched portfolio im­
munize the liability? 

The present value of the liability is: 

l~~g~~O ~ 821927.11. 

The Macaulay duration of the liability is five. Its duration is 

5 
1.04 ~ 4.76190476. 

Let us write w for the portion of the asset portfolio invested in the 
one-year zero-coupon bond. Then 1 - w is the portion invested in the 
ten-year zero-coupon bond. The duration of the asset portfolio is the 
weighted average of durations of those two zero-coupon bonds, i.e., 
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1 10 10 9w 
1.04 x w + 1.04 x (1 - w) = 1.04 - 1.04' 

In order to match the duration of the liability, we must have 

10 9w 5 
-----
1.04 1.04 1.04 . 

Therefore, 9w = 5, and 

5 
w = "9 ~ 55.56%. 

In order to match durations, we must invest 55.56% of the portfolio in 
the one-year zero-coupon bond and 45.44% in the ten-year zero-coupon 
bond. 

Immunization requires that the asset portfolio has convexity in ex­
cess of that of the liability. The convexity of the liability is: 

5x6 
1.042 ~ 27.7366864. 

The convexity of the asset portfolio is: 

~ 1 x 2 ."! x 10 x 11 ~ 46 2278107 
9 x 1.042 + 9 1.042 • • 

Therefore, the asset portfolio has convexity in excess of that of the 
liability, and the portfolio is immunized. 

5 Yield Curve and Multivariate Immunization 

5.1 The Yield Curve 

So far we have assumed the same interest rate for discounting cash 
flows for all maturities. In practice, however, the rates used for dis­
counting cash flows for various maturities differ. This can be seen 
by comparing the actual interest rates for pure discount bonds, also 
known as zero coupon bonds, i.e., bonds that make only one payment 
at maturity, and no intermediate coupon payments. These bonds are 
discounted at different rates that depend on their remaining term to 
maturity. 

The yield curve or term structure of interest rates is the pattern of 
interest rates for discounting cash flows of different maturities. The 
specific functional relationship between the time of maturity and the 
corresponding interest rate is usually called the yield curve, especially 
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when represented graphically, while term structure of interest rates is 
the general description of the phenomenon of rates varying for different 
maturities. When longer term bonds offer higher yield to maturity rates 
than shorter term bonds (as is usually the case in practice) the pattern of 
yield rates is termed an upward sloping yield curve. If yield to maturity 
rates are the same for all maturities, we call this pattern a flat yield 
curve. Finally, a rare, but sometimes occurring, situation when longer 
term yield to maturity rates are lower than shorter-term ones, is termed 
an inverted yield curve. 

When practitioners estimate the yield curve, they begin with the 
yield rates of bonds that are perceived to be risk-free. In the United 
States, the most common bonds utilized as risk-free bonds are those is­
sued by the federal government, Le., United States Treasury Bills (those 
with maturities up to a year), Treasury Notes (those with maturities be­
tween one and ten years), and Treasury Bonds (those with maturities of 
ten years or more). But this explanation does not make it clear what in­
terest rate is used in the yield curve for each maturity. There are three 
ways to define the yield curve (and term structure of interest rates): 

1. Assign to each term to maturity the yield rate of a risk-free bond 
with that term to maturity and trading at par, Le., trading at its 
redemption value. The resulting yield curve is termed the bond 
yield curve; 

2. Assign to each maturity the yield rate on a risk-free zero-coupon 
bond of that maturity. This yield curve is called the spot curve, 
and the interest rates given by it are called spot rates; and 

3. Use the short-term interest rates in future time periods implied 
by current bond spot rates. 

Let us explain the concepts of short-term interest rates and forward 
rates. A short-term interest rate (or short rate) refers to an interest 
rate applicable for a short period of time, up to one year, including the 
possibility of an instantaneous rate over the next infinitesimal period 
of time. A spot interest rate (or spot rate) for maturity n periods, Sn, 

is an interest rate payable on a loan of maturity n periods that starts 
immediately and accumulates interest to maturity, n = 1,2, .... A single 
period forward interest rate (or forward rate), it, is an interest rate 
payable on a future loan that commences at time t until time t + 1, 
t = 0,1,2, .... 

If we use the one-year rate as the short rate for the purpose of de­
riving forward rates, we have the following relationship: 
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(49) 

We also have 

(1 + sn)n 
1 + fn-1 = n l' 

(1 + Sn-1) -
(50) 

The yield curve also can be studied for the continuously compounded 
interest rate, Le., for the force of interest, cSt, which is expressed as a 
function of time. 

The distinction between the spot rate and the forward rate is best 
explained by presenting their mathematical relationship. If cSt is the 
spot force of interest for time t and CPt is the forward force of interest at 
time t, then the accumulated value at time t of a monetary unit invested 
at time 0 is: 

t 

( ,,)t Jcvsds 
eUt = eO • (51) 

Therefore we have 
t 

cSt = T f CPsds, 
o 

Le., the spot rate for time t is the mean value of the forward rates 
between times 0 and t. By the fundamental theorem of calculus, 

(52) 

This shows us that CPt > cSt if and only if dcSt/dt > O. 
We will illustrate the use of spot and forward rates with a simple 

example. Suppose a 4%, 1000 par, annual coupon bond with a four­
year maturity exists in a market in which the spot rates are: 

• 1 year spot rate is Sl = 3.0%, 

• 2 year spot rate is S2 = 3.5%, 

• 3 year spot rate is S3 = 4.0%, 

• 4 year spot rate is 54 = 4.5%. 

Then the value of this bond is the present value of its cash flows 
discounted using the spot rates: 
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40 40 40 1040 
1.03 + 1.035 2 + 1.043 + 1.0454 ~ 983.84. 

For the same date, we also can calculate the corresponding one-year 
forward rates at times 0, 1, 2, 3 (Le., from time 0 to time 1, from time 1 
to time 2, from time 2 to time 3, and from time 3 to time 4) as follows: 

• The forward rate from time 0 to time 1 is 11 = 3.0%, same as the 
one year spot rate. 

• The forward rate from time 1 to time 2, denoted by fz, is derived 
from the condition 

(1 + 0.03) (1 + fz) = 1.0352, 

so that 
1.035 2 

1 + fz = l.O3 ~ 1.04002427, 

and 
12 ~ 4.002427%. 

• The forward rate from time 2 to time 3, denoted by 13, is derived 
from the condition 

so that 

and 
13 ~ 5.007258%. 

• The forward rate from time 3 to time 4, denoted by 14, is derived 
from the condition 

so that 

and 
14 ~ 6.014469%. 
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5.2 Multivariate Immunization 

To address some of the weaknesses of classical immunization, Ho 
(1990) and Reitano (1991a, 1991b) developed a multivariate generaliza­
tion of duration and convexity. They replaced the single interest rate 
parameter i by a yield curve vector { = (iI, ... , in), where the coordi­
nates of the yield curve vector correspond to certain set of key rates. 
Reitano (1991a) wrote: "For example, one might base a yield curve on 
observed market yields at maturities of 0.25,0.5,1,2,3,4,5,7,10,20 
and 30 years." The price function is then P(il, ... , in). Instead of ana­
lyzing derivatives with respect to one interest rate variable, one could 
use multivariate calculus tools to study the price function. 

There is one objection that could be raised with respect to this ap­
proach. For example, when analyzing a deterministic function of sev­
eral variables j(XI, X2, ... , xn), it is implicitly assumed that the vari­
ables Xj and Xk are mutually independent, i.e., OXj/OXk = O. This is 
definitely not the case when various maturity interest rates are con­
sidered. Nevertheless, one can study such multivariate models for the 
purpose of better understanding their properties. 

The quantities a InP / Oik are termed partial durations (Reitano, 1991a, 
1991b) or key-rate durations (Ho, 1990). The total duration vector is: 

P'(il, ... , in) 

P(il, ... , in) P (i I , ~ .. , in) (: ~ , ... , ::) . (53) 

One also can introduce the standard notion of directional derivative of 
P(il, ... , in) in the direction of a vector V = (VI, ... , V n ): 

P ' ( . .) _ ( oP oP ) 
ii tl, .. ·,tn = V· ail , ... , oi

n 
(54) 

where the "." refers to the dot product of the vectors. The second 
derivative matrix also can be used to define the total convexity: 

P"(il, ... , in) 1 [ o2p J 
P(il, ... , in) = P(il, ... , in) oikoiz l<k l<n 

(55) 

One now can view the surplus of an insurance firm as a function of the 
set of key interest rates chosen. Applying multivariate calculus, we can 
obtain the two immunization algorithms that are directly analogous to 
the one-dimensional case: 

• To protect the absolute surplus level, set the first derivative (gra­
dient) of the surplus function to zero, i.e., 
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5' (iI, ... , in) = 6, or, equivalently A' UI, ... , in) = L' UI, ... , in) 
~ (56) 

where 0 is the zero vector, with all its components being zero and 
with the symbols A, L referring to assets and liabilities, respec­
tively. In addition we must make the second derivative matrix, 
5" (ii, ... , in), positive definite . 

• To protect the relative surplus level (Le., surplus ratio), set: 

A'Ul, ... ,in) L'Ul, ... ,in ) 
AUI, ... , in) L(il, ... , in) 

(57) 

and make the total convexity matrix positive definite. 

It should be noted (Panjer, 1998, Chapter 3) that key-rate immu­
nization with respect to a large number of key-rates, large enough to be 
effectively exhaustive of all possible rates determining the yield curve, 
forces the immunized portfolio toward an exact cash flow match for the 
corresponding liabilities. While such cash flow matching does provide 
complete protection against interest rate risk, it is generally more ex­
pensive than an immunizing portfolio; if cash flow matching were our 
objective, this entire analysis would have been unnecessary. 

6 Closing Comments 

Duration, convexity, and immunization too often are taught in a 
simplified or even simplistic way and from a perspective somewhat con­
flicting with that of actuarial practice. We hope that this primer will be 
a useful tool for practicing actuaries, and others interested in measures 
of sensitivity with respect to interest rates. 

This paper covers some of the material currently included in the 
Financial Mathematics examination in the new actuarial education sys­
tem in North America effective in 2005, and we hope that our work can 
be of value to candidates studying for that examination. 
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quences of large claims. We characterize clusters of extreme losses and ag­
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1 Introduction 

Of great concern to insurers is the risk arising from catastrophic 
claims. Often such claims represent a relatively large proportion of 
the aggregate claim amount (see Embrechts, Kltippelberg, and Mikosch, 
1997, page 4). Thus, insurers may seek protection through various 
types of reinsurance arrangements such as excess of loss reinsurance. 

In this paper we address the problem of modeling the reinsurer's 
total losses arising from excess of loss reinsurance contracts. The clas­
sic excess of loss (XL) with a given retention level u can be described as 
follows: let Xi denote the size of the ith claim, Zi = min(u, Xi) denote 
amount covered by the cedent (the insurer), and Yi = max(O, Xi - u) 
denote the amount covered by the reinsurer, then Xi = Zi + Yi. If there 
are N claims in the contract period, then the aggregate claim amount 
paid by the reinsurer is the compound sum S, 

N 

s= I Yi. (1) 
i=l 

Typically the number of claims N is modeled by a negative binomial 
(NB(k, p)) or a Poisson (Poisson(i\)) distribution, and Y follows a gamma 
or a Pareto distribution. S has been widely studied in actuarial risk the­
ory; see, for example, Sundt (1982), Embrechts, Maejima, and Teugels 
(1985), McNeil (1997), Berglund (1998), and Klugman, Panjer, and Will­
mot (2004, Chapter 6). 

Consider the two-dimensional random process {Ti, Xd, i = 1,2, ... 
where Ti and Xi are the time and size of the ith claim, respectively. 
Whenever it is realistic to assume that the XiS are independent and 
identically distributed (iid) and independent of the TiS, the problem of 
modeling the insurer's aggregate excess losses S may be split in two 
parts: modeling the number of excess losses N occurring during the 
period and modeling the severity of the individual claim excess Yi. In 
practice, unfortunately, the iid assumption may not hold because the 
two-dimensional random process may possess another subordinated 
process that may induce the occurrence of a sequence of large claims 
that occur in groups or clusters. Examples of such subordinated pro­
cesses are floods, earthquakes, and hurricanes. 

To overcome the problem of local dependence (i.e., short range oc­
casional temporal dependence), we propose to identify clusters of ex­
treme losses and define a new variable Ak to denote the sum of excess 
losses within the kth cluster of extreme losses. It is now reasonable to 
assume that the iid assumption holds for the AkS. By modeling sep-
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arately the number of clusters of excesses C and the severity of the 
aggregated excess losses Ako we have an annual excess losses amount 
of S where 

c 
S = I Aj, 

j=l 

(2) 

where the Ajs are iid and independent of C, the random number of 
clusters. 

There exist alternative approaches to dealing with the problem of 
dependent risks. For example, Heilmann (1986) studied stop-loss cover 
under relaxation of the independence assumption. Kremer (1998) pro­
vided formulae and examples for calculating the premium of general­
ized largest claims reinsurance covers in the case of dependent claim 
sizes. Schumi (1989) developed a method for calculating the distribu­
tion of the total excess losses amount when losses come from different 
sources. The key point Schumi analyzed is that the two distributions 
involved, i.e., the excess over retention limits and the excess over the 
retained annual aggregate, are not independent. Goovaerts and Dhaene 
(1996) also relaxed the independence assumption and showed that the 
same compound Poisson approximation for the aggregate claims dis­
tribution still performs well when the dependency between two risks i 
and j is caused by the dependency between the Bernoulli random vari­
ables Ii and I j , where Ii indicates the occurrence of at least one claim 
for risk i. 

To model the aggregated excess Ai, we use distributions from ex­
treme value theory. More specifically, we use the modified generalized 
Pareto distribution, a powerful and flexible extension of the generalized 
Pareto distribution. This modified generalized Pareto distribution was 
obtained in Anderson and Dancy (1992) as a limit result based on a point 
process representation. In this representation, the (one-dimensional) 
marginals are be a Pareto type distribution. 

Three models of the size of the ith excess loss are compared: 

Modell assumes Yi follows a generalized Pareto distribution and the num­
ber of claims N is a negative binomial or a Poisson distribution. 

Model 2 assumes the severity of the aggregated excess losses Ak follows a 
modified generalized Pareto distribution and the number of clus­
ters C is a negative binomial or a Poisson distribution. 

Model 3 assumes Yi follows a gamma distribution and the number of claims 
N is a negative binomial or a Poisson distribution. 
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The distribution of the (annual) excess losses amount S is obtained by 
convolutions. Results indicate that the proposed Model 2 may yield 
more conservative estimates for premiums. 

Our models may be used by insurers to search for alternative choices 
for the retention limit. In a related work, McNeil (1997) fitted the gener­
alized Pareto distribution to insurance losses that exceed high thresh­
olds using Model 1. He considers the sensitivity of inference to the 
choice of the threshold value and also discusses dependence in the 
data and other issues such as seasonality and trends. 

The remainder of this paper is organized as follows. In Section 2 
we formally introduce our proposed models of the annual excess loss 
amount by considering sums of excess losses within clusters. We pro­
vide some background from extreme value theory that justifies the de­
pendence in the data, the (de)clustering technique, and the use of the 
modified generalized Pareto distribution as an alternative to distribu­
tions often used in classical actuarial risk modeling. Estimation meth" 
ods and statistical tests are also discussed. In Section 3 we illustrate 
the methodology using the Danish fire insurance claims data. Two em­
pirical rules are used to define clusters of excess losses. Distributions 
are fitted to the excess and aggregated excess data to obtain the distri­
bution of S. The three models are then compared. Confidence intervals 
for parameter estimates and for the statistical premium are obtained 
using bootstrap techniques. In Section 4 we consider a higher reten­
tion level and model the upper extreme tail of the fire insurance claims. 
Finally, in Section 5 we give our conclusions. 

2 Modeling Clusters of Excesses Using Extreme 
Value Theory 

Extreme value theory is concerned with the behavior of extremes 
from a stochastic process {XI,X2, ... }. The modeling structure pro­
posed is motivated by the asymptotic results of Mori (1977) and Hsing 
(1987) with respect to a two-dimensional point process of excesses over 
a high threshold u, which governs both the loss size and their arrivals. 
Mori and HSing have shown that under weak long-range mixing condi­
tions, large values of the strictly stationary sequence {Xl, X2, ... } occur 
in clusters, and the two-dimensional point process converges to a non­
Poisson process. They showed that, for the class of possible limiting 
distributions for the two-dimensional point process, the peak excess 
within a cluster converged weakly to a generalized Pareto distribution. 
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As discussed in Anderson and Dancy (1992) and Anderson (1994), un­
der an extreme event and for u sufficiently high, the tail behavior of the 
sum of excesses beyond u should also be of Pareto type. Anderson and 
Dancy (1992) proposed the modified generalized Pareto distribution 
and applied the methods to the analysis of atmospheric ozone levels. 

We propose to characterize clusters of extreme claims and to model 
the sum of excess losses within a cluster using the modified generalized 
Pareto distribution, G~ (y), given by 

{

I - (1 + ~ (.2'.)O)-ln for ~"* 0 and y > 0; 
G~(y) = X 8 tjJ , 

1 - e-(q,) , for ~ = 0 and y > 0; 
(3) 

where e > 0, and l/J > 0 is a scale parameter. The generalized Pareto 
distribution may be obtained from equation (3) by putting e = 1 and 
~ > 0, and the Weibull distribution corresponds to ~ = O. Fitting the 
modified generalized Pareto distribution to the data is equivalent to 
taking a Box-Cox transformation (that is, to consider a new variable 
yO, see Hoaglin, Mosteller, and Tukey (1983)) and modeling the trans­
formed data using a generalized Pareto distribution. We chose to fit 
the modified generalized Pareto distribution, which allows for simul­
taneous estimation of all parameters and for standard statistical tests 
of nested models (sub-models obtained by making restrictions on the 
parameters of the full model, see Bickel and Doksum, 1977). 

Figure 1 illustrates the flexibility of the modified generalized Pareto 
density, with its varying shapes and heavy Ilong tails. In both plots 
~ = 0.3, l/J = 1, and e varies from e = 0.2 up to e = 2.5. When e < 1 the 
densities are strictly decreasing with heavier tails; e = 1 corresponds 
to the generalized Pareto distribution; and when e > 1 the densities 
possess a positive mode. 

We have seen that short range dependence of excess losses results 
in clusters of extreme claims. The frequency and size of these clusters 
depend on the retention level and on the definition of a cluster. In 
practice, the choice of the retention level u is made directly between 
insurer and reinsurer, thus making the definition of a cluster the only 
unresolved issue. 

How should clusters be defined? The answer depends on the type of 
data being used. For example, financial data and environment data cer­
tainly allow for different definitions. We have not found a formal rule 
in the literature. Coles (2001), however, suggests using an empirical 
rule that, for a given u, defines consecutive excesses over u as belong­
ing to the same cluster. Under Coles's method a new cluster starts 
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Figure 1: The Modified Generalized Pareto Density for ~ = 0.3, Scale 
l/J = 1, and Varying Values of e 

after r consecutive values have fallen below u, for some pre-specified 
value of r. Coles's method of cluster identification is also known as the 
runs method. For more details on cluster identification see Reiss and 
Thomas (1997) and Embrechts, Kluppelberg, and Mikosch (1997). 

There is a trade off between choosing a small r (which hurts the inde­
pendence assumption between clusters) and choosing a large r (which 
include data not generated by the same subordinated process). For any 
given data set it is advisable to experiment with different choices for r 
(and u) for cluster determination then check the results for robustness. 
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Figure 2: Time Series of Danish Fire Insurance Claims 

3 Illustration of Our Methodology 

3.1 The Data Set 

89 

Our methodology is illustrated using Danish fire insurance claims 
data, l which consist of 2167 observations of fire insurance claims in 
millions of Danish Kroner (1985 prices) from 1980 to 1990. Figure 2 
shows a time series plot of the data: size of claim (the y-axis) versus 
the total number of days measured from the baseline of 01/01/1980 
up to the time of occurrence (the x-axis). There are only three very 
extreme observations, and, according to McNeil (1997), the data show 
no clustering. In spite of that, this data set is used to illustrate the 
usefulness of the proposed modeling structure and to experiment with 
two declustering strategies and two retention levels. 

Let us define the kth empirical mean excess as the mean of the k 
largest excess observations. Figure 3 shows the empirical mean excess 
function of the data set, which is a plot of the kth empirical mean excess 

lThis data set was kindly made available to us by Paul Embrechts of ETH Zurich. 
It has been used by several authors, including Embrechts, Kliippelberg, and Mikosch 
(1997) and McNeil (1997). 



90 

o 
'<t 

o 
N 

o J V 
u 

Journal of Actuarial Practice, Vol. 12, 2005 

• 
• 

• 

• 
• 

• • 
•••• ; 

u 

50 100 150 

Retention Limits 

Figure 3: The Empirical Mean Excess Function of the Danish Fire Insur­
ance Data 

versus the k + 1 th largest observation. This plot may also be used as an 
exploratory technique for choosing a threshold. The increasing linear 
aspect of the graph indicates that a generalized Pareto distribution with 
~ > 0 might be a valid approximation to the entire data set. 

To help in choosing a retention limit we order the claim sizes from 
smallest to largest. We observe that the largest ten percent of claims 
sizes (Le., the 217 largest claims) add up to almost half (46%) of the total 
claim amount, which is 7,335.486 million Danish kroners. This suggests 
taking the 90 percentile of the empirical distribution as a first choice 
for the retention limit u, Le., U = 5.561735. A second value of the 
retention level, U = 30, is determined by examining the empirical mean 
excess function. Both thresholds are shown in Figure 3. As mentioned 
earlier, the choice of retention limit must also take into account other 
insurance company factors such as operational costs and the amount 
of capital in reserve. 

Throughout the rest of Section 3, we assume U = 5.561735 and 
there are 217 excess losses. This excess of loss data show a long tail 
with three extreme observations. 
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3.2 Estimation and Tests 

The full modified generalized Pareto distribution (MGPD) model, Le., 
MGPD (lfJ, ~, e), is fitted via maximum likelihood to data from the excess 
losses random variable Yi and from the aggregated excesses random 
variable Ai. We use the three constrained models: (i) the Weibull dis­
tribution (Le., MGPD(lfJ, 0, e)); (ii) the generalized Pareto distribution 
(GPD) (Le., MGPD (lfJ, ~,1)); and (iii) the unit exponential distribution 
(i.e., MGPD (lfJ, 0, 1)). For the sake of comparisons, we also fit a gamma 
distribution with mean ~ / lfJ and variance ~ / lfJ2 . 

Although there are other commonly used estimation methods such 
as the method of moments (e.g., Embrechts, Khipelberg, and Mikosch, 
1997) and Bayesian methods (e.g., Reiss and Thomas, 1999), we use 
maximum likelihood estimation due to its desirable asymptotic prop­
erties. The likelihood ratio test is used to discriminate between the 
nested models. The best model is then compared to the gamma fit us­
ing the AIC and BIC criteria, which are criteria based on a penalized 
log-likelihood (Bickel and Doksum, 1977). 

The Poisson distribution with mean A (Poi(A)), and the negative bi­
nomial distribution with mean kp / (1 - p) and variance kp / (1 - p) 2 

(i.e., NB(k, p)) are fitted by maximum likelihood to both Nand C. The 
Pearson chi-square test for discrete data, which is a measure of de­
parture between the observed and expected frequencies of claims (or 
clusters) under the model (Bickel and Doksum, 1977), is used to assess 
the quality of each fit and to choose the best model. The distribution of 
S is obtained by convolutions and the normal approximation. Graphi­
cal tools, such as the qq-plot, are also employed to check the adequacy 
of all fits. 

Overall emphasis is placed on accurately fitting the tail of the claim 
distribution, as this is crucial for obtaining good estimates of the net 
premium and the statistical premium. 

3.3 Fitting Y and N 

Table 1 shows the maximum likelihood estimates of the parameters 
of the distributions fitted to the data. It also shows the log-likelihood 
value (LL), the mean, and the variance of each fitted model. The likeli­
hood ratio tests indicate the full modified generalized Pareto distribu­
tion model yields the best fit to the excess losses. The AIC and BIC tests 
reject the gamma fit in favor of the modified generalized Pareto distri­
bution. Graphical analysis of the modified generalized Pareto distribu-
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tion fit (not shown here) indicates a good adherence of all observations 
but the three extreme ones. 

The Poisson and the negative binomial are fitted by maximum like­
lihood to the 11 observations of the number of excess losses N. The 
Pearson's chi-square test indicates the negative binomial distribution ----assumption for N is reasonable. The estimates are lE [N] = 19.7747 
and vaiiN] = 34.8145, giving the distribution of N as NB(26, 0.568). 

Table 1 
Maximum likelihood Fit for Various Models of Yi 

Using the 217 Excess Losses Data and Retention Limit u = 5.5617 

If; ~ e if[JV'i 
:::=-==:::: 

Model LL Var[Nj 

MGPD -662.5155 3.6270 0.1966 0.7450 9.6178 373.6700 
Weibull -665.2370 3.4697 0.0000 0.6430 9.5738 185.1200 
GPD -669.4158 4.4600 0.5900 1.0000 10.8780 00 

EXPON -716.7387 10.000 0.0000 l.0000 10.0000 100.0000 
Gamma -673.3982 0.0510 0.5100 10.0000 196.0800 
Notes: MGPD = modified generalized Pareto distribution, GPD = generalized Pareto 
distribution, EXPON = exponential distribution 

Summarizing, the best fit for the severity and the number of ex­
cess losses over the retention limit u = 5.561735 are, respectively, the 
MGPD(tIl = 3.6270, € = 0.1966, e = 0.7450)andNB(26, 0.568), which we 
will call Model 1. Under Model 3 the severity has the classical gamma 
distribution with parameters til = 0.0510 and € = 0.5100, and N is 
NB(26,0.568), also shown in Table 1. The 95% non-parametric boot­
strap confidence intervals for the parameter estimates of the two mod­
els, based on 5000 replications of the data, are given in the first and 
third rows of Table 1. 

3.4 Fitting A and C 

First we must use a rule to define a cluster. The runs method is 
applied to the data, and two empirical rules are postulated: 

• Rule 1 requires at least three consecutive days (r = 3) with no 
occurrence of claims exceeding u to separate clusters; and 

• Rule 2 requires at least four consecutive days (r = 4) with no 
occurrence of claims exceeding u to separate clusters. 
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Rule 1 results in a data set of C = 169 clusters, while Rule 2 also results 
in a long right tail data set with C = 158 clusters. Both rules show 
a long tail. Table 2 gives the maximum likelihood estimates of the 
distributions fitted to the sum of excess losses within the 169 clusters 
under Rule 1. 

Table 2 
Maximum Likelihood Fit for Various Models of Ak 

Under Rule 1 with 169 Clusters and Retention Limit u = 5.5617 

cjJ ~ e i[A] 
::=0 ............... 

Model LL Var[Aj 
MGPO -563.5884 4.8634 0.2380 0.7960 12.325 618.93 
Weibull -566.4257 4.3804 0.0000 0.6640 12.349 299.02 
GPO -566.7906 6.2600 0.5200 1.0000 13.042 00 

EXPON -600.4472 12.840 0.0000 1.0000 12.840 164.87 
Gamma -572.3500 0.0420 0.5400 12.857 306.12 
Notes: MGPD = modified generalized Pareto distribution, GPD = generalized Pareto 
distribution, EXPON = exponential distribution 

Under Rule I, all tests indicate the modified generalized Pareto dis­
tribution is the best distribution for the aggregated excess losses. The 
best model for the independent sums of excess losses A over the re­
tention limit u = 5.561735 and the number of clusters of excess losses 
C are the MGPD(cjJ = 4.8634, ~ = 0.2380, e = 0.7960) and the negative 
binomial with parameters k = 34 and fJ = 0.688. This is called Model 
2. 

