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Bayesian Analysis of a Health Insurance Model 

Helio S. Migon, * and Edison M.O. Pennat 

Abstract* 

We consider the problem of determining health insurance premiums based 
on past information on size of loss, number of losses, and size of population 
at risk. The size of loss and the number of losses are treated as mutually 
independent random variables. The number of losses is assumed to follow a 
Poisson process, and the loss sizes are independent and identically distributed 
non-negative random variables, and the population at risk is assumed to follow 
a non-linear growth model. An expression for the premium is obtained through 
maximization of the insurer's expected utility under a Bayesian model. The 
parameter estimation process is based on Monte Carlo Markov chain (MCMC). 
Our methology is applied to two real data sets. 

Key words and phrases: collective risk model, aggregate loss, rate making, pre­
dictive distribution, stochastic simulation, Monte Carlo Markov chain (MCMC) 
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1 Introduction 

The main aim of a health insurance company is to generate enough 
premiums to cover losses due to expenses, medical payments (e.g., vis­
its to physicians, diagnostic tests, physical therapy, and hospitaliza­
tions), and to produce profits. The premium charged for an individual 
health insurance contract is based on, among other factors, the insured 
person's age, health history, size of deductible, health plan chosen (Pai, 
1997). Therefore pricing actuaries must use past information to de­
velop a probabilistic model of the important uncertainties involved in 
the loss process. 

In developing a health insurance model there will be many areas of 
uncertainty. For example, care must be taken to avoid adverse selection 
(where mainly unhealthy individuals are the predominant clients) and 
to resolve the conflicting interests of the doctor, the policyholder, and 
the insurer (e.g., in a fee-for-service plan, a doctor may seek unnecessary 
diagnostic tests to boost income while protecting against malpractice 
claims). Thus the insurer must establish a statistical control model to 
help to reduce unnecessary expenditures (Rosenberg, 2001). In spite 
of this, many actuarial models do not fully contemplate the uncertain­
ties involved such as those due to parameter estimation (Migon and 
Gamerman, 1999). 

The above problems associated with pricing health insurance can be 
dealt with in the Bayesian paradigm. l Regardless of the details of a par­
ticular model, the Bayesian approach requires that, before data are ob­
served and the posterior distribution is evaluated, a prior distribution 
for the parameters involved in the premium calculation be specified. 
In specifying a prior distribution, there is plenty of room to incorpo­
rate expert opinions as well as to include industry-wide information. 
As mentioned in Hogg and Klugman (1984, page 14), " ... actuaries are 
encouraged to introduce any sound a priori beliefs in the inferences 
whether Bayesian or not." 

A Bayesian approach is adopted in this paper. We take fully into 
consideration all the uncertainty involved in determining the predic­
tive distribution, which is the distribution of future observations con­
ditional on observed values. Specifically we takes into consideration 
the uncertainty due to estimation of the parameters that form the ba­
sis for determining the premium. The premium is obtained via a max­
imization of the expected utility. The computations are done using 

1 Many authors have used a Bayesian approach to actuarial modeling, e.g., DuMouchell 
(1983); Herzod (1994); Makov, Smith, and Liu (1996); Haberman and Renshaw (1996); 
and Pai (1997). 
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WinBugs, Le., Bayesian inference using the Gibbs sampler (Spiegelhal­
ter et aI., 2000). The major attractiveness of sampling-based methods 
is their conceptual simplicity and ease of implementation by users with 
available computing resources, not demanding any numerical analytic 
expertise. A review of some aspects of Bayesian data analysis in the 
context of actuarial models implemented and analyzed using Markov 
chain Monte Carlo techniques using WinBugs can be found in Scollnik 
(2001 and 2002) and Ntzoufras and Dellaportas (2002). 

The remainder of this paper is organized as follows: the risk model 
and the Bayesian models are presented in Section 2, where the prior 
distributions are introduced and the estimation paradigm is presented. 
Alternative models and some numerical applications are presented in 
Section 3. Section 4 concludes with some remarks. 

2 The Bayesian Framework 

The basic insurance risk model used is the classic compound Poisson 
model that is commonly used in actuarial risk theory (e.g., Embrechts, 
Kluppelberg, and Mikosch, 1997). The model is briefly described as fol­
lows: Consider a single person insured for the unit time period (t -1, t). 
Let Nt denote the number of losses and Xt denote and the aggregate 
loss produced by this person for t = 1, ... ,T. It follows that 

Nt 

X t = 2: Zt,j 
j=l 

where Zt,j is the amount of the lh loss in (t - 1, t). The main as­
sumptions of the classic compound Poisson model are (i) the number 
of losses produced by this person in any interval is a Poisson process 
with rate A, (ii) the loss sizes are independent and identically distributed 
(LLd.) non-negative random variables, and (iii) the number and size of 
losses are mutually independent. Clearly Nt is a Poisson random vari­
able with mean A and the Zt,jS are LLd. Specifically we assume the Zt,jS 

are exponentially distributed with finite mean 1/ e. 
Next we consider a portfolio of such insured persons. Let TTa,t de­

note the number of persons age a who are insured in the time interval 
(t -1, t). We assume that TTa,t has a normal distribution with mean /Ja,t 
and variance O"~. This normal assumption is for simplicity and ease of 
computations (Migon and Gamerman, 1993). 

