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MOLECULAR ENTOMOLOGY

Genetic Characterization of North American Populations of the Wheat
Curl Mite and Dry Bulb Mite

GARY L. HEIN,1,2 ROY FRENCH,3 BENJAWAN SIRIWETWIWAT,1 AND JAMES W. AMRINE4

J. Econ. Entomol. 105(5): 1801Ð1808 (2012); DOI: http://dx.doi.org/10.1603/EC11428

ABSTRACT The wheat curl mite, Aceria tosichella Keifer, transmits at least three harmful viruses,
wheat streak mosaic virus (WSMV), high plains virus (HPV), and Triticum mosaic virus (TriMV) to
wheat (Triticum aestivum L.) throughout the Great Plains. This virus complex is considered to be the
most serious disease of winter wheat in the western Great Plains. One component of managing this
disease has been developing mite resistance in wheat; however, identiÞcation of mite biotypes has
complicated deployment and stability of resistance. This biotypic variability in mites and differential
virus transmission by different mite populations underscores the need to better understand mite
identity. However, A. tosichella has a history of serious taxonomic confusion, especially as it relates
to A. tulipae Keifer, the dry bulb mite. Molecular techniques were used to genetically characterize
multiple A. tosichella populations and compare them to populations of A. tulipae. DNA from these
populations was polymerase chain reaction ampliÞed and the ribosomal ITS2 region sequenced and
compared. These results indicated limited variability between these two species, but two distinct types
within A. tosichellawere found that corresponded to previous work with Australian mite populations.
Further work using sequencing of several mitochondrial DNA genes also demonstrated two distinct
types of A. tosichella populations. Furthermore, the separation between these two A. tosichella types
is comparable to their separationwithA. tulipae, suggesting that species scaledifferencesexistbetween
these two types of A. tosichella. These genetic differences correspond to important biological differ-
ences between the types (e.g., biotypic and virus transmission differences). In light of these differ-
ences, it is important that future studies on biological response differences account for these mite
differences.

KEY WORDS Aceria tosichella, Aceria tulipae, wheat curl mite, wheat streak mosaic

Wheat streak mosaic has long been considered the
most serious disease of winter wheat (Triticum aesti-
vum L.) in the western Great Plains (Brakke 1987).
However, the wheat curl mite,Aceria tosichellaKeifer,
has now been shown to transmit three serious viruses,
wheat streak mosaic virus (WSMV), high plains virus
(HPV), and Triticum mosaic virus (TriMV) to wheat
throughout the Great Plains (Slykuis 1955; Seifers et
al. 1997, 2008). HPV was identiÞed from wheat and
corn throughout the Great Plains in the mid-1990s
(Jensen and Lane 1994, Jensen et al. 1996), and TriMV
was recently identiÞed from wheat in Kansas (Seifers
et al. 2008). Because the wheat curl mite transmits all
of these viruses, they are often found together in
mixed infections in the Þeld (Mahmood et al. 1998,
Seifers et al. 2008). The extent of the interaction of the
viruses is not known; however, it is clear that where
one or more viruses are present, the resulting disease

complex signiÞcantly impacts wheat (Tatineni et al.
2010, Byamukama et al. 2012).

As with most arthropod-transmitted pathogens,
management of the virus complex focuses on manag-
ing the vector. The most prevalent problems with this
disease complex arise when hail shells out seeds from
headed wheat just before harvest, and the fallen seeds
quickly germinate and produce volunteer wheat
(Brakke 1987, Wegulo et al. 2008). This volunteer
wheat is rapidly infested with mites moving from the
maturing wheat and serves as a Ôgreen bridgeÕ to carry
both the mite and viruses through the summer to infest
and infect the newly emerging winter wheat in the fall.
Cultural control practices are targeted at breaking the
green bridge by eliminating volunteer wheat, and
thus, reducing the potential for fall infections
(Wegulo et al. 2008, Hein 2010). Often, environmental
conditions make volunteer wheat control problem-
atic, and the disease potential persists. In addition,
other alternate summer hosts for the mites and viruses
(e.g., corn, potentially several other grass hosts) can
function as the green bridge to establish infections in
the fall (Wegulo et al. 2008).