Under Rule 2 the statistical tests indicate the modified generalized 
Pareto distribution gives the best fit with parameter estimates~ = 

0.856, ~ = 0.306, and !fJ = 5.693. The moments of Ai are lE [A] = 

13.9184, and v-m:[A] = 630.01, which are different from those under 
Rule 1. 

As expected, results change with the choices of cluster definition. 
Our objective in this section, however, is neither to find the best rule 
for this data set nor to find the best value for u. Again, our point here 
is that the differences in estimates of the pair A and C and the pair Y 
and N affect the estimation of the distribution of S (given in Section 4). 
We stress that whenever one suspects about dependence in the data, 
clustering should be investigated and modeled. Thus, we continue our 
analysis using just the aggregated data from the first rule. 
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4 Approximating the Distribution of S 

Let F(s) = Pr[S .::; xl The exact expression for F(s) is known only 
in a few special cases. If the severity distribution is arithmetic, 2 then an 
exact recursive formula may be available. In general, determining F (5) 
is a challenging problem, so approximations are needed. Pentikainen 
(1987) and Klugman, Panjer, and Willmot (2004, Chapter 6) provide an 
excellent discussion of several approximations used by actuaries. 

Pentikainen (1987) describes the normal power approximation, which 
is an improvement on the basic normal approximation. If Jis, CIS and 
:Ys are the mean, standard deviation, and coefficient of skewness of S, 
then the normal power approximation is 

F(s) ~ 1> -- + - + 1 + - --[ 
3 ) 9 6 (5 - Jis ) ] 

:Ys :y§ :Ys CIS 

while the basic normal approximation is 

where 1>(x) is the cdf of the standard normal distribution. The mo­
ments of S are determined using equations 

Jis = lE [Y] lE [N] 

CI} = Var [Y] lE [N] + (lE [Y])2 Var [N] 

lE [(S - Jis)3] = lE [N] lE [(Y -lE [y])3] + 3Var [N] lE [Y] Var [Y] 

+ lE [(N -lE [N])3] lE [y3] . 

For clusters we replace Y and N by A and C, respectively. 
Another approach is via simulation. This is done by simulating from 

the fitted distributions of Y and N (or A and C) and computing the 
convolutions for 5 :2: 0: 

00 

lP' [S .::; 5] = lP' [N = 0] + L lP' [Yl + ... + Yn .::; 5] lP' [N = n] . (4) 
n=l 

2 A discrete distribution is said to be arithmetic with span h > ° if it has a probability 
mass point at some point Xo and its other probability mass points, if any, occur only 
at a subset of the points Xj = Xo + hj for j = ... , -2, -1,0,1,2, .... 
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To numerically approximate the distribution of S, we truncate the in­
finite sum at a very large value of N (or C). In the case of Model 3 the 
convolutions were obtained analytically. 

Table 3 gives estimates of the mean, variance, and coefficient of 
skewness of S each for the three models. Table 4 provides estimates 
of the percentile premiums using simulations and the normal and nor­
mal power approximations. As expected, the light tail of the normal 
distribution underestimates the premiums attached to smaller proba­
bilities. On the other hand, the normal power approximations provided 
results very close to those obtained by convolutions for Model 3, but 
overestimated the premiums for Models 1 and 2. 

Model 
1 
2 
3 

Table 3 
Mean, Variance, and Skewness of S 
Model f1s 6} Ys 

1 190.2 10609.6 1.1363 
2 

3 
190.0 12947.5 
197.8 7358.9 

Table 4 

1.2945 
0.6879 

Percentile Premium Estimates Using Simulations, 
Normal Power, and Normal Approximations 

Convolutions Normal Power Normal 
PO.1O po.os PO.lO po.os PO.1O po.os 
317 374 334.7 392.9 322.2 359.6 
327 394 351.6 419.0 335.9 377.2 
313 354 314.1 355.7 307.7 338.8 

Figure 4 shows, at the left side and for the three models, the plot of 
the percentile premium Pcx as a function of their corresponding cumu­
lative probabilities 1 - ex. For any fixed small exceedance probability, 
smaller premiums are predicted under Models 2 and 3 than under the 
proposed model given in equation (2). For example, for ex = 0.02, the 
premium values are 400,460, and 500, respectively under Models 3, 1, 
and 2. At the right side we can see the corresponding densities, where 
we observe the heavier tail provided by Model 2. The estimates of the 
percentile premiums PO.10 and po.os are given in Table 4. 
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Figure 4: Percentile Premiums and Densities of 5 for the Three Models 

It is always desirable to obtain lower and upper confidence limits for 
the statistical premiums. Using 5,000 replications of the data we ob­
tained their 95% non-parametric bootstrap confidence intervals, shown 
in Table 5. 

For this data set, the graphical analysis based on the fitted and em­
pirical distributions did not provide a clear indication of the best fit 
for 5, probably due to the small sample size of just 11 observations. 
We could observe a nice fitting of the extreme tail of 5 for the three 
models. The Kolmogorov goodness of fit test yielded the test statistic 
values of 0.1696, 0.1611, and 0.1776, respectively for Models 1, 2, and 
3. Because the critical value at the 5% level is 0.398 for a sample of 
size 11, we keep the null hypothesis that 5 is well modeled by the three 
models. The slightly smaller value of the test statistic from Model 2, 
however, is an indication it provides the best fit. 

The results for the Danish insurance data indicate that the modeling 
strategy proposed in this paper may provide a more accurate fit for the 
extreme tails of 5. From the practical point of view, this may be seen as 
an advantage, as more conservative estimates of the statistical premium 
were obtained under Model 2. 
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Table 5 
95% Bootstrap Confidence Intervals for 

Model Parameters and Percentile Premiums 
(p 

)< X 

PO.1O po.os Model ~ e 
1 [2.84,4.53] [0.03,0.46] [0.65,0.86] [250,378] [294,467] 
2 [3.61,6.19] [0.04,0.52] [0.64,0.92] [313,519] [355,610] 
3 [0.03,0.07] [0.44,0.63] [249,358] [279,436] 

5 Summary 

In this paper we focused on the problem of modeling the annual 
excess loss amount S arising from the classical excess of loss contract. 
By assuming that a subordinated process may exist and would be re­
sponsible for a sequence of large claims, we proposed to characterize 
clusters of extreme losses and to aggregate the excesses within clusters. 
Following the classical approach taken in risk theory, we proposed to 
model S by modeling separately the sum of excess losses A within clus­
ters and the number of clusters C. We discussed the influence of the 
de clustering rules adopted and the effects of the retention level values 
chosen. 

To model the aggregated excess claims A we proposed the flexible 
modified generalized Pareto distribution, an extension of the general­
ized Pareto distribution, a well known distribution from the extreme 
value theory. The modified generalized Pareto distribution allows for 
heavy Ilong tails and for different density shapes according to the value 
of its (modifying) parameter e. We provided background from the ex­
treme value theory to justify the presence of dependence in the data 
and the use of the modified generalized Pareto distribution as an al­
ternative to distributions often found in classical homogeneous risk 
modeling in actuarial science. 

The new modeling structure was applied to the Danish fire insurance 
claims data and compared to two classical approaches based on the ex­
cess losses and on the gamma and the generalized Pareto distributions. 
All models were fitted by the maximum likelihood methodology. The 
number of excess claims N and the number of independent clusters C 
were modeled by a negative binomial or a Poisson. Standard statistical 
tests were carried out to discriminate among nested models and to test 
goodness of fits. 
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All tests indicated the modified generalized Pareto distribution as 
the best fit for the excess and for the aggregated excess losses. We ob­
tained the distribution of S by convolutions, normal power approxima­
tion and normal approximation. We found that the proposed procedure 
provided a better fit for the extreme tail of S, being more conservative in 
the estimation of the statistical premium. Confidence intervals for pa­
rameter estimates and for the statistical premium were obtained using 
bootstrap techniques. 

Summarizing, results indicated that more accurate estimation of the 
distribution of the annual sum of excess losses may be obtained by 
modeling the local dependence and by using a more flexible distribu­
tion, able to accommodate different density shapes and longer tails. 

Even though the modeling structure proposed in this paper may 
be used by the insurer to search for a suitable value for the retention 
limit, we did not focus on this issue. For any given data set, the analyst 
should carry out some type of sensitivity analysis, for example by ex­
perimenting with different choices of the threshold value and different 
rules for cluster definition. In practice, and for data showing stronger 
local dependence, this sensitivity analysis is highly recommended. 

Future areas for further research include simulations of data pos­
sessing some known type of dependence structure to assess relation­
ships between different types of dependence and strength of aggrega­
tion. 
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The Log-EIG Distribution 
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Abstract§ 

The log-ErG distribution was recently introduced to the probability litera­
ture. It has positive support and a moderately long tail, and is closer to the 
lognormal than to the gamma or Weibull distributions. Our simulations show 
that data generated from a log-ErG distribution cannot be adequately described 
by lognormal, gamma, or Weibull distributions. The log-ErG distribution is a 
worthwhile candidate for modeling insurance claims (loss) data or lifetime 
data. Examples of fitting the log-ErG to published insurance claims data are 
given. 
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1 Introduction 

In fitting distributions to insurance loss data, several families of dis­
tributions have been proposed. The common characteristics of these 
distributions are their skewness to the right and their long tails to cap­
ture occasional large values that are commonly present in insurance 
loss data. One fundamental question confronting actuaries, reliability 
analysts, and other researchers, however, is the approach used to select 
the best model for a given data set. 

Various approaches have been proposed for discriminating between 
families of distributions. For example: 

• Lehmann (1959) has provided the so-called most powerful invari­
ant test, which is uniformly most powerful in the class of tests 
that are invariant under certain transformations of the data. 

• There is the separate families test based on the Neyman-Pearson 
maximum likelihood ratio; see, for example, Cox (1962). The con­
cept of separate families of distributions is important, as it is nat­
ural to consider competing families in model selection. 

• Geisser and Eddy (1979) have proposed a synthesis of Bayesian 
and sample-reuse approach for model selection. The emphasis 
here is to obtain a model that yields the best prediction for future 
observations. 

• The maximum likelihood ratio test was proposed by Dumonceaux, 
Antle, and Haas (1973) for selecting between two models with un­
known location and scale parameters. This test has the advantage 
that the distribution of the ratio of the two likelihood functions 
does not depend on the location and scale parameters. Gupta and 
Kundu (2003) used this test to discriminate between Weibull and 
generalized exponential distributions. 

• Marshall, Meza, and Olkin (2001) used maximum likelihood and 
Kolmogorov distance methods to compare selected lifetime dis­
tributions, including the gamma, Weibull, and lognormal. 

• Quesenberry and Kent (2001) proposed a method for selecting 
between distributions based on statistics that are invariant under 
scale transformation of the data. As pointed out by Quesenberry 
and Kent, however, for selecting among distributions that involve 
both shape and scale parameters, an optimal invariant procedure 
does not always exist. 
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• Selection based on the goodness-of-fit test, such as Pearson chi­
square and the Kolmogorov-Smirnov tests, often results in more 
than one family of distributions deemed to be fitting the data well. 
This approach therefore does not always lead to selecting the best 
distribution for a given set of data. 

In a recent paper, Guiahi (2001) discussed the issues and methodologies 
for fitting alternative parametric probability distributions to samples 
of insurance loss data. When exact sizes of loss are available, Scollnik 
(2001 and 2002) discussed how the Bayesian inference software pack­
age WinBUGS can be used to model loss distributions. Cairns (2000) 
provides detail discussion on parameter and model uncertainty. 

The degree of difficulty in discriminating between two distributions 
has been explained by Littell, McClave, and Often (1979) and Bain and 
Engelhardt (1980). The problem is that often more than one family of 
distributions may exhibit a good fit to a given set of data. Bain and 
Engelhardt have pointed out that even though two models may offer 
similar degree of fit to a data set (even for moderate sample sizes), it 
is still desirable to select the correct (or more nearly correct) model, if 
possible, because inferences based on the model will often involve tail 
probabilities where the effect of the model assumption will be more 
critical. 

The concept of long-tailed (sometimes called "heavy-tailed") distri­
bution conveys the idea of relatively large probability mass at extreme 
values of the random variable. In the literature, it seems that what con­
stitutes a long-tailed distribution depends on the context of the prob­
lem at hand and the distributions that are compared. For example, in 
analyzing time-varying volatility of financial data, long-tailed distribu­
tions are described as having kurtosis measure larger than the normal 
distribution (see Campbell, Lo, and MacKinlay 1997, pp. 480-481). 

In ruin theory, heavy-tailed distributions are sometimes defined as 
those that satisfy the Cramer-Lundberg theorem for the probability of 
ultimate ruin (see Embrechts, Kluppelberg and Mikosch 1997, p. 43). 
One approach to compare the tail behavior of two arbitrary density 
functions, j(x), g(x), is to examine the ratio j(x)/g(x) as x tends 
to infinity. If g(x) has a heavier (lighter) tail than j(x), then the ra­
tio approaches zero (infinity) as x tends to infinity; see, for example, 
Klugman, Panjer, and Willmot (2004, Chapter 4.3). 

In loss modeling, the concern is usually with the tail of the distri­
bution. Small losses do not cause as much concern as large ones, so it 
is important that the fitted distribution has sufficient probability mass 
in the tail to adequately capture the probability of large losses. This 



104 Journal of Actuarial Practice, Vol. 72, 2005 

is particularly relevant in reinsurance where one is required to price a 
high-excess layer. For this reason, in practice the lognormal and Weibull 
distributions are more often used than the gamma distribution. 

The objective of this paper is to investigate the performance of a new 
model, called the log-EIG distribution, proposed by Saw, Balasooriya, 
and Tan (2002) and to compare it with other commonly used distri­
butions for fitting insurance losses and other applications. It appears 
that the log-EIG has some features that are somewhat different from 
the other commonly used distributions such as the gamma, lognormal, 
and Weibull. In this regard, the log-EIG distribution, which generally 
has a thicker tail than both the Weibull and gamma distributions, is a 
good candidate for modeling loss data. In selecting among competing 
distributions, we employ the Quesenberry and Kent (2001) selection cri­
terion. Using a Monte Carlo simulation study, we investigate the useful­
ness of the log-EIG distribution and its features. We also illustrate the 
practical usefulness of this· distribution through applications to three 
published insurance data sets. For two of these data sets, we show 
that the log-EIG fits the data best, when compared with the lognormal, 
gamma, and Weibull distributions. 

2 Properties of the Log-EIG 

Saw, Balasooriya, and Tan (2002) introduced the log-EIG as an al­
ternative loss distribution with non-zero coefficient of skewness. Its 
probability density function (pdf) is given by 

1 (e l )1/(292 ) 

LEIG(x, el , e2) = J2Tie2x x 

x exp [ - 2 (Sinh C ~2 In ~ ) f J 
(1) 

for x > 0, where ei > 0 for i = 1,2; el is a scale parameter and e2 is 
a shape parameter. The cumulative distribution function (cdf) of the 
log-EIG takes the form 

(2) 
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where, as usual, 1>(.) denotes the standard normal cdf. The mean and 
variance of the log-EIG distribution are 

Mean = CelKe2_~ (1) 

Variance = cei [K2er~ (1) - CK~2_~ (1) ] 

where c = e.[1;, and 

Ke2k-~ (1) = fooo ~ we2k-~ exp {_ (w +2w -
1
)} dw 

(3) 

(4) 

is a modified Bessel function; see, for example, Zhang and Jin (1996). 
For convenience, the probability density functions of the gamma, log­
normal, and Weibull together with their means and variances are given 
below: the gamma distribution with parameters ()( and l' has pdf 

with mean Oil' and variance ()(l'2; the Weibull distribution with parame­
ters i\ and {3 has pdf 

{3 (X)f3-1 [(X)f3] W(x,i\,{3)=X X exp - X ' 

with mean i\[ (1 + ~) and variance i\ 2 [[ ( 1 + ~) - [2 (1 + ~) ], and the 
lognormal distribution with parameters p and (J has pdf 

1 { [In(x/p)J
2

} 
LN(x, p, (J) = (JxJ2iT exp - 2(J2 

with mean p exp (~2) and variance p2 [exp(2(J2) - exp((J2) J. 
One can use the ratio of the density functions to show that the log­

normal has a heavier tail than the gamma distribution, and that the 
log-EIG has a heavier tail than the gamma. For the case of Weibull, the 
ratio of the log-EIG pdf to the Weibull pdf is 

[( X)f3 1 ( x ) ifz (1 ) ] exp X -"2 e
1 

- 2e2 + {3 lnx . 
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Figure 1: PDFs with Mean = 0.913149 and Variance = 0.166158 

When f3 > 1/ e2 the above ratio approaches infinity when x ~ 00. There­
fore, the log-EIG has a heavier tail than Weibull when f3 > 1/ e2. 

The pdf of the gamma, log-EIG, lognormal and Weibull correspond­
ing to a common mean and variance equal to 0.91315 and 0.16616, 
respectively, are shown in Figure 1. Notice that the log-EIG has the 
highest peak and they are all skewed to the right. Closeness of the 
log-EIG curve to the lognormal curve is clearly evident from Figure 1. 

The functional form of the hazard function for log-EIG is analytically 
intractable. Saw, Balasooriya, and Tan (2002) have plotted the hazard 
function for several parameter values and show that it is generally non­
monotone. Nevertheless, depending on the parameter values, the log­
EIG distribution can accommodate a variety of situations corresponding 
to monotonic as well as non-monotonic failure rates. 

Two important attributes of claim distributions are (i) the limited 
expected value (LIMEV) and (U) the layered expected value (LA YEV). The 
limited expected value of a claim amount random variable X is 

LIMEVx(u) = lE[min(X,u)], 

where u is the policy limit. In Table 1 we compare the LIMEV of the log­
EIG, lognormal, gamma, and Weibull corresponding to u equal to the 
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Table 1 
Limited Expected Values of Distributions with Fixed Mean and 

Variance at Selected Percentiles of the Log-EIG Distribution 

Mean = 0.91315 and Variance = 0.16616 
81 = 1.0 J.1 = 0.8338 £x = 5.0184 i\ = 1.0302 

u (%tile) 82 = 0.5 (f = 0.4263 Y = 0.1820 f3 = 2.3846 
1.1154 (P7S) 0.7372 0.8249 0.8244 0.8259 
1.7094 (Pgs) 0.8228 0.8967 0.9014 0.9065 
2.2325 (Pgg) 0.8597 0.9092 0.9117 0.9129 

Mean = 1.0 and Variance = 1.0 
81 = 1.0 J.1 = 0.7071 £x = 1.0 i\ = 1.0 

u (%tile) 82 = 1.0 (f = 0.8326 Y = 1.0 f3 = 1.0 
1.2441 (P7S) 0.7342 0.7482 0.7118 0.7118 
2.9221 (Pgs ) 0.9353 0.9374 0.9462 0.9462 
4.9841 (Pgg) 0.9855 0.9822 0.9932 0.9932 

Mean = 2.0 and Variance = 33.0 
81 = 1.0 J.1 = 0.6576 £x = 0.1212 i\ = 0.6955 

u (%tile) 82 = 2.0 (f = 1.4915 Y = 16.500 f3 = 0.4226 
1.5477 (P7S) 1.1818 0.7968 0.4548 0.6073 
8.5385 (Pgs) 1.9833 1.5455 1.2852 1.4046 

24.8412 (Pgg) 2.0000 1.8395 1.8248 1.8157 
Notes: %tile = Percentile and PE = fth percentile. 

75 th , 95 th , and 99th percentiles of the log-EIG when e1 = 1.0, and e2 = 

0.5,1.0, and 2.0. The parameter values of the competing distributions 
are chosen to give the same mean and variance of the log-EIG. When 
el = 1.0 and e2 = 0.5, the log-EIG has the smallest LIMEV among the 
competing distributions, whereas, when e1 = 1.0 and e2 = 2.0, it has 
the largest LIMEV. This seems to indicate that the tail thickness of the 
log-EIG is sensitive to changes in e2 values. 

The layered expected claim, on the other hand, is the expected claims 
corresponding to different layers of insurance. Knowledge of the lay­
ered expectation is useful to insurers and reinsurers when pricing poli­
cies with deductibles and retention limits. If X is the incurred loss on a 
policy with a deductible Ld and a retention limit Lu , the claim amount 
Y paid by the insurer is given by 
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if X ~ Ld 

if Ld < X ~ Lu 

if X> Lu. 

The layered expected claim is LAYEV(Ld,Lu ) = lE(Y), i.e., 

where Fx(x) is the cdf of X. The above equation can be expressed as 

LAYEV(Ld,Lu ) = LIMEV(Lu ) - LIMEV(Ld). 

In addition, the average amount per payment, AAPP, is given by: 

AAPP = LIMEV(Lu ) - LIMEV(Ld). 
P(X > Ld) 

As the AAPP and LAYEV(Ld, Lu) for the log-EIG are analytically com­
plex, in Table 3 we present the AAPP and LAYEV(Ld,Lu ) for the com­
peting distributions for selected Ld and Lu values corresponding to the 
5th , 75 th , 95 th , and 99th percentiles of the log-EIG distribution. We note 
from the tabulated values that the log-EIG is distinctly different from 
the other distributions for all the cases considered. This further indi­
cates that the log-EIG represents a family of distributions which exhibit 
significant differences to the more commonly used lognormal, gamma, 
and Weibull distributions. 

Saw, Balasooriya, and Tan (2002) have discussed the maximum like­
lihood estimation of the log-EIG parameters, which involves the solu­
tion of two nonlinear equations. As there are no closed-form solutions, 
numerical methods such as the Newton-Raphson1 have to be used to 
obtain the maximum likelihood estimates. 

In the case of grouped data, as is common for insurance loss data, 
maximum likelihood estimation may proceed along the same line as 
discussed in Hogg (1984, p. 122). Again, iterative methods are required 
to obtain maximum likelihood estimates. Alternatively, one could use 
other methods such as the minimum distance or minimum chi-square, 
as discussed in Hogg (1984, pp. 143-151). 

1 For more on the numerical solution of nonlinear equations see, for example, Burden 
and Faires (2001, Chapter 2). 
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Table 3 
Percentage of Selections Among Different Groups of 

Candidate Models Using the QK Criterion when n = 50 and lOOt 
Number of Candidate Models 

Model 4 2 2 2 
LEIG LEIG LN G W LN G W 

82 = 0.5 74.95 14.95 9.05 1.05 22.80 14.10 3.85 
75.78 20.42 3.80 0.00 23.92 8.31 0.50 

82 = 1.0 86.55 9.15 3.90 0.40 12.65 5.35 3.10 
85.40 13.70 0.90 0.00 14.60 1.40 0.60 

82 = 2.0 75.55 21.85 0.00 2.60 23.80 1.85 4.50 
78.40 21.30 0.00 0.30 21.60 0.30 0.60 

LN LEIG G W 
(T = 0.5 35.95 41.25 19.75 3.05 36.85 23.50 7.85 

27.60 55.30 16.80 3.00 27.80 17.30 2.60 
(T = 1.0 31.90 56.35 10.70 1.05 48.75 11.95 9.95 

35.70 60.50 3.80 0.00 35.70 3.80 2.00 
(T = 2.0 39.40 51.60 0.15 8.85 39.85 2.70 9.20 

35.20 62.70 0.00 2.10 35.20 0.30 2.10 

G LEIG LN W 

Y = 0.5 1.45 0.75 68.30 29.50 3.05 4.35 31.60 
0.00 0.00 75.00 25.00 0.00 0.30 25.00 

Y = 1.0 3.15 6.35 45.00 45.50 5.85 9.75 49.35 
0.00 1.40 52.60 46.00 0.00 1.80 46.70 

Y = 2.0 11.85 8.80 47.95 31.40 15.80 18.90 31.40 
0.30 8.40 64.50 26.80 1.50 8.70 26.80 

W LEIG LN G 
f3 = 0.5 6.25 5.20 23.20 65.35 8.85 10.65 23.20 

0.00 3.00 15.70 81.30 1.10 3.00 15.70 
f3 = 1.0 2.75 6.30 47.20 43.75 5.85 9.95 51.95 

0.30 2.70 49.70 47.30 1.60 3.10 51.60 
f3 = 2.0 1.75 2.50 25.40 70.35 6.55 10.30 29.65 

0.10 0.00 18.50 81.40 0.70 2.80 18.60 
Notes: Italicized values refer to n = 100. 
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3 Selection Procedure 

For a given set of n observations Xl, X2, ... ,Xn , suppose it is re­
quired to choose one member from among a set of competing families 
of distributions FI, F2, ... ,h with scale and shape parameters, 9i and 
Vi, that best fits the data. Let fi be the probability density function 
corresponding to Pi. i = 1,2, ... k. The optimum invariant selection cri­
terion of Quesenberry and Kent (2001) selects Fi which maximizes the 
selection statistic 

Si = f: fi(tXI, tX2, ... ,txn ) tn-Idt, 

where 9i = 1, i = 1,2, ... , k. Note, for a random sample Xl, X2, ... , Xn , 
the above function can be expressed as a product of the fi'S, i.e., 

n 

fi(tXI, tX2,' .. ,txn ) = n fi(tXj). 
j=l 

For the case of log-ErG where 9i = el = 1 and Vi = e2, it can be shown 
that the statistic, Si, is given by 

where 1> = I.J=1 xJ182 and fjJ = I.J=1 xjl/82. The selection statistics 
for the other distributions can be similarly derived and are given in 
Quesenberry and Kent (2001). 

When VI, V2, ... , Vk are unknown, Quesenberry and Kent (2001) pro­
posed that a suitable scale invariant estimate be substituted for Vi. The 
selection criterion is then said to be suboptimal invariant. From exten­
sive Monte Carlo studies involving the gamma, lognormal, and Weibull 
distributions, Quesenberry and Kent (2001) established that the pro­
posed selection procedure performs well when selecting among fami­
lies of distributions with shape and scale parameters. 

For the log-EIG, lognormal, and Weibull distributions, when apply­
ing the suboptimal procedure, we substitute the shape parameter by 
its maximum likelihood estimates in the computation of Si. Following 
Quesenberry and Kent (2001), for the gamma distribution we employ 
the approximate maximum likelihood estimate of the shape parameter 
proposed by Greenwood and Durand (1960); that is 



114 

where 
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0.5000876 + 0.1648852R - 0.0544274R 2 

R 
8.898919 + 9.059950R + 0.9775373R2 

R(l7.79728 + 11.968477R + R2) 

for 0 < R :s; 0.5772, 

for 0.5772 < R :s; 17, 

R = In ( arithmet~c mean of the observat~ons ) . 
geometnc mean of the observatiOns 

In selecting among probability models one also can use informa­
tion theoretic criteria such as the Akaike information criterion (AlC) or 
some of its modifications such as the AIC with finite corrections (AICC) 
[Sugiura, 1978], or the Bayesian information criterion (BIC) [Schwarz, 
1978]. For the four distributions considered in this paper, the AlC, 
AICC, and BIC give identical results because these distributions have 
the same dimension.2 Thus, for comparing with the Quesenberry and 
Kent criterion (QK), we only report the selection results using the AIC 
criterion. 

