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Abstract

Surgical and interventional therapies for atherosclerotic lesions of the infrainguinal arteries are 

notorious for high rates of failure. Frequently, this leads to expensive reinterventions, return of 

disabling symptoms, or limb loss. Interaction between the artery and repair material likely plays 

an important role in reconstruction failure, but data describing the mechanical properties and 

functional characteristics of human femoropopliteal and tibial arteries are currently not available. 

Diseased superficial femoral (SFA, n=10), popliteal (PA, n=8), and tibial arteries (TA, n=3) from 

10 patients with critical limb ischemia were tested to determine passive mechanical properties 

using planar biaxial extension. All specimens exhibited large non-linear deformations and 

anisotropy. Under equibiaxial loading, all arteries were stiffer in the circumferential direction than 

in the longitudinal direction. Anisotropy and longitudinal compliance decreased distally, but 

circumferential compliance increased, possibly to maintain a homeostatic multiaxial stress state. 

Constitutive parameters for a 4-fiber family invariant-based model were determined for all tissues 

to calculate in vivo axial pre-stretch that allows the artery to function in the most energy efficient 

manner while also preventing buckling during extremity flexion. Calculated axial pre-stretch was 

found to decrease with age, disease severity, and more distal arterial location. Histological 

analysis of the femoropopliteal artery demonstrated a distinct sub-adventitial layer of longitudinal 

elastin fibers that appeared thicker in healthier arteries. The femoropopliteal artery characteristics 

and properties determined in this study may assist in devising better diagnostic and treatment 

modalities for patients with peripheral arterial disease.

*Correspondence and Reprints requests to: Alexey V. Kamenskiy, PhD. and Jason N. MacTaggart, MD, Department of Surgery, 
987690, Nebraska Medical Center, Omaha, NE 68198-7690 Tel: (402) 559-5100; Alexey.Kamenskiy@unmc.edu and 
JMacTaggart@unmc.edu. 
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1. INTRODUCTION

Peripheral artery disease (PAD) is primarily an atherothrombotic condition reducing blood 

flow to the lower limbs. It is a major contributor to public health burden and is associated 

with high morbidity, mortality and impairment in quality of life [1]. The total annual costs of 

hospitalizations for patients with PAD are in excess of $21 billion per year, and per-patient 

costs of PAD are higher than those for both coronary artery disease and cerebrovascular 

disease [2]. The high cost of PAD is partially attributed to higher numbers of peripheral 

vascular operations and interventions that fail, resulting in poor clinical outcomes and a need 

for repetitive interventions [3–6]. Specifically, restenosis within 3 years after 

femoropopliteal bypass occurs in 27% of patients, while occlusion occurs in 19% [7]. The 

results for angioplasty and stenting in the lower extremity are even worse, with 50–85% of 

patients developing hemodynamically significant restenosis, and 16–65% developing 

occlusion within just 2 years after treatment [8], leading to re-intervention in 37–54% of 

patients [6].

Although the underlying reasons for such alarmingly high rates of treatment failure are still 

not fully understood, the complex biomechanical forces that occur in the femoropopliteal 

artery during locomotion are thought to play a significant role [9–12]. These forces create 

repetitive trauma to both the artery and repair materials. Femoropopliteal artery stents 

appear to have the highest incidence of fracture [13] as limb-generated movements and 

forces are capable of crushing and tearing apart metallic stent devices over time. These same 

movements and forces are also likely culprits in the development of the primary arterial 

lesion, producing a chronic injury to the artery wall that leads to deleterious cellular and 

biochemical responses.

Data on the function of the femoropopliteal artery, its mechanical properties, and the 

conditions of its surrounding local environment are essential for understanding artery-repair 

device interaction. Surprisingly, the mechanical properties of the infrainguinal arteries, such 

as the femoropopliteal and tibial arteries, are very poorly studied, perhaps due to difficulties 

associated with the supply of these tissues. Most existing human studies are limited to the 

proximal femoral portions of the artery and utilize either duplex ultrasound for non-

destructive in vivo testing, or uniaxial tensile testing for excised cadaveric arteries [14–19]. 

However, in vivo ultrasound and uniaxial tensile experiments are not sufficient to 

characterize the complex nonlinear anisotropic properties of arterial tissue [20,21]. Biaxial 

tensile testing is currently the most viable experimental method, although it also has 

limitations due to its 2D nature [21–23].

The goal of the current work was to measure the passive biaxial mechanical properties of 

diseased human femoropopliteal and tibial arteries. Apart from measuring the mechanical 

response of the artery walls, we also calculated the constitutive model parameters and the in 
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vivo axial pre-stretch that allows the artery to eliminate axial work and conserve energy 

during the pulse cycle [24]. Since in vivo axial pre-stretch cannot be measured directly in 

aged and diseased arteries as it is not equal to in situ retraction upon transection [25], we 

present the framework for calculating these values based on the measured arterial 

mechanical properties.

2. MATERIALS AND METHODS

2.1 Materials

With IRB approval and after informed patient consent, 10 superficial femoral (SFA), 8 

popliteal (PA), 3 tibial arteries (TA) and 4 SFA atherosclerotic plaques were harvested from 

10 patients (63±8.3 y.o.) after lower extremity amputation for critical limb ischemia. Subject 

population data are presented in Table 1. All arteries were non-uniformly diseased and were 

classified into 3 stages of atherosclerotic severity based on visual inspection and manual 

palpation. Stage one (+) arteries demonstrated no obvious signs of atherosclerotic disease. 

