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a b s t r a c t

Sugarcane borer, Diatraea saccharalis (F.), is a major target of Bt maize in South America and many areas of
the US mid-south region. Six laboratory strains of D. saccharalis were established from six single-pair F2

families possessing major resistance alleles to Cry1Ab maize hybrids. Susceptibility of the six strains
was evaluated on diet treated with each of four purified trypsin-activated Bt proteins, Cry1Ab, Cry1Aa,
Cry1Ac and Cry1F. Bt susceptibility of the six strains was compared with that of known Cry1Ab-suscepti-
ble and -resistant strains of D. saccharalis. At least two of the six strains demonstrated a similar level
(>526-fold) of resistance to Cry1Ab as shown in the known Cry1Ab-resistant strain, while resistance levels
were relatively lower for other strains (116- to 129-fold). All the six strains were highly cross-resistant to
Cry1Aa (71- to 292-fold) and Cry1Ac (30- to 248-fold), but only with a low level to Cry1F (<7-fold). Larval
growth of all six strains was also inhibited on Bt-treated diet, but, except for Cry1F, the growth inhibition
of the six strains was considerably less than that of the Cry1Ab-susceptible larvae. The results provide
clear evidence that the observed resistance to Cry1Ab maize in the six strains is a result of resistance to
the Cry1Ab protein in the plants. The low level of cross-resistance between Cry1A and Cry1F suggests that
pyramiding these two types of Bt proteins into a plant could be a good strategy for managing D. saccharalis.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Transgenic insect-resistant crops expressing Bacillus thuringien-
sis (Bt) proteins have been used successfully for insect manage-
ment worldwide since they were first commercialized in 1996
(Cattaneo et al., 2006; Wu et al., 2008; Hutchison et al., 2010;
James, 2011). However, as Bt maize provides unprecedented con-
trol of some caterpillar pests through a simple seed choice, the
widespread use of Bt crops could also accelerate development of
resistance in target pest populations. Up to date, field resistance
that leads to control failure or significantly reduced control efficacy
due to intensive use of Bt crops has been documented in at least
four cases: fall armyworm Spodoptera frugiperda JE Smith to Cry1F
maize in Puerto Rico (Storer et al., 2010), African stem borer Buss-
eola fusca Fuller, to Cry1Ab maize in South Africa (Van Rensburg,
2007), pink bollworm, Pectinophora gossypiella (Saunders), to Bt

cotton in India (Dhurua and Gujar, 2011), and western corn root-
worm, Diabrotica virgifera virgifera LeConte, to Cry3Bb1 maize in
the United States (Gassmann et al., 2011).

The sugarcane borer, Diatraea saccharalis (F.), is a major maize
borer pest in many areas of the mid-southern region of the United
States and South America (PRNewswire, 2009; Huang et al., 2012a).
Studies have shown that D. saccharalis is inherently less susceptible
to Bt proteins than other major maize borer species such as Euro-
pean corn borer, Ostrinia nubilalis (Hübner), and southwestern corn
borer, Diatraea grandiosella Dyar (Huang et al., 2006). Both Wu et al.
(2007) and Ghimire et al. (2011) also reported that most commer-
cial Cry1Ab maize hybrids did not express a ‘‘high dose’’ of Bt pro-
teins for D. saccharalis. To ensure the long-term success of Bt maize
for managing stalk borers in the mid-southern region, since 2004, a
cost-effective Bt resistance monitoring program has been imple-
mented in the region (Huang et al., 2012a). By using an F2/F1 screen,
the monitoring program can detect rare resistance alleles to Cry1Ab
maize in field populations of D. saccharalis. In 2009, a total of 110 F2

families of D. saccharalis derived from 191 feral individuals sampled
from maize fields in southeast Louisiana were examined for
resistance to Cry1Ab maize using an F2 screen (Huang et al.,
2012a). Eight out of the 191 individuals were identified to possess
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major resistance alleles to Cry1Ab maize plants. Larvae of these
families were able to survive on whole plants of commercial Cry1Ab
maize hybrids in the greenhouse (Huang et al., 2012a). Laboratory
strains were established for six of the eight families.