4 Simulation Results 

In our simulation study, we generated 2,000 random samples of size 
n = 50 and 1,000 samples of size n = 100 from each of the four distri­
butions gamma, log-EIG, lognormal, and Weibull. Random observations 
from the lognormal, gamma, and Weibull distributions were generated 
using MATLAB® standard routines for selected values of the parameters. 
For the log-EIG distribution, random observations were obtained by first 
generating inverse Gaussian variates using Dataplot and then trans­
forming them to log-EIG variates using the relationships between the 
inverse Gaussian, exponential inverse Gaussian, and the log-EIG distri­
butions; see Kanefuji and lwase (1996) and Saw et al. (2002). It follows 
from these relationships that if Z is distributed as Inverse Gaussian 
with shape and location parameters both equal to 1, then X = e1z02 

has a LEIG(el, e2) distribution. 
Table 3 presents percentages of selections among different group­

ings of candidate models consisting of 4, 3, and 2 competing distribu­
tions when the data are generated by the model indicated in the first 

2When the competing models have the same number of parameters, they are said 
to have the same dimension; see Judge, Griffiths, Hill, LUtkepohl, and Lee (1985, pp. 
870-873). 
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column of the table. The values in parentheses are percentages of selec­
tions when n = 100. For example, the entries 74.95, 14.95,9.05,1.05 at 
the beginning of the table mean that when the data are generated from 
a log-EIG distribution with parameters 81 = 1 and 82 = 0.5, the sub­
optimal selection procedure selected the log-EIG, lognormal, gamma, 
and Weibull as the population distribution 74.95%,14.95%,9.05%, and 
1.05% of the time, respectively. The tabulated values under the head­
ing '3' give the percentages of selections for groups of three compet­
ing distributions where the true population distribution is one of the 
competing members. The tabulated values under the heading '2' give 
the percentages of selections for the specified distribution under each 
heading, when compared with the population distribution indicated in 
the first column of the table. The entries therefore represent percent­
ages of incorrect selections. For comparison, in Table 4 we present 
percentages of correct selection using the AIC selection criterion. 

In distinguishing the log-EIG when it is the true population with all 
the alternative groupings of families considered, the lowest percentage 
of the correct selection is 74.95 (73.35) forthe case when 82 = 0.5 (82 = 
2.0). To save space, note that throughout this section the figures in 
parentheses refer to the corresponding values for AIC criterion reported 
in Table 4. When data are generated from the lognormal, gamma, and 
Weibull distributions, the lowest percentage of correct selections are 
41.25% (28.80%) when 0" = 0.5(0" = 0.5), 45.00% (42.15%) when y = 
1.0(y = 1.0) and 43.75% (46.50%) when [3 = 1.0([3 = 1.0), respectively. 
This seems to indicate that the log-EIG, the new addition to the location 
and scale family of distributions, has some features that are somewhat 
different from the other commonly used loss distributions. 

From the tabulated values in Tables 3 and 4, we note that when the 
true distribution is log-EIG, among the other competing three distribu­
tions, the lognormal is selected more often than the gamma or Weibull. 
On the other hand, when the true distribution is lognormal, the log-EIG 
is selected more often than the gamma or Weibull in all the groupings 
considered. For example, when two distributions compete, and samples 
of size n = 50 are generated from lognormal with 0" = 0.5,1.0,2.0, log­
EIG is selected 36.85% (50.0%),48.75% (48.75%), 39.85% (44.40%) ver­
sus 23.50% (24.60%), 11.95% (12.95%),2.70% (3.75%) for G, and 7.85% 
(8.60%), 9.95% (10.75%), 9.20% (10.35%) for Weibull, respectively. The 
corresponding figures for lognormal when the samples are generated 
from log-EIG with 82 = 0.5,1.0,2.0 are 22.80% (23.15%),12.65% (23.50%), 
23.80% (26.45%), versus 14.10% (14.25%),5.35% (7.70%),1.85% (2.70%) 
for G, and 3.85% (4.65%), 3.10% (4.30%),4.50% (5.00%) for Weibull, re­
spectively. The same pattern is observed for the case of n = 100 al-
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though the corresponding percentages of incorrect for log-EIG and log­
normal are somewhat lower than when n = 50. These findings seem to 
indicate that the log-EIG is closer to the lognormal than to the gamma 
or Weibull distributions. 

While both QK and Ale criteria yield high percentages of correc­
tion selections, the QK performs marginally better in most of the cases 
considered in this simulation study. The QK criterion, however, is com­
putationally more involved than the Ale. 

Next we consider the situation when data arise from a log-EIG dis­
tribution but the investigator considers choosing one of the gamma, 
lognormal or Weibull to fit the data. Table 5 gives the percentages of 
selections for gamma, lognormal, and Weibull by the suboptimal selec­
tion procedure for the competing groupings {G, LN, Weibull}, {G, LN}, 
{LN, Weibull}, and {G, Weibull} when the data are generated from the 
log-EIG with various values of the shape parameter 82. Again as we ob­
served earlier, the tabulated values clearly indicate that the lognormal 
distribution is the closest distribution to the log-EIG for all the 82 values 
considered. When only gamma and Weibull are considered, gamma ap­
pears to be closer to log-EIG for 82 = 0.5 or 1.0, while Weibull is closer 
to log-EIG when 82 = 2.0. This is consistent with the higher selection 
proportions for gamma when 82 = 0.5 or 1.0 and higher selection pro­
portion for Weibull when 82 = 2.0 in the simulation results reported in 
Tables 3 and 4. Therefore, it seems that when gamma and Weibull com­
pete to represent log-EIG, the selection depends on the shape parameter 
of the log-EIG from which the data arise. 

The similarities/differences among the four distributions are fur­
ther illustrated by Table 6 which compares selected percentile values 
of the distributions with the same mean and variance, i.e., given the 
first two moments of the distributions. The selected common means 
and variances correspond to the log-EIG when (81,82) = (1.0,0.5), (1.0, 
1.0), (1.0, 2.0). The parameter values for the lognormal, gamma, and 
Weibull distributions for the given means and variances are reported 
in the table. From the table, it can be seen that the percentiles for log­
normal are closer to that of the log-EIG than to the gamma or Weibull. 
Further, the percentiles for gamma are closer to the log-EIG than the 
Weibull for (81,82) = (1.0,0.5), (1.0, 1.0), while the converse is true 
when (el, 82) = (1.0,2.0). These observations are consistent with the 
simulation results reported in Tables 3, 4, and 5 and provide some the­
oretical justification for the simulation results. 
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Table 4 
Percentage of Selections Among Different Groups of 

Candidate Models Using the AlC Criterion when n = 50 and lOOt 
Number of Candidate Models 

Model 4 2 2 2 
LElG LEIG LN G W LN G W 

82 = 0.5 75.20 14.05 9.55 1.20 23.15 14.25 4.65 
79.10 16.70 4.20 0.00 20.40 8.40 0.50 

82 = 1.0 75.95 19.00 4.45 0.60 23.50 7.70 4.30 
80.30 18.70 1.00 0.00 19.60 1.80 0.60 

82 = 2.0 73.35 23.20 0.05 3.40 26.45 2.70 5.00 
77.20 22.40 0.00 0.40 22.80 0.30 0.90 

LN LEIG G W 
if = 0.5 48.80 28.80 18.95 3.45 50.00 24.60 8.60 

34.40 48.40 16.80 0.40 34.90 17.40 2.70 
if = 1.0 48.35 39.15 11.10 1.40 48.75 12.95 10.75 

36.40 59.70 3.90 0.00 36.40 3.90 2.30 
if = 2.0 44.20 45.75 0.25 9.80 44.40 3.75 10.35 

39.30 58.40 0.00 2.30 39.30 0.30 2.30 

G LElG LN W 
Y = 0.5 0.85 1.05 72.10 26.00 2.30 3.80 27.80 

0.00 0.00 77.40 22.60 0.00 0.30 22.60 
Y = 1.0 3.05 5.60 42.15 49.20 6.15 8.90 52.55 

0.10 1.20 51.70 47.00 0.60 1.40 47.60 
Y = 2.0 7.50 10.45 46.65 35.40 12.35 17.65 35.40 

1.10 7.20 62.30 29.40 3.50 8.70 29.40 

W LEIG LN G 
f3 = 0.5 3.65 6.55 26.65 63.15 6.45 9.90 26.65 

0.30 2.50 16.80 80.40 1.30 2.80 16.80 
f3 = 1.0 3.10 5.40 45.00 46.50 5.95 9.30 49.60 

0.00 2.80 47.50 49.70 1.50 2.90 49.30 
f3 = 2.0 2.50 1.80 22.55 73.15 6.55 9.65 26.85 

0.10 0.00 17.40 82.50 0.90 2.70 17.50 
Notes: Italicized values refer to n = 100. 
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{3 = 0.5 3.65 6.55 89.80 6.45 26.65 66.90 9.90 26.65 63.45 CJ 

!;:) .... 
0.30 2.50 97.20 1.30 16.80 81.90 2.80 16.80 80.40 !;:) 

{3 = 1.0 3.10 6.45 90.45 5.45 46.75 47.80 8.20 45.10 46.70 
0.00 2.90 97.10 1.30 48.40 50.30 2.80 47.50 49.70 

{3 = 2.0 2.95 6.75 96.30 3.15 23.70 73.15 3.80 23.05 73.15 
0.10 2.60 97.30 0.10 17.40 82.50 0.10 17.40 82.50 

Notes: Italicized values refer to n = 100. 
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Table 5 
Percentage of Selections, Using the QK Criterion, Among Different 

Groups of Candidate Models in the Absence of LEIG When Data 
are Generated from Log-EIG for n = 50 and 100 

Number of Candidate Models 
Model 3 2 2 

LEIG LN G W LN G LN W G 
e2 = 0.5 87.25 11.70 1.05 87.25 12.75 97.50 2.50 98.95 

95.80 4.20 0.00 95.80 4.20 99.90 0.10 100.0 

e2 = 1.0 95.05 4.55 0.44 95.05 4.95 97.60 2.40 98.15 
98.90 1.10 0.0 98.9 1.10 99.70 0.30 99.90 

e2 = 2.0 97.00 0.00 3.00 98.80 1.20 97.00 3.00 0.10 
99.60 0.00 0040 99.90 0.10 99.60 0040 0.00 

Notes: Italicized values refer to n = 100. 
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Table 6 
Percentile Values for Selected Distributions with Fixed Mean and Variance 

LEIG(e1,82) LN(Ji,o-) 

Mean = 0.91315 and Variance = 0.16616 
(h = 1.0; 82 = 0.5 Ji = 0.8338; 0- = 0.4263 

P2S Pso P7S P9S Pgg P2S Pso P7S P9S Pgg 
0.6162 0.8221 1.1154 1.7094 2.2325 0.6254 0.8338 1.1115 1.6810 2.2477 

Mean = 1.0 and Variance = 1.0 
81 = 1.0; 82 = 1.0 Ji = 0.7071; 0- = 0.8326 

0.3797 0.6758 1.2441 2.9221 4.9841 0.4033 0.7071 1.2398 2.7813 4.9053 
Mean = 2.0 and Variance = 33.0 

81 = 1.0; 82 = 2.0 Ji = 0.6576; 0- = 1.4915 
0.1442 0.4568 1.5477 8.5385 24.8412 0.2405 0.6576 1.7982 7.6454 21.1269 

G(lX,y) W(A, (3) 
Mean = 0.91315 and Variance = 0.16616 

lX = 5.0184; y = 0.1820 A = 1.0302; (3 = 2.3846 
P2S Pso P7S P9S Pgg P2S Pso P7S P9S Pgg 

0.6159 0.8535 1.1458 1.6706 2.1172 0.6110 0.8834 1.1814 1.6321 1.9546 
Mean = 1.0 and Variance = 1.0 

lX = 1.0; y = 1.0 A = 1.0; {3 = 1.0 
0.2877 0.6932 1.3863 2.9957 4.6052 0.2877 0.6932 1.3863 2.9957 4.6052 

Mean = 2.0 and Variance = 33.0 
lX = 0.1212; Y = 16.5000 A = 0.6955; {3 = 0.4226 

0.0001 0.0335 1.0001 11.3970 28.7995 0.0365 0.2922 1.5065 9.3292 25.8069 
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5 Illustrative Examples 

We first consider a well-known data set from Hogg and Klugman 
(1984, p. 128) on hurricane losses. This data set consists of 38 ob­
servations on losses that exceeded $1,000,000 for the period 1949 to 
1980 as compiled by the American Insurance Association. With cen­
soring below $5,000,000, using the remaining 35 observations, Hogg 
and Klugman concluded that the Weibull distribution fits the data best 
when compared with the lognormal and Pareto distributions, using the 
Chi-squared goodness-of-fit test. Our second data set is obtained from 
Klugman, Panjer, and Willmot (1998, Table 1.1, p. 18). This data set cor­
responds to insurance liability payments and reflects a real-life problem 
encountered by the authors. The third data set of 96 individual claims 
is from Currie (1992, Table 1, p. 3). Currie (1992) used the chi-square 
goodness-of-fit test and concluded that the Pareto model is the best 
model for this data set. 

For these data sets, the parameter estimates and the computed val­
ues of the selection statistics, Si and AIC, for the competing distribu­
tions are reported in Table 7. For data sets one and two, both the 
statistics, Si and AIC, selected the log-EIG distribution as the underlying 
distribution that generated the data. For the third data set, while the 
lognormal was chosen, the log-EIG was the closest competitor among 
the other families of distributions considered in this study. 

6 Concluding Remarks 

In this study we consider a recently introduced lifetime distribution, 
the log-EIG distribution. We show that it has a heavier tail than the 
gamma or Weibull distributions over certain parameter space. Further, 
the log-EIG distribution appears to be distinct from the other commonly 
used lifetime distributions. The illustrative examples indicate the use­
fulness of the log-EIG distribution in fitting some insurance loss data. In 
the simulated samples, we observed that the log-EIG distribution gener­
ated a few unusually large observations more frequently than the other 
competing distributions. This feature makes the log-EIG distribution a 
potentially useful model for insurance claims where extreme observa­
tions are not uncommon, such as catastrophic losses in liability claims. 
Another area where log-EIG can be potentially useful is in lifetime and 
reliability modeling. 
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Table 7 
Parameter Estimates and Values of the Selection 

Statistics for Selected Data Sets 
Data Set LElG LN 

81 82 J.1 if 

1 43190.8773 1.8970 21587.3367 2.7043 
QK AlC QK AlC 

-451.2414 906.1591 -452.4587 908.1124 
81 82 J.1 if 

2 321370.7325 2.8030 113498.2855 6.0245 
QK AlC QK AlC 

-585.0090 1173.5732 -586.2208 1176.3376 
81 82 J.1 if 

3 2037.6606 1.7378 1120.4416 1.9565 
QK AlC QK AlC 

-845.5107 1693.3413 -843.5242 1688.9931 

Data Set G W 
()( Y ,\ f3 

1 154916.4796 0.4985 49891.5848 0.6185 
QK AlC QK AlC 

-457.9213 918.7478 -455.5948 914.3550 
()( Y ,\ f3 

2 4531919.5872 0.2856 400863.9222 0.4153 
QK AlC QK AlC 

-593.5978 1190.5629 -589.8482 1183.5582 
()( Y ,\ f3 

3 4778.3910 0.6257 2244.5103 0.7132 
QK AlC QK AlC 

-856.9187 1715.5828 -851.1017 1704.1546 

t QK - Quesenberry and Kent Criterion; AlC - Akaike Criterion 
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The selection criterion employed here is suboptimal invariant and 
it is applicable for uncensored data. The procedure requires that the 
unknown shape parameter be replaced by a scale invariant estimate. 
From the results reported in the simulation study, it is clear that this 
procedure performs well in identifying the true family of distribution 
that generates a given set of data. 
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The analysis of life insurance contracts on two lives using the traditional 
deterministic approach has been an important part of actuarial education for 
the past fifty years or more. Recently there has been a shift from this deter­
ministic approach to one using a more modern stochastic approach involving 
the future lifetime random variable. In this paper we will look at the prob­
lem using multiple-state models. In our view this approach allows a deeper 
analysis than either the traditional or the random future lifetime ones. 
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Introduction 

Insurance for mUltiple lives is largely confined to those associated 
with married couples. So, throughout this paper, we consider a married 
couple consisting of a husband age x and a wife age y at some initial 
time t = 0, which, for notational convenience, is written as (x, y). The 
time t = 0 usually corresponds in practice to the start of an insurance 
contract. For simplicity we ignore the possibility of divorce. 

Traditionally, actuaries have calculated the premiums for joint-life 
insurance and annuity contracts using the formula for the joint force 
of mortality, Jixy(t), 

Jixy(t) = Jix(t) + Jiy(t) (1) 

where Jix (t) and Jiy (t) are the force of mortality for single lives (x) and 
(y). at ages x + t and y + t, respectively; see, for example, Jordan (1967, 
Chapter 9), Neill (1977, Chapter 7), and Bowers et al. (1997, Chapter 9). 
The calculation of the premiums for last survivor insurance and annuity 
contracts then in addition uses the following standard formulas 

Axy = Ax + Ay - Axy and axy = ax + ay - a xy , 

which relate the last-survivor functions to those for joint-lives and sin­
gle lives. The deterministic approach of Jordan and Neill and the ran­
dom approach of Bowers et al. assume that the two lives are statistically 
independent. 

Several authors have studied the impact of dependence between in­
sured lives; see, for example, Carriere and Chan (1986); Carriere (1994); 
Frees, Carriere, and Valdez (1996); Dhaene and Goovaerts (1997); Frees 
and Valdez (1998); Denuit and Cornet (1999); and Youn, Shermyakin, 
and Herman (2002). Of great interest and relevance to us is the paper 
by Youn, Shermyakin, and Herman (2002), which shows that we can 
also derive last survivor insurance and last survivor annuity formulas 
using more general future lifetime random variables. 

The object of this paper is to show how we can use multiple-state 
models to define more precisely the assumptions required for the stan­
dard formulas to apply. We also indicate how we might price insurance 
and annuity contracts where these assumptions do not apply. 
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(x) alive 

(y) alive 

(1) 

129 

(x) alive 

(y) dead 

(2) 

(x) dead 

(y) alive 

(3) 

(x) dead 

(y) dead 

(4) 

Figure 1: Generalized Mortality Model for Two Lives, (x) and (y) 

2 A Model for Two Lives 

A well known model for the forces of mortality depending on marital 
status was proposed by Norberg (1989) as follows: 

State 1 = Both husband (x) and wife (y) are alive; 

State 2 = Husband (x) is dead and wife (y) is alive; 

State 3 = Husband (x) is alive and wife (y) is dead; 

State 4 = Both husband (x) and wife (y) are dead. 

Norberg regarded the future development of the marital status for the 
couple as a Markov process. We will generalize Norberg's model by 
assuming the transition intensities depend on the age at which the pre­
vious transition occurred, thus removing the Markov property. We also 
include transition directly from stage 1 to stage 4. Figure 1 illustrates 
our generalized model. 

The following notations are used for i, j = 1,2,3,4: 
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plii) (t, 5) = Probability that the couple (xy) stays in state i for at least 
t years (Le., up to time t + 5) given they entered state i at time 
5, for 5, t ~ 0; 

p~f)(t,s) = Probability that the couple (xy) is in state j at time t + 5 

given they entered state i at time 5, for 5, t ~ 0; and 

p~if) (t, s)dt = Probability that the couple (xy) moves from state ito 
state j in (t + 5, t + 5 + dt) given they entered state i at time 
5 and remained in state i up to time t + 5, for 5, t ~ 0 and 
infinitesimally small dt. 

For convenience we define 

4 

p~~(t,s) = I pi)y(t,s), 
j~l 

j*i 

which implies 

if i = 1; 

if i = 2; 

if i = 3. 

Our model takes into account the empirical observations that, where 
there is some connection between the two lives, the mortality of one 
of the pair depends on whether the other is alive or dead and, if the 
latter, when death occurred. l One unusual feature of our model is the 
inclusion of transitions from state 1 directly to state 4. This allows for 
the possibility that the two lives die simultaneously in, for example, a 
car accident or a plane crash. 

It is immediately seen that the basic functions needed for joint-life 
insurances and annuities are 

(t (1) 

P = p(ll)(t 0) = e-JOllxy(r,O)dr t xy - xy , . 

Although in practice they do not often arise, we can also use our gener­
alized model to price contingent insurance contracts where a payment 

ISee AES Course Notes, Subject D, Unit 8, Institute of Actuaries, London, 1994. 
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is made on the death of (x) if that occurs before the death of (y) and 
vice versa and reversionary annuities. Using standard actuarial nota­
tion, for example, we have 

iL ---, = fn vtPW)(t,O)tJl~)(t,O)dt, 
xy:nl Jo 

which is the net single premium for a contingent insurance that pays 
$1 on the death of (x) if that occurs before the death of (y) and within 
n years. 

In a similar manner, the net single premium for an n-year term in­
surance contract that pays $1 if (x) and (y) die simultaneously, Le., on 
a transition from state 1 to state 4, is given as: 

I: vtpll)) (t, O)tJl~) (t, O)dt 

for n ~ O. There is no standard actuarial notation for this, and, to the 
best of the authors' knowledge, no insurance company offers such a 
contract. 

Given the absence of the Markov property, the traditional Chapman­
Kolmogorov equations2 cannot be used for the transition probabilities. 
As transitions to previous states are not allowed and there are only 
four states, however, our analysis can be simplified by assuming the 
first death occurs at time s and the second death at time s + t. Thus, 
the net single premium for a last survivor n-year term insurance is 

A~-:-:o = fn vSpW)(s,O)tJl~)(s,O) fn-s vtpl2])(t,s)tJl~)(t,s)dtds 
xy:nl Jo Jo 

+ I: vSpW)(s,O)tJl~)(s,o) r-s 
vtpl~)(t,s)tJl3j)(t,s)dtds 

+ Ion vSpW)(s,O)tJl~)(s,O)ds, 

and the net single premium for a reversionary annuity is 

axlY = Iooo vSpW)(s,O)tJl~)(s,o) Io
oo 

atlP?;)(t,s)tJl3j)(t,s)dtds. 

2See, for example, Cox and Miller (1965, Chapter 4.1) or Taylor and Karlin (1994, 
Chapter 6.3) for more on Chapman-Kolmogorov equations. 
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3 Practical Simplifications 

One problem with our generalized model is that, in practice, there 
will be a lack of adequate data to provide estimates of all the transi­
tion intensities required by this model. As a result, our model may 
be impractical to implement. We therefore need to introduce a set of 
simplifying assumptions that are intended to facilitate estimating these 
intensities. We will prove that one consequence of our assumptions is 
that the generalized model will yield results that are consistent with 
those produced by the independence assumption of the traditional or 
random future lifetime approaches. To this end we let T(x) and T(y) 
denote the random future lifetime of (x) and (y), respectively. 

Assumption!. The events {T(x) E (t,t+Ot)} and {T(y) E (t,t+Dt)} 
are independent for all t ;:0: 0 and Ot is infinitesimally small. 

Assumption 1 implies that 

lP' [T(x) E (t, t + Ot} n T(y) E (t, t + Dt)] 

=lP'[T(x) E (t,t + Ot)]lP'[T(y) E (t,t+t5t)]. 

Using the transition probabilities we have 

pW) (t, O)piIJ) (t, O)Ot = tPxpi*) (t)Ot x tPyP~*) (t)t5t (2) 

where tPx and pi*) (t) are the marginal survival function and force of 
mortality of T(x) and tPy and p~*) (t) are the marginal survival function 
and force of mortality of T (y). If we assume that x and yare less than 
the oldest possible age w, then these marginal survival function and 
force of mortality will be positive and finite for t < min(w - x, w - y). 
Dividing both sides of equation (2) by Ot and then let Ot - 0, we obtain 

piIJ)(t,o)=O for t;:o:O, 

Le., transition from state 1 to state 4 is not possible. 
For pricing joint-life insurances and annuities we can then use the 

Simplification 

(3) 

which implies 

(ll)(t 0) -Pxy , = tPx X tPy· (4) 
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Thus, we get the traditional actuarial independence assumption of Jor­
dan (1967), Neill (1977), and Bowers et al. (1997). 

Assumption 2. For all t ~ 0 and M is infinitesimally small, the proba­
bility that (x) or (y) dies in time period (t, t + M) does not depend on 
whether the other is alive or dead at t, i.e., 

1P'[T(x) E (t,t+ot)I{T(y) stUT(y) > t}] =1P'[T(x) E (t,t+ot)] 

IP' [T(y) E (t, t + ot) I {T(x) stU T(x) > t}] = IP' [T(y) E (t, t + M)]. 

On the basis of Assumption 2 we can state that, for 0 s 5 s t, 

(5) 

and 

(6) 

Equations (5) and (6) constitute the independence assumption of Youn, 
Shermyakin, and Herman (2002). 

If Assumptions 1 and 2 jointly apply, it is clear from the description 
of our generalized model that we must have 

I/*)(t) == fJl**)(t) and fJ~*)(t) == fJ~**)(t). 

We assert that Assumptions 1 and 2 are both necessary if we are to have 
independence of the two lives. Assumption 1 clearly does not imply 
Assumption 2; see Youn, Shermyakin, and Herman (2002). Assuming 
that only Assumption 2 applies does not lead to any contradictions. 
Assumptions 1 and 2 are sufficient in themselves to derive .the simple 
formulas used in practice. They require the estimation of transition 
intensities fJl**) (t) and fJ~**) (t), which relate to joint lives, i.e., lives 
that have taken out a contract jointly. 

In situations where there are not adequate experience data on joint 
lives, it is usual to make use also of the following assumption: 

Assumption 3. The mortality of each of the individual lives (x) and 
(y) in the pair (x, y) is identical to that of the single lives (x) and (y), 
respectively. 
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Assumptions 3 is a different type of assumption from Assumptions 
1 and 2, which are concerned with the relationship between the mortal­
ity of the two joint lives. Assumption 3 simply equates the numerical 
values of the transition intensities for each of the joint lives to those for 
individual lives, where we give the phrase "individual lives" the mean­
ing commonly applied to it in life insurance mortality investigations. 
This allows us to replace the joint life intensities by those relating to 
individual lives, i.e., 

(7) 

In practice reliable estimates of the transition intensities for individual 
lives are almost always available. 

Applying all three assumptions3 to our generalized model we obtain 
Norberg's (1989) Markov model with transition intensities depending 
only on current age. The Chapman-Kolmogorov forward equations are 

o P llj; t( t, 0) = - (/1x (t) + /1 y (t) ) P W) (t, 0) 

a (12) ( 
PXY

at 
t,O) = pW)(t,O)/1y(t) - pW)(t,O)/1x(t) 

a (13) ( ) 
PXY

at 
t, ° = pW) (t, O)/1x(t) - pW) (t, O)/1y(t) 

which yield the solutions 

pllj)(t,o) = e-fJUJx(S)+J.iy(s»ds = tPxy 

pllj) (t, 0) = e- fJ J.ix(s)ds (1 - e- fJ J.iY(S)dS) = tPxtqy 

pW) (t, 0) = e- fJ J.iy(s)ds (1 - e- fci J.ix(S)dS) = tPytqx. 

It follows that the net single premium of the last survivor annuity is: 

a xy = 50"" v t [pllj) (t, 0) + pllj) (t, 0) + pW) (t, 0) J dt 

= 50
00 

vt[tPx+tPy-tPxyJdt 

= ax + ay - axy . 

3rf we do not make use of Assumption 3, the derivation is the same, but with the 
joint life intensities replacing those relating to individual lives. 
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4 Closing Comments 

We have indicated how we can price life insurances involving two 
lives using a generalized multi-state model. By introducing a set of 
clearly defined assumptions we have shown that using our model we 
can also derive the standard formulas traditionally used for pricing 
joint-life and last-survivor contracts. These assumptions are unrealis­
tic, however. Thus, if they are used in practice, care must be taken in 
deciding whether any premiums calculated using these formulas are 
adequate. 
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On the Pricing of Top and Drop Excess of Loss 
Covers 

Jean-Franc;:ois Walhin* and Michel Denuit t 

Abstract 

A top and drop cover is a treaty that can be found on the retrocession 
market. It offers capacity that can be used either to protect a top layer or a 
working layer. The former is called a "top" and the latter is called a "drop." 
Using the traditional collective risk model, we demonstrate the use of a multi­
variate version of Panjer's algorithm to price tbis <;over. We also compare the 
premium obtained within the exact model with the premiums obtained either 
with the Frechet bounds or with the wrong assumption of independence. 