Stage two (++) vessels demonstrated mild disease severity, consisting of palpable atheromas 

or thin-cap fibroatheromas that did not contain heavy calcification or result in complete 

occlusion. Stage two arteries typically contained lesions that would be considered suitable 

for conservative medical therapy and were not the main reason for amputation. Stage three 

(+++) arteries demonstrated severe atherosclerotic disease consisting of fissured, ulcerated, 

hemorrhagic, thrombotic, calcific or fibrotic lesions, often completely occluding the lumen 

of the vessel. These lesions frequently require angioplasty/stenting or bypass surgery. Severe 

disease in stage three arteries was the primary cause of amputation.

2.2 Mechanical Testing

2.2.1 Specimen Preparation—All tissues were transported to the testing facility in 0.9% 

NaCl physiological saline solution on ice and testing was done within 4 hours of harvesting 

to preserve freshness. Prior to testing, an arterial ring of approximately 2 mm in length was 

cut from each specimen and photographed. The ring was then cut radially to release the 

residual stresses. Though some dispute is present in the literature as to whether one radial 

cut is sufficient to release all residual stresses in the tissue [21], this question merits a 

separate investigation and was beyond the scope of the current study. The opening angle α 

was measured between two lines drawn from the center of the sector to its outer tips (see 

APPENDIX) [26]. This definition of the opening angle follows Sommer and Holzapfel [29], 

and is different from the one in which α is calculated as an angle between two lines drawn 

from the midpoint of the arc of the inner vessel wall to the outer tips of the open sector [24]. 

This angle can easily be obtained from our measurements as .

After measuring the opening angle, the entire arterial segment was cut longitudinally and 

spread out into a flat sheet. Grossly disease-free square specimens 13 mm × 13 mm were 

then cut out of this sheet preserving the in vivo longitudinal and circumferential orientations 

parallel with the specimen’s square edges. Most specimens opened to initially slightly 

curved configurations that flattened out either under specimen’s own weight or after 

application of the 0.01 N tare preload (see 2.2.4 Test protocols section below). Though such 

flattening may introduce residual stresses to the specimen, these stresses are small compared 
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to those occurring in the sample during testing. Wall thickness was manually measured and 

averaged at six different locations using a Starrett 1010 Z caliper. Careful measurement 

technique ensured that the caliper’s lips touched the specimen, but did not compress it. 

Caliper-measured wall thickness values were corroborated with optical assessment using the 

photographs of the arterial rings during opening angle measurements. Dimensions of the 

specimen in the longitudinal and circumferential directions were measured with Mitutoyo 

Electronic Digital Caliper.

Samples were attached to the biaxial testing device using stainless steel hooks and loops of 

thick nylon surgical suture [20,27,28]. Hooks were attached to the specimen as close to the 

edges as possible to minimize the influence of edge effects on strain measurements. Four 

graphite markers were attached to the arterial intima to track the deformations of the 

specimen (Figure 1). During testing, specimens were completely immersed in 0.9% NaCl 

physiological saline solution at 37°C maintained by a Fisher Scientific Isotemp Refrigerated 

Circulator 9000.

2.2.2 Biaxial Device—All tissues were tested quasi-statically using a custom-made soft-

tissue biaxial testing device. A detailed device description is given in Sacks [27] and Geest 

et al [29,30]. Briefly, the device consists of four translation stages (404XR, Parker Hannafin 

Corp., Irwin, PA) driven by stepper motors (OS22B-SNL10, Parker Hannafin Corp., Irwin, 

PA). The stages are arranged around the bath that contains the specimen. The spatial 

resolution of each translation stage is 0.394μm. The translation stages are equipped with 

carriage arms which are used for specimen attachment. Each arm is free to rotate about its 

axis and has a pair of stainless steel pulleys. This allows the applied forces to be equally 

distributed between all suture lines that hold the specimen. The entire biaxial testing system 

rests on a vibration isolation table to minimize noise caused by stage movements.

To avoid any mechanical interference with the specimen, the deformation gradient F was 

measured optically by tracking the movements of the four graphite markers with a Sony 

XCD-X700 video camera [20,21]. In-plane stretch and shear angle were calculated in real 

time from marker displacements using a four-node finite element technique [20,21]. 

Specifically, we considered homogeneous biaxial deformation:

(1)

where Xi denotes original locations, xi current locations, λi stretches, and ki are measures of 

the in-plane shear. We do not use notation z, θ, r here in order to avoid confusion with the 

cylindrical coordinates used for the calculation of in vivo axial stretch (see APPENDIX). 

Note that deformation is assumed homogeneous, even though for wall segments with 

atherosclerotic plaques this may be a questionable assumption that requires further 

investigation. The deformation gradient then takes the form:

(2)
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where λ1, λ2 are stretches in the longitudinal and circumferential directions and λ3 is 

expressed through isochoric motion (i.e. det F = 1) assuming incompressibility (see 

discussion of incompressibility assumption for young and senior arteries in Boutouyrie et al 

[31]).

Finite element shape functions fn were used to approximate the displacement field u = x − X 
within the central region delimited by the four markers. In particular 

 where  and ζ1 ∈ [−1,1], ζ2 ∈ 

[−1,1] are isoparametric coordinates. The components of F therefore were determined from

(3)

and the incompressibility condition.

The applied loads P1 and P2 were measured with a pair of tension/compression “250g” (max 

load 2.5 N) load cells (Honeywell Sensotec) that were calibrated prior to each testing session 

[32]. These load cells were selected to cover the estimated physiologic loads in the artery as 

described below in the 2.2.5 Metrics for Compliance and Anisotropy section. Cauchy 

stresses were then calculated as

(4)

where H is the undeformed thickness, and Li the undeformed lengths over which the applied 

loads act. Note that even though loads were applied normal to the edges (and hence 1st 

Piola-Kirchhoff stress components T12 = T21 = 0), the Cauchy stress shear components σ12, 

σ21 are non-zero if shear deformation is present (i.e. k1, k2 ≠ 0). Also note that even though 

the arterial wall is a multi-layered structure with distinct properties for the intima, media and 

adventitia, these layers were not tested individually. Therefore equation (4) represents 

average stresses in the longitudinal and circumferential directions.