The signiÞcant impact of this disease in Great Plains
winter wheat has resulted in a good deal of work being
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done to identify virus- and mite-resistant germplasm.
The Þrst wheat curl mite resistance gene that became
widely used commercially originated from a translo-
cation of rye into wheat and was deployed in the
cultivar ÔTAM 107� (Martin et al. 1984). TAM 107, and
a few other varieties with the same gene, were planted
widely in the central Great Plains in the late 1980s and
1990s, but in the mid-1990s, wheat curl mite popula-
tions in the region were found to have overcome this
resistance gene (Harvey et al. 1995, 1997). Several
additional genes for resistance to wheat curl mite
colonization have been identiÞed from several wheat
relatives and transferred into wheat (Conner et al.
1991, Li et al. 2002).

A major drawback to widespread deployment of
most of these resistant genes is that the reaction to
these genes is inconsistent and dependent on the
source of mites tested. Harvey et al. (1999) found a
varied response to seven sources of resistance to
wheat curl mite found in wheat when comparing Þve
geographically distinct mite populations (Nebraska,
South Dakota, Montana, Texas, and Alberta, Canada).
They also found a varied response when comparing
eight mite populations from across Kansas. Malik et al.
(2003) also found biotypic differences between pop-
ulations of wheat curl mite when comparing diverse
germplasm. These differences between mite popula-
tions in response to resistance genes have serious
implications to gene deployment and managing these
genes to avoid further wheat curl mite biotype devel-
opment.

Differences in response to mite resistance genes are
not surprising in light of the historic record of serious
taxonomic confusion forA. tosichella and the dry bulb
mite, Aceria tulipae Keifer. Originally the wheat curl
mite was misidentiÞed as A. tulipae (Keifer 1954,
Slykhuis 1955), but in 1970, Shevtchenko et al.
(Shevtchenko et al. 1970) described A. tritici from
wheat as distinct from A. tulipae on onions (Amrine
1996). However, Keifer just the year before had de-
scribed A. tosichella from wheat in Yugoslavia (Keifer
1969), and thus, thenameA. tosichellahaspriorityover
A. tritici for the wheat curl mite from wheat (Amrine
and Stasny 1994). However, the correct name, A. tosi-
chella, did not Þnd its way into the literature after its
original description, and generic name changes, where
A. tulipae became Eriophyes tulipae (Newkirk and
Keifer 1971), further confounded the issue. In 1994,
Amrine and Stasny sorted out the original literature
and descriptions and clearly separated the dry bulb
mite, A. tulipae, from wheat curl mite, A. tosichella.
However, questions still remained as to the identity of
both mites as Frost and Ridland (1996) have indicated
that both A. tulipae and A. tosichella are likely species
complexes in Australia.

Molecular techniques have the potential to help
resolve many of these difÞcult eriophyoid identiÞca-
tion issues (Navajas and Navia 2010). Fenton et al.
(1996) and later Kumar et al. (1999) and Lemmetty et
al. (2001) used molecular techniques to delineate
closely related Cecidophyopsis species (including C.
ribes). Recently, several host-adapted strains of

Abacarus hystrix (Nalepa) were identiÞed using mo-
lecular genetics techniques and veriÞed by using host
and morphological data (Skoracka et al. 2002, Sko-
racka and Dabert 2010). Alternatively, examinations
of genetic variation for Aceria cajani Channabasa-
vanna from pigeonpea in India and the surrounding
region demonstrated little variability (Kumar et al.
2001). For A. tosichella, recent molecular character-
izations have shown haplotype differences in Australia
(Carew et al. 2009).

More complete characterization of A. tosichella
populations may enhance our understanding of the
relationship of this mite to its hosts and also to the
viruses that they transmit. Seifers et al. (2002), using
mostly the same wheat curl mite populations that
Harvey et al. (1999) used to demonstrate biotypic
differences, demonstrated differential transmission of
HPV by these various mite populations. They also
found that these Þve populations of wheat curl mites
all transmitted WSMV. However, Schiffer et al. (2009)
identiÞed two distinct strains of A. tosichella in Aus-
tralia and found that they differ in their ability to
transmit WSMV. Transmission of TriMV by wheat curl
mite has been demonstrated (Seifers et al. 2009), but
the inßuence of mite populations on transmission has
not been fully investigated. However, preliminary
data indicates that differential transmission by differ-
ent A. tosichella populations may also occur (G.L.H.,
unpublished data). This variable capacity of mite pop-
ulations to transmit HPV and perhaps TriMV has im-
portant implications on the epidemiology and man-
agement of this virus complex.