Key words and phrases: multivariate Panjer's algorithm, excess of loss pric­
ing, dependence, correlation order, stop-loss order, comonotonic risks, Frechet 
bounds, supermodular order 

1 Introduction 

The traditional collective risk model assumes that an insurance port­
folio produces a random number of N positive claims in a year. The 
claim sizes, Xl, X2, ... ,XN, are assumed to be independent and iden­
tically distributed positive random variables. The annual aggregate 
claims S is then given by 
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5=XI+",+XN. 

When N belongs to the (a, b, 0) class of counting distributions, I i.e., 
when the probabilities associated with N satisfy 

lP'[N = n] b 
--'---"'-- = a + - for n;::: 1, 
lP'[N = n -1] n 

and the XiS are discrete, then it is easy to obtain the distribution of 5 
using the recursive algorithm due to Panjer (1981). 

The assumption of mutual independence of claim sizes in the col­
lective risk model, which makes sense in many situations, offers the 
advantage of mathematical simplicity. There are situations, however, 
where the independence assumption needs to be relaxed. Some authors 
have addressed the problem by imposing upper and lower bounds on 
the results when some form of stochastic dependence is observed (see 
Dhaene et al., 2001), while others have attempted to model the depen­
dence (e.g., Frees and Valdez, 1998). 

This paper extends the collective risk model to include dependent 
claims. We distinguish between two models: 

Modell, which considers independent occurrences of the random cou­
ple (X, Y), i.e., (Xl, Yd, (Xz, Yz), ... , (XN, YN), with the XiS and YiS 
all independent of the counting random variable N. The bivariate 
aggregate claim is then defined as 

N N 

(5, T) = Q:: Xi, 2:: Yd. 
i=l i=l 

The dependence between 5 and T originates from them sharing 
the same claim number N as well as from possible correlations 
between the components of the (Xi, Yds. Sundt (1999) proposed a 
multivariate extension of Panjer's algorithm, allowing for practical 
calculations within this multivariate collective risk model. 

Model 2, which considers the N independent claim sizes Xl, Xz, ... ,XN, 
and M independent claim sizes YI, Yz, ... , YM. We assume a mu­
tual independence between the XiS and the YjS, as well as with 
the counting variables Nand M. However, Nand M may be de­
pendent. The bivariate aggregate claims is then defined as 

IThe (a, b, 0) class of counting distributions contains Poisson (a = 0), negative bi­
nomial (a > 0), and binomial (a < 0) distributions. 



Walhin and Denuit: Top and Drop Excess of Loss Covers l39 

N M 
(S, T) = (L: Xi, L: Yd. 

i=l i=l 

Note that the dependence between Sand T now originates only 
from the dependence between Nand M because the claim sizes 
are mutually independent. Some types of dependence between 
Nand M may be modeled using the trivariate reduction method 
or by mixing the bivariate Poisson distribution. Walhin and Paris 
(2000b) and Walhin and Paris (2001) provide some sophisticated 
bivariate counting models allowing for these calculations. 

In another departure from the collective risk model, we distinguish 
between two types of claims (the extension to more types of claims is 
trivial): (i) small claims and (ii) large claims. We assume the behavior of 
small claims may differ significantly from the behavior of large claims. 
In our models we assume the XiS and the YiS represent the size of the 
large and small claims, respectively, while Nt and Ns are the annual 
number of large and small claims, respectively. The common cdf of 
the XiS is a limited Pareto distributed with nonnegative parameters Al, 
Bl, and OI.l, while that of the YiS is a limited Pareto distribution with 
nonnegative parameters As, Bs, and OI.s. Because we assume only two 
types of claims (large and small), then Bs = At. The numbers of claims 
Nl and Ns are assumed to be Poisson distributed with mean Al and As, 
respectively. 

A random variable X has a limited Pareto distribution with param­
eters A, B, and 01. (which, for notational convenience, can be written as 
X ~ Par(A, B, 01.)) if its cdf, Fx, can be written as: 

1
0 if x < A 
A-e< - x-e< 

Fx(x) = lP'[X ~ x] = if A ~ x < B 
A-e< - B-e< 
1 if x ~ B. 

(1) 

Throughout the rest of this paper, we assume mutual independence 
between the random variables Nl, Ns, Xi, and Yi. We consider also the 
following values for the Poisson and limited Pareto distribution param­
eters as shown in Table l. 

In this paper, we assume Modell holds, as this will allow us to de­
rive specific solutions. We propose a new application of the multivari­
ate extension of the Panjer's algorithm to price the so-called top and 
drop cover. This reinsurance treaty, used primarily for retrocession, 
includes a top layer and a working layer. There is an obvious stochas­
tic dependence in the model as large claims (affecting the top layer) 
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Table 1 
Parameters 

A ()( A B 
Large Claims 0.3 0.9 400 1000 
Small Claims 2.5 1.4 20 400 

necessarily hit the working layer. To use the multivariate extension of 
the Panjer's algorithm, we discretize the claims size distributions, thus 
making the derived solutions approximations only. We will compare 
these solutions to those based on the incorrectly assumed indepen­
dence hypothesis between Sand T, as well as to some upper and lower 
bounds. These comparisons will be done with theoretical or empirical 
results. 

The rest of the paper is organized as follows. Section 2 provides a 
brief review of excess of loss reinsurance, and describes two types of 
top and drop covers within a relatively general collective risk model. 
Section 3 recalls the multivariate Panjer's algorithm. Section 4 reviews 
some necessary results on stochastic orderings. Section 5 provides 
the numerical results and compares them with the case where inde­
pendence would be incorrectly assumed and with the corresponding 
Frechet bounds. 

2 Top and Drop Covers 

Excess of loss reinsurance is a means to share risks between the 
ceding insurer (the cedent) and and the reinsurer. The cedent always 
remains liable for the part of the claim below a given attachment point 
or deductible P, while the reinsurer offers some capacity between P 
and the limit P + L. So we can write the liability of the excess of loss 
reinsurer for each claim Xi as 

Ri = min(L,max(O,Xi - P)). 

In the collective risk model, the aggregate liability of the reinsurer is 

SR = Rl + ... + RN· 

The reinsurance capacity L may be subject to k reinstatements. If k = 0, 
it means that there is no reinstatement and the reinsurer's liability for 
the whole period (usually one year) is limited to L, regardless of the 
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number of occurrences. Otherwise, the aggregate capacity is (k + 1)L. 
Keep in mind the reinsurer's liability in any occurrence is limited to 
L, i.e., the aggregate liability of the reinsurer is min((k + l)L,SR). In 
practice, reinstatements can be paid or free. In the present paper we 
will only discuss the situation where the reinstatements are free. 

An annual aggregate deductible (AAD) will reduce the aggregate 
claims of the reinsurer. A higher AAD should reduce the reinsurance 
premium. For the general case where there are k reinstatements and an 
AAD, the annual liability of the reinsurer is min((k + l)L,max(O,SR­
AAD)). 

It is interesting to see how reinsurance can introduce dependencies 
in some treaties: for example, the ECOMOR-type treaties involving or­
der statistics (see Thepaut, 1950) or the exotic excess of loss treaty de­
scribed in Walhin (2002) where some layers inure to the benefit of other 
layers. Walhin (2002) used a multivariate version of Panjer's algorithm 
to price that treaty. In Walhin and Paris (2000a) this multivariate version 
of the Panjer's algorithm is used to study the retained risk of the cedent 
when it buys excess of loss reinsurance with paid reinstatements. We 
now describe two treaties. 

Treaty 1: Recently Secura has been given the opportunity to examine 
the following excess of loss cover: in reinsurers' jargon (see below 
for a translation into formulas), the characteristics of this treaty 
were 

200 in excess of 800 (written as 200 XS 800) 

AND / OR 

200 XS 200 in the aggregate for each loss exceeding 20 (losses 
to be aggregated from ground up but with a maximum of 100 
each and every loss occurrence). 

No reinstatement granted, i.e., the maximal annual amount 
to be paid by the reinsurer is 200. 

The aim of this treaty is to cover a top layer (200 XS 800) that has 
a very low probability of being hit and, simultaneously, a potential 
high frequency of small claims. 

In mathematical terms, the characteristics of this reinsurance cover 
can be summarized as follows: 

XfT = min(200,max(O,Xi - 800)), which is the reinsurer's lia­
bility for the top part of large claims; 
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XfD = min (1 00, XiIxi ,,20), which is the reinsurer's liability for 
the drop part of large claims; 

YfD = min(100, YiIvi ,,20) , which is the reinsurer's liability for 
the drop part of small claims; 

S = XfT + ... + x~y, which is the reinsurer's aggregate liabil­
ity for the top part of large claims; 

T = XfD + ... + X~~, which is the reinsurer's aggregate lia­
bility for the drop part of large claims; 

U = yF + ... + y~~, which is the reinsurer's aggregate lia­
bility for the drop part of small claims; and 

Cover = min(200, S + max(O, T + U - 200)) 

where fA is the indicator function, Le., fA = 1 if A is true, fA = 0 
otherwise. Notethat the choice made for Bs implies that the small 
claims Yi do not trigger the top cover. 

Treaty 2: Another example of top and drop cover is described below: 

200 XS 800 

AND/OR 

200 XS 200 with a global annual aggregate deductible of 400 
and unlimited free reinstatements. 

The aim of the treaty is clearly to cover an extra reinstatement 
on the low layer (which typically would be protected by a 
classical 200 XS 200 with one reinstatement) and/or a top 
layer (200 XS 800). 

The reinsurance cover can be described as follows: 

XfT = min(200,max(0,Xi - 800)), which is the reinsurer's lia­
bility for the top part of large claims; 

XfD = min(200,max(O,Xi - 200)), which is the reinsurer's lia­
bility for the drop part of large claims; 

YfD = min(200,max(0, Yi - 200)), which is the reinsurer's lia­
bility for the drop part of small claims; and 

Cover = max(O, S + T + U - 400) 

with s, T, and U described as in Treaty 1. 

As a consequence of our choice of distributions for small and large 
claims, we can simplify the model in two ways: 
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1) 

T = {100Nl Treaty 1 
200Nl Treaty 2 

which leads to 

{
min(200, S + max(O, 100Nl + U - 200» Treaty 1 

Cover = 
max(O, 200Nl + U - 400) Treaty 2. 

2) Using two independent compound Poisson distributions with lim­
ited Pareto distributions for the small and large claims is equiv­
alent to a single compound Poisson with LLd. claim sizes that 
are mixtures of limited Pareto distributions. The new number 
of claims random variable is N = Nl + N s, which is Poisson with 
mean Al + As, and the new claim sizes are Zi, which is a mixture 
of limited Pareto distributions with cdf F z (x) given by 

Fz(x) = lP'[Zi :0; x] = 

We obtain for Treaty 1: 

° As A;as _x-as 
.\s+.\1 As ~s -AI ~s 

.\1 A~"'I-x-"'I 
.\s+.\1 Al "'I_BI "I 

1 

if x < As 

if As :0; x < Bs = Al 

if Bs = Al :0; X < Bl 

if x;::: Bl. 

ZfT = min(200,max(0,Zi - 800» 

ZfD = min(100, ZiIz;?20) 

S = ZfT + ... + Z~T 

T ZRD ZRD = 1 + ... + N 

Cover = min(200, S + max(O, T - 200», 

and for Treaty 2: 
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ZfT = min(200, max(O, Zi - 800)) 

ZfD = min(200, max(O, Zi - 200)) 

S = zfT + ... + Z~T 

T = zfD + ... + Z~D 
Cover = max(O,S + T - 400). 

Though Modell yields treaties that can be simplified as above, we will 
not use these simplifications; rather we use the general formulation in 
the rest of this paper. 

In both treaties, Sand T are correlated. We have 

• Sand T are random sums of non-negative random variables with 
identical number N of terms . 

• The summands, XfT and XfD are themselves correlated. 

This means that even the computation of the pure reinsurance premium 
lE[Cover] requires the joint distribution of (S, T). As explained in the 
introduction, it is possible to obtain this joint distribution by using the 
multivariate version of the Panjer's algorithm as is explained below. 

3 The Multivariate Version of Panjer's Algorithm 

Panjer's type algorithms require lattice distributions. Therefore we 
must first discretize claim amounts. The local one moment matching 
method (see Gerber, 1982) is a good choice in the sense that it conserves 
the first moment and is stop-loss conservative, i.e., for any retention, 
the stop-loss premium calculated with the discretized distribution will 
be higher than the stop-loss premium calculated with the original dis­
tribution. Furthermore, in the case of the limited Pareto distribution 
(X ~ Par (A, B, e<)), it is not difficult to obtain a closed-form of the cor­
responding lattice distribution. Let us choose a span h and a positive 
integer m such that mh = B - A. It is easy to demonstrate that the 
probabilities of the lattice version of X, denoted as Xdis, with probabil­
ity function are given by: 

!Xdis(A + jh) 

2(A + jh)l-IX - (A + (j - l)h)l-IX - (A + (j + l)h)l-IX 

h( 1 - e<)(A -IX - B-IX) 
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for j = 1, ... , m - 1, with 

(A+h)l-" _ Al-" _ B-Oih 
f (A) 1 I-Oi I-Oi 

Xdis = - h(A -ex _ B-ex) , 

and fXdis (B) = 1 - fXdiS (A) - fXdi< (A + h) - ... - fXdiS (B - h). 

Now let us turn to the joint distribution of the bivariate random 
vector 

N N 

(S, T) = Q:: XfT, 2: XfD), 
i=I i=I 

where (XfT, XfD) are independent copies of the lattice random couple 
(XRT,XRD). As N is Poisson distributed, Sundt's (1999) multivariate 
version of the Panjer's algorithm yields 

fS,T(O, O) = 'YNUXRT,XRD(O, 0)), 
s,t A 

fST(S,t) = 2: ~fST(S-X,t-Y)fxRTYRD(X,y) , S;::: 1, 
I X,Y 5 ' , 

s,t A 
fS,T(S, t) = 2: '( fS,T(S - x, t - y)fXRT,XRD(X,y) , t;::: 1, 

X,Y 

where we use the notation 

s,t S t 

2:g(x,y) = 2: 2: g(x,y) -g(O,O), 
X,Y X=Oy=o 

for any function 9 and 'YN(U) = JE[uN ] = exp(A(u -1)). 

4 Some Elements of Stochastic Orderings 

In this section, we extensively refer to the seminal paper of Dhaene 
and Goovaerts (1996) on dependency of risks applied in actuarial sci­
ence. Some results appear more generally in probability theory, and we 
will extensively refer to the textbook of Muller and Stoyan (2002). 

Stop-Loss Order Stop-loss order allows the actuary to order the risks 
according to their stop-loss premiums. 
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Definition 1. A risk X is said to be smaller in the stop-loss order 
than a risk Y (written X :O;s/ Y) whenever one of the following equiv­
alent statements holds true: 

1. lE[max(O, X - d)] :0; lE[max(O, Y - d)] for any nonnegative 
deductible d; or 

2. lE[ u(X)] :0; lE[ v (Y)] for all increasing convex functions u and 
v, provided these expectations exist. 

The ranking X :O;s/ Y implies the stop-loss premiums for X are 
uniformly smaller than those for Y. 

PH-Transform Premium Principle We are interested in calculating pre­
miums with the PH-transform premium principle, introduced by 
Wang (1996). According to this premium principle, the amount 
rIp (X) charged to cover the risk X is given by 

rIp (X) = faoo (1- Fx(x))Pdx, 

where ° :0; p :0; 1. In particular when p = 1, the PH premium 
reduces to the pure premium. Wang (1996) proved that 

(2) 

which shows that the PH principle is in accordance with the stop­
loss order. 

Frechet Space The concept of Frechet space emerges when dealing with 
dependence; it offers the appropriate framework to deal with cor­
related random variables. 

Definition 2. The bivariate Frechet space 91(FI, F2) is the class of 
all bivariate distributions with given marginal cdfs FI and Fz. 

For the purpose of this paper, we will consider 91(FI.F2) as a set 
of random couples. 

Correlation Order The correlation order offers a powerful tool to com­
pare the elements of a given Frechet space. 

Definition 3. If (Xl, X2) and (YI, Y2) are elements of91(FI.F2), we 
say that (Xl, X2) is less correlated than (YI, Y2), written (Xl, X2) :O;c 

(YI , Y2), if 
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for all non-decreasing functions f and g for which the covariances 
exist. 

The intuitive meaning of a ranking (Xl,X2) Sc (Yl, Y2) is that 
(Xl, X2) is "less positively dependent" than (Yl, Y2). 

The correlation order enjoys a number of convenient mathemati­
cal properties, some of which are reviewed below. These proper­
ties of correlation order are found in Muller and Stoyan (2002): 

PI Let (Xl,X2) and (Yl, Y2) be elements of 9't(Fl,F2), then the 
following statements are equivalent: 

(i) (Xl,X2) Sc (Yl, Y2), and 
(ii) FXl,X2(Xl,X2) S FYl,Y2(Xl,X2) , 'itXl,X2;::: 0. 

P2 Let (Ul, V2) and (VI, V2) be elements of 9't(Fl, F2), and let 
(Rl, R2) be a randomvector independent of both (VI, V2) and 
(VI, V2). It follows that 

P3 Suppose (W,X) and (Y,Z) are elements of9't(Fl,F2). Let 
(Wi, Xd and (Yi, Zd be independent copies of (W, X) and 
(Y,Z), respectively, such that (W,X) SC (Y,Z), and let N 
be a nonnegative counting random variable independent of 
(W,X) and (Y, Z). It follows that (Sw,Sx) Sc (Sy,Sz) where 
(Sw, Sx) = 0::%1 Wi, I~=l Xd and (Sy, Sz) = (I%l Yi, I%l Zi). 

P4 (W,X) SC (Y,Z) implies (j(W),g(X)) Sc (j(Y),g(Z)) for 
all increasing functions f and g, 

PS (W, X) SC (Y, Z) implies W + X Ssl Y + Z, Le., correlation 
order implies stop-loss order of the sum of the elements. 

Using properties P4 and PS, we immediately obtain the following 
result: 

Result 1. Let (Xl,X2) and (Yl, Y2) be two elements of9't(Fl,h). 
Then (Xl, X2) SC (Yl, Y2) implies 

max(0,Xl-a)+max(0,X2-b) Ssl max(O, Yl-a)+max(O, Y2- b ) 

for all a, b ;::: 0. 
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Positive Quadrant Dependence An important concept used in later in 
this paper is the concept of positive quadrant dependence. 

Definition 4. Let (Xl,X2) E 9t(Fl,F2), and let (xt,xt) be the in­
dependent version of (Xl, X2), i.e., (X t, xt) E 9t(Fl, F2) and xt is 
independent of xt. Then (Xl, X2) is said to be positively quadrant 
dependent if one of the following equivalent statements holds: 

(i) FXl (xl)Fx2(X2) :s: FX1,X2(Xl,X2), Xl,X2 ~ O. 

(ii) (xt,Xf):s:c (Xl,X2). 

(iii) ICov (j (Xll, 9 (X2)) ~ 0 for all non-decreasing functions f 
andg. 

See, e.g., Dhaene and Goovaerts (1996) for a proof of these equiv­
alences. 
The following result will be useful for the applications in reinsur­
ance. 

Result 2. Let Xi and Yi be independent copies of the non-negative 
random variables X and Y. Let us assume that X, Y, and N are 
mutually independent and define 

5 = Xl + ... + XN and T = Yl + ... + YN. 

Then (5, T) is positively quadrant dependent. 

Proof: f and 9 are non-decreasing functions. By the decomposi­
tion formula of the covariance, we have 

ICov(j(5),g(T) = lE(ICov(j(5),g(T) IN») 
+ ICov (lE(j (5) IN), lE(g (T) IN»). 

The first term of the right part of the equality vanishes because 
the covariance between independent random variables is O. For 
the second term, it is clear that the expectations are increasing 
functions of N (because the summands in 5 and T are assumed 
to be positive) and therefore the second term can be rewritten as 
ICov (u (N), v (N», where u and v are non-decreasing functions. 
This covariance is clearly non-negative, which closes the proof. 

Comonotonicity The concept of comonotonicity generalizes perfect 
correlation. Comonotonic random variables are functionally (and 
not necessarily linearly) dependent. For a reference in actuarial 
science, see e.g., Wang and Dhaene (1998). 
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Definition 5. Two risks X and Yare said to be comonotonic if 

(i) Their joint cdf satisfies Fx,Y(x,y) = rnin(Fx(x),Fy(y)) for 
any x, y ~ 0, or, equivalently, 

(iO There exists a random variable Z and non-decreasing func­
tionsuandv onlRsuchthat(X, Y) isdistributedas (u(Z),v(Z)). 

By construction, the couples (XfT,XfD) are comonotonic. 

Frechet's Theorem An interesting result that is related to the concept 
of comonotonicity is the following theorem, due to Frechet (1951) 
and Hoeffding (1940). It gives the extremal elements of any Frechet 
space with respect to sc. 

Theorem 1 (Frechet). Let (XI,X2) E 9t(FI, F2), then 

(F11 (U),Fi l (1- U)) SC (XI,X2) SC (Fll(u),Fil(U)) 

with U uniformly distributed over (0,1), or, equivalently, in terms 
of distribution functions, the inequalities 

max[Fdxd+h(X2)-1;0] S FXl,XZ(XI,X2) S rnin[FdxI);F2(X2)] 

hold for any Xl, X2 E R 

5 Numerical Results 

As mentioned in Section 3, all continuous random variables are dis­
cretized using the local one moment matching method with a discretiza­
tion step h = 10. Thus, all random variables in this section are the 
discrete version of the original random variable. 

5.1 Treaty 1 

Table 2 shows some interesting characteristics of the claims. Note 
that the Pearson's correlation coefficient between SRT and TRD is esti­
mated at 0.35. The pure premium for this cover is 

00 00 co 

E[Cover] = 2: L L is,T(S, t)iu(u) rnin(200,s + max(O, t + u - 200)) 
5;0 t;O u;O 

= 20.519. 
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Mean 
Variance 

Table 2 
Means and Variances for Treaty 1 

x RD X RT yRD SRT TRD 

100 16.14 42.87 30 4.84 
o 1817 631.72 3000 623.4 

We easily can obtain upper and lower bounds. Let 

107.17 
6173.89 

Fsmin.Tmin(Xl,X2) = max[Fs(xd + FT(X2) -1;0], and 

Fsmax.Tmax(Xl,X2) = min[Fs(xd,h(X2)]. 

Using Theorem 1 in connection with PI we have 

(smin, Tmin) ~c (s, T) ~c (Smax, Tmax). 

Using P2, we have 

(Smin, T min + U) ~c (s, T + U) ~c (Smax, T max + U). 

Using Result 1, we have 

E[max(O; Smin + max(O; T min + U - 200) - 200)] 

s E[max(O; S + max(O; T + U - 200) - 200)] 

~ E[max(O;SmaX + max(O; T max + U - 200) - 200)], 

which is equivalent to 

E[min(200; Smax + max(O; T max + U - 200))] 

~ E[min(200; S + max(O; T + U - 200))] 

~ E[min(200;Smin + max(O; T min + U - 200))]. 

The numerical bounds are 19.469 s 20.519 s 21.279. 
It is possible to improve the upper bound. Let (XRT . .l, XRD . .l) be the 

independent version of (XRT, XRD). We define 

s.l = XfT . .l + ... + X~T . .l, 

T.l = XfD . .l + ... + X~D . .l. 
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Clearly XRT and XRD are comonotonic random variables. We then have 

FXRT.L,XRO . .c(Xl, xz) ::s; min (FXRT (Xl),FXRo (xz)) 

= FXRT,XRO(Xl,XZ), \fXl,XZ ~ O. 

Therefore, (XRT,.L, XRD,.L) ::S;C (XRT, XRD). Using P3 we have (S.L, T.L) ::S;C 

(S, T). S.L and T.L are dependent, however, because they involve the 
same number of summands. Therefore, let us define the independent 
versions of (S.L, T.L) as (S H, T H). Using Result 2 we have (S H , T H) ::S;C 

(S.L,T.L). By transitivity, we then obtain (SH,TH ) ::s;c (S,T). UsingP2 
we have (SH, TH + U) ::s;c (S, T + U). Using Result 1 we have 

lE[max(O; SH + max(O; TH + U - 200) - 200)] 

::s; lE[max(O;S + max(O; T + U - 200) - 200)], 

which is equivalent to 

lE[min(200; S + max(O; T + U - 200))] 
::s; lE[min(200;SH + max(O; TH + U - 200))]. 

Numerically, we have 20.519 ::s; 21.131. A summary of the results is 
shown in Table 3. 

Table 3 
Pure Premiums for Treaty 1 

Frechet Lower Bound 19.469 
Exact Result 
Independent Case 
Frechet Upper Bound 

20.519 
21.131 
21.279 

It is also interesting to analyze other moments of the cover, or premi­
ums obtained by the PH-transform premium principle. They are given 
in Table 4. 

Unfortunately, the other moments, as well as the premiums obtained 
with the PH-transform premium principle, are not ordered anymore. 

5.2 Treaty 2 

Some preliminary statistics are displayed in Table 5. The correlation 
between SRT and TRD is 0.35. The pure premium for our cover is: 
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Table 4 
Moments and PH-Transform 

Premium Principle for Treaty 1 
Exact Independent 

E[Cover] 20.519 21.131 
E[Cover2 ] 265.04 261.32 
E[Cover3 ] 4124.3 3915.8 
E[Cover4 ] 70331.0 64760.0 

P IIp (Exact) IIp (Independent) 
1.00 20.519 21.131 
0.75 34.898 35.420 
0.50 60.786 61.034 
0.25 108.71 108.55 

00 00 00 

ECover = I I I fS,T(S, t)fu(u) max(O, s + t + u - 400) = 2.252. 
5=0 t=O u=O 

Upper and lower bounds can be obtained using Theorem 1 in con­
nection with PI to give 

(Smin, Tmin) ~c (S, T) ~c (Smax, Tmax). 

Using P2, we have 

(smin, T min + U) ~c (S, T + U) ~c (Smax, T max + U). 

Using Result 1, we have 

Table 5 
Means and Variances for Treaty 2 

Means 200 16.14 1.83 600 4.84 4.57 
Variances 0 1817.63 206.31 12000 623.4 524.15 
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lE [max (0; Smin + T min + U - 400)] 

:s; lE[max(O; S + T + U - 400)] 
:s; lE[max(O;SmaX + T max + U - 400)]. 

These numerical bounds are 0.952 :s; 2.252 :s; 5.471. 
Though we are now able to improve the lower bound, the process 

is, unfortunately, less interesting than in the previous example. XRT,.L 
and XRD,.L are the independent versions of XRT and XRD; that is XRT,.L 
and XRD,.L are independent and have the same distributions as XRT and 
X RD , respectively. Let us define . 

S .L _ XRT,.L + + XRT,.L 
- 1 .. , N' 

T.L = XfD,.L + ... + X~D,.L . 

It is clear, from their construction, that XRT and XRD are comonotonic 
random variables. We then have 

FXRT.",XRD,,.(Xl,X2) :s; min (FXRT (Xd,FxRD (X2)) 

= FXRT,XRD(Xl,X2) 

for any Xl, X2 ;:: O. Therefore, 

(XRT,.L,XRD,.L):s;C (XRT,X RD ). 

Using P3, we have (S.L, T.L) :S;c (S, T). As S.L and P are dependent, 
however, there is little interest in working with this random vector. 