To summarize, our model is mathematically described as follows: 
Consider a health insurance portfolio consisting of persons of various 
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ages who are placed in one of c different age classes labeled from 1 
to c. Let Na,t and Xa,t denote the number of losses and the aggregate 
loss, respectively, produced by the insured persons age a in the period 
(t - 1, t). If Na,t is Poisson with mean Aa > 0 and the losses are LLd. 
exponential variables with mean 1/ ea 

[Na,tIAa, TTa,tJ ~ Poisson with mean TTa,tAa (1) 

[Xa,tINa,t = na,t, ea ] ~ Gamma(na,t, ea ) (2) 

where Gamma(OI, 13) denotes the pdf of a gamma distribution with mean 
01/13 and variance 01/132 

TTa,t ~ N(fJa,t, (J'~) (3) 

for t = 1,2, ... and a = 1,2, ... , c. The population model model used is 

fJa,t = (f3a,o + f3a,1 e- i3a ,2
t ) IN , (4) 

where ¢ is usually chosen as 1, -1, or 0, corresponding to the modified 
exponential, logistic, and Gompertz growth models (Migon and Gamer­
man, 1993). Of course, the case of ¢ = 0 must be viewed as the limit 
when ¢ tends to zero and corresponds to the logarithm of fJa,t. In this 
paper only the logistic time evolution model (¢ = -1) will be taken 
into consideration. It is worth noting that the model in equation (3) can 
be interpreted as a non-linear regression with time as the explanatory 
variable, for each age class. 

Let us suppose that some past information is available for the time 
periods (t - 1, t) and the information is in the form (nt, Xt, TTt), for 
t = 1" .. ,T, where nt = (nl,t, ... , nA,d T with na,t representing the 
observed number of losses, Xt = (Xl,t, ... , XA,t)T with Xa,t represent­
ing the observed aggregate loss, and TTt = (TTl,t, ... , nA,d T with TTa,t 
representing the observed number of insureds in age class a in time 
(t - 1, t). The type of health care service will not be taken into account 
just to keep the notation simple. 

The main concern at this stage is to obtain the full predictive dis­
tribution of the total loss for each age class a, Xa at time T + h, h = 
1, ... ,H, where H is the given planning horizon. To be more specific 
we need to obtain the distribution of Xa,T+h given all the available infor­
mation. The total loss amount up to the time horizon T + H is obtained 
as an aggregation over the age classes and the time horizon, given: 

c H 

XT+H = L L Xa,T+h. 
a=1 h=1 

(5) 
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This will be the key quantity used to define the premium, meaning that 
the premium will be quoted today to cover all future losses incurred. 

Assuming that the total size of losses in age class a and at time 
t are independent given na,t and Ba, and that the number of losses 
is independent of time and age, given the population TTa,t and i\a, the 
likelihood function follows as: 

c T B na,t i\ na,t 

l(l\., e, /3, a2
[DT) DC 1] [l taa) 1~2 

[ B i\ (TTa,t - fJa,d 2 ] x exp - aXa t - aTTa t - 2 ' , 2aa 

(6) 

where DT = {(Xt, nt, TTd, t = 1,' .. ,T} represents all data available, 
I\. and e are A x 1 vectors, and /3 = (/31,'" ,/3a,··· ,/3A)T, where 
/3a = (/3a,Q, /3a,l, /3a,d is a vector describing the insured population 
time evolution in the a th age class. 

In order to conduct a Bayesian analysis, one needs to define a prior 
distribution over the parameter space. A proper prior distribution will 
be adopted with the assumption of independence among the parame­
ters in each age class: 

p(Ba, i\a, /3a, a;2) = p(Ba)p(i\a)p(/3a)p(a;2), (7) 

which is a non-structured prior distribution for the parameters of the 
model of equations (1) to (3) for each age class. Alternatively a hierar­
chical prior (Moura and Migon, 2002 and Migon and Moura, 2005) could 
be introduced to borrow strength from the age class. 

Although in many applications the prior distribution is carefully 
elicited by the research (for example Garthwaite, Kadane, and O'Hagan, 
2004), in this paper the hyperparameters are chosen in such a way that 
a relatively non-informative but proper prior is implied. The use of 
an improper prior in general can cause problems such as inability to 
evaluate meaningful Bayes factors or even the lack of existence of the 
posterior distribution itself, as mentioned by Gelfand (1995, Chapter 9, 
page 148). 