2.2.3 Testing pre-requisites—In order to formulate the testing protocol and select the 

appropriate constitutive framework to describe the material behavior, we have conducted 

several tests investigating the amount of shear and the effects of temperature, loading rate 

and loading path. These tests were performed using the same parameters (i.e. initial pre-load 

and max tare loads, preconditioning, etc.) described below in the 2.2.4 Test protocols 

section.

Our methodology did not allow us to determine the principal orthotropic directions of the 

specimens prior to mounting them in the biaxial apparatus. However, we aligned the 

circumferential and longitudinal arterial directions with the test axes. The pulleys of the 

biaxial device allowed equal application of forces at each tether and permitted the sample to 

shear freely. If the principal stretch directions did not coincide with the orthotropic 

Kamenskiy et al. Page 5

Acta Biomater. Author manuscript; available in PMC 2015 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



directions, the specimens would have demonstrated significant shear. To assess this, we 

calculated shear angle β in all specimens as:

(5)

where E1, E2 and E12 are components of the Green strain tensor . We 

observed no gross evidence of shearing during biaxial loading, and for all tested tissues |β| ≤ 

5°, while for most tissues |β| ≤ 3°. We therefore considered shear small and did not account 

for it in the constitutive model.

The influence of temperature on mechanical property measurement was assessed in five 

specimens. The temperature of the saline bath containing the specimen was varied from 20–

42°C and specimens were loaded equibiaxially to 2 N. At 42°C compared to 20°C, 

maximum stretch increased by <1.5% in the longitudinal and <3% in the circumferential 

directions. The difference in maximum stretch at room (25°C) and body (37°C) 

temperatures was <1% in the longitudinal and <1.5% in the circumferential directions, 

which is consistent with findings of Kang et al [33]. Even though the difference in 

mechanical properties measured at room and at body temperatures was not significant, all 

experiments were conducted at 37°C to more closely match realistic human physiology.

The influence of loading rate was assessed in 14 specimens. Since all tests were load-

controlled, the strain rate for each specimen was tuned such that the tissue reached a 2 N 

load within a set time. The time was varied within a range of 30 sec to 1 sec, with the latter 

being limited by the frame rate of our camera. Though in vivo loading rates are faster than 1 

second, such tests probably cannot be considered within the commonly used quasistatic 

framework for soft tissues. We have detected stiffening of the tissue with increased loading 

rate for some specimens, while no changes were observed for the majority of tissues. On 

average, a reduction of loading time from 30 sec to 1 sec resulted in 0.2±0.6% max stretch 

decrease in the longitudinal direction, and 1.7±1.9% max stretch decrease in the 

circumferential direction. Stress-stretch curves at 30 sec and 1 sec were not statistically 

significantly different. Therefore, the loading rate was chosen such that the length of one 

cycle was 30 sec, i.e. 15 sec for loading and 15 sec for unloading, in compliance with our 

previously published experimental protocol [28]. This loading rate resulted in the average 

strain rate of 0.008±0.004 sec−1.

Dependence of tissue properties on the loading path was assessed in 8 specimens using the 

following two-step procedure. In step 1, the specimen was first loaded in the longitudinal 

direction, then in the circumferential direction, and then unloaded while recording marker 

positions at each load configuration. In step 2, the specimen was first loaded in the 

circumferential direction, then in the longitudinal direction, followed by unloading, again 

recording marker positions at each load configuration. Marker positions were then compared 

for each configuration between steps 1 and 2. Analysis showed no statistically significant 

difference between configurations, and marker positions varied less than 1%, demonstrating 

that sequence of loading, i.e. loading path, was not affecting the measured mechanical 

properties of the tissue.
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Finally, we note that all tested tissues exhibited hysteresis that was relatively insensitive to 

changes in strain rate after approximately 3 cycles of preconditioning. Therefore, the tested 

tissues were not purely elastic but showed what is termed by Fung as “pseudoelastic” [34] 

behavior, i.e. when loading and unloading curves are highly repeatable but hysteresis is still 

present. Pseudoelasticity is not an intrinsic property of the material, but it conveniently 

allows treatment of the tissue as one elastic material in loading and another elastic material 

in unloading, without involving the viscoelastic framework [34]. However, the hysteresis 

observed in the majority of our specimens was relatively narrow; therefore, we present data 

only for the loading portion of the stress-stretch curve for the sake of brevity. Exceptions 

were made for those specimens that demonstrated wide hysteresis; they are accompanied by 

constitutive model parameters for both the loading and the unloading portions of the stress-

stretch curves.

2.2.4 Test protocols—Prior to collecting data all specimens were preconditioned with 15 

cycles of equibiaxial load at 2 N. Fragile plaques were preconditioned at lower loads to 

avoid tearing. To ensure consistency from sample to sample, all loading cycles were 

initiated at a tare load of 0.01 N and all presented stretch data were referenced to the 

preconditioned tare configuration. For most specimens, a highly repeatable response was 

observed starting from the 4th cycle onward. After preconditioning, each artery was 

subjected to nine different test protocols to cover a wide range of strains and acquire 

sufficient data density for constitutive modeling [35]. These nine protocols included testing 

with constant ratio of loads applied in longitudinal and circumferential directions, namely 

1:1, 1:2, 1:4, 1:10, 1:1 (stability check), 2:1, 4:1, 10:1, 1:1 (stability check). The maximum 

load was set at 2N for most arteries. Equibiaxial stability checks were performed twice: in 

the middle of the testing sequence and at the end, to verify stability of the mechanical 

response and to ensure that the specimen had not accumulated any damage as it went 

through the battery of tests. Data collected from the five (1:1, 1:2, 1:4, 2:1, 4:1) protocols 

were used to find the material constants for the constitutive model, while two 1:10 and 10:1 

protocols were used to check the predictive capability of the constitutive relation with 

determined parameters. We have used 1:10 and 10:1 “boundary” protocols to check 

predictions because these protocols were the most difficult for the constitutive model to 

portray accurately.