We define the independent versions of S.L and T.L as SHand T H , 
respectively. Using Result 2, (SH, TH) :S;c (S.L, T.L). By transitivity, 
we obtain (SH, TH) :S;c (S, T). Using P2, we have (SH, TH + U) :S;c 

(S, T + U). Using Result 1, we have 

IEJ[max(O;SH + TH + U - 400)] :s; lE[max(O;S + T + U - 400)]. 

Numerically, we have 1.153 :s; 2.252. These results are summarized in 
Table 6. Contrary to Treaty 1, we are now able to compare other mo­
ments and premiums obtained by the PH-transform premium principle. 
Numerical results are summarized in Table 7. In this case the charac­
terization of the stop-loss order and equation (2) are directly applicable 
because we have Cover.L :S;s! Cover. 
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Table 6 
Treaty 2: Pure Premium 

Frechet Lower Bound 0.952 
Independent Case 1.153 
Exact Result 2.252 
Frechet Upper Bound 5.471 

Table 7 
Moments and PH-Transform 

Premium Principle for Treaty 2 
Exact Independent 

lE[Cover] 2.252 1.152 
lE[Cover2] 486.9 242.3 
lE[Cover3 ] 140198.0 61874.0 
lE[Cover4 ] 51084848.0 19062223.0 

P TIp (Exact) TIp (Independent) 
1.00 2.252 1.152 
0.75 7.815 4.611 
0.50 30.22 20.60 
0.25 170.04 143.41 

5.3 Treaty 2bis 

Typically, a reinsurer will not offer an unlimited cover, at least for 
property business. Therefore, the cover of Treaty 2 should be limited 
in practice and could read 

Cover = min(400,max(0,S + T + U - 400)), 

which we call Treaty 2bis. 
Pricing this realistic cover thus requires exact computations because 

of our inability to show that the derived bounds remain valid. We obtain 
the following results in Table 8. For this example, the bounds remain 
valid. This result is probably due to the very low probability of ex­
hausting the cover, a fact that is confirmed by observing that the pure 
premium is the same (at least with three decimal digits) in both cases. 
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Table 8 
Pure premiums for Treaty 2bis 
Frechet Lower Bound 0.952 
Independent Case 1.153 
Exact Result 2.252 
Frechet Upper Bound 5.4 71 

6 Conclusion 

By assuming the reinsurance cover is a function of a comonotonic 
random vector, we have shown how it is possible to obtain bounds for 
the pure premium. In particular, we observed that for Treaty 1, the 
wrong hypothesis ·of independence provides an upper bound for the 
pure premium of the treaty. This happens when the cover of the treaty 
is limited and when the comonotonic random variables are expressed 
as an excess of the same underlying random variable. Unfortunately, 
we have found in one case that the other moments of the cover are no 
longer ordered, i.e., even if we can prove that the first moment under 
the wrong hypothesis of independence is larger than the first moment 
under the exact hypothesis of independence, this property is not true 
for higher moments. In addition, we do not have a theoretical result on 
these orders. 

In a second example we show that the wrong hypothesis of indepen­
dence was not conservative, which shows the following consequence of 
not working with the exact model when it is known: if you work with 
the wrong model, you compute wrong premiums, which are too low 
when compared to exact premiums. Furthermore, the upper and lower 
Frechet bounds may be quite far from the exact result, as shown in 
Treaty 2. 

The theoretical results derived in this paper were based on a two di­
mensional paradigm. However these results can be extended to higher 
dimensions by using the supermodular ordering. Further research is 
being pursued in this area. 
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An Application of Control Theory to the Individual 
Aggregate Cost Method 

Alexandros A. Zimbidis* and Steven Haberman t 

Abstract 

The paper investigates the individual aggregate cost method (also known 
as the individual spread-gain method), which is normally applicable in small 
pension funds or fully contributory schemes, using a control theoretical frame­
work. We construct the difference equations describing the mechanisms of the 
respective funding method and then calculate the optimal control path of the 
contribution rate assuming (first) a stochastic and (second) a deterministic pat­
tern for the future investment rates of return. For the first case, the optimal 
solution is achieved through a linear approximation and using stochastic op­
timization techniques. It is proved that the contribution rate is (optimally) 
controlled through the control of the valuation rate (which is determined in­
corporating a certain feedback mechanism of the past contribution rate). The 
optimal solution for the deterministic case is obtained using standard calculus 
and the method of Lagrange multipliers. 

Key words and phrases: individual aggregate funding, linear approximation, 
optimal stochastic control, Lagrange multipliers 
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1 Introduction 

Over the past fifteen years or so, control theory has been used to 
study different types of insurance systems. Researchers have found 
that this specific theory provides a powerful research framework to 
analyze the evolution of insurance and pension systems, as well as to 
determine optimal strategies for determining, for example, the level 
of insurance premiums, the level of pension fund contributions, or as­
set allocation. Several authors have used control theory for the inves­
tigation of the properties of different pension funding methods; e.g., 
Benjamin (1989), Zimbidis and Haberman (1993), Haberman and Sung 
(1994), Loades (1998), Owadally and Haberman (1999, 2004), Cairns 
(2000), and Taylor (2002). 

This paper focuses on the application of control theory to the in­
dividual aggregate cost method, which is also known as the individual 
spread-gain method. The individual aggregate cost method is normally 
applicable to two broad categories of pension funds: (i) small pension 
funds where the number of members participating in the plan is so 
small or the membership is so heterogeneous that the average contri­
bution rate obtained by the aggregate (or other) funding method is not 
reliable or sufficient; or (ii) pension funds (whether small or large) where 
the individual members contribute the major share of the total annual 
contributions; see McGill et al. (1989). 

Consider an employee who was hired at age e and will retire at the 
normal retirement age r, i.e., the employee is expected to give m = r - e 
years of service. If the employee is currently age x at time n, where x = 

n + e, then under the individual aggregate cost method, an individual's 
contribution rate at the beginning of year n + 1 for n = 0, I, 2, ... , m - I, 
is Cn , where: 

(1) 

for n = 0,1,2,,,., m - 1 while Cn = 0 for n = m, m + 1,,,., Fn is the 
accumulated fund assets at time n, PVTBn is the actuarial present value 
of total retirement benefits earned at time n, S ax :m - n I is the actuarial 
present value of a life annuity with payments increasing according to a 
salary scale, and ax :m - n I is the actuarial present value of a life annuity 
with level payments. All actuarial present values are assumed to be 
discounted at the valuation rate of interest of i. 

We assume each plan member has his/her own separate account that 
changes due to the employee's own contributions, investment returns 
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on the fund, and expenses associated with managing the fund. For 
example, in Greece the fund value for each member, Fn , is calculated 
by crediting the employee's own contributions, debiting management 
and other expenses either as a flat amount for each person or as a 
standard percentage based upon the employee's own contributions, and 
finally crediting investment proceeds proportionally according to the 
prior fund value Fn-l. A full description of the individual aggregate 
cost method may be found in McGill et al. (1989) and Winklevoss (1993). 

2 Description of The Model 

We now present some of the assumptions used throughout this pa­
per. 

AI: The pension plan is a defined benefit plan with normal retire­
ment age r. 

A2: The plan uses the individual aggregate funding cost method 
for plan valuations. 

A3: We consider a plan member who was hired at age e and has 
a future working lifetime of m years, where m = r - e. 

A.4: There are no pre-retirement mortality, disability, or other 
decrements. 1 

A5: The normal retirement benefit is B/1Z per month. 
A6: The unit of currency used is such that the product of the 

annuity factor and the annual retirement benefit is equal to 
one monetary unit, Le., 

Bii~l2) = l. 

A7: As the normal retirement benefit is independent of salary, 
normal cost is calculated on the basis of a level-dollar amount. 

A.8: The contribution rate for the plan year [n, n + 1) is en mon­
etary units paid at time n and is equal to the plan's normal 
cost. 

A9: The total funding period of m years is divided in two sub­
periods: [0, T) and [T, m). In the first sub-period (up to 

1 This assumption may be justified because, in fully contributory plans (where this 
specific method is normally applicable), the ancillary non-retirement (death, disability, 
or other) benefits are normally equal to (or approximately equal to) the accrued liability 
at the date of decrement, resulting in no gain or loss to the plan. 
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time T) the investment return for the year [n - 1, n), jn, 
is considered to be a stationary stochastic process where 
E(jn) = j > 0 and 'Var(jn) = (52 > 0, and the jns are 
mutually independent. In the second sub-period (after time 
T) the annual investment returns, jn, are deterministic for 
n = T, t + 1, ... , m - l. 

A.1O: The valuation rate for the plan year [n, n + 1), in, is deter­
mined at the end of the previous year (Le., at time n) and is 
based on the information and experience available at n, the 
in is used to determine the contribution rate en for the plan 
year [n, n + 1). 

Under the traditional approach to determining the contribution rate 
for the individual aggregate cost method (as formulated in equation (1)), 
we assume a constant valuation rate of interest i for each year n and an 
initial fund value Fo, which is normally zero. The contributions rates 
(en, n = 0,1,2, ... , m - 1) determined by equation (1) vary because of 
fluctuations in the investment returns on the accumulated assets, Fn. 
In order to reduce the fluctuations in the en, n = 0,1,2, ... , m - 1, we 
control the contribution rates by adapting the valuation rate of interest. 
This is justified because the valuation rate of a pension fund is highly 
correlated to the long-term interest rates (see Wilkie, 1995 or Ang and 
Sherris, 1997) so that the estimation of these rates will influence the 
determination of the valuation rate. 

Our approach follows the standard practice, which is commonly 
called the life-style investment strategy.2 Following assumption A.9, 
at the beginning of the first sub-period, we choose a high risk high ex­
pected return investment policy. Once in the second sub-period, the 
assets are switched to assets with a lower risk lower expected return 
investment policy in order to secure the benefits of the member at the 
date of retirement. The value of T is determined by the pension fund 
manager, and we suggest that T should be close to m in order to be able 
to obtain an investment product with guaranteed rates for the second 
period. 

In the first sub-period, where the returns follow a stochastic pro­
cess, we control the contribution rate by adopting a control feedback 
mechanism for the annual valuation rates in. In the second sub-period, 
where the returns follow a deterministic process, we control the contri­
bution rate directly by calculating the optimal path that produces the 
promised retirement benefit. 

2See Vigna and Haberman (2001) for a discussion in the context of defined contribu­
tion pension schemes. 
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Because there are no pre-retirement decrements (assumption A. 4) 
and the retirement benefit is independent of salary, we obtain the fol­
lowing system of difference equations: 

m-nB .. (12) F 
V(in) ar - n 

Cn = ----'-'-"-'-----
iim_nli ll 

which is the equation for the normal cost, and 

(2) 

(3) 

where v((,"Jn = (1 + in)-(m-n) is the discount factor. Equation (2) can 
be rewritten as Fn = V({,"Jn - Cniim_nl in and substituted into equation 
(3) to yield, after some elementary algebra, 

a-----. ' V m - n V m - n +1 

C -(1 ') m-n,Ln-1 C (in) -(l+J') (in-!l n - + In.. n-l + .. n..· 
am-nl ill am-nl ill am-nl in 

(4) 

It is clear from equation (4) that the system is non-linear in the val­
uation rates in and in- 1 and linear in jn and Cn- 1• The state variable 
of the system is the contribution rate Cn while the input variable is the 
actual rate of investment return jn, The valuation rate of interest in 
that appears in equation (4) is the source of non-linearity and operates 
as the control variable, which attempts to balance the system. 

In a steady state, where jn = j, a constant for n = 0,1,2, ... , and, if 
the valuation rate also is equal to j (Le., in = j), then we obtain from 
equation (4) 

Cm -l = Cm -2 = ... = Co. (5) 

The initial contribution (Co) then is calculated using equation (2) and 
assuming Fo = 0, Le., 

m 
_ v(j) __ 1_ 

Co -.. -.. . 
amlj Smlj 

(6) 

Then the fund value at each time point n is equal to the respective 
accumulation of contributions, Le., 

.. snlj 
Fn = Cosnlj = -.. -

Smlj 
(7) 
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for n = 1, ... , m. As the recursive equation (4) is non-linear, we pro­
pose to employ linear approximation techniques in order to solve the 
problem. 

3 Mean and Variance of Contribution Rate 

Before going further with the control theoretical analysis of the model 
and the linear approximation, we investigate the mean and variance of 
the contribution rates under the traditional approach where the valua­
tion rate of interest is assumed to be constant for each year and equal 
to the expected rate of investment return, i.e., 

io = in = J = lE(jn) (8) 

for n = 1, ... , m - 1. Substituting equation (8) in equation (4) we obtain 

1 + In J - Jnj . 
Cn = -1--' Cn-l + -1--' nU) 

+] +] 
(9) 

where 

(10) 

In order to facilitate our calculations, we introduce the filtration 
Hn , which represents all the available information generated by the 
entire funding process (the annual investment rates, the decisions for 
the contribution rates, etc.) up to and including time n. We also use 
two well known results from the theory of conditional probabilities: 

lE(X) = lE[lE(XIY)] and 
Var(X) = Var[lE(XIY)] + lE[Var(XIY)] 

where X, Yare random variables. 
From equation (9) and conditioning on Hn-l give 

(11) 

(12) 
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for n = 1, ... , m - 1. Consequently, we determine that the expected 
contribution rate is constant over time n, i.e., 

JE(Cn)=Co for n=I, ... ,m-1. (13) 

To obtain the variance we note that, using equation (9) and condi­
tioning on Hn-l yields 

Var (Cn ) = Var [JE (CnIHn-d] + JE [Var (CnIHn-l)] 

where Var [JE (CnIHn-d] = Var (Cn-d and 

JE[Var(CnIHn-l)] 

[ (
1 + jn j - jn. )] 

= JE Var 1 + j Cn-l + 1 + j fn{j)IHn-1 

- JE [ cLI "" (.) f~(j) - 2fn(j)Cn-l"" (.)] 
- (1 + j)2 var In + (1 + j)2 var In 

_ 2 [JE(C~_I) f~(j) - 2fn(j)JE(Cn-I)] 
- 0' (1 + j) 2 + (1 + j) 2 

_ 2 [Var(Cn-l) + [JE(Cn_d]2 f~(j) - 2fn(j)JE(Cn-1)] 
-0' (l+j)2 + (l+j)2 

= C~J2 Var(Cn-d+ C~jr (C6+f~(j)-2fn(j)Co) 
for n = 1, ... , m - 1. Hence 

0' 0'2. 2 

[ ( )2] Var(Cn) = 1 + 1 +j Var(Cn-l) + (1 +j)2 (Co -fn{j)) . 

For notational convenience, let l/Jn = Var (Cn ) and 



166 Journal of Actuarial Practice, Vol. 72, 2005 

(J2 . 2 (J2 [1 1 J 2 
An = (1 V [Co-in(;)] = (1 V -.. -. - -"--. 

+j +j SmlJ sm-nlJ 

Thus we have the following difference equation for the variance: 

(jJn = [1 + (1 : j) 2] (jJn-l + An (14) 

for n = 1,2, ... , m - 1, which has the solution 

~n ~ [1+ C: sr ~o +~} + (, :J]\n-. (15) 

As 1 + ((J / (1 + j)) 2 > 1 and An-k > 0, it is clear from equation (15) that 
(jJn increases as n increases up to m. We also observe that the rate of 
increase in (jJn depends on the ratio (J / (1 + j). 

In order to restrict the magnitude of the (jJns, we now consider a 
control theory approach based on a variable valuation rate of interest. 

4 Optimal Control Strategy 

4.1 The Objective Function 

As described in assumption A.9, we split the total funding period 
into two sub-periods. In the first sub-period we apply a stochastic 
model for the investment rate of return, while in the second sub-period 
we apply a deterministic model. In the first sub-period, we use the val­
uation rate of interest as a control mechanism, while in the second sub­
period we directly determine the contribution rates. In other words, we 
either control the valuation rate of interest or the contribution rate. 

Our main objective in the control problem is the minimization of 
the contribution rate risk, which is defined as the total mean square de­
viation of contribution levels from their target values. 3 Following Van­
debroek (1990) and Haberman and Sung (1994), we adopt a weighted 
quadratic objective function of minimizing total mean square devia­
tions of contribution levels from their target values (because our basic 

3 According to Haberman and Sung (1994), the contribution rate risk is one of the 
two main risks with which a pension plan is confronted, while the other basic risk is 
the solvency risk. 
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aim is to reduce the fluctuations of the contribution rate) and also total 
mean square deviations of valuation rates from their target levels.4 

Let Cst and ist denote the contribution rate and valuation rate, re­
spectively, for the steady state of the system (see equation (20)), and 
let f3 be a weighting factor, where 0 .::; f3 .::; 1. The choice of the fac­
tor f3 reflects the preference of the pension scheme manager between 
the contribution rate and the valuation interest rate and which of them 
may exhibit more or less fluctuations. That is, if the manager chooses 
f3 to be close to zero that means the manager prefers a more stable 
contribution rate and pays almost no attention to possible large fluc­
tuations in the valuation interest rate. For the first sub-period with the 
stochastic investment rates, the objective function under the quadratic 
performance criterion has the following form: 

(16) 

For the second sub-period (from (T) up to (m)) the objective function 
includes no stochastic elements (hence no expectation operator) and 
has the following form: 

m-l 

02 = min I (Ck - Cst )2. 
Ck k=T 

(17) 

It is easy to argue that for f3 = 1, the new (controlled) model almost 
corresponds to the traditional approach of the individual aggregate cost 
method. 

4.2 Optimal Control During the First Sub-Period 

The difference equation (4) may be linearized in the neighborhood 
of a certain steady state, defined by: 

(18) 

In the steady state, the valuation rate of interest is equal to the actual 
investment rate of return, and normally we choose 1st to equal the mean 
of the in, i.e., 

4 A quadratic objective function has the advantage of leading to mathematically 
tractable results but we acknowledge that it has the inherent disadvantage of treat­
ing deviations below and above the target in an equivalent manner. The use of semi· 
variance type measures would allow more flexibility in this direction but at the expense 
of tractability. 
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jst = ist = IE Un) = j. (19) 

The respective contribution rate is given by 

1 
Cst = -.. -. 

smU 
(20) 

By considering infinitesimally small (V') changesS about the steady state 
for Cn, Cn-l, in, in-I, and jn, Le., Cn = Cst + V'Cn, Cn- 1 = Cst + V'Cn-l, 
in = j + V'in, in-l = j + V'in-l, and jn = j + V' jn, we obtain the following 
linear approximation (after using equation (19)) 

V'Cn = V'Cn-l + ~n V' jn + 'Pn V'in-l + (n V'in + nonlinear terms (21) 

where 

~n = 1 ~ j (S~j -Sm~nlJ 
m-n+l 1 m-n 1 1 1 1 

'Pn = 1 . -.. -- + --, --.. --.. -- - -;-.. -
+ J sm-nU J smJj sm-nU J smJj 

m-n 1 m-n 1 1 1 1 
( -- ----------+ --

n - 1 + j sm-nU j smJj sm-nU j(1 + j) sm-nU 

Note that 'Pn = -(~n + (n); hence equation (21) may be rewritten as 

V'Cn = V'Cn-l + ~n V' jn - (~n + (n) V'in- 1 + (n V'in . (22) 

At this point it is important to briefly describe the solution to a 
general linear dynamic difference equation of the form 

Xn = AnXn-l + Bnun + en (23) 

for n = 1,2, ... , N, where Xn E jRn is the state variable, Un E jRk is 
the control variable, An E jRrxr and Bn E jRrxk are known non-random 
matrices, and en E jRr is a random vector with IE(en) = 0 and finite 
covariance matrix. In addition, we assume en is independent of Xn and 
Un· 

The problem is to search for the optimal control Ul, U2, ... , UN -1 that 
minimizes the following expectation: 

SHere V' is the backward difference operator, i.e., for any function j(x), V' j(x) = 
j(x + 1) - j(x) and V'n+l j(x) = V'n j(x + 1) - V'n j(x) for n = 1,2, .... 
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{ 

N N-1 } 
IE I x~Knxn + I u~Rnun 

el,e2,···,eN n=l n=l 
(24) 

where the symbol T denotes the transpose operator, Kn is a symmetric 
positive semi-definite matrix, and Rn is a symmetric positive definite 
matrix. Following Aoki (1989, pp. 131-148) and Bertsekas (1976, pp. 
70-80), the optimal solution, given the initial condition Xo, is described 
by the following equations: 

Un = M n X n -1 (25) 

where HN = KN, and, for n = N - 1, N - 2, ... , 1,0, we have 

(26) 

Hn = A~ [Hn+1 - Hn+1Bn (B~Hn+1Bn + Rn) -1 B~Hn+1] An + Kn. (27) 

In order to fit the last equation with the format of the linear system, 
which appears in equation (23), we write 

in other words Xn = 'YCn and An = 1, en = ~n 'Y In are scalars, and 

and (
'Yin ) 

Un = ". . 
v Ln-1 

The objective function is 

(29) 

which can be rewritten in matrix form as 

(30) 

where N = T - 1, Kn = (1 - {3), a scalar, and 
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-1 ) 
1 . 

The optimal control for equation (28), which minimizes the objective 
function (30), is then given by 

(
\lin ) 

n' = Mn \lCn-l 
v tn-l 

(31) 

where Mn is calculated according to equations (25) to (27). 
If f3 = 0 then we obtain the special case where we pay no attention 

to the development of the valuation rate and we are fully interested to 
the development of the contribution rate. Equation (31) becomes 

\l2in = \lin - \lin-I = - ~n \lCn-l. (32) 

Hence, the valuation rate of interest should be controlled using a feed­
back mechanism of the state variable (contribution rate). As the contri­
bution increases, the proposed valuation rate of interest decreases. 

Substituting the feedback mechanism of equation (32) into equation 
(22) yields 

\lCn = \lCn-1 + (n [ - ~n \lCn-1 ] + ~n(\l jn - \lin) 

= ~n(\l jn - \lin). 

4.3 Optimal Control During the Second Sub-Period 

(33) 

Having controlled the system for the first sub-period through an 
optimal path under a stochastic pattern of investment rates of return, 
we arrive at the time point T with a fund value of FT. During the second 
sub-period the rates of return jy + 1, jT +2, ... ,jm are assumed to follow 
a deterministic process. Our problem now is to guide the fund value 
from FT to Fm = 1 while minimizing the objective function: 

m-l 

min L (Ck - Csd 2• 
{CT,CT+l .... ,cm-d k=T 

(34) 

Combining equation (3) and the requirement Fm = 1 yields the follow­
ing constraint: 
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m m-I m 

Fm = FT n (1 + jk) + I Ck n (1 + jl) = 1. (35) 
k=T+I k=T l=k+1 

Using Lagrange multipliers our problem is translated into the minimiza­
tion of the Lagrangian function, A (CT, CT+I , ... , Cm-I, p) with respect 
to CT, CT+I, ... , Cm-I and p: 

m-I 

A(CT, ... ,Cm-I,P) = I (Ck-Cst)2 
k=T 

{ 

m m-I m } 
+ p FT n (1 + jk) + I Ck n (1 + j[) - 1 . 

k=T+I k=T l=k+1 

(36) 

We find the minimum of A by equating the partial derivatives with re­
spect to C T, C T + I, ... , Cm-I, P to zero. It is then straightforward (al­
though tedious) to solve the resulting system of equations to give: 

[ 

m m+1 m ] 
FT n (l+jk)+Cst I n (l+j[}-1 

_ 2 k=T+I k=T l=k+1 
P - m-I m (37) 

I n (1 + j[}2 
k=T l=k+1 

(38) 

for k = T, ... , m-l. The case where 1T+I = 1T+2 = ... = jm = j*, where 
j* is the risk free rate (normally j > j*) leads to 

FT (1 + j*)m-T + CstSm_TIi - 1 . m-k 
Ck = Cst - .. (1 +h) (39) 

Sm-nlj¢ 

5 The Mean and Variance of en with f3 = 0 

In order to obtain a direct comparison between the traditional and 
control approach, we calculate the mean and variance of the contribu­
tion rate under the traditional approach, using the linearized difference 
equation (22). Under the traditional approach 
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Vio = Vin = IE (V jn) for n = 0,1,.... (40) 

Hence, the traditional contribution rate, VCUad , given in equation (22) 
becomes 

vcuad 
= vc:;~1 + ~n (V jn - Vin-d 

= vqrad + ~l (V jl - Vio) + ... + ~n (V jn - Vin-d . (41) 

Taking the expectation of both sides of equation (41) we obtain 

IE [vc:;ad] = IE [VC8rad + ~l (V jl - Vio) + ... + ~n (V jn - Vin- 1)] = 0 

by using equation (40) and IE(vqrad) = O. The last condition holds as 
the initial condition c8rad is constant so that V c8rad is equal to zero. 
Hence, 

The result is the same as in Section 3 where we used the full non-linear 
equation (9) for Cn. 

Equation (41) also can be used to obtain the variance of the contri­
bution rate under the traditional approach as follows: 

Var [vc:;ad] = Var [VC8rad + ~l (V jl - Vio) + ... + ~n (V jn - Vin-l)] 

= Var [VC8rad] + ~iCT2 + ~~CT2 + ... + ~~CT2 

(42) 

because Var (vc8rad) = O. 
Let Cittr1 denote the contribution rate under the control approach. 

We use equation (33) for vcittrl, Le., 

vc~trl = ~n (Vjn - Vin-l) = ~n(jn - in-d. (43) 

Proceeding as before, 

IE(Vc~trl) = IE (IE (~n(jn - in-d IHn-l)) = ~n (j - IE (in-d) (44) 
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while the variance is given by 

Var (vc~trl) = Var (E (vc~trIIHn_l)) + E (var (vC~trIIHn_l)) 

= Var C~nU - in-I)) + E (~~cr2) 
= ~~. Var(in-l) + cr2~~. (45) 

From equations (44) and (45) we observe that the mean and the variance 
of the contribution rate depend upon the mean and the variance of the 
valuation rate of interest. 

Recall the control law for the valuation rate of interest, Le., equa­
tion (32). Substituting the expression for VC~t:ll from equation (43) in 
equation (32) we obtain 

. . ~n-I . ~n-l . (46) 
tn = tn-l + t;n tn-2 - Tn In-l, 

which is a difference equation of time-varying format with initial con­
ditions io = il = j. We now directly can obtain a recursive relationship 
for the means by taking the expectations of both sides of equation (46), 
Le., 

E(in) = E(in-I) + ~~:lE(in_2) - ~~:IEUn_l)' 
Using the initial conditions io = il = j and EUn-l) = j, we obtain (by 
induction) that 

E(in)=j for n=0,1,2, ... ,m-1. (47) 

Hence, combining equation (47) and equation (44) we obtain 

(48) 

for anyn = 0, 1, ... , m-l, which is the same result as for the traditional 
approach. 

Considering the difference equation (46) and the initial conditions 
io = il = j, we obtain (by induction) the following relationship for the 
variance of the valuation rate: 

Var(in) = cr2CPn (49) 

where 
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for kr = 2,3, ... , nand 1 + kr < kr+l for r = 1,2,.... Substituting 
equation (49) into equation (45) we obtain 

Var (vc~trl) = (1 + <Pn)~~cr2. (51) 

Compare the variances under the traditional and the control ap­
proaches in the first sub-period; we would expect to see 

Var (VCiIad) > Var (VC~trl) 

because ~n < (k+l for any n < m and k < n. 

6 Numerical Example 

(52) 

Consider an employee age 25 who will retire at age 65, Le., m = 40. 
We assume T = 36, Le., it might possible for the fund manager to find 
in the market a 4-year guaranteed interest rate deposit account; i = 

j = 4%, which we assume reflects the level of long-term rates in the 
market; jn is log-normally distributed6 with parameters 11 = -3.2492 
and cr = 0.2462 for n = 1,2, ... , Le., E(jn) = 4% and Var(jn) = 0.0001. 