It is natural to model Ba as Gamma(Aa , Ba), where A a, Ba > 0 are 
chosen in such a way that the prior is sufficiently vague. As E[ Ba] = 

Aa/Ba and Var[Ba ] = Aa/B~, the values of (Aa,Ba) can be easily ob­
tained. A conjugate prior distribution proposed for i\a is also gamma 
with parameters Ca,Da > O. Those quantities can be assessed as de­
scribed before. Finally the prior distribution for the regression coeffi­
cients in the time evolution of the population mean is 
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(8) 

where I is the 3 x 3 identity matrix and 

U;;2 ~ Gamma(no/2, no56 /2) (9) 

no,56 > 0 for all age classes. 
The next step is to combine the likelihood function of equation 

(6) and the joint prior distribution in equation (7) to obtain the joint 
posterior distribution. Unfortunately the joint posterior distribution is 
not available in a closed form, so a Monte Carlo Markov chain (MCMC) 
sampler is employed to generate drawings from this distribution. The 
method used to make inferences about the parameters is the Gibbs sam­
pler, which is a MCMC scheme where the transition kernel is formed by 
the full conditional distributions (Gamerman and Lopes, 2006). Roughly 
speaking, it consists of generating sequential drawings from the full 
conditional posterior distributions. The relevant issue related to MCMC 
is to ensure the empirical distribution of the parameters has achieved 
its limit distribution (Gamerman and Lopes, 2006). The posterior distri­
bution of any quantity of interest (Le., any function of the parameters) 
can easily be obtained in the MCMC process. As our main interests are 
in (i) the total cumulative loss for the planning horizon, (ii) the future 
values of the loss number and size, and (iii) the insured population's 
evolution, they can be jointly generated via the MCMC algorithm. 

As can be observed, the full conditional distributions are available 
in a closed form for all parameters, except f3a. For these parameters 
the Gibbs sampler can easily be implemented. The full conditional pos­
terior distribution of Aa is given as 

where 

T 

Ca,l = L na,t + Ca 
t=l 

T 

and Da,l = L 1Ta,t + Da. 
t=l 

(11) 

From equations (6) and (7) the full conditional posterior distribution of 
ea , is 

(12) 
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where 

T 

Aa,l = I na,t + Aa 
t=l 

T 

and Ba,l = I Xa,t + Ba. 
t=l 

67 

(13) 

As the full conditional posterior distributions for f3as are not avail­
able in closed form, a Metropolis within Gibbs algorithm is used to 
successively sample from the full conditional posterior distribution for 
the f3as as implemented in WinBugs. Finally, to complete the inference 
steps, the predictive distribution for (n, x, rrh +h is obtained from equa­
tions (1) and (3), conditional on the parameters generated as described 
before. 

3 A Practical Application 

The model described in Section 2 will be applied to two data sets 
consisting of the experience of two relatively new small self adminis­
tered Brazilian health care plans called the Northeast Health Company 
(NHC) and Southeast Health Company (SHC). The data sets consist of 
monthly observations on the number of losses, the aggregate of the 
observed losses, and the number of insured individuals for each age 
class, i.e., (nt, Xt, rrd). The data from SHC consists of 15 monthly ob­
servations (from March 1997 up to February 1998), while the NHC data 
consists of 23 monthly observations (from August 1998 to June 2000). 
The age classes used are: age class 1 is age 0 to 18, age class 2 is age 
18 to 35, age class 3 is age 35 to 45, age class 4 is age 45 to 55, age 
class 5 is age 55 to 65, age class 6 is age 65 to 75, and age class 7 is age 
75 and over. Tables AI, A2, and A3 in the Appendix show the monthly 
aggregate losses, number of losses, and population size for each age 
class for service 1 for Northeast Health Company and Southeast Health 
Company. 

3.1 Premium Estimation Methods 

Three different methods are used to determine the risk-loaded pre­
mium: one is based on classical assumptions and the other two are 
Bayesian in nature. For the Bayesian approaches, the predictive dis­
tribution over a planning horizon is considered, which implies that all 
uncertainties involved in the insurance business are included. The first 
method relies on standard asymptotic approximations for equation (5), 
the second method is a special case of the full Bayesian model called the 
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semi-predictive approach, while the third method is the full Bayesian 
model. In each method, however, the premium is defined as the 97.5% 
percentile of the predictive distribution of the aggregate loss. 