2.2.5 Metrics for Compliance and Anisotropy—The elastic modulus is not constant 

for soft tissues; therefore, there is no single parameter that can describe arterial compliance 

or anisotropy. However, one can define certain levels of stress for which the corresponding 

stretches in the longitudinal and the circumferential directions can be compared for 

estimating compliance and anisotropy [28,35]. To estimate these stress levels, we considered 

an average femoropopliteal artery with diameter of 7 mm and wall thickness of 1 mm under 

an internal pressure of 80 mmHg (end diastole) and 120 mmHg (peak systole). We note that 

these values are hypothetical but reasonable, as our SFA, PA and TA specimens had average 

diameters of 7.3±2.3, 7.1±2.2, 5.2±1.2 mm, and wall thicknesses of 1.5±0.7, 1.3±0.5, 

0.9±0.4 mm respectively. Under the assumption of a thin wall, Laplace’s law (σθθ = Pd/2h) 

provides a rough estimate of σ80 = 37 kPa and σ120 = 56 kPa for average Cauchy 

circumferential stress in the arterial wall.
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These two stress levels were selected for calculations of anisotropy at both diastole (A80) 

and systole (A120) as the ratio of longitudinal to circumferential stretches. Though use of 

equibiaxial loading protocols to assess anisotropy is artificial, it is necessitated by the lack of 

data on the actual in vivo loading conditions of the artery, such as the influence of 

surrounding structures, flexions of the leg, etc. When these data become available, the 

constitutive model parameters summarized in this work will facilitate a more accurate 

physiologic assessment of anisotropy. The change in compliance along the length of the 

artery was assessed by comparing stretches at σ80 and σ120 between the more proximal SFA 

and the more distal PA and TA.

2.3 Constitutive modeling

2.3.1 Choice of constitutive relation—We assumed that the arterial wall was 

incompressible and consisted of a mixture of an elastin-dominated amorphous matrix and 

families of locally parallel collagen fibers [36]. As femoropopliteal arteries also contain 

significant amounts of smooth muscle in the media, the active stresses from smooth muscle 

tone might also be considered. However, the active contribution of smooth muscle to the 

arterial mechanical properties requires further investigation, and for this reason it was not 

included in the present analysis. The passive contributions by smooth muscle were absorbed 

by the constitutive model [37].

Following Ferruzzi et al [37] we considered 4 families of collagen fibers, two oriented 

axially and circumferentially, and two symmetrically along the diagonal. In this regard, we 

used the strain energy function suggested by Baek et al [36] which was shown to accurately 

describe the behavior of soft tissues [37,38]. This constitutive model is consistent with the 

convexity requirements that ensure undesirable material instabilities are precluded [39]. An 

additional benefit is that this model is motivated by the underlying arterial wall structure, 

although the relation is phenomenological, i.e. not based on inherent microstructural 

complexities such as the different types of collagen, cross-linking, physical entanglements or 

other interactions with extracellular constituents [37]. The selected formulation did not take 

into account viscoelastic effects because after preconditioning, most of our tissues 

demonstrated relatively narrow hysteresis. A detailed framework of this constitutive model 

is given elsewhere [36,37,40], but here we will provide a brief description for clarity of the 

following discussion.

Consider the following strain energy function

(6)

where c0,  and  are material parameters associated with contributions of elastin and 

collagen [37], and IC = tr C is the first invariant of the right Cauchy-Green tensor. Unit 

vectors Mi define the fiber directions in the reference configuration that make angles γi with 

the axial direction. With axial and circumferential fibers fixed at γ1 = 0 and γ2 = π/2, and 

diagonal fibers located at γ3 = −γ4 = γ, the square of the stretch of the i-th fiber family 

 takes the form
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(7)

We further assume that diagonal fibers are mechanically equivalent, while axial and 

circumferential fibers can be mechanically distinct. This results in  and 

, therefore function (6) depends on 8 constitutive parameters (c0, 

, γ). In order for these parameters to be physically realistic, they have to 

be non-negative, and  due to the symmetry of the diagonal fibers.

For homogeneous biaxial deformations in the absence of shear, the deformation gradient 

takes a diagonal form and contains only the principal stretches

(8)

Principal Cauchy stresses are found from

(9)

Note that stress in (9) is the isochoric Cauchy stress (also termed “extra” stress [21]), i.e. 

 where p is the hydrostatic pressure.

Introducing incompressibility, i.e. det F = λzλθλr = 1 we arrive at

(10)

Assuming that during biaxial testing the tissue is in plane stress (i.e. ), non-zero 

Cauchy stress components (9) for the strain energy function (6) take the form

(11)

The two Cauchy stress components in equations (11) are therefore functions of the two 

principal stretches λθ and λz, and the 8 constitutive parameters (c0, , γ) 

that determine the material behavior. These 8 parameters can be found by fitting equations 

(11) to the experimental data.

2.3.2 Determination of Constitutive Parameters—To find the 8 constitutive model 

parameters that determine tissue behavior in equations (11), we need to minimize the 

differences between theoretically calculated (i.e. (11)) and experimentally measured stresses 

 simultaneously for both directions of stretch in 5 out of 7 protocols (2 unused protocols 
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were utilized to check model prediction). The optimization problem (chi-square 

minimization) would then be to minimize the objective function

(12)

where .