Information on cross-resistance of an insect pest to insecticides
is essential for understanding mechanisms of resistance and devel-
oping resistance management strategies. Cross-resistance is com-
mon among Bt toxins (Tabashnik et al., 1994, 2000; Zhao et al.,
2001; Siqueria et al., 2004; Li et al., 2005; Ali and Luttrell, 2007;
Wu et al., 2009; Crespo et al., 2011), but several studies also
showed that no or low level of cross-resistance can exist among
Bt proteins in some cases. For example, a Cry1Ab resistant strain
of O. nubilalis was not resistant to Cry9C and had only a very low
level of cross-resistance to Cry1F (Siqueria et al., 2004). Similarly,
Cry2Ab resistant strains of cotton bollworm, Helicoverpa armigera
(Hübner), were found to be susceptible to purified Cry1Ac protein
as well as Cry1Ac cotton plants (Mahon et al., 2007; Downes et al.,
2010). In D. saccharalis, Wu et al. (2009) reported that a Cry1Ab-
resistant strain also exhibited a high level of cross-resistance to
Cry1Aa and Cry1Ac but just exhibited a very low level of cross-
resistance to Cry1A.105 and no cross-resistance to Cry2Ab2. The
objective of this study is to characterize the susceptibility of the
six Cry1Ab-maize resistant strains of D. saccharalis that were estab-
lished in 2009 to four Cry proteins commonly used in Bt crops and
thus to generate essential information needed for further studies.

2. Materials and methods

2.1. Sources of Cry1Ab-susceptible and -resistant strains of D.
saccharalis

A Cry1Ab-susceptible strain (Cry1Ab-SS) of D. saccharalis was
established using larvae collected from maize fields near Winns-
boro in Northeast Louisiana in 2009. The Cry1Ab-SS strain is sus-
ceptible to purified Cry1Aa, Cry1Ab, and Cry1Ac (Huang et al.,
2012b), as well as to Bt maize plants expressing Cry1Ab, Cry1A.105,
Cry2Ab2, and/or Cry1F (Wangila et al., 2012). Six Cry1Ab-maize
resistant strains of D. saccharalis were developed from six out of
the eight single-pair families that were identified to possess major
resistance alleles to Cry1Ab maize in 2009 (Huang et al., 2012a).
These eight single-pair families were selected using an F2 screen
from 191 feral individuals sampled from maize field in southeast
Louisiana in 2009 in the same location as the Cry1Ab-SS strain
was collected. These families have demonstrated survival on
Cry1Ab maize plants in the greenhouse and thus are considered
to carry major resistance alleles to Cry1Ab maize plants (Huang
et al., 2012a). The six Cry1Ab maize resistant strains were labeled:
SCB-RR-43A, SCB-RR-L5B, SCB-RR-L6, SCB-RR-41, SCB-RR-46, and
SCB-RR-54, respectively. In addition, a known Cry1Ab-resistant
strain (Cry1Ab-RR-2004) of D. saccharalis was also included in the
bioassays in this study to serve as a positive control. Cry1Ab-RR-
2004 was established from a field collection in 2004, which has
been well documented to be highly resistant to both Cry1Ab-maize
plants and purified Cry1Ab protein (Huang et al., 2007a, 2007b; Wu
et al., 2007; Ghimire et al., 2011; Wangila et al., 2012). Individuals
of the seven resistant strains were backcrossed 2–3 times with indi-
viduals from the Cry1Ab-SS strain and re-selected for Bt resistance
using leaf tissue from Cry1Ab expressing maize plants during the F2

generations of the backcross. The backcrossed and re-selected resis-
tant strains were used in the current bioassays.

2.2. Sources of Cry proteins

Susceptibility of Cry1Ab-SS and the seven Bt resistant strains of
D. saccharalis was assayed with four individual Cry proteins: Cry1Aa,
Cry1Ab, Cry1Ac, and Cry1F. Purified (99.9%) trypsin-activated Cry

proteins were obtained from Case Western Reserve University
Cleveland, Ohio, USA. The activated Cry proteins were lyophilized
before they were used in the bioassays. The purity of these four pro-
teins was determined using high-performance liquid chromatogra-
phy and sodium dodecyl sulfate polyacrylamide gel electrophoresis
(Pusztai-Carey et al., 1995; Masson et al., 1998).