These three methods will now be discussed in detail: The first method 
uses the well known expression for the mean and variance of X (see, 
for example, Bowers et al., 1997, Chapter 12): 

lE[X] = lE[N]lE[Z] and Var[X] = lE[N]Var[Z] + (lE[Z])2Var[N] 

where Z represents one of the LLd. random variables characterizing the 
loss value. The parameters A. and 8 involved in the mean and variance 
are estimated via maximum likelihood as: 

T ~ T 
Aa = I~=l na,t and 8a = TIt=l na,t (14) 

It=l7Ta,t It=l Xa,t 

The estimates of lE[X] and Var[X] then follow from the invariance 
properties of the maximum likelihood estimator (Migon and Gamer­
man, 1999). 

The second method, which we call the semi-predictive method, is 
closely related to the non-compound collective model (G6mez-Deniz et 
al., 1999) that assumes only the number of losses is stochastic. This 
is a very useful practical simplifying assumption because in practice 
the prices of most medical services are often negotiated between the 
insurer and the provider and are set in advance for the period. Under 
fixed price conditions, the posterior and predictive distributions can 
be developed in a closed form. Recalling that in the model that N a,t I A.a 
has a Poisson with mean A.a7Ta,t, where 7Ta ,t is known, and the prior 
distribution of A.a is Gamma(Ca , Da ), then the posterior and predictive 
distributions are 

A.aIDT ~ Gamma(Ca,l, Da,l) and 

NT+hIDT ~ NBin(Ca,l, D Da,1 ) 
a,1 + 7Ta,T+h 

(15) 

where NBin(n, 8) represents the probability function of a negative bi­
nomial distribution with mean n(1 - 8)f8 and variance n(1 - 8)/82 , 

Ca,l = Ca + I na,t, and Da,1 = Da + I7Ta,t (Migon and Gamerman, 
1999, page 249). Using a square error loss function, the best point es­
timator is then the posterior mean and the Bayes risk corresponds to 
the variance of A.a , given by: 
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Aa = E[i\a IDT] = Ca,l / Da,l and Var[i\a IDT] = Ca,l / D~,l' (16) 

Note that if the insured population is allowed to evolve over time, then 
computationally intensive procedures must be used to make the infer­
ences. 

The third method, which is the full Bayesian model, corresponds 
to the model described by equations (1), (2), and (3). The inference in 
this case necessarily needs the implementation of an MCMC algorithm 
because the posterior and predictive distributions for the quantities of 
interest are not available in closed form. 

A useful tool in the early stages of model building is a directed 
acyclic graphic (DAG), which is also called an influence diagram. DAGs 
are useful in determining the full conditional distributions involved in 
MCMC schemes (Gilks et al., 1995). In fact, one can obtain WinBugs code 
from a DAG. In a DAG quantities of interest are represented as nodes 
and arrows run into nodes from their direct influences. A double arrow 
represents stochastic dependence, while a single one denotes a func­
tional relationship. There are two types of nodes: those representing 
known deterministic quantities (square symbols) and those represent­
ing stochastic (circles). Recall that the number of losses in age class a 
at time t, Na,t, is a random quantity with parametric distribution de­
pending on the expected number of losses per policyholder, i\a. If the 
insured population is given, the posterior and predictive distributions 
can be obtained in closed form. For example, Figure 1 is a represen­
tation of the collective risk model under the semi-predictive approach, 
Le., in Figure l(a) 7Ta ,t is known while in Figure l(b) it is stochastic. From 
Figure 1 (a) we see just how simple the DAG is in this case. Assuming the 
insured population is also a random quantity characterized by a mean 
J.la,t and a precision U;2, as stated in equation (3), the MCMC method 
is needed to make the inferences feasible. 

Figure 2 shows the DAG obtained for the full Bayesian model. The 
DAG presented in Figure 2(b) is useful in determining the full condi­
tional distributions involved in the Gibbs sampler scheme (Gilks et al., 
1995) assuming the population evolution is unknown, while Figure 2(a) 
represents the full predictive model assuming the population evolu­
tion is known. Even in this simple case the posterior and predictive 
distributions are not obtained in closed form. Note that Figure 2(b) in­
cludes the components of the insured population evolution described 
by a generalized linear regression model. 
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Figure 1: DAG Under the Semi Predictive Approach. Notes: This is an 
influence diagram for the number and size of losses assuming that the 
evolution of the insured population is: (a) known and (b) unknown. 

3.2 The Calculated Premiums 

The convergence of the MCMC process was assessed by different cri­
teria proposed in the literature, thus assuring that the results presented 
are reliable (e.g., Gamerman and Lopes, 2006, Chapter 5). Some statisti­
cal tests were done in order to assess the convergence of the Gibbs sam­
pler sequences. It is worth mentioning that based on three chains with 
2,500 runs, including a burn-in of 500, the Gelman and Rubin (1992) 
criterion exhibits convergence before 1000 iterations were drawn. The 
convergence was also confirmed by many other graphical outputs. Nev­
ertheless, the results presented in this paper are obtained by pooling 
over the three chains, corresponding to the final 6,000 draws. The pre­
dictive density of the total loss value obtained under the assumption of 
a full predictive Bayesian model shows some evidence that these distri­
butions are asymmetric to the right, at least for the SHe. 