We perform 3,000 simulations for each of three different values of 
beta ({3 = 0.0,0.5 , 1.0) and then calculate E(CJ[ad), E(Cittr1 ), E(Fiiad ), 
and E(Fittrl ), and the standard deviations cr(CJ[ad), cr(Cittr1 ), cr(Fiiad ), 
and cr(Fittr1 ) for the contribution rate and the fund levels under the 
traditional and the control approach, respectively. Results are provided 
in Tables 1 and 2. 

6The assumption of log-normality for investment returns is a simple though realistic 
approximation to observations of actual investment rates; see, for example, Baxter and 
Rennie (1996). 



Table 1 ~ 

Standard Deviations of Contribution Rates Under ~ 
~ 

Control (C~trl) and Traditional (C~trl) Approaches and Various Values of {3 ~ ;;;. 

{3 = 0.00 {3 = 0.50 {3 = 1.00 {3 = 0.00 {3 = 0.50 {3 = 1.00 !;;) 
::s 

n cctrI Ctrad CctrI Ctrad CctrI C trad c~trl / c~rad c~trl/q[ad c~trl/cxad So:l... 
n n n n n n ::r: 

1 0.00 0.01 0.00 0.01 0.00 0.01 0% 0% 0% !;;) 
~ 

2 0.01 0.01 0.01 0.01 0.01 0.01 91% 90% 90% 
(\) 
"'; 

3 0.02 0.02 0.02 0.02 0.02 0.02 82% 91% 96% ~ 
!;;) 

4 0.02 0.03 0.03 0.03 0.03 0.03 75% 87% 97% 
::s '. 

5 0.03 0.04 0.04 0.04 0.04 0.04 70% 84% 99% :;i 
(\) 

6 0.04 0.06 0.04 0.06 0.05 0.06 67% 81% 99% ::s 
7 0.05 0.07 0.06 0.07 0.07 0.07 64% 78% 98% 

So:l... 

$: 
8 0.05 0.09 0.07 0.09 0.09 0.09 61% 75% 98% So:l... 

s::: 
9 0.06 0.11 0.08 0.11 0.11 0.11 56% 72% 98% ~ 

97% 
)::,. 

10 0.07 0.13 0.09 0.13 0.13 0.13 54% 70% I.!;;) 
I.!;;) 

11 0.08 0.16 0.10 0.16 0.15 0.15 53% 67% 97% "'; 
(\) 

0.18 51% 63% 96% 
I.!;;) 

12 0.09 0.18 0.11 0.18 0.17 !;;) .... 
13 0.10 0.22 0.13 0.21 0.20 0.21 47% 62% 96% 

(\) 

~ 14 0.12 0.25 0.14 0.24 0.23 0.24 46% 60% 95% '" .... 
15 0.13 0.27 0.16 0.27 0.26 0.28 48% 60% 95% s: 

(\) 

20 0.23 0.49 0.26 0.49 0.46 0.50 46% 53% 91% .... 
::s-

25 0.38 0.84 0.45 0.86 0.76 0.87 45% 52% 87% 0 
So:l... 

30 0.71 1.50 0.83 1.56 1.23 1.52 48% 53% 81% 
>-' 

35 1.83 3.14 2.03 3.24 2.11 3.07 58% 63% 69% '-l 
V1 



Table 2 
,.... 
""-I 

Standard Deviations (and Expectations for f3 = 0.50 only) of Fund Levels Under 
OJ 

Control (F~trl) and Traditional (F~trl) Approaches and Various Values of f3 
Standard Deviations 

f3 = 0.00 f3 = 0.50 f3 = 1.00 Ratios Fctrl/Ftrad n n f3 = 0.50 
n Fctrl 

n 
Ftrad 

n 
Fctrl 

n 
Ftrad 

n 
Fctrl 

n 
Ftrad 

n f3 = 0.00 f3 = 0.50 f3 = 1.00 lE(F~trl ) lE(Fiiad ) 

1 0.1 0.1 0.1 0.1 0.1 0.1 100% 100% 100% 0.01 0.01 
2 0.2 0.2 0.2 0.2 0.2 0.2 101% 101% 101% 0.02 0.02 
3 0.4 0.4 0.4 0.4 0.4 0.4 101% 101% 101% 0.03 0.03 
4 0.6 0.6 0.6 0.6 0.6 0.6 101% 101% 101% 0.04 0.04 '-c 
5 0.8 0.8 0.8 0.8 0.8 0.8 102% 101% 100% 0.06 0.06 s:: .... 

~ 

6 1.1 1.1 1.1 1.1 1.1 1.1 103% 101% 100% 0.07 0.07 ~ 
7 1.4 1.4 1.4 1.3 1.4 1.3 104% 101% 100% 0.08 0.08 c -.... 
8 1.7 1.6 1.7 1.6 1.7 1.7 105% 102% 100% 0.10 0.10 

),. 
C'"\ .... 

9 2.1 2.0 2.0 2.0 2.0 2.0 106% 103% 100% 0.11 0.11 s:: 
~ 

10 2.6 2.4 2.4 2.3 2.3 2.3 107% 103% 100% 0.13 0.13 
.... 
~ 

11 3.0 2.8 2.9 2.8 2.7 2.7 108% 104% 100% 0.14 0.14 "\J 

12 3.4 3.1 3.2 3.0 3.1 3.1 110% 105% 100% 0.16 0.16 ~ 
C'"\ .... 

13 4.1 3.7 3.7 3.5 3.6 3.6 111% 106% 100% 0.18 0.18 r;. 
~(\) 

14 4.7 4.2 4.2 3.9 4.1 4.1 113% 108% 101% 0.19 0.19 
~ 15 5.1 4.5 4.7 4.4 4.6 4.5 116% 109% 101% 0.21 0.21 

20 8.7 6.9 8.2 7.0 7.2 7.1 125% 117% 102% 0.32 0.32 .!'J 
25 13.5 9.7 12.7 10.0 10.4 10.0 139% 127% 104% 0.44 0.44 I\.J 

0 
30 19.8 12.6 18.7 13.2 14.0 12.8 156% 142% 109% 0.60 0.59 0 ...., 
35 26.7 14.5 25.0 15.0 17.3 14.2 184% 167% 122% 0.78 0.78 
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As we observe (and also anticipated by expressions (13) and (49)) the 
mean of the contribution rates under the two approaches (controlled or 
traditional) remain almost constant and close to the initial rate Cst (Le., 
lE(Cifad ) = lE(C~trl) = 0.01 when f3 = 0.50). As regards the expectations 
of the contribution rates, we present the simulation results only for the 
value of f3 = 0.5 because the results for the other values of f3 are almost 
identical to that of f3 = 0.5. 

The standard deviation of the contribution rate under the controlled 
approach exhibits a slightly increasing pattern (as anticipated by ex­
pression (51)) but always remains (as anticipated by expression (52)) 
below the standard deviation of the contribution rate under the tra­
ditional approach which exhibits a steeper increasing pattern (as an­
ticipated by expressions (15) and (42)). The proportional difference 
between the controlled and traditional approach decreases as the f3 pa­
rameter increases toward unity. Actually, under the extreme value of 
f3 = 1 the controlled approach is almost the same as the traditional ap­
proach. (See the first columns of Table 1.) With respect to the standard 
deviations of the contribution rates, we present the results for all the 
three simulated values of the beta factor (f3 = 0.0, 0.5, and 1.0). 

Additionally, we also may observe the expectation of the fund level 
under the two approaches (controlled or traditional) that remains al­
most the same for any value of n. (See the last two columns of Table 2.) 
With respect to the mean fund level, we again present the simulation 
results only for the value of f3 = 0.5 because the results for the other 
values of f3 are almost identical. 

The standard deviation of the fund level under the traditional ap­
proach exhibits a slightly increasing pattern but always remains below 
the standard deviation of the fund level under the controlled approach 
which exhibits a steeper increasing pattern (the opposite pattern of the 
contribution rate). The proportional difference between the traditional 
and controlled approach decreases as the f3 parameter increases to­
ward unity. Actually, under the extreme value of f3 = 1 the controlled 
approach is almost the same as the traditional approach. (See the first 
columns of Table 2) As regards the standard deviations of the fund 
level, we present the results for all the three simulated values of the 
beta factor (f3 = 0.0, 0.5, and 1.0). 

It is clear from the results above that both the traditional and the 
controlled approach succeed in achieving (in expected value terms) the 
target value of the fund in a very similar way. The controlled approach 
also succeeds in reducing the variance of the contribution rate but this 
advantage is balanced with the disadvantage of a higher variance for 
the fund value. It is also interesting to identify the important role of 
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the weighting factor f3 which may act as a regulator. The extreme values 
of the weighing factor f3 produce two extreme versions of the model. 

When f3 = 0, we obtain the absolute controlled version of the model 
with the minimum value for the standard deviation of the contribution 
rate and the maximum value for the standard deviation of the fund 
value. When f3 = 1, we obtain almost the traditional approach with the 
maximum value for the standard deviation of the contribution rate and 
the minimum value for the standard deviation of the fund value. Hence, 
the choice of f3 may balance the levels of standard deviations between 
the fund value and the contribution rate. 

7 Summary and Areas for Further Research 

The central concept of our paper is the consideration of the valua­
tion rate of interest asa free control variable (as proposed by Benjamin, 
1989). This concept may be deemed an attractive one if one wants to 
determine the actual position of a pension fund. Unfortunately, how­
ever, it may pose practical problems with legislative or other regulatory 
restrictions. The optimal path for the contribution rate (according to 
our objective function) is then determined by controlling the pattern of 
the valuation rate of interest through a feedback mechanism. Actually, 
our model process permits the actuary to adjust the initial valuation 
rate (which may be based on projections of long-term rates) to reflect 
the recent investment experience. 

The model is solved using a standard linear approximation proce­
dure for the basic equation of the system. The important result is pro­
vided by equation (31) where the valuation rate is optimally controlled 
through a feedback mechanism of the state variable (which is the con­
tribution rate). Under this optimal control law, we observe that the 
expected contribution rate remains the same (as for the traditional ap­
proach) for the whole funding period, while the variance of the contri­
bution rate exhibits a slightly increasing pattern. This increase in vari­
ance is less than the increase in variance under the traditional approach. 
Unfortunately, this advantage of the controlled approach is counterbal­
anced with the higher fluctuations of its fund levels over time. 

It is also interesting to identify the regulatory role of the weighting 
factor f3 which under the extreme values f3 = 0 and f3 = 1 produces the 
absolute controlled and traditional version of the model. Hence, the 
specific approach illustrates that the traditional form of the individual 
aggregate cost method may be seen in a wider context as a special case 
(for f3 = 0) of a controlled model. In this new controlled model, we can 
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design in advance the desired level of the variances for the contribu­
tion rate and the fund value by selecting the appropriate value for the 
weighting factor of the objective function named {3. 

The model may be extended further by relaxing some assumptions. 
For example, we can make the pension benefit dependent on final salary 
and assume fluctuations in the interest rates available to purchase the 
retirement annuity at the time of retirement. 

It is clear from the model investigated above that control theory may 
be applicable to the individual aggregate cost method by providing a 
system with an improved performance relative to the traditional version 
of this specific method. 

References 

Ang, A. and Sherris, M. "Interest Rate Risk Management: Developments 
in Interest Rate Term Structure Modeling for Risk Management and 
Valuation of Interest-Rate-Dependent Cash Flows." North American 
Actuarial Journal 1 (1997): 1-2l. 

Aoki, M. Optimization of Stochastic Systems, 2nd Edition. New York, NY: 
Academic Press, 1989. 

Benjamin, S. "Driving the Pension Fund." Journal of the Institute of Ac­
tuaries 116 (1989): 717-735. 

Baxter, M. and Rennie, A. Financial Calculus. Cambridge, United King­
dom: Cambridge University Press, 1996. 

Bertsekas, D.P. Dynamic Programming and Stochastic Control. Cam­
bridge, United Kingdom: Academic Press, 1976. 

Cairns, A. "Some Notes on the Dynamic and Optimal Control of Stochas­
tic Pension Fund Models in Continuous Time." ASTIN Bulletin 30 
(2000): 19-55. 

Haberman, S. and Sung, ].H. "Dynamic Approaches to Pension Funding." 
Insurance: Mathematics and Economics 15 (1994): 151-162. 

Loades, D.H. "Elementary Engineering Control and Pension Funding." 
Transactions of the 26 th International Congress of Actuaries 5 (1998): 
239-266. 

McGill, D.M., Brown, K.N., Haley, J.J. and Schieber, S.J. Fundamentals of 
Private Pension Funds. Philadelphia, P A: Pension Research Council, 
University of Pennsylvania, 1989. 



180 journal of Actuarial Practice, Vol. 12, 2005 

Owadally, M.l. and Haberman, S. "Pension Fund Dynamics and Gains/Los­
ses Due to Random Rates of Return." North American Actuarial 
Journal 3, no. 3 (1999): 105-ll7. 

Owadally, M.l. and Haberman, S. (2004). "Efficient Gain and Loss Amor­
tization and Optimal Funding of Pension Plans." North American 
Actuarialjournal 8, no. 1 (2004): 21-36. 

Taylor, G.c. "Stochastic Control of Funding Systems." Insurance: Math­
ematics and Economics 30 (2002): 323-350. 

Vandebroek M. "Pension Funding and Optimal Control." Mitteilungen 
der Vereinigung Schweizerischer Versichrungsmathematiker (1990): 
313-325. 

Vigna, E. and Haberman, S. "Optimal Investment Strategy For Defined 
Contribution Pension Schemes." Insurance: Mathematics and Eco­
nomics 28 (2001): 233-262. 

Wilkie, A.D. "More on a Stochastic Asset Model for Actuarial Use." British 
Actuarial Journal 1 (1995): 777-945 .. 

Winklevoss, H.E. Pension Mathematics with Numerical Illustrations. Phil­
adelphia, PA: Pension Research Council, University of Pennsylvania, 
1993. 

Zimbidis, A. and Haberman, S. "Delay, Feedback and Variability of Pen­
sion Contributions and Fund Levels." Insurance: Mathematics and 
Economics 13 (1993): 271-285. 



Journal of Actuarial Practice Vol. 12, 2005 

Reputation Pricing: A Model for Valuing Future 
Life Insurance Policies 

Rami Yosef* 

Abstract t 

The reputation of a life insurer is used to develop a model for determining 
the value of future life insurance policies. An M / G / 00 process is used to de­
scribe the sales and terminations (due to death or maturity) of future policies. 
The intensity of the arrival process is assumed to depend on the company's 
reputation. Explicit expressions are derived for the actuarial reserves and ex­
pected profits of these future policies. 

Key words and phrases: future policyholders, expected profits, expected reserve, 
M/G/oo queue 

1 Introduction 

When investors are interested in purchasing an insurance company, 
they usually seek an expert appraisal of the value of the company from 
actuaries, accountants, and other financial professionals. The insur­
ance company may have diverse business interests, including different 
lines of products sold. As it is common for an insurance company to 
group similar insurance policies into portfolios (Le., blocks of policies), 
the appraised value of the company should reflect the value of each 

* Rami Yosef, Ph.D., is a assistant professor of actuarial science at Ben-Gurion Uni­
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portfolio! including any intangible assets2 associated with each portfo­
lio. 

The value of a life insurance portfolio consists of two components: 

(i) The value of the active portfolio, which consists of the life insur­
ance contracts that currently exist and remain active in the port­
folio and for which actuarial reserves are not equal to zero. The 
value of the active portfolio depends on the assets and the aggre­
gate actuarial reserves associated with all of the contracts in the 
active portfolio. 

(ii) The value of the future portfolio is based largely on the insurer's 
intangible assets: its reputation and its management/marketing 
strategies for attracting and maintaining new policies. We will as­
sume new policyholders will purchase their insurance from the 
insurance company based on the strength of the company's rep­
utation. Thus, to determine the value of a future portfolio, as­
sumptions must be made about the insurer's reputation, and its 
attitude toward new policies. 

Economists and accounts long have recognized that one of a firm's in­
tangible assets is its name, or the reputation conveyed by its name. 
Economists have used game theory to study a firms reputation; see, 
for example, Kreps and Wilson (1982), Fudenberg and Kreps (1987), 
Diamond (1989), Fudenberg and Levine (1989), Kreps (1990), Kreps et 
al. (1992), and Hart (1995). As an example, Kreps (1990) developed a 
theory of the firm as a bearer of reputation and provides a simple exam­
ple that demonstrates, using the ideas of the folk theorem in repeated 
games, how a firm's reputation can become a tradable asset. Game 
theoretic techniques, however, can be difficult to apply to the problem 
of valuing the reputation of a life insurance portfolio because of the 
uncertainties associated with determining the makeup of a future port­
folio. Unfortunately, there is no established actuarial theory to assist 
in valuing an insurer's reputation. 3 

1 In Israel, for example, experts conducting these appraisal valuations most com­
monly perform a separate evaluation of each portfolio. 

2A firm's intangible assets or goodwill, which includes the firm's reputation and/or 
name, are usually hidden in its balance sheet. The actual value of intangible assets is 
known only when the firm is sold and is obtained by subtracting the value of tangible 
net assets from the firm's sale price. 

3In Israel the aggregate actuarial reserves is multiplied by a loading factor to yield 
a value for a future portfolio that is based on the insurer's reputation. There is no 
actuarial guidance, however, on how the size of this loading factor is determined. For 
example, a private investor in Israel recently purchased the successful Israel Phoenix 
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In the author's opinion, when actuaries or other experts evaluate 
future (reputation) life insurance portfolios, they can use one of the 
two approaches described above for their evaluation process. The first 
approach is to use the insurance company's historical data to project 
the composition of the portfolio's future insureds. These data con­
tain information on the date of policy inception, age, gender, mortality 
level, amount of insurance, type of policy, date of exit from portfolio, 
cause of exit, assumed mortality table, etc. By assuming these data can 
accurately represent the insureds in the future portfolio, one can antici­
pate the development of that portfolio by using deterministic methods. 
The second approach is to use the historical data to develop a stochas­
tic model (such as a queueing model) of the influx and efflux of the 
portfolio's future insureds. In either approach, one problem will be the 
choice of mortality table to use. As mortality is continuously improving 
in most countries, the mortality table used should have built in factors 
that account for this improvement. 

Another aspect mentioned above is the management/marketing strat­
egy employed with respect to new policies. When investors purchase 
an insurance company, they often continue managing the various insur­
ance portfolios without any restrictions on the sale of policies to future 
customers. In other words, the investors allow applicants for new life 
insurance contracts to purchase policies after they have satisfactorily 
completed the necessary underwriting. This approach, however, may 
not always be best for the investor. For example, in Israel insurance 
regulators require that the reserve for a life insurance portfolio be pro­
portional to the number of policyholders insured in the portfolio. If 
investors do not believe the reserve requirements needed for expand­
ing a portfolio will be available or do not believe it worthwhile to raise 
this money, then it may be best to restrict the sale of new policies and 
restrain the growth of the portfolio. In this paper we will assume there 
are no limits on the number policyholders accepted. 

As was mentioned above, there is no established actuarial theory or 
model for valuing an insurer's reputation. Given an insurer's reputa­
tion, however, can we determine the value of one of its future portfolio? 
In the author's opinion, when actuaries or other experts evaluate future 
life insurance portfolios, they should use one of two approaches: 

1. Use the insurance company's historical data to project the compo­
sition of the portfolio's future insureds. These data will contain 

Insurance Company. Analysts on Israeli television commented that 35% of the price 
paid reflected the value of its life insurance portfOlio, including the intangible asset 
based on the Phoenix's reputation. 
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information on the date of policy inception, age, gender, mortality 
level, amount of insurance, type of policy, date of exit from port­
folio, cause of exit, assumed mortality table, etc. By assuming the 
data can represent the insureds in the future portfolio accurately, 
one can anticipate the development of that portfolio by using de­
terministic methods. 

2. Alternatively, use the historical data to develop a stochastic model 
(such as a queueing model) of the influx and efflux of the portfo­
lio's future insureds. 

In either approach, the mortality table used should have built in factors 
that account for mortality improvement. 

The objective of this paper is to present an actuarial model for the 
evaluation of a future life insurance portfolio. We will propose a dy­
namic stochastic model of the number of policies in force at any time4 to 
describe the evolution of the future life insurance portfolio. The model 
assumes new policies are issued in a Poisson process and the number 
of policyholders decreases due to deaths and policy expirations. The 
rate of new policy issues is assumed to depend on the reputation of 
the insurer: the better the reputation, the higher the arrival rate. The 
number of policyholders insured (the in-force process) is allowed to 
increase without bounds. 

Because of the Poisson process assumption, we are implicitly assum­
ing there is an infinite population of potential policyholders. It turns 
out that our model can efficiently be described as an M / G / 00 queue 
model where new customers enter the pool of insured parties by a Pois­
son process (M), each policyholder remains in the portfolio for random 
period of time that follow a general distribution (G), and the insurance 
portfolio has infinity capacity (00). Using this model, we derive an ex­
pression for the prospective actuarial reserves of the portfolio t years 
in the future using each of the two valuation strategies. 

2 The Model 

Let us consider an insurance portfolio that consists of special fully 
continuous n-year endowment insurance policies with death benefit Bl 

4There are not many dynamic models proposed in the actuarial literature. The first 
one was proposed by Ramsay (1985), who considered a birth· death model of a life in­
surance portfolio operating in a finite population of potential insureds. Willmot (1990) 
used techniques from queueing theory to analyze the claim liabilities of an insurance 
company and provide an example of the application to life insurance portfolio. 
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and survival benefit Bz, and with premiums paid for h (h :0; n) years. 
When this policy is sold to a person age x, the net annual premium, TTx , 

can be expressed in standard actuarial notation as 

ax:hi 

BI fr~:1il + Bz nEx 
TTx = (1) 

for x = 0,1,2, .... The actuarial functions are calculated using a known 
standard mortality with survival function tPx. Assuming the policy­
holder is alive at age x + t, the net premium reserve t years after the 
policy is issued (Le., at age x + t) is V x (t) where 

I
BI A I ~ + Bz n-tExH - TTx aX+t:h-tl 

x+t:n-tl 

-v (. t·) BI A I ---:-1 + Bz n-tExH 
x = x+t:n-tl 

Bz 

° 

O:o;t:o;h 

h:o; t < n 

t = n 
otherwise. 

(2) 

The following assumptions are needed to fully describe our model: 

A.I: Each customer who applies for insurance is subject to under­
writing (medical and otherwise). If the applicant is deemed 
insurable, then he or she is sold the special n-year endow­
ment insurance contract described above and becomes a pol­
icyholder in the portfolio. 

A.2: The mortality of a policyholder age x follows the same known 
survival function used to determine premiums and reserves, 
Le., tPx. Let T(x) be the future lifetime of a typical policy­
holder age x. Then the time spent in the portfolio is Tn (x) = 

min(T(x), n). The cdf of Tn(x) is Gn(s, x) where 

and the resulting survival function is 

Gn(S,x) = 1 - Gn(s,x). 

for 5 < n 
for 5 ~ n. 

(3) 

A.3: Policyholders leave the portfolio only through death or at the 
time of the maturity of the policy. There are no policy con­
versions, lapses, or cancelations. 
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A.4: The policyholders are mutually independent and indistinguish­
able, except, possibly, for their age at the issue of their re­
spective policy. 

A.5: At t = 0, nx new policies are issued to policyholders age x. 
A.6: The future new policyholders age x arrive in the portfolio in 

a homogeneous Poisson process with rate Ax. 
A.7: The size of Ax depends on the reputation of the insurer. 
A.S: Finally, there are no expenses. 

3 The Main Results 

Consider a new policyholder age x who joined the portfolio at time 
y. The net premium reserve at time t > Y due to this policyholder, Le., 
(t - Y) years after joining the portfolio, is V x (t - y). Now suppose 
that in the time interval (0, t) we are given that k new policyholders 
arrived in the portfolio with the ith arrival occurring at time Y(i), where ° < y(l) < Y(2) < ... < Y(k) < t. Then the expected reserve at time t 
given these k arrivals is 

k 

I Vx(t - y(i)) t-y(OPX' 
i=l 

The total expected reserve at time t for policies sold to persons age x 
in (0, t), Rx(t), is thus: 

00 e-Axt (Axt)k It It It 
Rx(t) = I , ... 

k=O k. y(l)=O y(2)=y(l) Y(k)=Y(k-l) 

[~vx(t - y(i)) t-y(OPX 1 f(yo),Y(Z), ... ,Y(k)) 

dY(k) ... dy(l). 

From Ross (1996, Theorem 2.3.1), the conditional ordinal arrival 
times of a homogeneous Poisson process in (0, t), given there are k 
arrivals, follow the same distribution as that of the order statistics of a 
random sample of uniform (0, t) variables. Thus, the joint p.d.f. is 

k! 
f (Y(l), Y(2), ... ,Y(k)) = tk for ° < YO) < Y(2) < ... < Y(k) < t. 
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The multiple integral can now be simplified as follows: 

I
t It ... It [± V x (t - y(i)) t-Y(i) px] tk~ dY(k) ... dy(l) 
y(l)~O y(2)=y(l) Y(k)=Y(k-l) i=l 

= It It ... It [± Vx(t - yd t-YiPx] (t1k ) dYk· .. dYl 
Yl=O Y2=O Yk=o i=l 

= ~ It Vx(t - Y) t-yPxdy. 
t. y=o 

The expression for Rx (t) is now seen to be 

00 e-Axt (Axt)k k It -
Rx(t) = I . . k'· t _ V x(t - Y) t-yPxdy 

k=O . y-O 

= Ax It Vx(t - y) t-yPxdy. 
y=o 

(4) 

The total expected reserve at time t for all policies sold [0, t), including 
those newly in existence at time t = 0, is 

R(t) = I [nxVx(t) + Ax It _ Vx(t - y) t-YPxdY]. (5) 
x y-O 

The reserve process R (t) represents the liabilities of the insurer to 
its portfolio of policyholders at time t. This means that an investor 
who purchases the life insurance portfolio will have a commitment or 
obligation of amount R (t) to these policyholders. If A (t) represents the 
amount of assets the portfolio has on hand at time t, then the portfolio's 
surplus at time tis, U(t), where 

U(t) = A(t) - R(t). (6) 

To value the future portfolio we must perform a profit evaluation, 
which requires knowledge of the future expected rate of profits gen­
erated by this portfolio. To this end, we must determine the gross 
(profit-loaded) premium charged given assumption A.8 (there are no 
expenses). In practice there are typically three ways to obtain the gross 
premium rate that allows a profit to the insurer: 

1. Use conservative estimates of the various parameters involved in 
the pricing process. For example, assume a lower interest rate, 
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higher mortality rates, and lower investment returns than are ac­
tuallyexpected. This results in insureds paying a higher premium 
than they would pay if the best estimates were used. 