2.3. Insect bioassay

Larval susceptibility of the eight strains of D. saccharalis to four
Cry proteins was determined using a standard diet incorporation
method as described in Wu et al. (2009). Each individual Cry pro-
tein was incorporated into a meridic diet prepared for rearing D.
saccharalis (Bio-Serv, Frenchtown, NJ). Each bioassay included 6-
Cry protein concentrations plus one untreated control. The range
of Cry protein concentrations varied slightly based on preliminary
bioassays. In most cases, Cry protein concentrations used in each
bioassay ranged from 0.0316 to 31.6 lg/g or 0.0316 to 100 lg/g.
There were two bioassays for testing SCB-RR-L5B with each of
Cry1Aa and Cry1Ab, whereas one bioassay was conducted for all
other combinations of Cry protein and insect strain. For diet incor-
poration, individual Cry proteins were first suspended and diluted
in distilled water. The desired Cry protein concentrations were
achieved by mixing appropriate volumes of Cry protein solution
into the diet just prior to dispensing the diet into individual cells
of 128-cell trays (Bio-Ba-128, C-D International, Pitman, NJ). Diet
mixed with distilled water was used as a control in each bioassay.
In the bioassay, approximately 0.7 ml of treated diet was poured
into each cell using 10 or 20-ml syringes (Becton, Dickinson and
Company, Franklin Lakes, NJ). One neonate (<24-h old) was placed
on the diet surface of each cell. Each combination of insect strain
by Cry protein concentration was replicated 4 times with 16–32
larvae in each replication. The bioassay trays were held in an envi-
ronmental chamber maintained at 28 �C, 50% RH, and a photope-
riod of 16:8 (L:D) h. Larval mortality, larval weight, and the
number of surviving larvae that did not gain significant weight
(<0.1 mg per larva and still in first instar) were recorded on the
7th day after inoculation.

2.4. Data analysis

Larval mortality was measured as ‘practical’ mortality as de-
scribed in Huang et al. (2007b) and calculated using the equation:
mortality (%) = 100 � (number of dead larvae + number of surviv-
ing larvae that had a body weight of 60.1 mg per larva)/total num-
ber of insects assayed. The mortality of each insect strain at a Cry
protein concentration was corrected for larval mortality on the
control diet using the method described by Abbott (1925). Cor-
rected dose/mortality data were subjected to probit analysis (Fin-
ney, 1971; SAS Institute Inc, 2010) for determining Cry
concentrations that produced a 50% mortality value (LC50) and
the corresponding 95% confidence limit (CL). The treatments used
in the probit analysis in a bioassay included the highest concentra-
tion that produced zero mortality, the lowest concentration that
resulted in 100% mortality, and all results between those extremes.
Data for those cases that contained two bioassays were pooled in
the probit analysis. Resistance ratios for each Cry protein were cal-
culated using the LC50 value of a resistant strain divided by the LC50

of the Cry1Ab-SS strain. In some cases, the LC50 value of an insect
strain was considered to be greater than the highest Cry concentra-
tion used in the bioassay if its larval mortality was <50% at the
highest concentration.

In addition, percentage of larval growth inhibition of D. saccha-
ralis on a Cry protein-treated diet was calculated using the formula:
larval growth inhibition (%) = 100 � (body weight of larvae feeding
on control diet � body weight of larvae feeding on Bt diet)/(body
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weight of larvae feeding on control diet � 0.1 mg) (Huang et al.,
2012b). Growth inhibition data were first analyzed using a two-
way analysis of variance (ANOVA) with insect strain and Cry con-
centration as the two main factors to determine the effect of main
factor and interaction (SAS Institute Inc, 2010). Because there were
so many combinations of insect strain and Cry concentration,
growth inhibition data of the eight insect strains were then ana-
lyzed using one-way ANOVA for each Cry protein concentration.
Comparison among insect strains at a specific Cry concentration
was determined using the least square difference test at a = 0.05 le-
vel (SAS Institute Inc, 2010). Based on the available data, compari-
sons among the eight insect strains were made in the range of Cry
protein concentration from 0.1 to 31.6 lg/g for Cry1Aa, Cry1Ab
and Cry1Ac and from 0.0316 to 10 lg/g for Cry1F.

