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Genome-wide RNAi ionomics screen reveals new
genes and regulation of human trace element
metabolism
Mikalai Malinouski1,2, Nesrin M. Hasan3, Yan Zhang1,4, Javier Seravalli2, Jie Lin4,5, Andrei Avanesov1,

Svetlana Lutsenko3 & Vadim N. Gladyshev1

Trace elements are essential for human metabolism and dysregulation of their homoeostasis

is associated with numerous disorders. Here we characterize mechanisms that regulate trace

elements in human cells by designing and performing a genome-wide high-throughput

siRNA/ionomics screen, and examining top hits in cellular and biochemical assays.

The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known

regulators and novel candidates. We further uncover fundamental differences in the

regulation of different trace elements. Specifically, selenium levels are controlled through the

selenocysteine machinery and expression of abundant selenoproteins; copper balance is

affected by lipid metabolism and requires machinery involved in protein trafficking and

post-translational modifications; and the iron levels are influenced by iron import and

expression of the iron/haeme-containing enzymes. Our approach can be applied to a variety

of disease models and/or nutritional conditions, and the generated data set opens new

directions for studies of human trace element metabolism.
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T
race elements are involved in most biological processes and
are used by all living organisms. They serve as essential
components of numerous proteins that carry out oxidation

and reduction reactions, facilitate receptor activation and
signalling events, participate in electron transfer, maintain
structural integrity of proteins and have numerous other
functions1–3. It is believed that one-third of human proteins
bind metal ions4. Changes in trace element utilization and
homoeostasis have been linked to many disorders. For example,
mutations in the ATP7A gene are associated with low copper
levels in most tissues and lethal disorder known as Menkes
disease5. Mutations in the Wilson’s disease protein (ATP7B)
result in a severe hepato-neurologic disorder due to accumulation
of copper in the liver and brain6. Misbalance of other trace
elements also causes serious disorders. For example, mutations
in hepcidin and transferrin receptor 2 lead to iron overload
and hereditary hemochromatosis7, whereas genetic defects in
zinc transporter SLC39A4 are associated with acrodermatitis
enteropathica, a disease of zinc deficiency.

Available data indicate that the levels of trace elements, similar
to levels of many metabolites, are kept within the narrow optimal
range that is specific for each element and each tissue and cell
type. Cells control trace elements through uptake, export, storage
and compartmentalization, but relative roles of these processes
vary for different trace elements, cell types, tissues and organisms.
Several key components of the element-specific machineries have
been identified, along with distinct modes of regulation, such as
transcriptional control, regulation of protein stability, kinase-
mediated phosphorylation and intracellular trafficking. For
example, import of copper and iron in human cells is mediated
predominantly by Ctr1 (Lee et al.8) and the transferrin receptor
system, respectively. The P-type ATPases ATP7A and ATP7B
facilitate copper export, whereas ferroportin mediates iron efflux.
Copper availability in the cytosol is controlled by metallo-
chaperones (ATOX1, CCS and COX17)1, metallothioneins and
the expression of copper-utilizing enzymes9. In contrast, cellular
levels of iron are regulated at the level of messenger RNA for the
iron storage molecule ferritin and for a key mediator of iron
uptake transferrin receptor 1 (Barry et al.10 and Theil11). On the
other hand, little is known about the uptake and export of
selenium. This element is unique in that it is inserted into
proteins co-translationally in the form of the 21st amino acid,
selenocysteine (Sec), encoded by UGA codon. Such complex and
energy demanding process most probably requires a tight
regulation of intracellular selenium levels and recycling.

The molecular machineries that regulate abundance and
activity of key metal-handling molecules and fine-tune cellular
ionomes remain mostly unknown12. Many regulators that
control mRNA/protein stability, post-translational modification
or intracellular trafficking are members of very large families of
structurally related proteins (kinases, phosphatases and adaptor
proteins), which make their identification challenging.
Characterization of regulators at the level of individual proteins
is time consuming and is mostly limited to molecules that are
already known. In this regard, development of unbiased high-
throughput assays could potentially address this problem.

Recent years witnessed a remarkable expansion in high-
throughput analyses, which take advantage of vast genomic
resources. With regard to trace elements, these approaches
somewhat lagged behind, in part due to challenges in analysing
elements in small volumes and a high-throughput manner. Initial
studies have been done with yeast13–15 and plants16, paving a way
to a new field, ionomics17,18, which aims to characterize trace
element homoeostasis at the genome-wide level16,19–21.

Here we use inductively coupled plasma mass spectrometry
(ICP-MS) as the most sensitive method to analyse trace elements

and develop an approach involving rapid element profiling
coupled with the use of a human genome small interfering RNA
(siRNA) library transfected into HeLa cells. Using this approach
and the resulting ionomic data set, we aim to uncover previously
uncharacterized regulators of trace element metabolism, which
may serve as genetic markers for various nutritional conditions
and disease states.

Results
A screen for genes that regulate human ionomes. We developed
and optimized a high-throughput method to analyse trace
elements in mammalian cells (Methods). Among several cell lines
subjected to initial tests, we had chosen HeLa cells for their high
levels of most trace elements and reproducibility of ionome
analyses. To control for changes in elemental composition, each
plate included ATP7A siRNA as a positive control. Knockdown
of ATP7A reproducibly increased cellular copper, as measured by
ICP-MS in cell extracts (Fig. 1a) and by in situ X-ray fluorescence
microscopy of fixed cells (Fig. 1b). The workflow (Fig. 1c)
included the siRNA transfection, sample analysis, data processing,
selection of the candidates for further analyses and validation
studies. We employed a human siGenome SMARTPool siRNA
library that targets 21,360 genes; this library was previously used
in several genome-wide studies22. HeLa cells (B25,000 cells per
well in a 96-well plate format) were transfected with pulled siRNA
aliquots, each targeting a single gene (Methods). A fully robotic
system was used for cell plating, growth, transfection and
other manipulations, ensuring a high degree of consistency and
precision. Following incubation and washing, cells were digested
with the nitric acid/hydrogen peroxide mixture and analysed for
levels of 18 elements by ICP-MS, which we custom equipped with
a high-throughput sample delivery system. The levels of nine
elements (selenium, copper, phosphorus, magnesium, potassium,
cadmium, manganese, iron and zinc) were consistently above
controls (samples without cells subjected to the same procedure);
these nine elements were used, along with sodium and calcium,
for further analysis. The method was optimized so that each
sample was analysed in just over a minute. During a 3-month
continuous run, each gene knockdown was analysed
independently three times (that is, in three plates), and each
sample (from each well) was assayed three times. This screen
included more than two million measurements.