Because of the demonstrated importance of under-
standing the variability in mite populations, it is crit-
ically important to be able to distinguish between
these different populations of mites. The capabilities
of molecular genetics techniques may allow us to dis-
tinctly characterize the genetic identity of these pop-
ulations of wheat curl mite from the Great Plains in
North America and compare this mite species to its
closely related species, the dry bulb mite, A. tulipae.

Materials and Methods

FiveA. tosichella colonies originating from different
states in the Great Plains (Kansas, Texas, South Da-
kota, Montana, and Nebraska) were used in this study.
They were obtained from colonies that were estab-
lished in 1999 from mites obtained from Drs. Thomas
Harvey and Dallas Seifers, Kansas State University,
Agricultural Research Center, Hays, KS. These were
the same colonies that were used to test for biotypic
differences by Harvey et al. (1999) and Malik et al.
(2003)aswell asdemonstrate transmissiondifferences
between the state colonies for HPV (Seifers et al.
2002). In addition to these Þve A. tosichella colonies,
another colony of A. tosichella was collected at the
Panhandle Research and Extension Center in Scotts-
bluff, NE (labeled ÔPRECÕ). Mites in these colonies
were reared on mite susceptible wheat cultivars (cul-
tivar ÔArapahoeÕ or ÔMillenniumÕ) grown in caged pots
and maintained in the greenhouse or growth cham-
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bers. To prevent cross contamination of the mites, pots
for each individual caged colony were maintained
either within separate cages or separate growth cham-
bers. All colonies, except PREC, were maintained vi-
rus-free, and mites were regularly (ca. every 3Ð4 wk)
transferred to new plant material. After these colonies
were received in 1999, the number of mites in each
colony was increased and large collections of mites
from each colony were preserved in 100% ethanol and
stored at �20�C for later assay. All mite colonies were
identiÞed by J.W.A. as A. tosichella through the use of
morphological characteristics.

Two additional populations of A. tosichella were
collected in Dundy Co., NE, in June 2005, Dundy1 and
Dundy2. These mites were isolated from wheat heads,
and colonies were initiated on Millennium wheat by
using a single female transfer, resulting in a female
clonal population that was allowed to increase before
collection and storage in 100% ethanol.

The eriophyid mite, Aceria kendalli Baker, was col-
lected from matrimony vine (LyciumbarbarumL.) by
J.W.A. near Morgantown, WV, to use as an outgroup
in subsequent phylogenetic comparisons. Three A.
tulipae populations, obtained from different sources,
were used throughout the study. The Oregon source
(OR) was obtained from garlic (Allium sativum L.)
produced in Columbia Co., OR, in December 1997. A
second source was obtained from a garlic producer in
Leamington, Ontario, Canada (ON), in January 2000,
and a third source (NE) was obtained from onions
(Allium cepa L.) purchased in a local grocery store in
western Nebraska (October 1999). All these mites
were colonized on ÔWhite LisbonÕ onions for an ex-
tended period to build up mite numbers. Large num-
bers of mites were collected and preserved in 100%
ethanol for later assay.

One to Þve mites were collected from infested
plants or preserved samples and placed in 0.5 ml poly-
merase chain reaction (PCR) tubes in 20 �l 1� PCR
buffer (Roche, Indianapolis, IN) and stored at �20�C
before assay. Before PCR, mite-containing tubes were
heated to 99�C for 5 min and then placed on ice. PCR
primers (0.2Ð0.5 �M Þnal concentration), deoxy-

nucleotide triphosphates (Þnal concentration of each
0.2 mM), 8 �l 10� PCR buffer, 2.5 U TaqDNA poly-
merase, and sufÞcient sterile water to make a Þnal
volume of 100 �l were added to each tube. To amplify
the ribosomal internal transcribed spacer one (ITS1)
region, primers rDNA2 and rDNA1.58S (Table 1)
were used with 35 cycles of PCR steps of 94�C for 1
min, 52�C for 1 min, and 72�C for 2 min. Following PCR
ampliÞcation, products were puriÞed using High-Pure
spin columns (Roche) and stored at �20�C. The nu-
cleotide sequence of both strands was obtained by
automated sequencing (DNA Sequencing Facility,
Iowa State University, Ames, IA) using primers
rDNA1.58S, MiteA, MiteB, and MiteC (Table 1).