The assumptions used in the model's development were consis­
tent with the data sets analyzed. For example the coefficients in the 
population evolution model, equation (4), are all Significantly different 
from zero. Also the assumption of independent and exponentially dis­
tributed loss value are confirmed by the goodness of fit of the assumed 
composed Poisson model. The predictive distributions obtained via the 
MCMC method are clearly non-symmetric, confirming that asymptotic 
normality is not appropriate. Although our models assume that the in-
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Figure 2: DAG Under the Full Predictive Approach. Notes: This is an 
influence diagram for the number and size of losses assuming that the 
evolution of the insured population is: (a) known and (b) unknown. 

tensity of losses is age dependent, the proposed prior is not structured, 
Le., the age classes are considered to be independent. The data show 
the loss intensities and the expected value of losses are age dependent. 

A summary of the predictive distribution, which is useful for set­
ting premiums, is presented in Table 1. The main results obtained are 
based on T = 15 and T = 23 monthly data sets for the SHC and NHC, 
respectively. It is worth pointing out that the global pure premiums are 
almost the same, although the global premiums (the 97.5% percentil~ 
of the predictive distribution) are quite different. 

The individual premium for SHC and NHC are compared on a monthly 
basis in Table 2. All figures were obtained based on, respectively, the 
12 and 23 month experience of the SHC and NHC and are quoted in U.S. 
dollars. The premium presented corresponds to the 97.5% percentile 
of the predictive distribution, accumulated over a three month hori­
zon (H = 3), in the Bayesian model and in the normal approximation. 
The choice of the 97.5% percentile as the premium corresponds to the 
maximization of the expected value of a very particular utility function, 
called the modified absolute deviation (Moura and Migon, 2002). The 
classical and the semi-predictive models differ only slightly. The reason 
could be that neither take into account all the variability involved. The 
full Bayesian model, in turn, presents a bigger premium value than the 
previous methods for all age classes. This must be a consequence of 
the asymmetry of the predictive distribution and also of the consider-
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Table 1 
Summary of Predictive Distribution 
Over a Three Month Horizon (H = 3) 

Variable Mean 2.5% Median 97.5% 
Based on SHC Data: 
Premium 45.45 30.93 44.58 64.96 
Number of Losses 1845 1663 1843 2033 
Size of Losses (in 1,000s) 230.10 156.00 225.80 327.10 
Insured Population 5064 4801 5062 5350 
Based on NHC Data: 
Premium 45.67 42.51 45.64 48.98 
Number of Losses 31490 29840 31460 33180 
Size of Losses (in 1,000s) (103) 465.10 440.40 464.70 490.50 
Insured Population 10190 9646 10180 10780 

ation of all the uncertainties involved. The last column corresponds to 
an equivalent monthly premium that is constant for all age classes: the 
global premium. Of course these figures correspond to the premium 
without the administrative cost-and the insurer's profits. 

The results obtained are not surprising. The risk premium increases 
almost steadily, from the age class 2 up to 7. The global premium is 
around $45 in the NHC and $60 dollars in the SHC, which seems quite 
reasonable and a little bit cheaper than the prices they charge in the 
market. This difference in the global premium is expected, because 
medical care is in general cheaper in the Northeast. 

Figure 3 shows the posterior mean for i\a, the expected monthly 
number of physician consultations per insured, for each age class (a = 

1, ... , 7), based on the 15 data points available for the SHe. The ex­
pected number of losses increases with age, which is not a surprise. 
For example, the number of physician consultations is around 0.20 per 
month in age class 451-55 (age class 4), increasing to 0.25 in age class 
651- 75 (age class 6), representing an annual expected rate of 3 and 4 
visits per year respectively, which seems reasonable. 

4 Concluding Remarks 

We discussed the implementation of the collective risk model in a 
Bayesian setting using stochastic simulation techniques. A practical 
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Table 2 
Individual Premium Comparison for the SHC and NHC 

Age Class· 
1 2 3 4 5 7 7 p(G) 

Based on SHC Data: 
p(N) 17.35 12.02 21.28 38.93 98.10 82.90 335.04 60.40 
p(S) 19.08 10.86 19.61 35.91 106.9 99.37 341.0 50.47 
p(F) 30.53 14.84 25.7 49.54 158.1 120.3 475.0 64.96 
Based on NHC Data: 
p(N) 15.40 23.54 28.00 39.69 30.66 58.18 83.73 31.86 
p(S) 24.35 39.25 45.07 47.71 56.51 77.86 93.67 45.90 
p(F) 29.51 45.88 52.3 56.69 66.27 92.56 106.1 48.98 
Notes: p(N) denotes the normal approximation, p(S) denotes the semi predictive 
model, p(F) denotes the full predictive model, and p(G) denotes the global premium. 

example was provided using two small data sets taken from the claims 
experience of two small Brazilian health care plans. 