For data normalization, we used several approaches (Methods).
The noise was first subtracted from the original signal for each
knockdown sample. To account for changes in morphology,
growth rate and size of cells caused by the siRNA treatment, we
normalized the raw data to the average of four elements
(phosphorus, manganese, selenium and zinc). The signals of
these elements were most stable across the screen and therefore
their average could be more accurately related to the amount of
cells (than to the levels of any one element), especially if one of
the normalization standards was affected. Second, to account for
possible changes in instrument sensitivity over time as well as
plate-to-plate variation, the data were normalized to the results
obtained using the scrambled siRNA control on each plate.
Finally, we generated the mean signal values of each gene from
three replicates and calculated standard scores (also called
z-scores, representing the number of s.d. from the mean; all
z-scores are derived from three replicates) for each gene and each
element to account for plate-to-plate variability. The positive
control, ATP7A, z-scored at 9.49 and had the fifth highest score
among the knockdown genes leading to copper elevation. APBA3
(an adaptor protein binding to b-amyloid A4 precursor protein)
had the highest z-score of 14.25, although the effect of
downregulation was not limited to copper. This result was
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nevertheless intriguing because previous reports indicated that
b-amyloid A4 precursor protein was a copper-binding protein23.
Most knockdowns that affected the levels of trace elements
showed element-specific changes; B3–5% of all analysed genes
were affected (z-score 45, Supplementary Fig. 1), with more hits
(60–90%) corresponding to increases in element levels.

To select significant knockdowns (Supplementary Fig. 2), we
checked the distributions of z-scores for each element and found
that they were characterized by either normal or approximately
normal distributions. To define the z-score threshold for each
element, we calculated the prediction intervals for each element
corresponding to the P value o0.05 (two tailed). We used the
lower limit m� 1.96d, and upper limit mþ 1.96d, where m and d
represent the mean and the standard variation of z-scores for
each element. The prediction intervals for each element were then
used to build candidate lists by evaluating z-scores, which were
beyond the prediction interval for each element. A total of 6,196
gene knockdowns (29%) were found to affect the levels of at least
one element, with the majority of the knockdowns (4,051 genes)
showing element-specific changes.

We validated the selected gene candidates by retesting them
in a 24-well format (Table 1) to amplify the target element
signal and validate the corresponding z-scores. We defined the
z-score 43 as threshold and the z-score 45 as a guide for
experimental analyses. Several of these genes encoded known
regulators of trace element homoeostasis. For example, ATP7A
and TFRC are the major players in the metabolism of copper and
iron, respectively, and their downregulation altered levels of

corresponding metals with z-scores of 9.49 and 7.1, respectively.
All data have been summarized in the ionome database along
with the tools that support data visualization and analysis
for specific genes, accession numbers and screen plates (http://
www.gladyshevlab.bwh.harvard.edu/ICPMS_Human).

Mechanisms of ionome regulation are element specific.
Analysis of the genes that affected elemental content of HeLa cells
pointed to fundamental differences in the regulation of individual
trace elements. For selenium, candidates with the highest z-scores
included the selenoprotein thioredoxin reductase 1 (TR1) and a
protein involved in Sec incorporation, SECIS-binding protein 2
(SBP2; Fig. 2a). Interestingly, TR1 was the only selenoprotein
whose knockdown dramatically decreased selenium levels, and
SBP2 was the only member of the Sec insertion machinery that
showed such effect (Fig. 2b). This finding suggests that SBP2 is a
limiting factor in selenoprotein biosynthesis in HeLa cells and
that selenoproteins represent a major pool of selenium in these
cells. To clarify how the expression of just one selenoprotein
(TR1) could alter selenium levels in HeLa cells, we metabolically
labelled control and TR1-knockdown cells with 75Se. This
experiment revealed that TR1 was the most abundant seleno-
protein in these cells, and that TR1 downregulation did not sig-
nificantly affect the expression of other selenoproteins (Fig. 2c).
Thus, the decreased expression of the most abundant seleno-
protein was sufficient to alter selenium levels. Furthermore, we
observed an excellent agreement between the abundance of

40

35

30

25

20

15

10

5

0

C
u 

(f
g 

pe
r 

ce
ll)

P Cu

siATP7A

scrRNA

10 μm

Blank scrRNA siATP7A

17,077 Known genes
4,283 Predicted genes

Dharmacon
siGenome library

96-well plates

Acid digestion

Primary screen
HeLa cells

Pool of 4 siRNAs per well,
3 wells per gene

ICP-MS analysis

Agilent ICP-MS 7500
linked to a modified

ESI SC-4 autosampler

Data recording and analysis

9 elements: Mg, P, K, Mn,
Fe, Cu, Zn, Se, Cd

>2 million measurements

Subtraction of background
Normalization on scrRNA
Correction for cell number

and growth conditions
Fold change and z-score

calculations

Selection of hits

24-well plates

Secondary screen
On-Target Plus SMARTpool

HeLa cells
4 siRNA pool per well

5 wells per gene

Figure 1 | Human genome-wide siRNA ionomics screen. (a) Effect of siRNA on copper levels in HeLa cells. Cells were transfected with human

siATP7A, and 72 h after transfection, copper levels were analysed by ICP-MS. Error bars are onefold standard variances calculated from three replicates.

(b) Impact of ATP7A deficiency on copper levels in HeLa cells. Cells were subjected to ATP7A knockdown as in a and examined by X-ray
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individual selenoproteins and the effects of their knockdowns on
total selenium levels. Altogether, the data suggested that the levels
of selenium were affected by a key member of the Sec machinery
and the expression of the most abundant selenoprotein.

In general, the ionomes were stable, most notably the zinc
ionome. On the other hand, for the iron ionome we detected
many genes that mildly influenced the levels of several elements
(z-scores 3–4, based on three replicates). To evaluate which
identified genes (and corresponding changes) might be physio-
logically relevant, we first considered consequences of down-
regulation of genes with a firmly established role in iron
homoeostasis. Knockdown of TFRC decreased iron content
(z-score of 7.1), consistent with its key role in iron uptake,
whereas downregulation of another known iron transporter,
DMT2, was associated with a milder loss of cellular iron content
(z-score of 3.1). Although the transcripts with the z-scores
between 2 and 3 did not pass the criteria of statistical threshold,
several transcripts for proteins associated with iron metabolism
were detected in this range of scores. For example, knockdown of
iron-responsive element-binding protein 2 and d-aminolevulinate
synthase 2 (the first enzyme in the haeme synthesis pathway)
yielded an increase in iron levels with the z-scores of 2.06 and
2.53, respectively, consistent with the previously reported
biological effects of downregulation of these proteins24,25.
Among iron-regulating genes with relatively high z-scores we
detected ceruloplasmin, a ferroxidase, and huntingtin, a protein
required for bioavailability of endocytosed iron26. Loss of either
of these proteins in HeLa cells increased cellular iron levels
(z-scores of 3.2 and 3.9, respectively). In fact, downregulation of
many iron- and haeme-containing enzymes was associated with
iron elevation rather than deficiency. This observation suggests an
exquisite sensing of total iron content and compensatory
response, probably via an increased iron uptake.