PCR primers C1-J-2183 and C2-N-3661 or COIB and
COIIA (Table 1) were used to amplify partial mito-
chondrial DNA (mtDNA) sequences of cytochrome
oxidase I (COI) and cytochrome oxidase II (COII)
genes. Primers LR-N-12868 and LR-J-12883 were used
in conjunction with COIR to establish the orientation
of the 16S rRNA gene relative to the COI genes. Partial
12S and 16S gene sequences were ampliÞed with prim-
ers SR-N-14588 and LR-J-12883. Finally, mtDNA span-
ning a region from the 16S to COI genes was ampliÞed
using primers 16SF and COIR (Table 1). DNA frag-
ments were ligated to t-tailed pGEM-T Easy (Pro-
mega, Madison, WI) and transformed into Escherichia
coli JM109. Plasmid DNAs were sequenced (Davis
Sequencing, Inc., Davis, CA) by primer walking using
a minimum of three independent clones per sequence.
Automated sequence data were compiled using Se-
quencher 4.1 (Gene Codes, Ann Arbor, MI). Se-
quences of each region were aligned using CLUSTAL
X (Thompson et al. 1997). Genetic distances were
calculated for each sequence set using MEGA4 (Ta-
mura et al. 2007). Phylogenetic analysis by maximum
likelihood was done with the TREEFINDER com-
puterprogram(Jobbetal. 2004)using theHKY(Hase-
gawa et al. 1985) model of nucleotide substitution. A
search for potential tRNA genes was done with AR-
WEN (Laslett and Canbäck 2008).

Table 1. Primers used for ribosomal DNA and mitochondrial DNA PCR and sequencing reactions

Primer Sequence Reference

rDNA
rDNA2 5�-TTGATTACGTCCCTGCCCTTT-3� Cherry et al. (1997)
rDNA1.58S 5�-ACGAGCCGAGTGATCCACCG-3� Cherry et al. (1997)
Mite A 5�-GTGAACCTGCGGAAGGATCA-3� This article
Mite B 5�-ATTGGCTAGCAACCTAAGCA-3� This article
Mite C 5�-TTGATTACGTCCCTGCCCT-3� This article

mtDNA
C1-J-2183 5�-AATCAAAAGTCTATTAATTGTAGACCTG-3� Simon et al. (1994)
C2-N-3661 5�-CCACAAATTTCTGAACATTGACC-3� Simon et al. (1994)
COIB 5�-GATACAGTTCTTCATGATACATATTAG-3� This article
COIIA 5�-AGAAAGGAATAACTGTTCAAATTCTT-3� This article
COIR 5�-ATAGAAATAGTAGCTAATCAACTAA-3� This article
LR-N-12868 5�-TTACATGATCTGAGTTCAAACC-3� Simon et al. (1994)
LR-J-12883 5�-CTCCGGTTTGAACTCAGATC-3� Simon et al. (1994)
SR-N-14588 5�-AAACTAGGATTAGATACCCTATTAT-3� Simon et al. (1994)
COIR 5�-ATAGAAATAGTAGCTAATCAACTAA-3� This article
16SF 5�-AATCAAAAGTCTATTAATTGTAGACCTG-3� This article
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Results and Discussion

ITS1 sequences of other eriophyid mites have been
useful in deÞning species relationships (Kumar et al.
1999). Therefore, this region was PCR ampliÞed for
eight regionally collected populations of A. tosichella
(KS, MT, SD, TX, NE, PREC, Dundy1 and Dundy2),
three populations ofA. tulipae (NE, OR, and ON), and
the outgroup,A. kendalli and then directly sequenced.
The ITS1 region of the A. tulipae and A. tosichella
populations was 398 nucleotides in length, except for
A. tulipae-NE that was 397 nucleotides. The ITS1 re-
gion of A. kendalli was 330 nucleotides. Genetic dis-
tances are presented in Table 2. Over all, there were
limited sequence differences among theA. tulipae and
A. tosichella populations. The sequences from the
three A. tulipae populations were identical to each
other, except for the one nucleotide deletion for A.
tulipae-NE. Similarly, the KS, MT, SD, TX, and
Dundy1 A. tosichella populations had identical se-
quences. The A. tosichella PREC and NE populations
were collected from the same area and had the same
ITS1 sequences, as did the Dundy2 population. These
three Nebraska populations of A. tosichella were 1.2%
divergent from the KS, MT, SD, TX, and Dundy1
populations of A. tosichella. The three A. tulipae pop-
ulations (NE, OR, and ON) were slightly more diver-
gent from the NE, PREC, and Dundy 2 populations of
A. tosichella (1.5%) than the KS, MT, SD, TX, and
Dundy1 A. tosichella populations (0.3%). In contrast,
A. kendalliwas 36Ð38% different from all A. tulipae or
A. tosichella populations tested.