The stochastic simulation techniques used make the inferences al­
most straightforward. The implementation of these models in WinBugs 
is extremely simple, and the computing time is almost inSignificant. 
Our main recommendation is to use the full Bayesian model. Given 
the asymmetry of the loss distribution, the assumption of asymptotic 
normality should be avoided. 

The full Bayesian model described in equations (1) to (5) could be ex­
tended in many directions. For example, the population evolution could 
be modeled via generalized growth curves as in Migon and Gamerman 
(1993). This is a very broad class of growth models including the lo­
gistic and Gompertz as special cases. Keep in mind that the main goal 
is to input a structured prior to contemplate the possibility of an ex­
changeable structure among age classes. The same could be true for 
the other parameters in the model, such as the claim intensity and the 
expected value of each claim. 

Other extensions that deserve some comments are to consider dif­
ferent distributions for the claim amounts and to allow the portfolio to 
be composed of dependent risks (Goovaerts and Dhaene, 1996). Cen­
soring and truncation could play an important role when deductibles 
and policy limits are included in the model (Pai, 1997). Some of the 
extensions proposed here are considered in Moura and Migon (2005). 
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Figure 3: The Posterior Mean of Physician Consultations, A.a , (Bold Line) 
and 95% Bayesian Confidence Interval of A.a (Dotted Lines) for Various 
Age Classes Using SHC Data 

References 

Bowers, N.L., Gerber, H.U., Hickman, J.C, Jones, D.A., and Nesbitt, C]. 
Actuarial Mathematics. Schaumburg, IL: The Society of Actuaries, 
1997. 

DuMouchel, W.H. "The 1982 Massachusetts Automobile Insurance Clas­
sification Scheme." The Statistician 32 (1986): 69-81. 

Embrechts, P., Kluppelberg, C, and Mikosch, T. Modelling Extremal Events 
for Insurance and Finance. Berlin, Germany: Springer Verlag, 1997. 

Gamerman, D and Lopes, H.F. Markov Chain Monte Carlo: Stochastic 
Simulation for Bayesian Inference. London, United Kingdom: Chap­
man Hall, 2006. 



Miaon and Penna: Health Insurance Model 75 

~ 
0 

§: 

N 0 N 

i'l N i'l 0 
0 0 

.~ .~ 

if) (f, ~ 

~ g 
0 

0 

" 
T 

Age Age 

~ 
.'-l 

'" g e g 
.~ 

(t, 

~ 

'" 
0 

1\ 
o· 

~ 
0 (J', g 

0 ............ .. ~ ............. -. 
0 

Ag~ Age 

Figure 4: The Posterior Mean and 95% Bayesian Confidence Interval of 
Aa and Ilea for Various Age Classes Using SHC Data. Notes: Top left 
figure shows Aa (bold line) and its 95% Bayesian confidence interval 
(dotted lines) while top right figure shows Ilea (bold line) and its 95% 
Bayesian confidence interval (dotted lines)for service 2. Similarly, bot­
tom left figure shows Aa (bold line) and its 95% Bayesian confidence 
interval (dotted lines) while bottom right figure shows 1 I ea (bold line) 
and its 95% Bayesian confidence interval (dotted lines)for service 3. 

Garthwaite, P.H., Kadane, J.B., and O'Hagan, A "Statistical Methods for 
Eliciting Probability Distributions." Journal of the American Statisti­
cal Association 100 (2005): 680-70l. 

Gelfand, AE. "Model Determination Using Sampling Methods." In Markov 
Chain Monte Carlo in Practice. (eds. W.R. Gilks, S. Richardson, and 
D.J. Spiegelhalter.) London, United Kingdom: Chapman-Hall, 1995: 
145-162. 

Gelman, A and Rubin, D. B. "Inference from Iterative Simulation Using 
Multiple Sequences.", Statistical Science 7, no. 4 (1992): 457-51l. 

Gilks, W.R., Richardson, S., and Spiegelhalter, D.]. Markov Chain Monte 
Carlo in Practice. London, United Kingdom: Chapman-Hall, 1995. 



76 Journal of Actuarial Practice, Vol. 13, 2006 

Gomez-Deniz, E., Hernandez-Bastida, A., and Vazquez-Polo, F.J. "The 
Esscher Premium Principle in Risk Theory: A Bayesian Sensitivity 
Study." Insurance: Mathematics and Economics 25, no. 3 (1999): 
387-395. 

Goovaerts, M.J. and Dhaene, J. "The Compound Poisson Approximation 
for a Portfolio of Dependent Risks." Insurance: Mathematics and 
Economics 18, no. 1 (1996): 81-85. 