Given the observed range of z-scores for known regulators
of iron homoeostasis (2.06–7.1), to identify cellular processes
involved in iron balance we selected all genes, for which
downregulation produced changes in the iron levels with a
z-score above 3. Gene ontology analysis of this data set
demonstrated that the most prominent biological process that
influences Fe levels is the generation of precursor metabolites and
energy (Supplementary Table 1). The ontology analysis also
revealed an important role of mitochondria in influencing iron
metabolism, which is consistent with the role of this compart-
ment in iron utilization for enzymatic reaction and formation of
Fe-S clusters.
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Table 1 | Validated genes found to regulate trace elements in HeLa cells.

Gene Description z-score (standard score) Effect of knockdown

DNAJC5 DnaJ (Hsp40) homologue, subfamily C, member 5 3.54 Increased copper
DNAJC17 DnaJ (Hsp40) homologue, subfamily C, member 17 5.12 Increased copper
IBTK Inhibitor of Bruton agammaglobulinemia tyrosine kinase 6.74 Increased copper
ATP7A ATPase, Cuþ þ transporting, alpha polypeptide (Menkes’ syndrome) 9.49 Increased copper*
SLC6A4 Neurotransmitter transporter, serotonin, member 4 3.53 Increased copper
ANKRD9 Ankyrin repeat domain 9 7.18 Increased copper
CAMK2N2 Calcium/calmodulin-dependent protein kinase II inhibitor 2 6.02 Increased copper
ABCC3 ATP-binding cassette, subfamily C (CFTR/MRP) 5.60 High copper
RPL14 Ribosomal protein L14 6.56 Increased selenium
KCNA1 Potassium voltage-gated channel, shaker-related subfamily, member 1 3.43 Decreased selenium
SBP2 SECIS-binding protein 2 6.43 Decreased selenium*
TP53I3 Tumour protein p53 inducible protein 3 10.80 Increased manganese
TFRC Transferrin receptor (p90) 7.14 Decreased iron*

CFTR, cystic fibrosis transmembrane conductance regulator; MRP, multidrug resistance-associated protein.
*Genes previously implicated in regulation of indicated trace elements.
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In contrast to iron, copper levels showed much larger
fluctuations. Although the number of genes affecting ionomes
with lower z-scores (3–4) was similar for the iron and copper data
sets, much larger number of genes altered copper content with
z-scores above 4 compared with those for iron (Supplementary
Table 2). Several known regulators of copper metabolism caused
copper elevation on knockdown with z-scores above 4: copper
chaperone ATOX1 (z-score of 4.7), metallothionein MT1A
(z-score of 4.27) and a copper-transporting ATPase ATP7A
(z-score of 9.4; Fig. 2d). The difference between the iron and
copper ionomes in the extent of fluctuations may be explained by
the functionally different classes of molecules contributing to the
balance of these elements. Ontology analysis of the genes affecting
copper levels with the z-scores higher than 4 pointed to
endocytosis, RNA splicing and GTP hydrolysis as processes
most frequently associated with altered copper metabolism and
mostly distinct from those influencing Fe ionome (Supplementary
Table 3). Fifty-three genes were associated with the term
‘transport’; among those more than a half encoded proteins
known to be involved in membrane protein trafficking
(Supplementary Table 4). We identified the g-subunit of the
adaptor-related protein complex 1 as a protein whose down-
regulation increased cellular copper content with a z-score of
5.09. This finding was especially exciting because, when this paper
was in preparation, a mutation in another component of adaptor-
related protein complex 1 was linked to a new disorder of copper
metabolism27. Overall, our data suggested a fundamental role of
trafficking processes in preventing copper overload. The data also
enabled us to predict previously unidentified components of the
secretory pathway associated with the copper export pathway.
Analysis of the knockdown genes that produced copper elevation
with the z-scores above 3 revealed a role for lipid metabolism in
maintenance of copper levels (Supplementary Table 5). This
observation is especially interesting, because our previous studies
in the animal model of copper overload demonstrated that
accumulating copper specifically downregulates lipid metabolism.

Finally, our screen suggested which transporters might be used
for the uptake and removal of zinc from HeLa cells28,29. For
example, within the ZnT and Zip family members, knockdown of
ZIP1 (z-score of 6.07) mostly increased zinc level, whereas
knockdown of ZIP5 (z-score of 3.09) decreased it. Overall, our
data demonstrated that the siRNA screen can identify regulators
of trace elements in human cells and predict key regulatory
mechanisms.

Pathway analysis of selenium distribution. We subjected
the candidates from the screen to several gene network analysis
tools: DAVID pathway analysis30, protein–protein interactions
using STRING database31, GeneSifter (Geospiza) and IPA
INGENUITY pathway analyses. In the case of selenium, using
DAVID, we observed a significant functional cluster of ribosomal
proteins (the Fisher exact test, P¼ 8.94� 10� 3; Benjamini
P value adjustment, P¼ 0.36; all results were derived from three
replicates). Table 2 lists genes associated with this cluster. This
observation is consistent with the finding that the knockdowns of
several ribosomal genes led to an increase in selenium levels in
HeLa cells (Fig. 3a). Notably, the shape of ionomic profiles was
similar for all these knockdown conditions (Fig. 3a) and it was
different from that of other targets (for example, glycolytic
enzymes: GAPDH, PGK1 and PGM1). We further performed
structural analysis of this functional cluster and observed that
most of the identified ribosomal proteins (11 of 14) were located
at the interface of two ribosomal subunits near the transfer
RNA-binding site (Fig. 3b). It is possible that deficiency in these
ribosomal proteins alters the ribosome structure facilitating an
increased Sec insertion. It is also possible that these knockdowns

decreased the rate of protein synthesis, which indirectly
supported the inherently slow Sec insertion. Our data point to
a global control of selenoprotein expression through ribosome
structure and function. The specific mechanism of this control
requires further studies.