Sequence divergence of all the A. tosichella and A.
tulipae populations tested from the ITS1 of an addi-
tional outgroup,A. pongamiae (Kumar et al. 2001), was
over 40%. One sequence of A. tulipae collected from
wheat in Canada reported from GenBank (AJ251695;
Kumar et al. 2001) showed slightly more divergence
from the NE, PREC, and Dundy2 populations of A.
tosichella reported here (1.2%) than from the threeA.
tulipae populations tested here (0.3). However, this
GenBank sequence was identical to the KS, MT, SD,
TX, and Dundy1 A. tosichella population sequences
reported here (Table 2). This suggests that this pop-
ulation actually represents anA. tosichella population,

and this would be suspected as it was a collection from
wheat. This example underscores the considerable
confusion between these species that has occurred in
the past.

Phylogenetic relationships among ITS1 sequences
for all mite populations from this study plus sequences
reported by Carew et al. (2009) are shown in Fig. 1.A.
tosichella populations from KS, MT, SD, TX, and the
Dundy1 population are clearly related to the Austra-
lian Type 1 of Carew et al. (2009). One additional
Kansas population identiÞed in GenBank (GU797252)
is also included in this group (Fig. 1). Alternatively,
the three Nebraska populations (NE, PREC, and
Dundy2) are equivalent to the Australian Type 2 from
Carew et al. (2009). A. tosichella appears to be a pa-
raphylectic taxon in that A. tulipae clusters more
closely with Type 1 mites than Type 2 mites. This
suggests an ancestral hybridization event occurred
between A. tulipae and A. tosichella Type 1 sometime
after the divergence of A. tosichella Type 1 and Type
2 lineages. The ITS sequences for the populations in
this study were deposited in GenBank (JX087352-
JX087362).

To gain further insights among A. tulipae and the
two types of A. tosichella, mitochondrial DNA, par-
tially spanning the COI and COII genes, was PCR
ampliÞed, cloned and sequenced. C1-J-2183 and C2-
N-3661 allowed ampliÞcation, albeit with some difÞ-
culty likely because of sequence mismatches, of a 1.4 kb
PCR product from the NE, TX, and MTA. tosichella, two
populations of A. tulipae (ON, NE), and the A. kendalli
population. From the sequences of these PCR products,
two new primers COIB and COIIA (Table 1) were syn-
thesized and used to also amplify a �0.65 kb product
from the SD, KS, Dundy1, and Dundy2 A. tosichella
populations.

Genetic distances among these COI/COII se-
quences are presented in Table 3. This COI/COII
region was signiÞcantly more divergent among the A.
tulipae and A. tosichella populations than was evident
in ITS1 sequences. As with the ribosomal data (ITS1),
the KS, MT, SD, TX, and Dundy1 A. tosichella popu-
lations were nearly identical; only the MT population
showed any divergence (0.5%). This group diverged

Table 2. Pairwise percent nucleotide differences among ribosomal DNA ITS1 sequences for A. tosichella and A. tulipae populations

A. tosichella A. tulipae
NE

A. tulipae
OR

A. tulipae
ON

A. tulipae
CANaNE PREC Dundy2 KS MT SD TX Dundy1

A. tosichella PREC 0
A. tosichella Dundy2 0 0
A. tosichella KS 1.2 1.2 1.2
A. tosichella MT 1.2 1.2 1.2 0
A. tosichella SD 1.2 1.2 1.2 0 0
A. tosichella TX 1.2 1.2 1.2 0 0 0
A. tosichella Dundy1 1.2 1.2 1.2 0 0 0 0
A. tulipae NE 1.5 1.5 1.5 0.3 0.3 0.3 0.3 0.3
A. tulipae OR 1.5 1.5 1.5 0.3 0.3 0.3 0.3 0.3 0
A. tulipae ON 1.5 1.5 1.5 0.3 0.3 0.3 0.3 0.3 0 0
A. tulipae CANa 1.2 1.2 1.5 0 0 0 0 0 0.3 0.3 0.3
A. kendalli 37.8 37.8 37.8 36.6 36.6 36.6 36.6 36.6 36.9 36.9 36.9 36.6