2. Explicitly specify a profit objective then include that profit as an 
expense. The gross premium then can be calculated by the actu­
arial equivalence principle; see, for example, Bowers et al. (1997, 
Chapter 15). Or, 

3. Increase the net premium by a loading factor. 

Regardless of the approach used, given the net premium rate TTx 

and assuming there are no expenses, let TTl
g

) and TTl
p

) be the gross 
premium rate and the expected profit rate, respectively, for policies in 
the portfolio of policies sold to persons age x, i.e., 

TTlg ) = TTx + TTl
p

) 

To determine the discounted expected portfolio profits we need an 
expression for the expected number of policyholders expected to be 
insured at any time t. Let Qx (t) denote the in-force process, i.e., the 
number of policyholders who bought their policies at age x at some 
time y (y :::; t) and are still in force at time t with Qx (0) = n x . (Unlike 
the models used in traditional risk theory, Qx (t) is a stochastic (queue­
ing) process.) Thus the expected amount of profits in the time interval 
(s, s + ds) generated by the portfolio of policies that were sold to per­
sons age x is TTlp)lE[Qx(s) I Qx(O) = nx]ds. If we let Profitx(t) be the 
discounted expected profits in (0, t) from the portfolio of policies that 
were sold to persons age x, then 

Profitsx(t) = f~ TTl
p
\1 + O-slE[Qx(s) I Qx(O) = nx]ds (7) 

where i is the valuation rate of interest. The ultimate expected profits 
from the entire portfolio is 

Profits = L TTlP) r'''' (1 + O-slE[Qx(s) I Qx(O) = nx]ds. (8) 
x Jo 

Finally, we need an expression for lE[Qx(t) I Qx(O) = nx]. Clearly 
Qx (t) is the number of customers at time t in an M / G / 00 queue with 
Poisson arrivals at rate Ax and service time distribution Gn (s) given in 
equation (3). It is well known (e.g., Ross 1996, p. 70 and Medhi 2003, 
Chapter 6.10.1) that the distribution of Qx(t) I Qx(O) = 0 is a Poisson 
distribution with mean Ax (t) given by 
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Ax(t) = Ax f:Cn(S,X)dS. 

Thus we can consider anM IGloo queue with initial queue length Qx(O) = 

nx as being artificially partitioned into two independent and disjoint 
sub-queues: a permanently closed queue that consists of the nx busy 
servers and a permanently open (but initially empty) MIG I 00 queueing 
system such that every newly arriving customer can only be served at 
the open queue. Clearly the number still remaining in the closed queue 
at time t is binomially distributed with parameters nx and Cn(t,x), 
which gives a mean of nx Cn (t, x). On the other hand, the expected 
number of customers at time t in the open queue is Ax(t). Thus the 
expected number in the queue at time tis nxCn(t,x) + Ax(t), Le., we 
have the following result: 

Theorem 1. If Qx (t) is the number of customers in an MIG I 00 queue 
with Poisson arrivals at rate Ax and independent service times with dis­
tribution function Gn (s), then 

4 Summary and Closing Comments 

This paper introduces to actuarial pricing a method for evaluating 
a future life insurance portfolio, which has a growth rate that depends 
on the reputation of the insurer. When an investor is interested in 
purchasing such a portfolio, the insurer must be compensated for the 
reputation of the portfolio. As there is no actuarial theory to assist 
in valuing an insurer's reputation, the common approach for actuarial 
practitioners in Israel, for example, is to evaluate the active portfolio 
which consists of the life insurance contracts that currently exist and 
remain active in the portfolio. This value is multiplied by a loading 
factor for which there have been no guidelines for determination. 

To correct this state of affairs, we suggest a stochastic model for 
valuing the future life insurance policies. We specifically use an MIG I 00 

process to describe the sales and terminations of future policies and to 
provide expressions for the total expected reserve and the profit of the 
future portfolio. 

In deriving the expression for the expected reserves in equation (4) 
we used the marginal distribution of the number of arrivals and the 
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order statistics property of the conditioned arrival times for the ho­
mogeneous Poisson process. This technique can be applied to other 
processes such as the nonhomogeneous Poisson process and the Yule 
process because they also have the order statistics property; see, for 
example, Berg and Spizzichino (1999). 

Other areas for further research include: 

• Considering alternative models. For example, we can consider the 
case where the insurer intends to limit the size of the portfolio to 
at most c policyholders so that we have an M / G / c queue with 
no waiting room. Thus if there are fewer than c policyholders 
in the portfolio, new contracts are sold (subject to underwriting 
approval) until there are c policyholders in the portfolio. Once 
there are c policyholders in the portfolio, then all applications for 
insurance are denied until there is a death or a policy matures. 

• Using stochastic interest rates to determine present values; and 

• Use insurance demand function for profit determination. For ex­
ample, we can assume the demand of insurance decreases as the 
profit loading increases, i.e., assume that for a given reputation 
and insurance policy Ax is a decreasing function of rrlp

). This 
is similar to the work of Kliger and Levikson (1998) and Ramsay 
(2005). 
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Ultimate Ruin Probability for a Time-Series Risk 
Model with Dependent Classes of Insurance 
Business 

Lai Mei Wan,* Kam Chuen Yuen,t and Wai Keung Lit 

Abstract§ 

We consider a discrete-time risk model with m (m ~ 2) dependent classes 
of insurance business. The claim processes of these m classes are assumed 
to follow a multivariate autoregressive time-series model of order 1. Given 
this claims model, we explore the probability of ultimate ruin assuming ex­
ponentially bounded claims. As an example, we use simulations to study the 
case where there are two business and the underlying losses are of two types: 
bivariate exponential and bivariate gamma claim distributions. 
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tion, bivariate gamma distribution, discrete-time risk model, multivariate au­
toregressive model, time series, ultimate ruin probability 
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1 Introduction 

For a book of insurance business, it is often assumed that different 
classes of policies are independent. This assumption, however, may not 
be justified in many practical situations. For example, a severe car ac­
cident may trigger auto-insurance claims as well as medical insurance 
claims. In recent years, risk models with various dependence struc­
tures have been studied by many researchers; for example, Dhaene and 
Goovaerts (1997), Ambagaspitiya (1998, 1999), Nyrhinen (1998), Wang 
(1998), Asmussen et al. (1999), Cossette and Marceau (2000), Muller and 
Pflug (2001), Albrecher and Kantor (2002), Goovaerts and Kaas (2002), 
Yuen et al. (2002), Picard et al. (2003), and Wu and Yuen (2003). 

Actuaries have considered the time-series method as a possible tool 
to model risk processes. For example, Gerber (1982) investigated the 
ruin probability by considering the annual gains which form a linear 
time series. Extensions of his result can be found in Promislow (1991) 
and Ramsay (1991). Yang and Zhang (2003) studied a risk model with 
constant interest in which the claim process and the premium process 
are described by an autoregressive model. 

In this paper, we propose a discrete-time risk model with m depen­
dent classes of policies using a time-series approach. Our objective is 
to investigate the ultimate ruin probability for this model. Specifically, 
the claim processes of the m classes are described by a multivariate 
autoregressive model of order 1 (MAR(1)). The MAR(l) model assumes 
that for each of the m classes, the total claim in a certain period de­
pends not only on the claims occurring in that period, but also on the 
total claim of its own class and that of other classes in the previous 
period. Correlation among the claim amounts of the m classes in each 
period also may be assumed. 

Note that Picard et al. (2003) considered a discrete-time model with 
several interdependent risks in which the claim amounts during succes­
sive periods are independent and identically distributed random vari­
ables. 

The MAR(l) risk model and some basic assumptions are introduced 
in Section 2. In Section 3, the ultimate ruin probability for the proposed 
model and its upper bound are investigated. Finally, simulated results 
in the bivariate case are given in Section 4 to reveal the impact of de­
pendence structure on the ruin probabilities. Some closing comments 
are given in Section 5. 
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2 The Model 

We now introduce a discrete-time risk model of an insurance port­
folio consisting of m dependent classes of insurance policies, where 
these classes are labeled 1, 2, "" m. The following assumptions are 
made: 

• Policies are open ended, Le., they remain in force for an unlimited 
length of time. 

• Each class of policies has its own premiums and claims. 

• Premiums are paid at the start of each time period (a period may 
be a year, quarter, month, etc.) and remain constant throughout 
the life of the policy. 

• The total premium paid in the ith period for the policies in class 
j is 1Tj, forj == 1,2" .. ,m. 

• Xji is the total amount of claims incurred by the class j policies 
in the ith period (we only consider exponentially bounded claims). 

• We assume that the events causing Xji will cause further claims 
in the future periods not only in the ph class but also in other 
classes. 

• Wji is the total amount of claims paid on behalf of the class j poli­
cies in the ith period. It consists of Xji and a linear combination 
of all the previous claims in all classes (Le., a linear combination 
of all XhkS for h = 1,2" .. ,m and k = 1,2" .. ,i - 1), and is 
defined in equation (1). 

• If Xi = (Xli,X2i,'" ,Xmi)' denotes the column vector of the m 
total incurred claims in period i, we assume that {Xl, X2, ... } is a 
sequence of independent and identically distributed non-negative 
random vectors having finite mean and covariance matrix. And, 
finally 

• If Wi = (Wli, W2i,"" Wmi)' denotes the column vector of the m 
total paid claims in period i, we assume that {WI, W2, ... } is a 
sequence of dependent vectors such that they follow a MAR(I) 
process, Le., Wi is given by 

Wi = AWi-I + Xi, (1) 

where A is a non-negative constant m x m matrix. Hence, the 
components of Wi are correlated. 
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The model defined by equation (1) may be useful in describing the 
dependence of several classes of insurance business in some real situ­
ations. For example, a natural disaster or a serious fire accident often 
causes various types of claims, and some of these claims such as the 
medical and disability ones may last for many periods of time. The suit­
ability of the MAR(1) model for practical purposes is limited, however, 
partly because the inherent dependence structure affects the marginal 
distributions and thus a separate statistical estimation of marginals and 
the degree of dependence is not possible from the given data. 

Let Un denote the aggregate surplus process of the insurance portfo­
lio at the end of the nth period. As usual, we define the surplus process 
of class j as 

n 

Ujn = Uj + nTTj - I Wji, 

i=l 

for n = 1,2, ... , where Uj is the initial surplus of class j. Thus, 

m n m 

Un = I Ujn = U + nTT - I I Wji, 
j=l i=l j=l 

(2) 

where U and TT are the portfolio's aggregate initial reserve and periodic 
premiums, respectively, Le., 

m 

U = I Uj 
j=l 

m 

and TT = I TTj. 

j=l 

(3) 

For notational convenience, we write '2.j;'1 Wji = 1~ Wi where 1m is an 
m-dimensional column vector of l. 

It is important for the model to be stationary with finite second­
order moments. To fulfill this second-order stationarity condition, the 
eigenvalues of A must be smaller than 1 in absolute value (see Reinsel 
1993). Specifically, all the roots of the characteristic equation of A (as 
a function of A) must be smaller than 1 in absolute value: 

h(;\') = det(M - A) = 0, (4) 

where I is an m x m identity matrix. 
Put X = Xl. Given initial value Wo = w, we see from (1) 

I-Ai . 
E(Wil = I _ A E(X) + Nw, 

which depends on i. Hence, the MAR(I) process is locally non-stationary. 
As i - 00, however, its asymptotic mean becomes 
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E(W) = limE(Wd = (I - A)-lE(X), 
i-oo 

which is independent of i. Besides, the covariance of Wji and Wj,i+l only 
depends on lag l, where l = -i, -i + 1, ... , n - i, but not on i. Thus, 
the MAR(l) process is asymptotically stationary. In this paper, the term 
stationarity is generally used to mean asymptotic stationarity. 

The net-profit condition requires that the aggregate premium should 
be greater than the expected value of the claims in each time period, 
that is, 

(
I - Ai. . ) 

1T > l~ 1 _ A E(X) + Nw , 

for all i. Here, we assume in the sense of stationarity that 

1T > l~ ((I - A)-lE(X)) , (5) 

which is a necessary condition for deriving Theorem 1 given below. 

3 The Probability of Ultimate Ruin 

Let the time of ruin T be the smallest time at which equation (2) 
becomes negative, Le., 

T = min{n: Un < OIUo = u}. 

Then, the probability of ultimate ruin given the initial surplus u, the 
aggregate premium per period 1T, and the initial claim Wo = w is given 
by 

l/1(U, 1T, w) = Pr(T < oolUo = u, 1T, Wo = w). (6) 

In order to prove the main result of the paper, we need to make use 
of the following modified surplus process. Define 

where 

()(' = l~A(I - A)-l 

= (()(l, ()(2,' .. ,()(m)' 
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It is obvious that {E 1, E2, ... } is a sequence of independent and identi­
cally distributed random variables with finite mean and variance. The 
modified surplus process On is then defined as 

On = Un - a'Wn 

= Un-l + IT - (1m + a)'Wn 

= Un - 1 + IT - (1m + a)' (AWn-l + Xn) 

= Un- 1 + IT - (1m + a)'AWn-l - (1m + a)'Xn, 

with 00 = it = u - a'w. By the definition of a, we have 

a'J = (1m + a)' A. 

This together with the definition of En allow us to rewrite the modified 
surplus as 

On = Un-l + IT - a'Wn-l - En 

= On-l + IT - En. 

It can be shown that the condition (5) is equivalent to 

(7) 

(8) 

The total premium per period can be expressed as IT = (1 + r]) lE (E 1 ) 

where r] > 0 is the relative security loading for the modified surplus 
process. It is intuitively clear from (7) that ruin is certain if r] is negative. 
We now define the adjustment coefficient R as the smallest positive 
solution of 

lE[ e-R(rr-f!lj = l. 

The adjustment coefficient is assumed to exist for all models considered 
in this paper. 

Theorem 1. For U :2: 0, 

rjJ(U, IT, w) = lE[e-RUTIT<ooj (9) 

To prove Theorem 1, one can make use of equations (7) and (8), and 
then follow the proof of the one-dimensional case given in Bowers et al. 
(1997). It should be pointed out that Theorem 1 only holds for expo­
nentially bounded claims. The following corollary is easily established: 
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Corollary 1. Given that equation (9) holds, we have 

( ) 'UUB( ) -Ru tJ1 U,IT,W s'Y U,IT,W = e . 

Proof: As all the (XiS of (X are non-negative, we have UT s UT < 0. 
Therefore, the denominator on the right hand side of (9) is greater than 
one. This gives us an upper bound tJ1UB (u, IT, w) for the ultimate ruin 
probability. 

4 Simulation Studies: Models and Results 

Simulations are used to study the effect of the time-series model­
ing and the correlation between the current claim amounts on the ruin 
probabilities in the bivariate case. 

4.1 The Models Used 

Four discrete-time risk models are used. For notational convenience, 
we set Wi = Wli, Zi = W2i, Xi = Xli, and Yi = X2i. 
Modell: 

(Wi) = (Xi) + (a b) (Wi-I) , 
Zt Yt c d Zt-I 

where a, b, c, and d are non-zero constants, and (Xi, Yd follows 
a bivariate distribution. In this model, the correlation between Wi 
and Zi comes from the AR(l) coefficients as well as the correlation 
of Xi and Yi. 

Model 2: 

(Wi) = (Xi) + (a' 0,) (Wi-I) , 
Zt Yt ° d Zt-I 

where a' and d' are non-zero constants, and (Xi, Yd comes from a 
bivariate distribution. The correlation between Wi and Zi is solely 
due to the correlation of Xi and Yi. 

Model 3: 

(W:) = (Xi) + (a b) (W~-I) , 
Zt Y t C d Zt-I 

where a, b, c, and d are non-zero constants, and Xi and Yi are 
independent. The correlation between Wi and Zi comes solely 
from the AR(l) coefficients. 
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Model 4: 

(W~) = (Xi) + (a' 0,) (Wi-I) , 
Zt Yt 0 d Zt-l 

where a' and d' are non-zero constants, and Xi and Yi are inde­
pendent. In this model, Wi and Zi are independent. 

In order to obtain a consistent comparison across models, Xi and Yi 
are set to have equal mean in each of the four models. In order to do a 
fair comparison, the parameters a, b, c, d, a', and d' are chosen in the 
way that the asymptotic means of Wand Z, lE[W] and lE[Z], in the four 
models are equal. Thus, we set 

, lE(X) 
a = 1 - lE(W)' and d' = 1 _ lE(Y) 

lE(Z) . 

In our simulation studies, we consider two bivariate distributions for 
the two types of claims in Models 1 and 2. One is the bivariate expo­
nential distribution while the other is the bivariate gamma distribution. 
Hence, the claim amounts of the two classes in Models 3 and 4 are gen­
erated from the corresponding marginal distributions. 

4.2 Bivariate Exponential Distribution 

4.2.1 An Overview 

Block and Basu (1974) introduced the so-called absolutely contin­
uous bivariate exponential distribution which possesses the loss of 
memory property. Here, we simply called it the bivariate exponen­
tial distribution. Assume that the claim amounts (X, Y) follow the bi­
variate exponential distribution. With parameters ?Il, A2, A12 > 0, and 
A = Al + A2 + A12, the joint distribution function of (X, Y) is defined as 

F(x,y) 
A 

A A exp (-AIX - A2Y - AI 2max(x,y)) 
1 + 2 

A 12 
- A A exp (-Amax(x,y)), 

1 + 2 

for x, y > O. Note that A12 is the key parameter determining the corre­
lation between X and Y and that X and Yare independent when A12 = O. 
Some of the statistical properties derived by Block and Basu (1974) (with 
minor corrections) are as follows: 
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JE(X) = 1 + i\12i\2 
i\1 + i\12 i\(i\1 + i\2)(i\1 + i\d' 

JE(Y) _ 1 + i\ 12 i\1 
- i\2 + i\12 i\(i\1 + i\2)(i\2 + i\12)' 

'Var(X) = 1 + i\12i\2(2i\1i\ + i\12i\2) 
(i\1 +i\12)2 i\2(i\1 + i\2)2(i\1 + i\12)2' 

'Var(Y) = 1 + i\12i\1 (2i\2i\ + i\12i\1) 
(i\2 + i\d 2 i\2(i\1 + i\2)2(i\2 + i\12)2' 

<C (X Y) = (i\I + i\~)i\12i\ + i\1i\2i\I2 
ov, i\2(i\I+i\2)2(i\I+i\12)(i\2+i\12)' 

p(X, Y) = i\12((i\I + i\~)i\ + i\ 1i\ 2i\12) 

x )( (i\1 + i\2)2(i\1 + i\12)2 + i\2(i\2 + 2'\1)i\2) 

X ~((i\1 + i\2)2('\2 + i\12)2 + i\di\1 + 2'\2)i\2), 

where p(X, Y) is the correlation coefficient of X and Y. It is easy to 
see that X and Yare positively correlated. Block and Basu (1974) also 
derived some useful properties of the bivariate exponential distribution 
which allow us to generate (X, Y) easily. The properties include: 

1. min(X, Y) follows exponential distribution with mean ,\. 

2. The difference C = X - Y has distribution function 

F(g) = { IIj~1I2 ;xp ((i\2 + i\12)g) , 9 ~ 0, 
1- II

j
; 1I2 exp (-(i\1 + i\12)g) , 9 > O. 

3. min(X, Y) is independent of C. 

Based on these properties, one can generate random variables (X, Y) 
using the following steps: 

Step 1: Generate random variables Rl and R2 following uniform (0,1) 
distribution. 

else go to Step 5. 
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Step 3: X = -In(~-Rtl and Y = X-G. 

Step 4: Go to Step 1 for a new set of X and Y. 

Step 5: G > 0 and 

Step 6: Y = (-In (1 - R 1)) / A and X = G + Y. 

Step 7: Go to Step 1 for a new set of X and Y. 

4.2.2 Simulation Results 

In our simulation studies, we arbitrarily select a = 0.4, b = 0.2, 
c = 0.2, and d = 0.4 for Models 1 and 3. With these parameter values, 
the solutions of (4) with m = 2 are 0.2 and 0.6. For Models 2 and 4, 
we set a' = 0.6 and d' = 0.6. Then, both roots of (4) equal 0.6. There­
fore, the stationarity condition is satisfied in each of the four models. 
The parameters of the bivariate exponential distribution are chosen to 
be Al = A2 = 0.070466 and A12 = 0.38486. Hence, JE(X) = JE(Y) = 3 
and the asymptotic means of Wand Z are JE(W) = JE(Z) = 7.5. The 
correlation coefficient of X and Y is p(X, Y) = 0.3333. The asymptotic 
variances Var(W) and Var(Z), the asymptotic covariance Cov(W, Z), 
and the asymptotic correlation coefficient p(W, Z) can be calculated 
using the standard method for a typical stationary MAR(I) modeL Fur­
ther details about the calculation of these values can be found in Reinsel 
(1993). Their numerical values are summarized in Table 1 and can serve 
as indicators for the variances, covariances, and correlation coefficients 
of Wi and Zi. 

Table 1 
Asymptotic Variances, Covariances and Correlation 
Coefficients for Bivariate Exponential distribution 

Model Var(W) Var(Z) Cov(W, Z) p(W, Z) 
1 10.0482 10.0482 5.0238 0.5000 
2 11.3043 11.3043 3.7677 0.3333 
3 9.4203 9.4203 1.8841 0.2000 
4 11.3043 11.3043 0.0000 0.0000 
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The relative security loading 17 is set to be 0.05, so the constant total 
premium per period is TT = 15.75. The initial values are U = 10 and 
W = Z = O. The number of simulations used for computing the results 
is 10,000, and the sample size is 100. We first study the finite-time ruin 
probability which is defined as 

l/JN(U,TT,W,Z) = Pr(T::; NIUo = U,TT, WO = w,Zo = z). 

The results are shown in Table 2 with standard errors in parentheses. 
It is observed that as N increases, the finite-time ruin probabilities for 
the four models increase. As N - 00, with other parameters fixed, 
the values of l/J N (u, TT, W, z) approach the ultimate ruin probability 
l/J(u, TT, w, z). 

We also compare the results across the four models with the same 
length of period. The values of the finite-time ruin probability for Model 
1 are greater than those for Model 2 simply because Modell has a higher 
degree of dependence which leads to a higher asymptotic correlation 
coefficient p (W, Z). With the same argument, the finite-time ruin prob­
abilities for Model 3 are greater than those for Model 4. Moreover, the 
finite-time ruin probabilities for Modell and Model 2 are higher than 
those for Model 3 and Model 4, respectively, because the correlation 
between X and Y introduces additional dependence in the former two 
models. 

From Table 2, we see that the values of l/JN (u, TT, w, z) for N = 1,800 
and N = 2, 000 are very close. Therefore, the value of l/J N (u, TT, W, z) 
with N = 1,800 can be treated as a good approximation of the ultimate 
ruin probability in the following numerical studies. 

Simulation studies are further carried out to investigate how the 
ultimate ruin probability is affected by the value of the initial surplus u. 
For TT = 15.75 and W = z = 0, the ultimate ruin probabilities for various 
values of U are summarized in Table 3. With a larger initial surplus, the 
approximated values of the ultimate ruin probability become smaller. 
It is also noticed that as the value of U increases, the standard error for 
the estimated upper bound also increases. This can be easily explained 
by the form of the upper bound, that is, l/JUB (u, TT, w, z) = exp( -Ru). 
In words, a small deviation of the simulated R from the mean has a 
relatively much larger effect on the upper bound with a large value of 
u. The relation between the relative security loading and the ultimate 
ruin probability also is examined. Table 4 summarizes the results with 
U = 10 and W = z = O. As 17 increases, the ultimate ruin probabilities 
decrease very quickly. 
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Finally, in view of Theorem 1, we discuss the empirical behavior of 
the adjustment coefficient R as a function of the model parameters. 
From Tables 3 and 4, we see that R increases as u or TT increases. In 
general, for a given set of (u, TT), l/lUB decreases steadily as the degree 
of dependence decreases from Model 1 to Model 4, and hence R is not 
too sensitive to the model change (that is, the change in the degree 
of dependence). If we fix a model and change the correlation between 
X and Y, empirical evidence also shows that R decreases in a rather 
uniform manner as the correlation between X and Y increases. 

4.3 Bivariate Gamma Distribution 

4.3.1 An Overview 

Johnson and Kotz (1972) constructed a multivariate gamma distri­
bution from independent random variables Ho, HI, .. . , Hm where Hj 
follows standard gamma distributions with parameters 8j Wj > 0) 
for j = 1,2"" ,m. Here, we only consider the bivariate case. Let 
X = Ho + HI and Y = Ho + H2. Then, the claim amounts (X, Y) have a 
bivariate gamma distribution with joint density 

e-(X+Y) lmin(x,y) 
f( ) - 00- 1 ( )°1- 1 ( )°2- 1 Zd 

X,Y - r( 80)r(8Ilr(82) ° z x - z Y - z e z, 

with lE(X) = Var(X) = 80 + 81 , lE(Y) = Var(Y) = 80 + 82, Cov(X, Y) = 
80, and 

80 
p(X, Y) = -'/(eo + 8Il(eo + 82) 

It is clear that X and Yare positively correlated. Hence, the bivariate 
gamma random variables (X, Y) can be generated using the following 
steps: 

Step 1: Generate Ho, HI, and H2 from standard gamma distributions 
with means 80, 81 , and 82, respectively. 

Step 2: X = Ho +H1 and Y = Ho +H2. 

Step 3: Go to Step 1 for a new set of X and Y. 
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4.3.2 Simulation Results 

Similar to the simulation studies in Section 4.2, we set a = 0.4, 
b = 0.2, C = 0.2, and d = 0.4 for Models 1 and 3 and a' = d' = 0.6 
for Models 2 and 4. These parameter values imply that all the four 
models satisfy the stationarity condition. The parameters of the bivari­
ate gamma distribution are arbitrarily selected as eo = 1, el = 2, and 
e2 = 2 so that the means of X and Y and the asymptotic means of W 
and Z are the same as those in Section 4.2, that is, lE(X) = lE(Y) = 3 
and lE(W) = lE(Z) = 7.5. The correlation coefficient of X and Y is 
also 0.3333. The asymptotic variances 'Var(W) and 'Var(Z), the asymp­
totic covariance Cov(W, Z), and the asymptotic correlation coefficient 
p(W, Z) are shown in Table 5. 

Again, we let TJ = 0.05, TT = 15.75, U = 10, and w = z = 0. The num­
ber of simulations and the sample size are also 10,000 and 100, respec­
tively. Table 6 presents the finite-time ruin probability tfJN(U, TT, w, z) 
for various values of N. As expected, the observations made in Section 
4.2 from Table 2 also hold in this case. The values in Table 2, however, 
are generally higher than those in Table 6. It is mainly due to the fact 
that the asymptotic variances 'Var(W) and'Var(Z) are larger in Section 
4.2 (although the asymptotic means and the asymptotic correlation co­
efficients are the same in both sections). 