Minimization was performed using the Levenberg-Marquardt Algorithm in OriginPro 9 

(OriginLab Co) with the multi-data global fit mode. Since the weight of each parameter in ω 

is unclear, we assigned equal weights to all 8 parameters, and 400 iterations were typically 

sufficient to achieve a tolerance of 10−9. The traditional coefficient of determination R2 ∈ 

[0,1] was used as a measure of goodness of fit with values R2 ≥ 0.9 typically representing a 

good fit to the experimental data.

In addition to checking the quality of fit, we also checked the quality of model prediction, 

i.e. the model’s description of the two experimental protocols not used for minimization 

[21,35,41]. The quality of prediction was also assessed using R2.

2.4 Assessment of in vivo Axial Stretch

Healthy arteries in vivo experience stretches and stresses in both the longitudinal and 

circumferential directions even when they are not loaded with internal pressure. This is 

demonstrated by retraction following transection in the axial direction and opening of the 

arterial ring to a sector in a response to a radial cut [21]. Both the axial and the 

circumferential pre-stretches play important compensatory roles in arterial biomechanics and 

mechanobiology by equilibrating the homeostatic multiaxial stress state of the artery [24] 

and homogenizing the stress distributions across the thickness of the arterial wall [42,43].

Circumferential pre-stretch was assessed through the measurement of the opening angle as 

described above in the 2.2.1 Specimen Preparation section. Measurement of the axial pre-

stretch  was based on the findings of Van Loon et al [44] which were later confirmed by 

other groups [21,45] and discussed in detail by Humphrey [21]. Van Loon et al [44] have 

shown that plots of axial force-length data collected in vitro at different fixed pressures 

reveal a unique cross-over point that reliably estimates the in vivo value of axial pre-stretch 

. Therefore,  can be determined by the standard in vitro pressure-diameter tests with a 

set (constant) axial stretch λz. The desired  then results in an axial force Fz that is 

independent of the internal pressure (or alternatively of the circumferential stretch λθ) during 

normal physiologic pressurization [21]. Physiologically, the presence of  serves to 

conserve energy such that the artery does no axial work during the pulse cycle. Interestingly, 

in vivo axial pre-stretch does not always equal the in situ axial pre-stretch, and therefore 

simple measurement of retraction following transection is insufficient. Though in situ and in 

vivo arterial pre-stretches were shown to be approximately equal for young animal arteries 

[44,45], Schulze-Bauer et al [25] have demonstrated that for senior human arteries, this may 

not be the case and that the axial in situ stretch may be substantially smaller than .
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In this work we focused on the determination of  to establish the most energy efficient in 

vivo axial pre-stretch – a characteristic of normal arterial function. In other words, we aimed 

to determine the in vivo pre-stretch  that might allow the diseased artery to function in the 

most energy efficient way. This  should therefore be distinguished from the in situ 

retraction, which is appreciably smaller in diseased arteries, such as those we studied here. 

Therefore, we followed the methodology of Schulze-Bauer et al [25] and calculated  by 

studying the axial force Fz as a function of the circumferential stretch λθ for each of the 

fixed axial pre-stretches λz = 1 – 1.7. In vivo axial pre-stretch  then corresponded to the 

fixed value of λz at which Fz was independent of λθ. The corresponding mathematical 

formulation is summarized in the APPENDIX and is provided by equation (29), where the 

components of the Cauchy stress tensor are given by equations (11).

2.5 Histological evaluation

After biaxial testing, all tissues were fixed in 10% neutral-buffered formalin, embedded in 

paraffin and sliced 5 μm thick. Standard Verhoeff-Van Gieson (VVG) staining was used to 

assess elastin and collagen orientation. Images of the stained arteries were captured under 

40X bright field magnification.

3. RESULTS

3.1 Mechanical Testing

Stress-stretch curves for all arteries, as well as SFA atherosclerotic plaques, are presented in 

Figure 2. For clarity and brevity, only equibiaxial tests are plotted. All arteries exhibited 

significant non-linearity and anisotropy. Most specimens demonstrated large deformations 

in the longitudinal direction even though some of the tissue specimens appeared to be 

heavily diseased, i.e. specimens #1 and #6.

At σ80, the average SFA stretch in the longitudinal direction was 1.09±0.03 (range 1.043–

1.145), while in the circumferential direction it was 1.05±0.01 (range 1.025–1.068). At σ120, 

the average SFA stretch in the longitudinal direction was 1.12±0.03 (range 1.059–1.18), 

while in the circumferential direction it was 1.06±0.01 (range 1.032–1.075).

The more distal PA and TA demonstrated smaller stretches than the SFA at both σ80 and 

σ120 in the longitudinal directions, but higher stretches in the circumferential direction. At 

σ80, the average PA/TA stretch in the longitudinal direction was 1.08±0.01 (range 1.06–

1.097), while in the circumferential direction it was 1.06±0.02 (range 1.02–1.085). At σ120, 

the average PA/TA stretch increased to 1.10±0.02 (range 1.08–1.132) in the longitudinal 

direction and to 1.07±0.02 (range 1.03–1.098) in the circumferential direction.

Plaques stretched 1.07±0.05 (range 1.009–1.129) in the longitudinal direction and 

0.9975±0.01 (range 0.984–1.01) in the circumferential direction at σ80; and 1.08±0.06 

(range 1.014–1.158) in the longitudinal direction and 1.00±0.02 (range 0.987–1.02) in the 

circumferential direction at σ120. Note that in the circumferential direction, atherosclerotic 

plaques were contracting as the specimen was being stretched in the longitudinal direction. 