We further analysed selected selenium candidates with high
z-scores: nuclear RNA export factor (its knockdown increased
selenium in cells), ribosomal protein L14 (RPL14; its knockdown
increased selenium) and potassium voltage-gated channel,
member A1 (KCNA1; its knockdown decreased selenium). We
also included SBP2 as a Sec machinery component identified in
the screen. HeLa cells transfected with these siRNAs were
metabolically labelled with 75Se (Fig. 3c) and gene knockdowns
verified by real-time PCR (Supplementary Fig. 3). RPL14 and
KCNA1 siRNAs differentially affected selenoprotein expression:
RPL14 deficiency increased the levels of selenoproteins TR1
(a major 55 kDa band detected by 75Se labelling) and seleno-
protein S (detected by western blotting), whereas KCNA1
deficiency decreased the expression of several selenoproteins
with the molecular weight under 25 kDa. The SBP2 siRNA
decreased the expression of all selenoproteins. Overall, the data
pointed to several genes whose knockdown affected selenium
levels in HeLa cells owing to changes in selenoprotein expression.
Two of these genes (RPL14 and KCNA1) have not been previously
linked to selenium metabolism.

Target validation revealed new regulators of ATP7A. Our
validation analyses revealed several candidates not known pre-
viously to be involved in the regulation of trace element homo-
eostasis (Table 1). Knockdowns of two members of the DNAJ
family (DNAJC5 and DNAJC17), two kinase inhibitor genes
(CAMK2N2 and IBTK) and two transporters (SLC6A4 and
ABCC3) led to increased copper levels (Table 1). To uncover
specific roles of these genes in a cellular copper balance, we
determined the effects of their inactivation on ATP7A, the major
copper export protein in HeLa cells. Following downregulation of
the target genes, we characterized ATP7A expression, intra-
cellular targeting and its ability to undergo copper-dependent
trafficking from trans-Golgi network (TGN) to the plasma
membrane (a step required for copper efflux).

Out of seven tested targets, downregulation of five had a
significant effect on ATP7A. This result emphasizes the primary
role of ATPase-mediated copper export in balancing cellular

Table 2 | Cluster of ribosomal genes identified as selenium
regulators.

Gene Description

RPL14 Ribosomal protein L14
RPL10A Ribosomal protein L10a
RPL23 Ribosomal protein L23
RPS5 Ribosomal protein S5
RPS29 Ribosomal protein S29
RPS27 Ribosomal protein S27
RPS3A Ribosomal protein S3A
RPS12 Ribosomal protein S12
RPS15 Ribosomal protein S15
RPS9 Ribosomal protein S9
RPS24 Ribosomal protein S24
RPL36 Ribosomal protein L36
RPS23 Ribosomal protein S23
RPS21 Ribosomal protein S21
RPS6 Ribosomal protein S6
RPL6 Ribosomal protein L6
RPL37 Ribosomal protein L37
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copper. Knockdown of DNAJC5 and SLC6A4 did not influence
ATP7A protein levels, trafficking or targeting, indicating that
these proteins may regulate other components of the copper-
handling machinery. In contrast, knockdown of a member of the

HSP40 family DNAJC17 produced a significant reduction in
ATP7A amount in cells as evidenced by the decreased intensity of
ATP7A signal (green) in the TGN compared with the marker
TGN46 (red; Fig. 4a, Supplementary Fig. 4). The decrease of
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ATP7A in the TGN was due to lower ATP7A protein levels
(rather than the loss of TGN targeting) as evidenced by western
blotting of cellular lysates (Fig. 4b). The levels of other tested
proteins, such as Na,K-ATPase and TGN46, were not affected. By
comparing the effects of the siRNA pool and four individual anti-
DNAJC17 siRNAs, we determined that the effect of DNAJC17
inactivation on ATP7A levels might be indirect, since the same
degree of DNAJC17 downregulation by different siRNA yielded
different changes in the ATP7A levels (see Methods for details).
Knockdowns of the kinase inhibitors IBTK (inhibitor of Bruton
tyrosine kinase) and CAMK2N2 (calcium/calmodulin-dependent
protein kinase II inhibitor 2) had a dual effect: reduction in the
ATP7A levels and a downwards shift in the ATP7A electro-
phoretic mobility (Fig. 4; Supplementary Fig. 4) that suggested
changes in the post-translational modification of ATP7A.

A different mode of ATP7A regulation was detected in the case
of the ABCC3 knockdown. Downregulation of this gene did not
have a significant effect on ATP7A levels (Fig. 4b) or ATP7A
targeting to the TGN (Fig. 5a). Instead, in cells with the
downregulated ABCC3 (ATP-binding cassette, subfamily C
(CFTR/MRP), member 3) the distribution of ATP7A between
the TGN and vesicles was altered, with less ATP7A leaving the
TGN in response to copper treatment (Fig. 5b,c). Perhaps, the
most intriguing results were obtained with cells depleted of
ANKRD9. Downregulation of this adaptor protein led to an
increased cell size, dispersion of the TGN (Fig. 5d) and a change
in ATP7A electrophoretic mobility (Fig. 4b). A shift in ATP7A
migration on SDS–polyacrylamide gel electrophoresis (Fig. 4b)
suggests that the post-translational modifications of ATP7A,
which is a glycosylated protein, are affected. Although the
ANKRD9 knockdown affected TGN morphology, it did not
disrupt co-localization of ATP7A and TGN46, suggesting that
the molecular identity of this compartment was preserved
(Supplementary Fig. 4b). We are now facing intriguing mechan-
istic questions about a link between TGN morphology, ATP7A
modification and cellular copper levels. Taken together, these data
show that essentially all effects of the target gene knockdowns
with respect to copper elevation can be explained by changes in
ATP7A trafficking, modification and/or expression. Cellular
machinery that controls ATP7A mRNA and/or protein stability
has not been previously characterized, and the identification of
several new regulatory components as a result of the ionomics
screen provides exciting opportunities for better understanding of
copper metabolism in human cells.

A previous study by Yu et al.21 yielded a detailed summary of
ionomic changes in a full-genome collection of Saccharomyces
cerevisiae single-gene deletion strains. Since key metal-handling
molecules are conserved in yeast and human cells, we compared
the effects of yeast knockouts and HeLa knockdowns of
experimentally confirmed and new regulators identified in the
screens. Unexpectedly, the comparison of mammalian and yeast
metalloregulons showed little overlap in the identity of proteins
affecting metal balances. Specifically, the consequence of 25 yeast
knockouts (18 genes identified as influencing copper levels and 7
altering iron levels) were similar only for three orthologues in
HeLa cells: NPP2/ENPP6 and GRR1/FBXL15 pairs of orthologues
showed similar effects on copper levels and the MET30/FBXW2
pair was similar with regard to iron (Supplementary Table 6).
Given this observation, we compared the effects of deletions of
genes with firmly established roles in copper homoeostasis, that
is, yeast yCTR1, ATX1, yCCS and CCC2 with those of human
hCTR1, ATOX1, hCCS and ATP7A. Downregulation of the high-
affinity copper uptake transporter yCTR1/hCTR1 was associated
with a decrease in cellular copper content in both yeast and
mammalian cells. However, consequences of the deficiency in the
three other genes differed, not only in value but also in the
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(a–c) Downregulation of ABCC3 affects ATP7A trafficking. Following