3. Results

3.1. Median lethal concentration, LC50

The LC50 value of the Cry1Ab-SS strain of D. saccharalis on
Cry1Ab diet was 0.19 lg/g with a 95% CL of 0.16–0.22 lg/g (Ta-
ble 1). Compared to the Cry1Ab susceptible strain, the Cry1Ab-
RR-2004 and all other six strains that were identified to possess
resistance alleles to Cry1Ab maize in 2009 were considerably less
susceptible to Cry1Ab, Cry1Aa, and Cry1Ac (Table 1). The LC50 val-
ues of Cry1Ab-RR-2004, SCB-RR-43A, SCB-RR-L5B, and SCB-RR-54

couldn’t be determined for Cry1Ab with the probit analysis be-
cause the highest concentrations used in the bioassays resulted
in <50% mortality. Thus, resistance ratios to Cry1Ab based on the
highest Bt concentrations used in the bioassays for the four strains
were >53-fold for SCB-RR-54 and >526-fold for Cry1Ab-RR-2004,
SCB-RR-43A, and SCB-RR-L5B. The LC50 values of Cry1Ab for the
three other resistant strains were similar, ranged from 22.1 lg/g
for SCB-RR-46 to 24.6 lg/g for SCB-RR-L6, which were 116- to
129-fold greater than the LC50 of the susceptible strain. The differ-
ences in LC50 values of Cry1Ab between the resistant and Cry1Ab-
SS strains were significant based on the non-overlapping of the 95%
confidence limits for all the three resistant strains (Table 1).

Compared to Cry1Ab protein, Cry1Aa appeared to be more toxic
to D. saccharalis. The calculated LC50 value of Cry1Aa based on lar-
val mortality of Cry1Ab-SS was 0.04 lg/g with a 95% CL of 0.03–
0.05 lg/g (Table 1). The LC50 values of the seven resistant strains
ranged from 2.84 lg/g (71-fold) for SCB-RR-54 to 11.7 lg/g (292-
fold) for SCB-RR-43A, which were significantly greater than that
of Cry1Ab-SS based on the non-overlapping of the 95% confidence
limits. Differences in LC50 values of Cry1Aa were also observed
among the seven resistant strains. The LC50 value of Cry1Aa for
SCB-RR-43A was greater than that of SCB-RR-41 (3.05 lg/g), SCB-
RR-46 (3.76 lg/g), SCB-RR-L5B (4.11 lg/g), and SCB-RR-L6
(6.33 lg/g) based on the non-overlapping of the 95% confidence
limits.

The seven Bt resistant strains of D. saccharalis were also highly
resistant to Cry1Ac protein. The calculated LC50 value of Cry1Ac for

Table 1
Median lethal concentrations (LC50) and 95% confidence limits (CL) based on larval practical mortality of Bt-susceptible and -resistant strains of Diatraea saccharalis to four Cry
proteins.a

Cry protein Insect strain nb Slope ± SE LC50 (95% CL) (lg/g)c v2 df Resistance ratiod

Cry1Ab Cry1Ab -SS 503 3.41 ± 0.36 0.19(0.16, 0.22) 5.79 21 –
Cry1Ab-RR-2004 723 – >100 – – >526
SCB-RR-43A 568 – >100 – – >526
SCB-RR-L5B 1365 – >100 – – >526
SCB-RR-L6 456 0.82 ± 0.10 24.57(14.70, 51.10) 16.17 22 129
SCB-RR-41 376 1.17 ± 0.17 22.87(14.36, 45.95) 27.09 18 120
SCB-RR-46 370 1.16 ± 0.14 22.11(15.27, 36.59) 18.13 18 116
SCB-RR-54 574 – >10 – – >53