These results demonstrate that all tested tissues, including the atherosclerotic plaques, were 
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more compliant in the longitudinal direction than in the circumferential at both σ80 and σ120 

(p<0.01) (Figure 3). For the SFA, the average anisotropy ratio A80 calculated at σ80, was 

1.04±0.02, and for σ120, A120 = 1.05±0.03. For the PA and TA both anisotropy ratios were 

smaller, A80 = 1.02±0.02 and A120 =1.04±0.03. The increase in anisotropy at systole 

compared to diastole, and the lower anisotropy of the PA and TA compared to the SFA, 

were statistically significant (p<0.05).

At both σ80 and σ120 stress levels, longitudinal compliance decreased distally (p<0.05), 

while circumferential compliance increased. The latter was not statistically significant 

(p=0.35 at σ80 and p=0.23 at σ120) but it was observed for 5 out of 8 specimens at diastole 

and 6 out of 8 at systole. Interestingly, atherosclerotic plaque was significantly stiffer than 

the arterial tissue only in the circumferential direction (p<0.01), while in the longitudinal 

direction this result was not statistically significant (p=0.22 and p=0.18 for σ80 and σ120 

respectively). The small number of plaque specimens and their variable compositions 

warrant further investigation.

3.2 Constitutive Model Parameters

Constitutive model parameters for each specimen are summarized in Table 2. The 

coefficient of determination R2 ∈ [0,1] is given to demonstrate the quality of fit to the 

experimental data. Generally R2 ≥ 0.9 is usually an indicator of a good fit. Visual 

demonstration of the representative fit to the multiple experimental protocols for SFA, PA 

and TA is presented in Figure 4 for patient #5. The selected model was able to accurately 

portray the complex arterial behavior under different test protocols. Though both the fit and 

the prediction were generally good for most tissues, experimental data for one 

atherosclerotic plaque specimen could not be fit with the selected model due to substantial 

stiffness and compression in one of the directions of stretch during biaxial loading.

3.3 Opening Angle and In Vivo Axial Stretch

The average opening angle for the SFA was 150°±84° and for the PA and TA it was 

177±73°, a difference that was not statistically significant. The average opening angle for 

the entire femoropopliteal artery was 160°±78°. The opening angle demonstrated strong 

negative correlation with disease severity (r=−0.64), meaning that more diseased arteries 

opened less.

Figure 5 shows the change of axial force Fz as a function of λθ for fixed values of λz. Note 

that Fz tends to change little during cyclic pressurization when held near the in vivo axial 

length (here an extension of ). The mean value of axial force for the SFA was 

2.7±3.0 N, similar to the more distal PA and TA 2.7±2.1 N segments. The value of Fz for 

atherosclerotic plaques could not be determined, because the graphs did not show the trends 

presented in Figure 5.

In vivo axial pre-stretch  was smaller for the PA and TA than it was for the SFA 

(p=0.014). The average value of  for the SFA was 1.33±0.17 (1.62–1.08 range), while for 

the PA and TA it was 1.25±0.12 (1.43–1.06 range). Axial pre-stretch did not correlate with 

stiffness of the artery at diastole or systole in either the longitudinal or circumferential 
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directions (r<0.2), nor did it correlate with the anisotropy ratios at diastole or systole 

(r=0.15, r=0.26). However,  did demonstrate moderate correlation with the increased 

anisotropy ratio from diastole to systole (r=0.48), meaning higher axial stretches were 

observed for the arteries that became more anisotropic as they progressed from diastolic to 

systolic stresses. Axial pre-stretch demonstrated a moderate inverse correlation with patient 

age (r=−0.30) and disease severity (r=−0.36), suggesting smaller  in senior and more 

diseased arteries.

3.4 Histological evaluation

The structure of the femoropopliteal artery wall exhibited a distinct sub-adventitial layer of 

elastin fibers oriented in the longitudinal direction (Figure 6). This layer was thicker and 

denser for arteries with no gross pathology compared to severely diseased arteries.

4. DISCUSSION

Experimental evaluations of femoropopliteal artery mechanical properties are scarce in the 

literature. Most studies have evaluated uniaxial properties of animal tissue [46–49], while 

human data are rare [14–19]. To the best of our knowledge, this is the first study that reports 

the biaxial mechanical properties of human SFA, PA, TA and SFA atherosclerotic plaques 

stemming from the same patients. In addition, we provide values for constitutive model 

parameters and in vivo axial pre-stretch that are of interest to biomedical engineers and 

medical device manufacturers. Though both healthy and the diseased arterial properties are 

of great interest, this study focuses only on the latter since these are the arteries that typically 

require surgical treatment. Comparison with healthy control tissue was not performed, as 

these specimens are rarely available due to the infrequency of amputation for disease-free 

limbs.

4.1 Mechanical Testing

Our results demonstrate substantial non-linearity in the stress-stretch response characterized 

by an exponential increase in tissue stiffness with increasing loads. This well-known 

behavior is explained by the complex multi-layered structure of the arterial wall that among 

other components contains primarily fibers of collagen and elastin. When the artery is load-

free, the stiff collagen fibers are wrinkled and the mechanical response of the vessel is 

determined largely by elastin. When a normal artery is stretched, collagen fibers straighten, 

and as they increasingly assume the load, the overall stiffness of the tissue dramatically 

increases, resulting in the observed stress-stretch response.