As shown in Table 6, the finite-time ruin probabilities with N = 

1,000 and N = 1,500 are the same. Therefore, we use N = 1,000 
to obtain approximations of the ultimate ruin probabilities. Table 7 
displays the ultimate ruin probabilities for U = 5,10,15,20,25,30,50 
with TT = 15.75 and W = z = 0 while Table 8 shows the ultimate ruin 
probabilities for eight values of TJ with U = 10 and W = z = 0. Not 
surprisingly, the patterns of Tables 7 and 8 are more or less parallel to 
those of Tables 3 and 4, respectively. Also, the empirical behavior of R 
in this case is similar to that in Section 4.2. 
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Table 2 
Finite-Time Ruin Probabilities !fJN(U, IT, w, z) and 

Upper Bounds for Ultimate Ruin Probabilities 
!fJUB (u, IT, w, z) with U = 10, IT = 15.75 and 

w = z = 0 for Bivariate Exponential Distribution 
Modell Model 2 Model 3 Model 4 

N !fJN !fJN !fJN !fJN 

50 0.3328 0.3187 0.2610 0.2394 
(0.0108) (0.0146) (0.0098) (0.0098) 

100 0.4148 0.4007 0.3416 0.3217 
(0.0098) (0.0143) (0.0080) (0.0091) 

150 0.4518 0.4362 0.3780 0.3592 
(0.0087) (0.0138) (0.0069) (0.0086) 

200 0.4708 0.4558 0.3982 0.3794 
(0.0081) (0.0135) (0.0066) (0.0081) 

500 0.5046 0.4918 0.4347 0.4154 
(0.0075) (0.0128) (0.0060) (0.0075) 

800 0.5105 0.4982 0.4407 0.4213 
(0.0073) (0.0127) (0.0060) (0.0074) 

1,000 0.5ll8 0.4997 0.4420 0.4226 
(0.0073) (0.0126) (0.0060) (0.0074) 

1,200 0.5123 0.5003 0.4426 0.4231 
(0.0073) (0.0126) (0.0059) (0.0074) 

1,500 0.5134 0.50ll 0.4435 0.4241 
(0.0072) (0.0125) (0.0059) (0.0074) 

1,600 0.5136 0.5012 0.4436 0.4242 
(0.0072) (0.0125) (0.0059) (0.0074) 

1,800 0.5137 0.5013 0.4437 0.4244 
(0.0072) (0.0125) (0.0059) (0.0074) 

2,000 0.5137 0.5014 0.4438 0.4244 
(0.0072) (0.0125) (0.0059) (0.0074) 

!fJUB !fJUB !fJUB !fJUB 

0.8914 0.8833 0.8750 0.8717 
(0.0620) (0.0723) (0.0672) (0.0653) 



Table 3 ~ 
llitimate Ruin Probabilities ljJ (u, IT, W, z) and their Upper Bounds ljJUB (u, IT, W, z) 

::s 
(\) 

with IT = 15.75 and W = z = 0 for Bivariate Exponential Distribution 
.... 
~ 

Modell Model 2 Model 3 Model 4 
~ 

u ljJ ljJUB ljJ ljJUB ljJ ljJUB ljJ ljJUB s:: 
:sO 

5 0.5452 0.9436 0.5323 0.9391 0.4728 0.9347 0.4524 0.9330 'IJ 

(0.0070) (0.0329) (0.0135) (0.0387) (0.0057) (0.0360) (0.0078) (0.0350) cl 
~ 

10 0.5137 0.8914 0.5013 0.8833 0.4437 0.8750 0.4244 0.8717 !O:l 
~ 

(0.0072) (0.0620) (0.0125) (0.0723) (0.0059) (0.0672) (0.0074) (0.0653) 
:::.: 
;::;: 

'<:: 
30 0.4057 0.7186 0.3963 0.7030 0.3453 0.6817 0.3297 0.6736 C)' 

(0.0075) (0.1486) (0.0101) (0.1682) (0.0063) (0.1554) (0.0074) (0.1518) "" :::l 
50 0.3210 0.5902 0.3137 0.5735 0.2692 0.5432 0.2564 0.5321 3l 

(\) 

(0.0072) (0.2013) (0.0080) (0.2237) (0.0063) (0.2048) (0.0067) (0.2007) ~ 
(\) 

70 0.2541 0.4934 0.2490 0.4786 0.2105 0.4422 0.2002 0.4294 "" ~. 

(0.0066) (0.2333) (0.0067) (0.2561) (0.0059) (0.2320) (0.0058) (0.2280) '" ~ 
90 0.2013 0.4193 0.1973 0.4077 0.1644 0.3673 0.1563 0.3537 i;;' 

;>;;-

(0.0057) (0.2526) (0.0056) (0.2751) (0.0052) (0.2461) (0.0050) (0.2427) s:: 
0.3619 0.3107 

c no 0.1596 0.1567 0.3538 0.1283 0.1218 0.2971 s::t. 

(0.0057) (0.2640) (0.0045) (0.2862) (0.0049) (0.2527) (0.0046) (0.2500) 
~ 

150 0.0998 0.2809 0.0989 0.2792 0.0785 0.2335 0.0742 0.2208 
(0.0043) (0.2746) (0.0030) (0.2956) (0.0038) (0.2539) (0.0033) (0.2534) 

200 0.0556 0.2183 0.0556 0.2228 0.0422 0.1762 0.0401 0.1656 
(0.0028) (0.2780) (0.0021) (0.2970) (0.0024) (0.2468) (0.0023) (0.2495) N 

0 
'-l 



N 
0 
00 

Table 4 
Ultimate Ruin Probabilities tfJ (u, IT, W, z) and their Upper Bounds tfJUB (u, IT, W, z) 

with u = 10 and W = z = 0 for Bivariate Exponential Distribution 
Modell Model 2 Model 3 Model 4 

11 tfJ tfJUB tfJ tfJUB tfJ tfJUB tfJ tfJUB 

0.01 0.8488 0.9599 0.8347 0.9482 0.8175 0.9485 0.8111 0.9486 
(0.0024) (0.0465) (0.0052) (0.0574) (0.0031) (0.0524) (0.0025) (0.0509) 

0.03 0.6696 0.9282 0.6565 0.9174 0.6124 0.9139 0.5973 0.9111 
(0.0043) (0.0575) (0.0094) (0.0673) (0.0042) (0.0639) (0.0047) (0.0608) '--Cl 

s:: 
0.05 0.5137 0.8914 0.5013 0.8833 0.4437 0.8750 0.4244 0.8717 "" ::; 

(0.0072) (0.0620) (0.0125 ) (0.0723) (0.0059) (0.0672) (0.0074) (0.0653) ~ 
Cl 

0.08 0.3488 0.8389 0.3362 0.8314 0.2768 0.8184 0.2584 0.8156 -.... 
:t:. 

(0.0099) (0.0648) (0.0128) (0.0712) (0.0084) (0.0657) (0.0093) (0.0671) r, .... s:: 
0.1 0.2701 0.8065 0.2593 0.7992 0.2032 0.7840 0.1867 0.7811 !;:) 

"" (0.0110) (0.0643) (0.0120) (0.0684) (0.0093) (0.0638) (0.0094) (0.0658) ~ 
0.15 0.1442 0.7355 0.1386 0.7297 0.0962 0.7096 0.0849 0.7062 "\J 

"" !;:) 

(0.0108) (0.0611) (0.0092) (0.0631) (0.0084) (0.0593) (0.0075) (0.0625) r, .... 
0.2 0.0782 0.6775 0.0762 0.6728 0.0468 0.6487 0.0400 0.6448 

;::;. 
j1) 

(0.0095) (0.0596) (0.0068) (0.0601) (0.0066) (0.0571) (0.0053) (0.0608) ~ 0.3 0.0240 0.5883 0.0249 0.5853 0.0116 0.5546 0.0096 0.5503 -(0.0052) (0.0595) (0.0035) (0.0584) (0.0029) (0.0570) (0.0023) (0.0606) .1\; 

I\; 
a 
a 
VI 
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Table 5 
Asymptotic Variances, Covariances and Correlation 

Coefficients for Bivariate Gamma Distribution 
Model Var(W) Var(Z) Cov(W, Z) p(W, Z) 

1 4.1667 4.1667 2.0833 0.5000 
2 
3 
4 

4.6875 4.6875 
3.9062 3.9062 
4.6875 4.6875 

l.5625 
0.7812 
0.0000 

Table 6 

0.3333 
0.2000 
0.0000 

Finite-Time Ruin Probabilities t/JN(U, TT, w, z) and 
Upper Bounds for Ultimate Probabilities 

t/JUB (u, TT, w, z) with U = 10, TT = 15.75 ana 
W = z = 0 for Bivariate Gamma Distribution 

Modell Model 2 Model 3 Model 4 
N t/JN t/JN t/JN t/JN 

50 0.2174 0.1522 0.0964 0.0720 
(0.0053) (0.0092) (0.0039) (0.0026) 

100 0.2724 0.2058 0.1344 0.1077 
(0.0051) (0.0094) (0.0042) (0.0031) 

150 0.2931 0.2263 0.1489 0.1218 
(0.0052) (0.0095) (0.0044) (0.0030) 

200 0.3024 0.2360 0.1556 0.1286 
(0.0052) (0.0096) (0.0044) (0.0031) 

500 0.3140 0.2480 0.1618 0.1346 
(0.0052) (0.0097) (0.0045) (0.0031) 

800 0.3149 0.2489 0.1621 0.1349 
(0.0051) (0.0097) (0.0045) (0.0031) 

1,000 0.3150 ) 0.2490 0.1622 0.1349 
(0.0051) (0.0096) (0.0045) (0.0031) 

1,500 0.3150 0.2490 0.1622 0.1349 
(0.0051) (0.0096) (0.0045) (0.0031) 

t/JUB t/JUB t/JUB t/JUB 

0.7555 0.7508 0.6997 0.6961 
(0.0997) (0.0912) (0.0845) (0.0907) 
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Table 7 
llitimate Ruin Probabilities </J (u, 1T, W, z) and their Upper Bounds </JUB (u, 1T, W, z) 

with 1T = 15.75 and W = z = 0 for Bivariate Gamma Distribution 
Modell Model 2 Model 3 Model 4 

U </J </JUB </J </JUB </J </JUB </J </JUB 

5 0.3643 0.8673 0.2866 0.8649 0.1963 0.8349 0.1632 0.8325 
(0.0058) (0.0578) (0.0108) (0.0529) (0.0050) (0.0505) (0.0033) (0.0544) 

10 0.3150 0.7555 0.2490 0.7508 0.1622 0.6997 0.1349 0.6961 '-
0 
t:: 

(0.0051) (0.0997) (0.0096) (0.0912) (0.0045) (0.0845) (0.0031) (0.0907) "'" ~ 
15 0.2729 0.6610 0.2165 0.6541 0.1340 0.5884 0.1118 0.5845 ~ 

0 
(0.0050) (0.1299) (0.0083) (0.1185) (0.0039) (0.1065) (0.0028) (0.1140) -., 

~ 
20 0.2366 0.5807 0.1883 0.5720 0.1110 0.4967 0.0925 0.4928 ~ .... 

t:: 
(0.0046) (0.1513) (0.0073) (0.1375) (0.0035) (0.1199) (0.0024) (0.1280) I:) 

"'" 25 0.2056 0.5123 0.1637 0.5019 0.0921 0.4207 0.0764 0.4172 ~ 
(0.0042) (0.1663) (0.0063) (0.1503) (0.0031) (0.1270) (0.0021) (0.1354) "1J 

~ 
30 0.1785 0.4538 0.1424 0.4419 0.0763 0.3576 0.0632 0.3546 ~ .... 

(0.0037) (0.1763) (0.0053) (0.1584) (0.0029) (0.1298) (0.0018) (0.1382) 
;::;. 
~ 

50 0.1011 0.2901 0.0814 0.2745 0.0360 0.1931 0.0292 0.1924 ~ (0.0027) (0.1886 ) (0.0032) (0.1640) (0.0017) (0.1184) (0.0014) (0.1267) -~"v 
"v 
<:> 
<:> 
u, 



~ 
Table 8 ::s 

(\) 

Ultimate Ruin Probabilities tjJ (u, IT, W, z) and their Upper Bounds tjJUB (u, IT, W, z) 
..... 

with u = 10 and W = z = 0 Bivariate Gamma Distribution ~ 

Modell Model 2 Model 3 Model 4 
~ 
s::: 

tjJ tjJUB tjJ tjJUB tjJ tjJUB tjJ tjJUB 
Si· 

17 "\J 

0.01 0.7516 0.9173 0.7003 0.9142 0.6482 0.9193 0.6215 0.9103 d 
I:S"" 

(0.0036) (0.0898) (0.0078) (0.0868) (0.0057) (0.0806) (0.0031) (0.0890) ~ 

~ 
0.03 0.4988 0.8378 0.4286 0.8341 0.3331 0.8084 0.2992 0.8029 ;:.: 

'" (0.0055) (0.1029) (0.0103) (0.0988) (0.0052) ( 0.0943) (0.0035) (0.1023) CS' 
0.05 0.3150 0.7555 0.2490 0.7508 0.1622 0.6997 0.1349 0.6961 "" :::! 

(0.0051) (0.0997) (0.0096) (0.0912) (0.0045) (0.0845) (0.0031) (0.0907) ~ 
(\) 

0.08 0.1587 0.6491 0.1118 0.6451 0.0560 0.5695 0.0410 0.5676 ~ 
(\) 

(0.0048) (0.0870) (0.0063) (0.0770) (0.0026) (0.0716) (0.0019) (0.0743) "" ~. 

0.1 0.1012 0.5903 0.0667 0.5868 0.0282 0.5002 0.0186 0.4992 '" ~ 
(0.0039) (0.0805) (0.0047) (0.0700) (0.0018) (0.0654) (0.0013) (0.0661) 

<:;;. 
;0;;-

0.15 0.0332 0.4750 0.0193 0.4724 0.0053 0.3701 0.0030 0.3707 :s: c 
(0.0025) (0.0695) (0.0024) (0.0588) (0.0008) (0.0556) (0.0005) (0.0523) ~ 

~ 
0.2 0.0110 0.3913 0.0058 0.3892 0.0010 0.2814 0.0004 0.2831 

(0.0014) (0.0634) (0.0011) (0.0534) (0.0003) (0.0506) (0.0002) (0.0446) 
0.3 0.0014 0.2794 0.0006 0.2781 0.0000 0.1725 0.0000 0.1753 

(0.0004) (0.0584) (0.0003) (0.0508) (0.0000) (0.0460) (0.0000) (0.0371) 
N 
i-' 
i-' 
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Abstract§ 

We consider the surplus process of a non-life insurance portfolio with a 
dividend component represented by a constant dividend barrier strategy. The 
optimal dividend barrier is known when individual claim amounts follow an 
exponential distribution. This result for the optimal dividend barrier is used 
to develop combinations of the levels of the insurer's initial surplus and of the 
barrier which, under certain economic and financial criteria, can be regarded 
as optimal. 
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Introduction 

In the classical compound Poisson model of risk theory, an insur­
ance company's surplus can increase without bounds. This is unreal­
istic, because the company could reinvest its excess surplus in search 
of even bigger returns or could simply pay them out as dividends to 
its shareholders. Thus, to make the classic model more realistic, we 
should include dividend payments. 

The question of how much and when to make dividend payments 
first was studied by De Finneti (1957). He found that the optimal strat­
egy to maximize the expected sum of the discounted dividends must be 
a barrier strategy, and he showed how the optimal level of the barrier 
can be determined. Blihlmann (1970, p. 164) proved that the introduc­
tion of a constant barrier in the classical model leads to certain ruin. 

The problem of finding the optimal dividend-payment strategy as­
suming a constant barrier was discussed extensively by several other 
authors. Gerber (1972, 1979) and Blihlmann (1970) analyze the prob­
lem in the context of the classical risk model. The random variable 
representing the present value of dividends also has been analyzed in 
the discrete case: Claramunt, Marmol, and Alegre (2003) obtain a gen­
eral solution of its expectation, and Dickson and Waters (2004) obtain 
higher order moments in the discrete and continuous case. Recently, 
authors have modified the risk process by considering a Brownian mo­
tion risk model; see, for example, Asmussen and Taskar (1997), Paulsen 
and Gjessing (1997) who include a stochastic interest on reserves, and 
Gerber and Shiu (2004) who obtain the moments of the present value 
of dividends. Other forms of the barriers have been conSidered, for ex­
ample a linear barrier was studied by Gerber (1981) and Siegl and Tichy 
(1999) while a non-linear dividend barrier was first introduced by Ale­
gre, Claramunt, and Marmol (2001) and generalized by Albrecher and 
Kainhofer (2002). 

In this paper we study optimal dividend strategies for a non-life in­
surance portfolio under a compound Poisson model with a constant 
barrier. We provide combinations of the levels of the initial surplus 
and levels of dividend barriers that, under certain economic and finan­
cial criteria, can be regarded as optimal. For simplicity we assume the 
individual claim amounts are independent and identically distributed 
exponential variables, which makes our analysis easier. The analysis of 
optimal dividend strategies with other individual claim amount distri­
butions can be performed with simulations or discrete risk models. 

The paper is organized as follows: Section 2 gives the main char­
acteristics of the model with a constant barrier. Section 3 contains an 
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analysis of the function of the expected present value of dividends, and 
in Section 4 the optimal combinations are proposed. 

2 The Constant Barrier Model 

2.1 The Modified Surplus Process 

In the classical model of risk theory, the surplus at a given time t, 
U(t), is defined as 

U (t) = u + ct - S (t) 

for t > 0 with U (0) = u being the insurer's initial surplus. The term 
S (t) represents the aggregate claims in (0, t) modeled as a time ho­
mogeneous compound Poisson process with rate ,\ and J1 the expected 
claim amount. The rate at which the premiums are received is c = 

,\J1 (1 + e), where e > 0 is the security loading. 
The imposition of a constant dividend barrier b ~ u modifies the 

behavior of the surplus process because, when the surplus reaches the 
level b, all premium incomes are paid out as dividends to shareholders, 
and the modified surplus process remains at level b until the occurrence 
of the next claim. The modified surplus process, OCt) is given by 

a (t) = U(t) - D (t) (1) 

where D (t) is the aggregate of dividend payments in the interval (0, t], 
Le., for infinitesimally small dt, 

D (t + dt) - D (t) = { ~dt ifU(t)<b 

ifU(t)~b. 
(2) 

Ruin is said to occur at time T if a (T) < 0 and a (t) ~ 0 for t < T with 
the understanding that T = 00 if a (t) ~ 0 for all t > O. 

Figure 1 shows a typical sample path of U (t), a (t), and D (t) where 
Ti for i = 1,2, ... denotes the time of occurrence of the ith claim. Notice 
that whenever the surplus U (t) reaches b, dividends are paid out to the 
shareholders with intensity c, and the surplus remains on the barrier 
until the next claim occurs. 

Let W (u, b) denote the expected present value of the discounted 
aggregate dividend payments up to the moment of ruin T, Le., 

W(u, b) = E U: e-OtdD(t)] 
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Modified surplus process, il(l) 

= Aggregate dividend process, D(I) 

- Constant barrier, IJ 

T, 

Time 

Figure 1: Typical Sample Path of U (t), a (t), and D (t) 

where <5 ~ 0 is the force ofinterest.l Buhlmann (1970, p. 173), assuming 
an exponential distribution for the individual claim amount, obtained 
an expression for W (u, b), Without loss of generality, we assume the 
claim size unit is scaled so that the expected claim size is 1. Buhlmann's 
result can be rewritten as, 

(3) 

1 Note that the surplus process is not discounted in order to obtain a tractable model. 
This is consistent with an economy where the rate of inflation is equal to the rate of 
return on investment income. 
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where rl > r2 are the roots of 

A (1 + 8) r2 - (6 - A8) r - 6 = O. 

It is easy to demonstrate rl > 0 and r2 < 0 and that the following 
relationships hold between the two roots: 

1. (6 - A8) > 0 implies -1 < r2 < 0 < rl < 00 and Ir21 < Irll; 

2. (6 - A8) = 0 implies -1 < r2 < 0 < rl < 1 and Ir21 = Irll; and 

3. (6 - A8) < 0 implies -1 < r2 < 0 < rl < 1 and Ir21 > Irll. 

Note that (A8 - 6) is the difference between the income rate from 
the security loading and the force of interest used to discount the div­
idends. 

2.2 Some Properties of W(u, b) 

By considering the other parameters (A, 8, 6, u) as fixed, let us find 
the b* that maximizes W(u, b). Btihlmann (1970) minimized the de­
nominator of equation (3) to give 

b* = _I_In (rf(l + r1)) 
r2 - rl r} (1 + r2) 

- 00 < b* < 00. (4) 

We can observe that b* doesn't depend on u, so b* can be less than 
u and even be negative. When u exceeds b*, the optimal level of the 
barrier is b = u (Dickson and Waters, 2004, p. 63). 

If u ~ b*, then b* is a maximum point of W (u, b). Interestingly, as 
b increases to b* the time that it takes for the surplus to reach the bar­
rier and dividend payments to begin is lengthened; however, W (u, b) 
increases because the time to ruin is increased thereby allowing divi­
dend payments to be made over a longer period. When b gets beyond 
b*, the dividend payments made in the distant future have less impact 
on the expected present value of the dividends due to the presence of 
the discount rate. 

It is easy to see that 

When 0 ~ u ~ b, let u * denote the optimum value of the initial surplus 
that maximizes the expected present value of the dividend payments 
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for a given barrier value h, i.e., is u * = h. Thus we must explore the 
function W (u * , h) = W (h, h). For convenience we use the notation 
W(k) = W (k, k), i.e., 

Note that 

while 

1+r1 e(r1+r2)k (rl - r2)2 
Wi (k) = 1+r2 > 0, 

( _ 1 + rl rler1k + r 2er2k ) 2 
1 + r2 

Le., W (k) is monotonically increasing. The upper bound of W (k) is 
easily seen to be W (00) = l/rl. 

Next we will establish that W(k) has a point of inflection. Let 

h(k) 1 + rl r1k r2k = ---e +e 
1 + r2 

so that W (k) = h (k)/h' (k). Differentiating W (k) twice with respect 
to k and equating this derivative to zero gives 

[hi (k)]2 h" (k) + h (k) hi (k) h'" (k) - 2h (k) [h" (k)]2 = O. (5) 

The solution to equation (5) is k = ki where 

(6) 

We see that k = ki is a point of inflection because W" (ki) = 0 and 
W'" (kd "* O. Thus we have just established the following proposition: 

Proposition 1. For k > 0, 

1. W (k) is positive monotonically increasing; 

2. limk_oo W (k) = 1 /rl; and 

3. W (k) has a point of inflection at k i given in equation (6). 
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From equations (6) and (4), 

k i - b * = _1_ (In -r2) , 
r2 - rl Yl 

(7) 

which leads to the following results: 

1. (8 - Ae) > 0 implies b* < ki < 0; 

2. (8 - Ae) = 0 implies b* = ki < 0; and 

3. (8 - Ae) < 0 implies -00 < ki < 00 and ki < b*. 

3 Criteria for Choosing k 

We now investigate three criteria for choosing k based on: (i) per­
centiles, (ii) the maximum marginal increase, and (iii) recouping the 
initial investment. 

The Percentile Criterion 

From Proposition 1, there exists no value of k that maximizes W (k). 
As W (k) has an upper limit, I/Yl, which is independent of the initial 
surplus level and the barrier level, an obvious question is what is the 
value of k that allows us to achieve a specified percentage (100()(%) of 
this limit? Let kex denote this value, Le., kex satisfies W (k ex ) = ()(/rl. It 
can be proved that 

k - _1_ In ( (1 - ()() x rl + rl ) 
ex - r2 - Yl Yl - ()(r2 1 + r2 . 

(8) 

In Table 1 we provide some numerical results: 

The Maximum Marginal Increase Criterion 

Proposition 1 states that the greater the value of the initial reserve 
and barrier k, the greater the expected present value of the dividends. 
It is costly, however, for companies to keep increasing the level of k 
because of the opportunity cost of tying up the company's capital in its 
surplus. So the question then becomes how large should k be? 

Let M (k) denote the marginal rate of increase in the expected present 
value of the aggregate dividends paid given a barrier at k and initial re­
serve k, Le., M(k) = W' (k). This criteria states that investors set k to 
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Table 1 
k()( for Various Values of 0< 

(8 = 0.03, " = 1, 8 = 0.5) 
0< kex W (k()() 

0.1 0.262 1.839 
0.2 1.343 3.677 
0.3 2.258 5.516 
0.4 3.101 7.354 
0.5 3.930 9.193 
0.6 4.799 11.032 
0.7 5.778 12.870 
0.8 7.002 14.709 
0.9 8.882 16.547 

maximize M(k), i.e., k is such that M' (k) = 0 and M" (k) < O. In other 
words the criteria to set k = ki' the point of inflexion of the function 
W (k), with w'" (kd < O. The resulting expression for W is: 

1 ( 1 1 ) W(kd = - - + - . 
2 rl r2 

(9) 

In Section 2.2 we obtained the values of ki and b* according to 
(8 - "8). If ki < b* , for ki' b* > 0, on the combination (ki, kd we 
can raise the level of the barrier (which involves no extra effort in the 
initial investment), converting it into (ki, b*). We attain a combination 
that can be regard as optimal for the decision maker, with 

1 

W (ki' b*) = rl + r2 [ (r2)r~ ] "2-"1 

rl-r2 (-rd 2 

If ki 2 b* we are in a situation in which ki' b* < 0, and therefore 
the optimal combination as a function of the values of ki and b* is 
meaningless. We then should focus on the value of k()( , which, fixing 
the percentage that we consider acceptable to obtain on the maximum 
of the expected present value of the dividends, 0<, leads us to choose 
u = b = k()( as the optimal combination. 
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Recoup the Initial Investment Criterion 

Another way to choose k is for investors to require total recovery of 
their initial investment of k through future expected dividends, Le., 

W (k) ~ k. (10) 

Let ke satisfy the equality W (ke) = ke. We call ke the efficiency thresh­
old when the dividends are discounted at a rate 8. At ke the insurer's 
rate of return, which we shall represent as e, coincides with the rate 8. 
It is easy to prove the existence of a unique efficiency threshold, ke, and 
that k > W (k) for k > ke while k < W (k) for k < k e. It follows that 
the insurer's rate of return is less than 8 for k > ke while it is greater 
than 8 for k < ke . Thus the investors will demand that the insurer set 
k < k e . 

Given that k < ke, it is natural to ask whether there exists a k that 
maximizes W (k) - k. We refer to such a k as k*, Le., 

k* = sup {W (k) - k} 
O"k"k, 

It is easy to prove that k* = b*. Thus k* > 0 only when (8 - i\.e) < O. 
Under this condition, we therefore can affirm that the optimal value of 
the expected present value of the dividends according to this criteria is 
obtained for k = k* = b* giving 

W (k*) = Yl + Y2 = i\.8 - 1. 
YIY2 8 

For the case in which (8 - i\.e) ~ 0 leads to k* < 0 and ki > k*, the 
maximum difference for k ~ 0 will be with a zero initial investment, 
which is meaningless from an economic standpoint. 

Table 2 provides some numerical results as examples of the maxi­
mum marginal increase and the recouping of the initial investment cri­
teria presented above. Using i\. = 1, 8 = 0.03 and 8 = 0.05, and e = 0.2 
and 8 = 0.5, we indicate the resulting values of the roots, b*, the in­
flection point ki' the efficiency threshold ke and the expected present 
value of dividends for the combinations of u and b. 

For example, assuming 8 = 0.03 and e = 0.2, under the maximum 
marginal increase criteria, we first choose u = b = ki = 1.417, which 
gives W (1.417) = 2.833. Then, without any extra increase in the initial 
investment, we can raise the level of the barrier in order to increase the 
expected present value of dividends, W (1.417, 3.923) = 3.088. While 
under the recouping of the initial investment criteria, we have to choose 
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Table 2 
An Example Using the Maximum Marginal 
Increase and the Recouping of the Initial 

Investment Criteria with A = 1 
6 = 0.03 8 = 0.05 

e = 0.2 e = 0.5 e = 0.2 e = 0.5 
rl 0.102 0.054 0.151 0.086 
rz -0.244 -0.368 -0.276 -0.386 

b* = k* 3.923 7.844 1.740 5.135 
ki 1.417 3.316 0.327 1.963 

W(k{) 2.833 7.833 1.500 4.500 
W (ki, b*) 3.088 10.669 1.567 5.595 

ke 8.752 18.350 5.677 11.429 
W (k*) 5.667 15.667 3.000 9.000 

u = b* = k* = 3.923 giving the expected present value of dividends as 
W (3.923) = 5.667. 

4 Summary 

We analyzed the expected present value of dividend payments un­
der a constant dividend barrier, when the aggregate claim amount is as­
sumed to follow a compound Poisson process and the individual claim 
amount has an exponential distribution. Under these assumptions, we 
provide some economic/financial criteria for deciding the optimal com­
bination of the initial surplus and the level of the barrier. 

An area for further research is to consider other distributions for the 
individual claim amount, using simulations or discrete approximations. 
Further research could be done with other models of the risk process 
such as the Erlang process or Brownian motion (Gerber and Shiu, 2004). 
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