Cry1Aa Cry1Ab -SS 317 2.73 ± 0.37 0.04(0.03, 0.05) 23.88 13 –
Cry1Ab-RR-2004 364 1.90 ± 0.17 7.72(6.38, 9.39) 13.41 14 193
SCB-RR-43A 355 1.78 ± 0.23 11.68(8.48, 17.15) 30.80 18 292
SCB-RR-L5B 591 2.58 ± 0.30 4.11(3.27, 5.15) 89.00 30 103
SCB-RR-L6 285 2.84 ± 0.30 6.33(5.24, 7.73) 16.39 18 158
SCB-RR-41 348 2.50 ± 0.33 3.05(2.28, 4.17) 39.05 18 76
SCB-RR-46 350 2.45 ± 0.23 3.76(3.15, 4.50) 13.23 18 94
SCB-RR-54 612 1.87 ± 0.75 2.84(0.70, 27.89) 665.35 22 71

Cry1Ac Cry1Ab -SS 506 1.95 ± 0.22 0.23(0.17, 0.32) 46.30 18 –
Cry1Ab-RR-2004 631 1.11 ± 0.10 61.41(46.06, 88.01) 14.30 18 267
SCB-RR-43A 652 1.99 ± 0.17 6.93(5.58, 8.69) 35.86 22 30
SCB-RR-L5B 805 0.97 ± 0.08 14.17(9.93, 21.57) 40.65 30 62
SCB-RR-L6 245 1.65 ± 0.45 56.96(30.95, 381.19) 24.76 14 248
SCB-RR-41 580 1.98 ± 0.28 9.49(6.49, 14.06) 96.56 22 41
SCB-RR-46 267 0.84 ± 0.13 17.26(10.61, 34.78) 18.14 18 75
SCB-RR-54 471 1.39 ± 0.25 8.81(5.62, 15.44) 57.35 14 38

Cry1F Cry1Ab -SS 540 1.60 ± 0.11 0.37(0.31, 0.45) 23.78 18 –
Cry1Ab-RR-2004 735 1.07 ± 0.08 2.56(1.99, 3.43) 26.34 22 6.9
SCB-RR-43A 381 3.91 ± 0.66 0.57(0.44, 0.74) 46.00 18 1.5
SCB-RR-L5B 591 2.35 ± 0.17 1.83(1.58, 2.13) 25.40 18 4.9
SCB-RR-L6 252 3.62 ± 0.59 1.94(1.49, 2.55) 29.13 14 5.2
SCB-RR-41 645 1.59 ± 0.14 1.46(1.12, 1.94) 39.73 22 3.9
SCB-RR-46 553 2.66 ± 0.27 0.88(0.72, 1.08) 33.07 18 2.4
SCB-RR-54 623 1.83 ± 0.22 1.92(1.41, 2.69) 56.57 18 5.2

a Practical larval mortality was defined as the number of dead larvae plus surviving larvae that did not demonstrate significant weight gains (<0.1 mg/larva) in a 7-day
bioassay divided by the total number of larvae in the test.

b n = total number of neonates assayed.
c The LC50 value of an insect strain was considered to be greater than the highest Cry concentration used in the bioassay if its larval mortality was <50% at the highest

concentration.
d Resistance ratios for a Cry protein were calculated by dividing the LC50 value of a Bt maize resistant strain by that of the Cry1Ab-susceptible strain (Cry1Ab-SS).
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Cry1Ab-SS was 0.23 lg/g with a 95% CL of 0.17–0.32 lg/g (Table 1).
In contrast, the LC50 values for the seven resistant strains ranged
from 6.93 lg/g for SCB-RR-43A (30-fold) to 61.4 lg/g (267-fold)
for Cry1Ab-RR-2004. The differences between Cry1Ab-SS and the
resistant strains were significant for all the seven resistant strains
based on the non-overlapping of the 95% confidence limits (Ta-
ble 1). As observed in the bioassays with Cry1Ab and Cry1Aa, resis-
tance ratios to Cry1Ac varied among the seven resistant strains.
Except for SCB-RR-46 (75-fold), resistance ratios to Cry1Ac in
Cry1Ab-RR-2004 (267-fold) and SCB-RR-L6 (248-fold) were signif-
icantly greater than those observed in other strains (30- to 62-fold)
based on the non-overlapping of the 95% confidence limits.