Even though many of the specimens were affected with severe disease, the tissues still 

exhibited large stretch. Interestingly, for the most heavily diseased arteries, large stretches 

were only observed in the longitudinal direction, while in the circumferential direction the 

tissues were stiff. Vascular diseases are thought to stiffen the tissue through complex 

changes that involve both structural and cellular elements of the vessel wall. Resident and 

migratory cellular elements sense and respond to the arteries environmental conditions and 

can give rise to calcification, overproduction of collagen, degradation of elastin, and 

vascular smooth muscle cell tone changes that can all contribute to increased stiffness of the 
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tissue [50]. To regulate lumen diameter and protect the artery from overstretch, collagen 

fibers and smooth muscle cells have a preferred circumferential orientation [51–53]. Thus, 

overproduction of collagen and altered smooth muscle tone would most likely stiffen the 

artery circumferentially rather than longitudinally. This may exacerbate anisotropy and 

result in higher stiffness of the tissue in the circumferential compared to the longitudinal 

direction when loaded equibiaxially. This speculation is consistent with findings observed 

for all arteries in this study.

Another interesting observation was that diseased femoropopliteal arteries were stiffer 

distally in the longitudinal direction, while becoming more compliant in the circumferential 

direction. Mechanistically, this could possibly compensate for the increased longitudinal 

stiffness and serve to maintain a homeostatic multiaxial stress state in the artery wall [24]. 

Increases in longitudinal stiffness distally may indicate that the structural composition of the 

artery changes as the collagen fibers could become more axially aligned in the PA and TA 

segments compared to the more proximal SFA. This reorientation may possibly serve to 

regulate the axial deformations which are known to be substantial near the adductor hiatus 

and below the knee [10–12,54,55]. Together, the higher stiffness in the longitudinal 

direction and the higher compliance in the circumferential direction of the PA and TA 

compared to the SFA result in decreased anisotropy distally as the stress-stretch curves 

move closer to each other.

As all tissues tested in this study were affected by different stages of vascular disease, 

specimens demonstrated appreciable variability in mechanical properties. Though general 

trends regarding arterial segment location and mechanical properties are described, further 

investigation of more specimens using more detailed histological examination may shed 

light on the complex relations between the structure of the artery, its anisotropic response 

and the composition and severity of the disease.

4.2 Constitutive Modeling

The strain energy function we used was a 4-fiber family constitutive relation [36,37,40] that 

is an extension of the well-known 2-fiber family model proposed by Holzapfel, Gasser and 

Ogden (HGO) [56]. Both models are phenomenological in nature, i.e. they do not explicitly 

account for collagen fibers of different types and diameters or any complex fiber 

interactions. Nevertheless, in contradistinction to other phenomenological models, these 

models are motivated by microscopic data on the gross organization of arterial collagen 

[37,57] reflecting some physical interpretation of model parameters. Both models are 

formulated using invariants and are objective for non-negative material parameters [58]. The 

choice of a 4-fiber family model versus the simpler 2-fiber family model was motivated by 

the explicit inclusion of axially and circumferentially oriented families of fibers 

demonstrated by femoropopliteal artery histological examination (Figure 6). The inclusion 

of additional fiber families came at the expense of using 8 constitutive parameters versus 4, 

and therefore exacerbated the problem of parameter uniqueness. Selection of a large number 

of different protocols for minimization, i.e. expanding the domain in the strain space, helps 

to better determine constitutive parameters that adequately describe tissue properties under 

various loading conditions. However, this does not guarantee uniqueness of these parameters 
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and various sets of values may provide equally good representations of experimental data. 

Variability and uniqueness can be assessed using non-parametric bootstrapping or jackknife 

methods described in detail by Yin et al [59], Humphrey [21] or more recently by Ferruzzi et 

al [37]. However, such detailed statistical assessment was beyond the scope of this study.

Experimental fits to the data using the 4-fiber family model were considerably better than 

those using the 2-fiber relation. We note that both the 4- and the 2-fiber family models can 

be augmented with fiber dispersion [52], however, as also reported by Ferruzzi et al [37], 

addition of rotational fiber dispersion about the primary orientations did not improve the fit 

enough to justify the further increase in number of structural parameters.

Material parameters for the SFA, PA and TA are summarized in Table 2. The constitutive 

model provided a good fit to the experimental data for most arteries. Interestingly, contrary 

to what was reported by Ferruzzi et al [37] for the aortic tissue, we have not observed 

correlations between age and the model parameter c0, that was suggested to be associated 

with the contribution of elastin (r<0.25). This may be due to the effects of vascular disease 

that overtrumped the effects of age. The collagen-related parameters for SFA, PA and TA 

however, obeyed  and , both statistically significant. Ferruzzi et al [37] reported 

observing similar inequalities for healthy aortic tissue, changing to the opposite for 

aneurysmal aortas that contained diminished elastin.

4.3 In Vivo Axial Stretch

The constitutive model parameters we determined allowed calculation of the in vivo axial 

stretch that would serve to conserve energy such that the artery does no axial work during 

the pulse cycle. In the femoropopliteal artery, axial pre-stretch also seems to play an 

important role in preventing buckling during extremity flexion [10]. The structure of the 

femoropopliteal artery wall facilitates this behavior, exhibiting a distinct layer of elastin 

fibers oriented in the longitudinal direction – a structural organization not common for larger 

arteries such as the aorta. This longitudinal layer of elastin fibers appeared thicker and 

denser in healthier arteries.

As discussed above, in vivo axial pre-stretch and in situ axial pre-stretch are substantially 

different for aged and diseased arteries [25] suggesting that these arteries have lost their 

ability to function in an energy efficient way. An appropriate kinematic formulation was 

therefore developed to calculate that artificial state that might allow the diseased artery to 

function more efficiently and more closely resemble the characteristics of the normal 

behavior. We note however that this need for resemblance is purely hypothetical, and it has 

not been shown by any other studies that axial pre-stretch in the femoropopliteal artery 

provides any benefits for arterial function or pathophysiology. However, this current work 

may be the first step towards answering this question, which may eventually lead to 

development of better treatment techniques and devices for PAD patients.