Haberman S and Renshaw A.E. "Generalized Linear Models and Actuar­
ial Science." The Statistician 45, no. 4 (1996): 407-436. 

Herzog, T.N. Introduction to Credibility Theory. Winsted, CT: Actex Pub­
lishers, 1999. 

Hogg, R.V. and Klugman, SA Loss Distributions. New York, NY: Wiley, 
1984. 

Makov, U.E., Smith, A.F.M., and Liu, Y.H. "Bayesian Methods in Actuarial 
Science." The Statistician 45, no. 4 (1996): 503-515. 

Migon, H.S. and Gamerman, D. Statistical Inference: An Integrated Ap­
proach. London, United Kingdom: Arnold, 1999. 

Migon, H.S. and Gamerman, D. "Generalized Exponential Growth Model­
A Bayesian Approach." Journal of Forecasting 12 (1993): 573-584. 

Moura, FAS. and Migon, H.S. "Bayesian Hierarchical Models Applied to 
Credibity Theory." Technical Report No. 150. Rio de janeiro, Brazil: 
LES/Universidade Federal do Rio de janeiro, 2004. 

Moura, FAS. and Migon, H.S. "Hierarchical Bayesian Collective Risk 
Model: An Application to Health Insurance." Insurance: Mathemat­
ics and Economics 36, no. 2 (2005): 119-135. 

Ntzoufras, 1. and Dellaportas, P. "Bayesian Modelling of Outstanding 
Liabilities Incorporating Claim Count Uncertainty." North American 
Actuarialjournal6 (2002): 113-128. 

Pai, S. "Bayesian Analysis of Compound Loss Distributions." Journal of 
Econometrics 79, no. 1 (1997): 129-146. 

Penna, E.M.O. "Decisao Sob Risco: Urn Metodo de Previsao por Simu­
la<;ao de Monte Carlo Via Cadeias de Markov Aplicado a urn Modelo 
Atuarial de Saude." (Master's Thesis) COPPE, Universidade Federal 
do Rio de janeiro, Brazil, 2000. 

Rosenberg, M. A. "A Statistical Method for Monitoring a Change in the 
Rate of Nonacceptable Inpatient Claims." North American Actuarial 
Journal 5, no. 4 (2001): 74-83. 



Migon and Penna: Health Insurance Model 77 

Scollnik, D.P.M. "Actuarial Modeling with MCMC and BUGS." North Amer­
ican Actuarial Journal 5, no. 2 (2001): 96-125. 

Scollnik, D.P.M. "Modeling Size-of-Loss Distributions for Exact Data in 
WinBUGS." Journal of Actuarial Practice 10 (2002): 202-227. 

Spiegelhalter, D.]., Thomas, A., and Best, N.G. WinBUGS Version 1.3 User 
Manual. Cambridge, United Kingdom: MRC Biostatistics Unit, 2000. 



78 Journal of Actuarial Practice, Vol. 73, 2006 

Appendix 

Table Al 
Service 1 Aggregate Monthly Loss Data for NHC and SHC 

with Losses Rounded to the Nearest Dollar 
Age Class 

Month 1 2 3 4 5 6 7 
Northeast Health Company (NHC) 
Aug/98 637 653 522 851 659 772 245 

Sep 1402 504 676 702 715 872 327 
Oct 1910 1114 940 1637 992 905 729 
Nov 1224 789 784 849 889 1039 442 
Dec 1716 733 1100 1625 1906 1176 658 

Jan/99 2696 1294 1430 2705 1883 1404 858 
Feb 3120 1348 1108 2990 1948 1169 755 

Marc 4269 2934 2184 4690 2708 2390 1658 
Apr 4628 3388 2940 5488 3073 1979 1315 
May 5463 3883 3935 4770 3783 2005 1648 
Jun 6345 3605 3708 6080 4048 2623 1333 
Jul 6061 3670 3550 6098 4105 2850 1490 
Aug 5815 4455 3190 3190 5643 5113 2608 
Sep 4540 3398 2995 2995 5430 4495 2845 
Oct 4070 3518 3415 3415 5100 4158 2833 
Nov 3550 3463 3263 3263 4935 3951 2683 
Dec 3581 3055 2623 2623 4987 3173 2108 

Jan/OO 5108 3680 3130 3130 5343 4045 2490 
Feb 6367 5715 4302 4302 6665 4738 3080 

Marc 3048 3487 3159 3159 5941 4145 2763 
Apr 3841 297l 2100 2100 4062 3449 1737 
May 5009 3866 2819 2819 6042 4160 3150 
Jun 444 333 529 529 858 558 683 