Compared to Cry1Ab, Cry1Aa, or Cry1Ac, all seven Cry1Ab
maize-resistant strains of D. saccharalis showed considerably lower
resistance ratios to Cry1F. The calculated LC50 value of Cry1F for
Cry1Ab-SS was 0.37 lg/g with a 95% CI of 0.31–0.45 lg/g (Table 1).
LC50s of the seven resistant strains ranged from 0.57 lg/g for SCB-
RR-43A to 2.56 lg/g for Cry1Ab-RR-2004. The 1.5-fold difference
between Cry1Ab-SS and SCB-RR-43A was not significant based on
the overlapping of the 95% confidence limits. The resistance ratios
(2.4- to 6.9-fold) for the other six resistant strains were significant
based on the non-overlapping of the 95% confidence limits. Varied
susceptibility to Cry1F was also observed among the six resistant
strains but the differences were small, <3-fold.

3.2. Larval growth inhibition

The main effect of insect strain and Cry concentration on larval
growth inhibition was significant for all four Cry proteins
(F P 48.16; df = 7, 144–161; P < 0.0001 for insect strain and
F P 225.56; df = 5, 144; P < 0.0001 for Cry concentration). The ef-
fect of the interaction of insect strain and Cry concentration was

also significant (F P 5.5; df = 33–35, 144–161; P < 0.0001). Larval
growth inhibition of Cry1Ab-SS and the seven Bt-resistant strains
increased as Cry protein concentrations increased for all four Cry
proteins (Fig. 1). However, except for Cry1F, growth inhibition of
Cry1Ab-SS strain increased considerably faster than that of the se-
ven Bt-resistant strains.

The general patterns of concentration-larval growth responses
were similar for Cry1Aa, Cry1Ab, and Cry1Ac (Fig. 1). At each Cry
concentration, the effect of insect strain on larval growth inhibition
was significant for all these three proteins (F P 12.65; df = 7, 28;
P < 0.0001 for Cry1Aa, F P 10.57; df = 6–7, 24–28; P < 0.0001 for
Cry1Ab, and F P 4.58; df = 7, 24–28; P 6 0.0023 for Cry1Ac). Larval
growth of Cry1Ab-SS strain on diet treated with one of the three
proteins was severely inhibited even at low concentrations. For
example, at 0.1 lg/g, Cry1Aa, Cry1Ab and Cry1Ac inhibited larval
growth of the Cry1Ab-SS strain by 96.8%, 81.8% and 76.0%, respec-
tively, which were significantly greater (P < 0.05) than that ob-
served for the seven resistant strains. Larval growth of Cry1Ab-SS
at 0.316 lg/g of Cry1Aa, 3.16 lg/g of Cry1Ab, and 1 lg/g of Cry1Ac
was completely inhibited, while the corresponding growth inhibi-
tion was only 34.2–63.6%, 50.2–91.0%, and 51.9–76.7%, respec-
tively, for the seven resistant strains. Larval growth of the seven
resistant strains was not completely inhibited at 3.16 and 10 lg/
g for all three proteins but the growth was completely or nearly
completely stopped at 31.6 lg/g for Cry1Aa and Cry1Ac. Differ-
ences in growth inhibition were also observed among the seven
resistant strains. For Cry1Aa, growth inhibition of SCB-RR-43A,
SCB-RR-L5B, and SCB-RR-41 at concentrations of 0.1–1 lg/g was
generally greater than that of other resistant strains but the differ-
ences decreased or disappeared at P3.16 lg/g. On Cry1Ab treated
diet, compared to other resistant strains, growth of Cry1Ab-RR-
2004 was less inhibited at most concentrations. In most cases,

Fig. 1. Larval growth inhibition (% means ± SEM) of Bt-susceptible and -resistant strains of Diatraea saccharalis exposed to a diet treated with Cry1Ab, Cry1Aa, Cry1Ac, or
Cry1F proteins at 7th day after inoculation of neonates. These values were calculated using the formula: larval growth inhibition (%) = 100 � (body weight of larvae feeding on
control diet � body weight of larvae feeding on Bt diet)/(body weight of larvae feeding on control diet � 0.1 mg).
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growth inhibition of SCB-RR-43A was also somewhat less than that
of the other five resistant strains which showed similar dose-
growth response. For Cry1Ac, relative to other resistant strains, lar-
val growth of Cry1Ab-RR-2004 in most cases was also less affected
at the concentrations of 0.1–3.16 lg/g but the differences became
smaller at 10 and 31.6 lg/g.