siRNA-mediated knockdown, HeLa cells were kept under basal conditions

(panel a, scale bar, 25 mm) or treated with 200mm CuCl2 for 5 h

(panel b, scale bar, 25mm), and then fixed, immmunostained with

antibodies against ATP7A (green) and TGN46 (red) and analysed by

confocal microscopy. (c) Percentage of cells with ATP7A in the TGN

following the copper treatment (left panel). Intensity of ATP7A signal in

the TGN was quantified using Image J (right panel). (d) ANKRD9

knockdown results in fragmented TGN and fragmented ATP7A staining

pattern. Following siRNA-mediated knockdown, HeLa cells in basal

conditions were fixed, stained with antibodies against ATP7A (green)

and TGN46 (red) and analysed by confocal microscopy. Scale bar, 25mm.
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direction of change (Table 3). Inactivation of ATP7A, CCS and
ATOX1 in HeLa cells (our screen) produced effects that were
consistent with the established physiological functions of these
proteins. Dissimilar results in yeast may reflect the cell adaptation
to stable gene deletion (in contrast to the siRNA-mediated
knockdown that produced transient gene inactivation in HeLa
cells) or different growth/medium conditions. It is also possible
that copper metabolism in yeast is regulated primarily by copper
uptake, while in HeLa cells copper balance is largely controlled by
copper export.

Discussion
In this study, we identified new regulators of trace elements in
human cells and uncovered fundamental differences in how levels
of trace elements are controlled. This was achieved through a
high-throughput siRNA/ICP-MS screen in which the levels of
trace elements were determined following knockdown of 21,360
genes in HeLa cells. Automation of ICP-MS analysis and the
custom use of a high-throughput sample delivery system allowed
rapid, reliable and cost-effective profiling of trace elements. In our
system, 1,080 samples could be processed every 24 h using a
single instrument and more than 30,000 samples per month. The
entire human genome siRNA library was analysed in triplicate in
just 100 days. The result is the first high-throughput ionomics
study in mammalian cells. Earlier ionomics analyses were mostly
carried out using a S. cerevisiae knockout collection17,18.
S. cerevisiae shares key components of the machinery regulating
copper, zinc and iron metabolism with mammals; however, our
data indicate that the contribution of these and other regulators
to overall metal ion balance may differ between yeast and
mammalian cells. Moreover, S. cerevisiae does not utilize several
trace elements used by mammals. These results highlight the
importance of verifying findings in model systems in human cells,
especially for fine aspects of regulation.

We did not supplement the growth medium with trace
elements, since the necessary metal ions were already present in
the calf serum at sufficient levels, and our aim was to identify
proteins that modulate trace elements under normal growth
conditions. Our approach, however, can be extended to other
conditions (such as cells subjected to trace element supplementa-
tion or metabolic perturbations) and more complex cell systems
(such as specialized cells or polarized cell layers).

The screen was carried out in triplicate and utilized the
same batches of cells, media, buffers and the digestion mix. The
results provide many valuable avenues for further studies. We
found that most gene knockdowns in HeLa cells changed levels of
one and rarely more than one element. By comparison, the
ionomics study of yeast gene deletions detected 210 strains with
significant changes in at least one element18, and the majority
of these strains showed changes in several elements. Detailed

interpretation of the findings is not straightforward in either yeast
or human cells and will require additional studies and screens. It
was suggested that linear mixed-effect models could help reduce
noise in genome-wide perturbation screens including ionome
studies32. In the future, advanced statistical models may help
identify and refine predictions of new candidate genes regulating
elemental composition of cells.

Our results suggest that the trace elements are regulated
largely independently. We also observed fundamental differences
in the modes of regulation of different trace elements in human
cells. Thus, the selenium ionome is controlled by retaining
this element in the cell via insertion into selenoproteins.
Dysregulation of this process appears to lead to selenium
excretion, since deficiency in either a limiting factor in Sec
insertion or the most abundant selenoprotein decreased
selenium in cells. On the other hand, dysfunction in ribosome
function increased cellular selenium. This observation suggests
that selenoprotein levels rather than selenium levels may serve as
a signal for regulation.

The state of the copper ionome strongly depends on the
presence of copper exporter (ATP7A in HeLa cells) and the
machinery that controls its maturation and function. Conse-
quently, the most common phenotype of knockdown conditions
was copper elevation. The iron ionome showed a third pattern,
with many knockdown conditions slightly changing the levels of
this element, and the only large effect was observed under
conditions that interfered with iron transferrin receptor-mediated
import. We also observed significant differences in the stability of
various ionomes. Among trace elements, the zinc ionome was the
most stable, whereas copper levels could be more easily changed
in cells.

In the follow-up study, we characterized the genes predicted to
be involved in selenium and copper metabolism (this focus was
because of the expertise of the contributing laboratories; we hope
that additional targets will be examined in future studies by our or
other groups). With regard to selenium, the selenoprotein TR1
(Rundlof and Arner33) was one of the top selenium hits in the
screen. This was unexpected as the human genome has
25 selenoprotein genes, and the most abundant mammalian
selenoprotein is GPx1. By taking advantage of the fact that all
mammalian selenoproteins that function inside cells have a single
Sec, we used metabolic 75Se labelling to show that TR1 is the most
abundant selenoprotein in HeLa cells. Thus, the ICP-MS
approach was highly sensitive: deficiency in just one seleno-
protein significantly decreased the levels of cellular selenium.
Another selenium target was SBP2. Subsequent analyses revealed
that SBP2 deficiency led to a decrease in the expression of all
selenoproteins in HeLa cells. Other components of the Sec
machinery were not detected, suggesting that SBP2 is the limiting
factor in Sec incorporation in HeLa cells.

We also identified new genes that regulate selenium metabo-
lism. Knockdown of potassium voltage-gated channel (KCNA1)
decreased selenium levels, which may represent a direct or
indirect effect. In addition, knockdown of a ribosomal structural
protein RPL14 resulted in an increased selenium level and an
increased expression of TR1 and selenoprotein S. Moreover,
several ribosomal proteins showed a very similar ionomic
phenotype, with selenium being the most affected among all
tested elements. Most of these proteins localized to the interface
between the two ribosomal subunits. The Sec incorporation
system includes several protein factors, a Sec transfer RNA,
and a specific mRNA structure, the SECIS element34. Reduced
expression of ribosomal proteins may lead to structural changes
in the ribosome that affect Sec insertion. It is also possible that
this condition decreases the rate of protein synthesis, which may
indirectly increase the inherently slow Sec insertion.

Table 3 | Effects of inactivation of orthologous genes
corresponding to major copper regulators in yeast and
HeLa cells.