Our results demonstrate that the in vivo axial pre-stretch decreases with age and disease, and 

is reduced in the more distal PA and TA compared to the more proximal SFA. In other 

words, these arteries do not have to be stretched as much to function most efficiently. In 

general, in cases of sustained alterations in flow or pressure, or when the artery is exposed to 
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sustained mechanical influences, such as mechanical effects of the knee flexion or 

hypertension, the arterial wall adapts to restore a multiaxial stress state towards homeostatic 

values [24]. The artery attempts to compensate for high stress in one direction by decreasing 

the stress (by virtue of decreasing strain) in the other direction [60]. Since arteries have more 

control over local axial force than local blood flow and pressure, they may employ 

compensatory mechanisms to reduce the stretch in the axial direction and equilibrate the 

increased circumferential stress [24]. Such mechanisms may involve remodeling through 

increased fragmentation or degradation of elastin, increased deposition of collagen, and 

proliferation or hypertrophy of smooth muscle [24].

Elastin is produced and organized primarily during the perinatal period [24]. Since its half-

life is on the order of the lifespan of the organism [61], it matures well before the arteries 

reach their final diameter. This implies that the elastic laminae stretch as vessel grows, 

which means that elastin is under considerable tension at maturity [24]. Dobrin et al [62] and 

Zeller and Skalak [63] reported that in healthy arteries nearly all axial pre-stretch is due to 

the presence of elastin. Collagen and smooth muscle, on the other hand, turnover 

continually, which results in collagen being under residual compression [63]. It therefore 

follows that degradation or fragmentation of elastin and an accompanying increase in 

collagen deposition likely contributes to a decrease in axial stretch. Recall that increased 

cyclic stretch induces smooth muscle cells to synthesize more collagen [64], and that the PA 

is subjected to more severe cyclic loading than the SFA simply by virtue of its anatomic 

location below the flexing knee [11,12,55,65]. This perhaps contributes to the smaller axial 

pre-stretch and higher longitudinal stiffness of the PA compared to the SFA as described in 

our study. Circumferential stretch is also likely affected by collagen deposition, and aged 

and diseased arteries may have different opening angles compared to those of the healthy 

arteries. Additional studies are required to investigate this speculation.

The findings of this study should be viewed within the context of its limitations. First and 

foremost, all mechanical properties were reported under the assumption of homogeneity 

which clearly is not the case for arteries severely affected with vascular disease. Though 

alternative methods, such as nanoindentation and elastography with back-calculation, are 

being currently explored for inhomogeneous tissue characterization, the data obtained with 

biaxial testing are currently far superior in terms of describing the essential non-linearity and 

anisotropy of these materials under physiologic and supraphysiologic loads. The second 

limitation concerns constitutive modeling. As pointed out by Ogden [58], 3D material 

properties cannot be determined from the 2D biaxial experiments. Though the state of the 

experimental art at present does not allow full 3D characterization of soft tissues, this 

limitation should always be kept in mind when using biaxial data for 3D modeling. Finally, 

the sample size of 10 patients may be too small for adequate statistical analysis, requiring 

more specimens and experiments to validate the statistical significance of our findings.

In summary, arterial walls are substantially more complex than we can assess with existing 

testing techniques and describe with current mathematical models. However, the prevalence 

of peripheral arterial disease and poor outcomes of current treatment methods creates a 

pressing need for experimental data that can allow a better understanding of the main 

characteristics of femoropopliteal artery function and pathophysiology. This current work 
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was aimed at elucidating some of these characteristics, which we hope will serve as a 

starting point towards achieving this challenging goal.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Specimen prepared for biaxial testing.
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Figure 2. 
Equibiaxial mechanical properties of Superficial Femoral (a), popliteal (a), tibial (c) arteries 

and SFA atherosclerotic plaques (d). Vertical lines show estimations of diastolic (σ80) and 

systolic (σ120) levels of stress at which compliance and anisotropy (A80, A120) metrics were 

evaluated.
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Figure 3. 
Anisotropy indexes A80 (diastole) and A120 (systole) calculated for each arterial specimen.
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Figure 4. 
Representative stress-stretch curves for superficial femoral, popliteal and tibial arteries for 

patient #5. Experimental data and constitutive model fits are presented for different test 

protocols.
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Figure 5. 
Representative circumferential stretch (λθ) vs. calculated axial force (Fz) response of the 

tissue stretched with different axial pre-stretches λz The graph demonstrates that axial force 

tends to change little during simulated pressurization when held at the in vivo axial pre-

srretch  (red line).
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Figure 6. 
Representative histology of SFA cross-sections with no gross pathology (left) and with 

severe atherosclerotic disease (right) both stained with Verhoeff-Van Gieson. Cross-sections 

show a distinct layer of elastin fibers (black) oriented in the longitudinal direction, i.e. 

perpendicular to the plane of the figure. This layer is thinner for the severely diseased artery. 

Note that elastin fibers are concentrated at the media/adventitia interface rather than being 

distributed through the media thickness. Collagen fibers are colored in red.
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Figure 7. 
Kinematics of the arterial wall showing an intact artery in the reference (stress-free 

configuration) ΩR where the circumferential stress is released by the radial cut resulting in 

opening of the arterial ring into a sector with angle α. The artery is then transferred to the 

unloaded configuration via FR–U, i.e. by closing the sector. In the unloaded configuration 

ΩU, the artery contains residual stresses but has no internal pressure or axial force. Finally, 

the unloaded arterial segment is loaded with an internal pressure pi and an axial force Fz 

resulting in the transformation FU–C to the current (loaded) configuration ΩC. Note that the 

dimensions of the arterial segment in all three configurations are different.
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