aGenbank AJ251695 (probably wheat curl mite).
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�13% from the NE and Dundy2 A. tosichella popula-
tions. The twoA. tulipaepopulations were very similar
(0.2% divergent) but diverged similarly from all A.
tosichella populations (�12Ð13%). Relatively consis-
tent divergence was seen between A. kendalli and all
theA. tulipae andA. tosichella populations tested (21Ð
23%). The COI/COII sequences for the populations in
this study were deposited in GenBank (JX102049-
JX102058).

The COI/COII region provided a richer data set for
differentiating the A. tosichella populations from each
other and from A. tulipae (Fig. 2). A similar relation-
ship was found with populations of twospotted spider
mite where variation in the COI gene was �10-fold
higher than that found in the ITS2 region (Navajas et
al. 1998). In our analysis A. tulipae formed a mono-
phyletic clade, as did all A. tosichella lineages, except
the NE and Dundy 2 populations. These populations
(NE, Dundy2) are clearly distinct from the others,
while the KS, SD, TX, and Dundy1 populations are
identical to each other. The Montana population com-
prises a sister clade to the latter three A. tosichella
populations with high bootstrap support.

Samples of NE, TX, and MT populations of A. tosi-
chella, the ON population of A. tulipae, plus the two
Dundy County populations of A. tosichella were sub-
jected to PCR using primers LR-J-12883, LR-N-12868,
and COIR (Table 1). PCR ampliÞcation of mite sam-
ples with primers LR-N-12868 and COIR produced a

2.5kbDNAfragmentandestablished that the16Sgene
was in the same orientation as the COI gene. This
orientation is opposite that of most arachnids where
16S and COI are reversed (Black and Roehrdanz 1998,
Fahrein et al. 2007). Following cloning and sequenc-
ing, BLAST searches of the GenBank database re-
vealed that this 2.5 kb region of mtDNA contained the
partial 16S gene, followed by genes encoding NADH
dehydrogenase subunit two (NAD2), tRNA Met, tRNA
Cys, and partial COI.

Finally, primers LR-J-12883 and SR-N-14588 (Table
1; Simon et al. 1994) were used in PCR of NE, MT, and
TX, A. tosichella populations along with the ON A.
tulipae population to produce a 1.3 kb product encod-
ing partial 12S and 16S genes. The TX population for
this segment differed by 0.2, 5.1, and 3.9% from the MT
and NE populations andA. tulipae (ON), respectively,
while the respective differences between the TX
NAD2 and COI genes were 0.2, 16.9, and 13.5%, and
0.4, 14.0, and 11.7%. Interestingly, a partial COI gene
sequence from mites identiÞed as A. tosichella col-
lected on Bromus inermis Leyss by Skoracka and Dab-
ert (2010) was 12.1% divergent from A. tulipae (ON),
14.1% divergent from A. tosichella (TX; Type 1) and
12.6% divergent from A. tosichella (NE; Type 2). This
suggests that additional lineages ofA. tosichellawill be
found in the future. Skoracka and Dabert (2010) also
reported two Polish A. tulipae populations that had

Fig. 1. Phylogenetic tree of eriophyid mite species and populations using the rDNA ITS1 region. Scale bar indicates
percent genetic distances. Only nodes with bootstrap values 70% or greater (out of 1000 replicates) were retained.

Table 3. Pairwise percent nucleotide differences among mite mitochondrial DNA COI/COII sequences for several A. tosichella and
A. tulipae populations

A. tosichella
NE

A. tosichella
Dundy2

A. tosichella
KS

A. tosichella
MT

A. tosichella
SD

A. tosichella
TX

A. tosichella
Dundy1

A. tulipae
ON

A. tulipae
NE

A. tosichella Dundy2 0
A. tosichella KS 13.1 13.1
A. tosichella MT 13.2 13.2 0.5
A. tosichella SD 13.1 13.1 0 0.5
A. tosichella TX 13.1 13.1 0 0.5 0
A. tosichella Dundy1 13.1 13.1 0 0.5 0 0
A. tulipae ON 11.8 11.8 12.4 12.6 12.4 12.4 12.4
A. tulipae NE 12.0 12.0 12.6 12.8 12.6 12.6 12.6 0.2
A. kendalli 22.7 22.7 22.7 22.8 22.7 22.7 22.7 21.5 21.5
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partial COI sequences that were 99.5% identical to the
A. tulipae (ON) sequences reported here.