Yeast
gene

Effect of gene
deficiency on
Cu levels

Fold
change

Human
orthologues

Effect of gene
deficiency on
Cu levels

Fold
change

yCtr1 Decrease 0.58 hCTR1/
SLC31A1

Decrease 0.426

Atx1 Slight
decrease

0.914 ATOX1 Increase 1.296

yCCS Decrease 0.758 hCCS No change 1.023
CCC2 Slight

decrease
0.906 ATP7A Increase 1.556
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Several genes known to be involved in homoeostasis of trace
elements, such as ATP7A, ATOX1 and MT1A (copper), and
TFRC (iron), ZIP1 and ZNT5 (zinc), produced changes in the
levels of respective elements. The knockdown of the copper
exporter ATP7A led to the most significant increase in copper
levels as expected from previous reports9,35. The knockdown of
another copper-exporting ATPase, ATP7B, did not change
copper levels, most probably because of the low ATP7B
expression in HeLa cells36. Downregulation of SLC31A1
(hCTR1), the high-affinity copper importer in mammalian
cells9, only slightly decreased copper levels, presumably because
of the availability of certain low affinity uptake systems37. The
identity of the low affinity copper transporter is unknown;
however, our screen identified several candidate transporters,
including Zip5, which lowered copper levels when down-
regulated. In addition, metallothionein (MT1A) was as an
important player in balancing copper under basal conditions.
This result is unexpected as metallothioneins are thought to be
involved in sequestration of excess copper38.

In addition to the already known proteins, our screen revealed
new regulators of copper homoeostasis. Knockdowns of IBTK,
CAMK2N2, DNAJC5, DNAJC17, ABCC3, ANKRD9 and
SLC6A4 resulted in elevation of intracellular copper. Both IBTK
and CAMK2N2 are kinase inhibitors, and their downregulation
resulted in a significant decrease in ATP7A protein levels.
Kinase-mediated phosphorylation plays a role in the trafficking of
ATP7A (Voskoboinik et al.39 and Veldhuis et al.40; however, roles
of Bruton tyrosine kinase or CAMK2 in ATP7A phosphorylation
have not been previously known or considered. It is interesting
that both kinases participate in major signalling pathways
involving a nuclear factor-kappaB41–43. These results suggest a
link between the stress–response pathways and a tight regulation
of copper homoeostasis.

The negative effect of ABCC3 downregulation on ATP7A
trafficking is an equally novel result. ABCC3 is an organic anion
and bile-acid transporter. Previously, treating hepatocytes
(HepG2) with copper resulted in an upregulation of ABCC3
(Song et al.44). Together, these results suggest that the bile-acid
transport and copper metabolism might be linked. The observed
increase in copper levels in response to dysregulation of lipid
metabolism further supports the idea of copper and lipid
homoeostasis being functionally interconnected. The down-
regulation of ABCC3 may also be affecting the organic anion/
bile-acid balance in HeLa cells, which might inhibit ATP7A
transport activity and copper-responsive trafficking, which are
also mutually dependent.

Downregulation of ANKRD9 (ankyrin repeat domain-
containing protein 9) produces a complex phenotype, which
includes fragmented TGN and apparent changes in ATP7A post-
translational modification and protein levels. The function of this
protein is not known, but it was suggested to play a role in lipid
metabolism45. Other ankyrin proteins are involved in membrane
protein trafficking/stabilization46,47. Thus, ANKRD9 may bind
to ATP7A and stabilize its TGN localization. Furthermore,
ANKRD9 induced a decrease in ATP7A protein levels and a shift
in ATP7A migration on SDS–polyacrylamide gel electrophoresis,
which could be a secondary effect of TGN fragmentation and may
alter the ability of ATP7A to efficiently pump excess copper out
of the cell.

In conclusion, we developed a sensitive high-throughput
method to profile trace elements in mammalian cells on a
genome-wide scale using ICP-MS. A total of 21,360 human gene
knockdowns were analysed for changes in trace elements in HeLa
cells. This approach detected many known genes involved in
transport and regulation of trace elements, and identified novel
genes that regulate the metabolism of selenium and copper.

More generally, this study uncovered fundamental differences in
the regulation of trace elements. Our results offer a valuable data
set that could be further used experimentally and mined by the
broader research community to uncover novel trace element-
dependent genes and processes.

Methods
Cell culture and screening conditions. Comparative analysis of several human
cell lines (HEK 293, HTC 116, Caco2 and HeLa, obtained from American Type
Culture Collection) was carried out with regard to their attachment and resistance
to washing. HeLa cells were chosen for subsequent experiments, because they had
higher levels of most analysed trace elements, showed high transfection efficiency
and sustained extensive washing (Supplementary Fig. 5A). The human siGenome
library from Thermo Fisher Scientific (formerly Dharmacon) was used in the study.
The siRNA screening procedure was based on the Dharmacon’s Wet Reverse
Transfection Protocol, version 2.0. Modifications were made for use with HeLa
cells. siRNA pools targeting 21,360 genes were used with 267 96-well plates. Eighty
such pools, transfected at 20 nM per well final concentration, were used per plate.

On the day of transfection, plates (96-well, V-bottom) with siRNA pools were
removed from the � 80 �C freezer and allowed to warm to room temperature.
OptiMEM medium and Dharmafect 1 reagent (final concentration 0.13 ml per well)
were added using Thermo Multidrop Micro liquid dispenser. Plates were placed on
an orbital shaker for 20 min at room temperature. Using a Biomek FX mixer
(Beckman Coulter), each master plate was mixed two times and 20 ml of the
siRNA/DF1/OptiMEM complex was transferred to each well of the tissue culture
plate. After completion of the transfer, HeLa cells were dispensed (2.5� 104cells
per well). Total transfection volume was 100ml. Immediately after plating, each set
of plates was placed at 37 �C in a 5% CO2 incubator.