Southeast Health Company (SHC) 
Mar/97 70 89 117 40 40 109 24 

Apr 0 55 0 66 20 153 44 
May 60 125 60 169 84 106 166 
Jun 218 354 403 286 273 346 313 
JuI 404 280 911 431 313 534 589 
Aug 380 492 1.081 699 443 1122 540 
Sep 944 828 674 661 430 1845 537 
Nov 649 482 792 649 607 1745 676 
Dec 546 1016 938 1274 560 1060 752 

Jan/98 619 836 1618 976 542 1.634 821 
Feb 932 1.037 1049 927 555 1527 802 
Mar 880 885 1011 870 505 952 443 
Apr 1013 953 1126 1182 516 861 754 
Jun 292 378 319 504 356 661 177 
JuI 316 329 287 375 196 485 128 
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Table A2 
Loss Frequency Data for Service 1 for NHC and SHC 

Age Class 
Month 1 2 3 4 5 6 7 
Northeast Health Company (NHC) 
Aug/98 35 36 29 47 36 42 13 

Sep 77 28 37 39 38 46 17 
Oct 92 53 45 81 49 44 36 
Nov 53 37 40 43 43 54 22 
Dec 67 29 44 65 74 47 26 

Jan/99 106 52 56 108 75 57 36 
Feb 125 55 44 119 77 46 29 

Marc 169 121 87 191 109 96 67 
Apr 186 136 118 224 122 80 53 
May 223 153 157 193 153 81 66 
Jun 264 145 150 248 170 109 54 
Jul 241 144 142 243 163 114 59 
Aug 249 194 140 236 218 III 78 
Sep 208 146 126 229 182 121 83 
Oct 214 155 149 231 188 130 77 
Nov 183 188 165 245 200 135 88 
Dec 205 148 133 242 175 105 78 

Jan/OO 238 159 146 247 178 109 88 
Feb 280 235 188 287 205 129 113 

Marc 213 195 160 273 196 137 131 
Apr 244 181 150 292 232 135 94 
May 334 216 169 345 226 174 108 
Jun 286 214 188 346 256 173 95 

Southeast Health Company (SHC) 
Mar/97 3 4 5 2 2 5 1 

Apr 0 3 0 3 1 8 2 
May 3 4 3 7 4 5 8 
Jun 11 17 17 13 12 17 15 
Jul 20 14 41 21 15 23 21 
Aug 19 25 37 34 20 44 26 
Sep 32 28 29 31 18 52 23 
Oct 23 20 32 26 23 60 27 
Nov 22 43 38 50 18 40 28 
Dec 25 35 55 36 22 63 31 

Jan/98 37 39 41 37 20 58 31 
Feb 36 25 41 36 20 38 18 

Marc 41 35 46 45 20 34 28 
Apr 12 16 13 21 13 26 7 
May 13 13 12 14 8 19 5 



80 Journal of Actuarial Practice, Vol. 13,2006 

Table A3 
Population Data for Service 1 for NHC and SHC 

Age Class 
Month 1 2 3 4 5 6 7 
Northeast Health Company (NHC) 
Aug/98 273 160 122 209 177 126 63 

Sep 296 168 137 224 198 135 76 
Oct 306 176 142 231 208 139 80 
Nov 315 182 151 242 215 140 84 
Dec 339 187 163 263 224 145 91 

]an/99 356 192 169 269 229 147 92 
Feb 526 269 250 427 303 149 103 

Marc 551 290 263 458 324 151 107 
Apr 589 314 275 493 349 158 111 
May 674 354 331 583 421 195 127 
]un 687 356 341 596 432 198 127 
]ul 739 399 388 647 461 225 157 
Aug 749 410 391 660 466 231 162 
Sep 758 419 399 672 470 234 162 
Oct 770 430 406 686 479 241 167 
Nov 777 436 410 701 487 244 170 
Dec 783 441 411 711 489 250 175 

]an/OO 788 443 418 721 501 253 180 
Feb 796 451 419 725 504 256 183 

Marc 815 467 422 741 517 257 186 
Apr 833 475 431 757 526 260 192 
May 862 491 445 774 541 267 198 
]un 878 508 454 785 550 269 201 

Southeast Health Company (SHe) 
Mar/97 89 98 98 107 94 108 68 

Apr 91 107 104 108 106 106 70 
May 96 123 122 108 116 122 74 
]un 100 136 133 109 118 105 75 
]ul 104 143 125 111 119 105 79 
Aug 108 190 182 112 121 86 80 
Sep 131 209 204 116 125 86 90 
Oct 142 233 228 116 128 87 89 
Nov 147 238 236 117 127 86 88 
Dec 171 261 254 118 127 106 97 
Jan 196 282 260 121 133 149 111 
Feb 209 293 259 142 138 194 113 

Marc 233 329 263 162 152 207 119 
Apr 262 347 283 183 166 219 127 
May 282 362 299 250 185 232 131 
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