It is not surprising that the 16S rRNA gene is less
divergent than the protein-coding genes, as rRNAs
must maintain functional secondary structures. Nev-
ertheless, amino acid sequences of proteins are likely
constrained as well, and it is expected that there will
be fewer nonsynonymous (amino acid replacement)
differences per nonsynonymous site (dN) than syn-
onymous differences per synonymous (silent) site
(dS). In accordance with this expectation, we found
that silent substitutions far outnumber replacement
substitutions in the NAD2 and COI genes (Table 4).
Analysis of partial COI-encoding sequences of
Abacarus hystrix populations (Skoracka and Dabert
2010) revealed a similar excess of dS over dN substi-
tution rates. Moreover, the high dS values reported in
Table 4 suggests that the three mite lineages have been
diverging for a considerable length of time.

Based on the mtDNA data, there appear to be mul-
tiple lineages of A. tosichella circulating in the Great
Plains that clearly differ from A. tulipae. More popu-
lations from different geographical locations will need
to be sampled to determine whether there is any
biogeographical subdivision among lineages. The lack
of diversity among the nuclear encoded ITS1 rDNA
region raises the possibility that gene ßow can occur
between A. tulipae and A. tosichella. Additional nu-
clear gene markers and more extensive sampling will
be required to address this question. Nevertheless, the
mitochondrial sequence data suggests that ifA. tulipae
and A. tosichella are considered distinct species (Am-
rine and Stasny 1994), then it would be consistent to

consider A. tosichella, Type 1 and Type 2 as possible
separate species.

The studies described here demonstrate that the
genetic variability ofA. tosichella populations parallels
the biological diversity that has been demonstrated for
these populations. These genetic differences corre-
spond to differences in the mitesÕ response to different
resistant genes found in wheat (i.e., biotypes) shown
by Harvey et al. (1999). The genetic differences also
correlate with the ability of these mite populations to
transmit HPV as described by Seifers et al. (2002).
Seifers et al. (2002) found the NE population (Type 2)
to be the most effective vector of HPV and the re-
maining populations (Type 1) to be much poorer
vectors. However, the MT population did produce
intermediate rates of HPV transmission when com-
bined with WSMV. The MT population also showed a
unique response pattern to mite-resistant wheat genes
(Harvey et al. 1999), indicating unique biotypic char-
acteristics. Our genetic data show a slight but consis-
tent separation of the MT population from the re-
maining populations of Type 1 mites. The biological
signiÞcance of these genetic differences needs to bet-
ter understood. In addition to the HPV transmission
differences, Seifers et al. (2002) showed that all the
populations they tested provided adequate transmis-
sion of WSMV. However, Schiffer et al. (2009) indi-
cate that only the Type 1 mite population they tested
was able to transmit WSMV. These examples under-
score the need for a better understanding of the bi-
ological differences both between and within these
mite groups.

It is important that continued research be targeted
to more clearly establish the biological and genetic
characteristics of these wheat curl mite types and
determine the extent of additional variability that may
be present across geographic locations. The results of
this study demonstrate the importance of accurately
characterizing the type of wheat curl mites that are
present and being used in detailed studies. The rela-
tionships between speciÞc mite types and interactions
with their vectored viruses hold important implica-
tions for understanding the epidemiology of this virus
complex in the Þeld and its future management.

Fig. 2. Phylogenetic tree ofA. tulipae andA. tosichellapopulations using the mtDNA COI/COII region. Scale bar indicates
percent genetic distances. Only nodes with bootstrap values 70% or greater (out of 1000 replicates) were retained.

Table 4. Percent nonsynonymous differences per nonsynony-
mous site (dN) and percent synonymous differences per synony-
mous site (dS) for paired mite comparisons

Comparison

Gene

NAD2 COI

dN dS dN dS

A. tosichella TX vs A.
tosichella NE

7.1 53.3 16.9 71.4

A. tosichella TX vs A. tulipae 5.7 43.0 13.8 48.9
A. tosichella NE vs A. tulipae 7.0 45.3 15.8 40.9
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