ICP-MS analysis. Approximately 72 h after transfection, HeLa cells were washed
and acid digested. Medium was removed using a Biomek FX liquid-handling
station. Plates were rapidly washed three times with 100 ml per well of TE buffer
(10 mM Tris pH 7.4, 1 mM EDTA). We tested several washing buffers previously
used in ICP-MS studies (HEPES-bicarbonate, HEPES-citrate and TRIS-EDTA
(TE), all at pH 7.4)48,49 for optimal removal of the contaminating elements before
acid digestion and ICP-MS analysis (Supplementary Fig. 5B). Cells rapidly washed
with TE buffer repeatedly showed the most stable and consistent elemental signals,
so this buffer was chosen for the siRNA screen. Digestion mix (100 ml per well) was
added to all wells and contained 1.5% nitric acid (w/v), 1.5% hydrogen peroxide
(w/v) and 50 p.p.b. Ga as an internal standard. Finally, plates were placed in a
humidified incubator at 70 �C for 2 h. All digested plates were sealed to prevent
evaporation and stored at � 80 �C until ICP-MS analysis. ICP-MS analyses were
performed at the University of Nebraska-Lincoln Spectroscopy core facility
equipped with Agilent Technologies ICP-MS 7500cs (Santa Clara, CA) and a ESI
SC-4 high-throughput autosampler (Elemental Scientific Inc., Omaha, NE). The
unit could accommodate six 96-well plates. The SC-Fast sample introduction
system was modified to allow analysis of 100 ml samples by using a microperipump
(MP-2) to push the carrier solution (1.5% nitric acid) through an injection loop
(70 ml) at a flow rate of 70 ml min� 1. A second microperipump (MP-1) was used to
rinse the sample loop and load the samples onto the injection loop within 8–10 s.
The analysis used the octopole collision cell filled with 3.5 ml min� 1 of hydrogen
gas and 1.5 ml min- of helium with an argon carrier flow of 0.9 l min� 1 and argon
make-up flow of 0.15 l min� 1, and RF power of 1,500 W. An ICP-MS method was
optimized for the analysis of 18 elements (7Li, 11B, 23Na, 24Mg, 31P, 34S, 39K, 40Ca,
55Mn, 56Fe, 59Co, 60Ni, 63Cu, 66Zn, 75As, 78Se, 95Mo and 111Cd) in HeLa cells, with
71Ga as the internal standard. Calibrations were performed after analysing B3,000
samples. Instrument performance was verified by spiking a blank with 10% of the
standard stock mix. Replicate samples were on different plates, in which individual
knockdowns were located in the same position (well on the plate).

Data normalization and analysis. The data processing procedure is summarized
in Supplementary Fig. 2. First, we manually checked the ICP-MS signal for each
element in each plate (nine experimental elements and phosphorus). For each
element, to subtract noise, the average value of the five background wells
(individual outliers were identified and removed using Dixon’s Q-test) was
subtracted from the original signal for each gene knockdown in each plate replicate.
Second, in each plate, we used the average value of the control samples (scrambled
non-targeting RNA, scrRNA, outliers were also removed) to normalize signals for
all genes. As there were three replicates for each gene, normalized signals in each
replicate were sorted and outlier values were further removed (Dixon’s Q-test).
Third, an algorithm was developed that removed additional biases, including those
associated with ‘row slope’ effect (the signals of genes in one column were
significantly different from other columns for multiple elements) and cell number.
The first bias was corrected based on the average value of each column of a plate.
The second bias was corrected using the average of phosphorus, manganese,
selenium and zinc signals that appeared to be the most stable signals among all
elements analysed. For the resulting normalized data set, we used the average
values of each gene from the replicates and calculated fold change and the z-score
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that measures distances between the signal for each gene and the average signal for
all genes within the same plate (number of s.d. from the mean). The prediction
intervals for elements were as follows: Mg (� 3.33,3.34), P (� 3.36,3.36),
K (� 3.32,3.32), Mn (� 3.34,3.34), Fe (� 3.33,3.32), Cu (� 3.34,3.34), Zn
(� 3.35,3.35), Se (� 3.34,3.35) and Cd (� 3.30,3.30). The data are available
through the following website: http://www.gladyshevlab.bwh.harvard.edu/
ICPMS_Human.

RNA isolation and quantitative PCR. To evaluate the efficiency of siRNA
knockdown in HeLa cells, we performed real-time PCR analyses. HeLa cells were
transfected with the indicated siRNA or scrRNA control. Complementary DNA
was obtained using a Cells-to-cDNA kit (Ambion). Genomic DNA was removed
using a DNA removal kit (Ambion). Complementary DNA was obtained using the
oligo dT primer. Real-time PCR was performed using a Fast SYBR Green master
mix (Applied Biosystems). Primer sequences for the expression analysis were as
follows: KCNA1, 50-TTCTTCGACCGCAACCGGCC-30 and 50-AGCTATCTCGG
TGCCCAGGGT-30 ; RPL14, 50-AGGTTGGCCGGGTGGCCTAT-30 and
50-AGGCGCTGCTTTCTGGCCTG-30 ; SBP2, 50-GCAGGCAGAGCTGTCAG
GGC-30 and 50-TGGGCTCTCCCACCAGCTCC-30 . Special 18S ribosomal
RNA-modified primers (Ambion) were used as an internal control for data
normalization. We also compared the consequence of downregulation with the
individual and pooled DNAJC17 siRNAs, since knockdown of this gene showed the
strongest effect on ATP7A levels. These studies revealed that only one individual
siRNA (#2) decreased the ATP7A levels similar to the pool, whereas other
individual siRNA (and a combination of three out of four, #1, #3 and #4) had no
significant effect on ATP7A levels despite a significant decrease in the mRNA levels
for DNAJC17 (confirmed by real-time PCR). Thus, the effect of DNAJC17
knockdown on ATP7A may be indirect or confounded by other unknown factors.

X-ray fluorescence microscopy. HeLa cells were grown on 2� 2 mm2 silicon
nitride windows (Silson, Blisworth, UK) and transfected with siATP7A or scrRNA
control. Seventy-two hours after transfection, cells were washed three times in PBS
(pH 7.4) and fixed in 4% formaldehyde in PBS for 15 min. Windows were air dried
for elemental imaging. Samples were stored at room temperature until analysis.
Trace elements were mapped at the beamline 2-ID-E, advanced photon source,
Argonne National Laboratory (Argonne, IL) using a hard X-ray microprobe
(6–30 keV). Images were obtained by raster-scanning with resolution of 1 mm.
Full X-ray fluorescence spectra were recorded for each pixel using energy-
dispersive Vortex detector (SII Nanotechnologies, Northridge, CA). For
quantification, thin film standards NBS-1832 and NBS-1833 (National Bureau of
Standards, MD) were used.