For Cry1F, effect of insect strain on larval growth inhibition of D.
saccharalis was also significant at each of the six concentrations as-
sayed (F P 21.9; df = 7, 24; P < 0.0001). However, the difference
among insect strains at a specific concentration was in general
much smaller than that recorded in the bioassays with the other
three Cry proteins. Unlike observed in the bioassays with Cry1Aa,
Cry1Ab, or Cry1Ac, Cry1Ab-SS larvae did not show a consistently
greater growth inhibition than the resistant strains at most con-
centrations tested. At 0.0316–0.316, growth inhibition of SCB-RR-
46 was significantly smaller than that observed in most other in-
sect strains but the difference disappeared at P1 lg/g.

4. Discussion

Because of the high cost to purchase purified Cry proteins, sus-
ceptibility of D. saccharalis to Cry1Ab protein could be assayed up
to only 100 lg/g in this study. The LC50 values could not be deter-
mined with the probit analysis for four of the seven resistant
strains because larval mortality at the highest concentration tested
did not reach 50% (Table 1). Nevertheless, the bioassay data
showed that the Cry1Ab-SS strain was susceptible to Cry1Ab pro-
tein with an LC50 value of 0.19 lg/g, which was similar to the value
reported in previous studies (Huang et al., 2007b, 2008). The
known Cry1Ab-resistant strain (Cry1Ab-RR-2004) of D. saccharalis
again exhibited highly resistant (>526-fold) to Cry1Ab in this
study. The resistance levels of Cry1Ab-RR-2004 to Cry1Ab protein
appeared to be greater than that observed in a bioassay that was
conducted six years ago (Huang et al., 2007b). The Cry1Ab-RR-
2004 was continuously selected on Cry1Ab maize leaf tissue since
it was established in 2004–2005. The long-term continued selec-
tion apparently elevated the resistance ratio. The current study
also demonstrated that all six strains of D. saccharalis that were
collected in 2009 and identified to possess major resistance alleles
to Cry1Ab maize were also highly resistant to the purified trypsin-
activated Cry1Ab protein. Due to the availability of the amount of
Cry1Ab protein, the highest concentration used in assaying SCB-
RR-54 was only 10 lg/g. At this concentration, larvae of SCB-RR-
54 showed only a very low mortality, 6.5%, and thus the actual
resistance ratio to Cry1Ab in this strain should be much greater
than 53-fold. Based on the larval growth data we expected that
susceptibility of SCB-RR-54 to Cry1Ab should be similar as ob-
served in the other resistant strains. In summary, the results of this
study provide clear evidence that the observed survival on Cry1Ab
maize in the F2 screen in the six strains (Huang et al., 2012a) is the
result of resistance to the Cry1Ab protein in the plants.

Although all six strains of D. saccharalis that were established
from field populations collected in 2009 were highly resistant to
purified Cry1Ab protein, variation in the Cry1Ab susceptibility ex-
isted among strains. Based on larval growth and mortality, resis-
tance level to Cry1Ab in SCB-RR-43A and -L5B were apparently
greater than in SCB-RR-L6, SCB-RR-41, and SCB-RR-46. The varied
Cry1Ab susceptibility among these resistant strains warrants fur-
ther study to find out the reasons that cause the differences. Differ-
ent traits or mechanisms of resistance could exist among these
strains. One of the advantages of F2 screen is that it is able to detect
different alleles of resistance in field populations (Andow and Als-
tad, 1998; Huang, 2006). However, the difference could be also due
to varied levels of homozygosity of resistance among these strains
because all of the six resistant strains had not been intensively

selected after they were established using F2 screen. The low slopes
(0.82–1.17) of the dose–response curves of the three strains that
were available for probit analysis also indicate a non-homozygous
status of the resistance alleles among individuals in these strains.

Cross-resistance is most likely when toxins share key structural
features (Tabashnik et al., 1996). Data of this study showed that all
seven Bt resistant strains of D. saccharalis demonstrated a signifi-
cantly level of cross-resistance to Cry1Aa and Cry1Ac but the pat-
tern of cross-resistance appears to be varied among insect strains
and Bt proteins. Except for SCB-RR-L6, cross-resistance level to
Cry1Aa appears to be positively correlated to the level of resistance
to Cry1Ab. In contrast, cross-resistance level to Cry1Ac was not
highly correlated with the levels of Cry1Ab resistance. For example,
SCB-RR-43A was highly resistant to both Cry1Ab (>526-fold) and
Cry1Aa (292-fold) but it showed the least cross-resistance level
(30-fold) to Cry1Ac among the seven resistant strains, while SCB-
RR-L6 that showed a relatively low level (129-fold) of resistance
to Cry1Ab demonstrated a relatively high level of cross-resistance
to both Cry1Aa (158-fold) and Cry1Ac (248-fold). The varied pat-
terns of cross-resistance further indicate that different alleles
and/or mechanisms of resistance could exist among these strains.

Varied cross resistance patterns for different Bt proteins have
been reported in several other lepidopteran species targeted by
Bt crops (Tabashnik et al., 1994; Ferré and Van Rie, 2002; Siqueria
et al., 2004; Li et al., 2005; Pereira et al., 2010; Crespo et al., 2011).
In most cases, the underlying physiological mechanisms of cross-
resistance among Bt proteins are complex and somewhat unpre-
dictable (Bauer, 1995). It is believed that the most likely factor that
relate to the cross-resistance patterns could be the specific binding
sites in the insect midgut brush border membrane. In the dia-
mondback moth, Plutella xylostella (L.), Granero et al. (1996) re-
ported that Cry1Ab and Cry1F shared a high-affinity binding site.
Additional studies suggest that there may be four different Bt bind-
ing sites in the midgut of P. xylostella: site 1 for Cry1Aa; site 2 for
Cry1Aa, Cry1Ab, Cry1Ac, Cry1F, and Cry1B; site 3 for Cry1J; and site
4 for Cry1C (Ballester et al., 1999; Ferré and Van Rie, 2002). Results
of the present study showed that all seven Cry1Ab resistant strains
of D. saccharalis were also highly resistant to Cry1Aa and Cry1Ac,
indicating these three Bt proteins could share similar binding sites,
as suggested in P. xylostella. However, these highly Cry1Ab-resis-
tant strains of D. saccharalis exhibited only a very low level (1.5-
to 6.9-fold) of cross-resistance to Cry1F. The results of the present
study support the assumption that, besides a low-affinity binding
site shared for Cry1Ab and Cry1F (Hua et al., 2001), there is another
high-affinity binding site for Cry1F but not for Cry1Ab in D. saccha-
ralis as it is suggested in O. nubilalis (Siqueria et al., 2004; Crespo
et al., 2011). Although considerable variation in cross-resistance
to Cry1Aa, Cry1Ac, and Cry1F were observed among the seven
Cry1Ab-resistant strains of D. saccharalis, the overall cross-resis-
tance pattern to these Bt proteins in D. saccharalis is similar to that
observed in O. nubilalis. Crespo et al. (2011) reported that a strain
of O. nubilalis with >1000-fold resistance to Cry1Ab also exhibited
high levels (>535-fold) of cross-resistance to Cry1Ac and Cry1Aa
but only low levels (<4-fold) of cross-resistance to Cry1F. Similar
cross-resistance patterns were also observed in another strain of
O. nubilalis that had a lower level of Cry1Ab resistance (Siqueria
et al., 2004). The low level of cross-resistance between Cry1A and
Cry1F in the maize stalk borers suggests that pyramiding these
two types of Cry proteins into a plant could be an effective strategy
for managing maize stalk borers.
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