Western blotting and immunohistochemistry. Modified version of the
Dharmacon’s Wet Reverse Transfection Protocol was used for the transfection of
HeLa cells. Dharmafect I reagent (0.4 ml per well) was diluted using OptiMEM
media (24.6 ml per well). Stock siRNA was mixed with OptiMEM to a final volume
of 10 ml (the final siRNA concentration is 20 nM per well). Both Dharmafect
I/OptiMEM and siRNA/OptiMEM solutions were mixed and added to each well of
an 8-well chamber (Millipore). Chambers were incubated for 30 min at room
temperature. HeLa cells were trypsinized and resuspended in antibiotic-free
complete medium. Cells (0.3� 105) were added to each well in a volume of 170 ml.
The chambers were placed at 37 �C in a 5% CO2 incubator. Sixty hours after the
transfection, 200 ml of antibiotic-free complete medium was added to each well.
Cells were fixed 72 h after the transfection using 3% paraformaldehyde at 37 �C for
12 min. Cells were washed with 1� PBS and blocked/permeabilized simulta-
neously for 12 min using 0.1% BSA/0.1% saponin in 1� PBS. Cells were washed
with 1� PBS and then incubated with appropriate primary and secondary anti-
bodies diluted in 0.1% BSA in 1� PBS (primary antibody: mouse anti-ATP7A
antibody 1:250 (Santa Cruz) and sheep anti-TGN46 1:300 (Genetex). Secondary
antibody: Alexa Fluor 488 goat anti-mouse antibody 1:500 (Invitrogen) and Alexa
Fluor 555 donkey anti-sheep 1:500 (Invitrogen). The glass slides were mounted
using Fluoromount G w/DAPI (Electron Microscopy Sciences). Images were taken
using a Zeiss LSM 510 confocal microscope and a 40X oil immersion objective. For
western blotting, cells were harvested, the pellet was resuspended in 30 ml of
Laemmli loading buffer, sonicated for 30 s and centrifuged for 15 min at 3,000 g at
4 �C. The supernatant was loaded to 8% SDS gel. Proteins were transferred to a
polyvinylidene difluoride membrane using CAPS buffer, pH 11.0. The membrane
was cut at 130 kDa and probed for Na/K-ATPase (1:10,000; Millipore) and ATP7A
(1:3,000; Santa Cruz). Goat anti-mouse IgG-HRP (1:10000, Santa Cruz) was used
as a secondary antibody and the membranes were developed using a SuperSignal
West Pico Substrate (Thermo Scientific).
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Supplementary Figure 1. Overview of the effect of siRNA on the elemental content of HeLa cells. A 

total number of genes showing significant increase (red) and decrease (blue) for each element is shown. 

Changes with standard scores (z-scores, derived from 3 replicates) above 5 were considered significant. 
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Supplementary Figure 2. An algorithm for processing the ionomics data. The ICP-MS data from the 

ionomics screen in HeLa cells was processed to remove bias. For each gene knockdown and element, we 

calculated standard scores (z-scores) and fold change. These data were further used for functional 

analysis. 
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Supplementary Figure 3. Efficiency of siRNA knockdown analyzed by real-time PCR. KCNA1, RPL14 

and SBP2 were identified in the screen and validated using 
75

Se labeling in HeLa cells (derived from 3 

replicates). Total RNA from HeLa cells transfected with the corresponding siRNAs was used for real-

time PCR analyses. scrRNA transfection was used as control. This figure shows gene expression changes 

normalized to control. One fold of standard variances for each bar were showed above. 
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Supplementary Figure 4. Characterization of genes that affect copper levels in HeLa cells. Following 

gene-specific knockdowns, HeLa cells were fixed and analyzed by confocal microscopy with antibodies 

against ATP7A (green) and the trans-Golgi network marker TGN46 (red). Scale bar: 25 µm. (b) 100x 

magnification images. ANKRD9 knockdown results in fragmented TGN and fragmented ATP7A staining 

pattern. Scale bar: 10 µm. (c) HeLa cells were transiently transfected with siRNAs, and cell lysates were 

analyzed by Western blotting. A representative blot is shown. A full blot is in Supplementary Figure 7.  
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Supplementary Figure 5. Assay development for high-throughput ionomics screening of human cells. 

(a) Standard score (derived from 3 replicates) for elemental ICP-MS profile of indicated human cell lines. 

Cells were grown to full confluence on 6-well plates in 10% serum-supplemented DMEM. Cells were 

washed 3 times in TE (10 mM Tris, 1mM EDTA, pH 7.4), followed by digestions with 1.5% nitric acid 

and 1.5 % hydrogen peroxide (50 ppb gallium was also added as an internal standard). Trace elements 

were analyzed by ICP-MS. The graph represents the number of standard deviations from the mean (z-

score). (b) Optimization of medium removal. HeLa cells were washed 3 times with HEPES-bicarbonate, 

HEPES-citrate, or TRIS-EDTA (TE), all at pH 7.4, digested and analyzed by ICP-MS. 
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Supplementary Figure 6. Effect of target down-regulation on ATP7A protein levels and 

electrophoretic mobility. Following gene knockdowns, HeLa cell lysates were analyzed by 

Western blotting. The blot was cut at 130 kDa; the upper part was immunostained for ATP7A 

and the lower part was immunostained for Na/K-ATPase. This figure shows the entire blot, and 

Fig. 4b its reduced version.  
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Supplementary Figure 7. Characterization of genes that affect copper levels in HeLa cells. HeLa cells 

were transiently transfected with siRNAs, and cell lysates were analyzed by Western blotting. This is a 

full blot that accompanies Supplementary Figure 4c.  
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Supplementary Table 1.  Biological processes associated with changes in iron levels. The 

table was generated using Gene Ontology analysis (Genesifter, Geospiza) for the set of genes 

down-regulation of which increased or decreased iron levels in cells with a z-score > 3. Increased 

iron levels are linked to more specific biologic processes, whereas iron depletion is linked to 

more global changes in cell. 

 
DOWN-REGULATED BIOLOGICAL PROCESSES 

Associated with iron elevation Associated with iron loss 

Ontology Genes 

total 

Ontology Genes 

total 

Generation of precursor metabolite and energy 29 Cellular component organization or biogenesis 134 

Sensory perception of mechanical stimulus 9 Cellular component organization 131 

Sensory perception of sound 9 Establishment of localization 126 

Regulation of G1/S transition of mitotic cell 

cycle 

8 transport 122 

G1/S transition check pooint 7 Organ development 71 

Mitochondrial transport 7 Organelle organization 71 

Mitotic Cell Cycle G1/S transition checkpoint 7 Cellular localization 64 

Regulation of cyclin-dependent protein kinase 

activity 

7 Establishment of localization in cell 63 

Ribonucleoprotein complex assembly 7 Cell cycle 57 

Cellular response to glucagon stimulus 6 Apoptosis 54 

Chloride transport 6 Programmed cell death 54 

Positive regulation of cell cycle arrest 6 Regulation of multicellular organismal 

process 

52 

Positive regulation of JUN kinase activity 6 Cell cycle progress 44 

Regulation of JUN kinase activity 6 Cell cycle phase 41 

Response to glucagon stimuus 6 Vesicle-mediated transport 40 

Protein heterotetramerization 5 Mitotic cell cycle 35 

Activation of JUN kinase 4 M phase 34 

Embryonic forelimb morphogenesis 4 Cytoskeleton organization 33 

Forelimb morphogenesis 4 Secretion 31 

G1 phase of mitotic cell cycle 4 Regulation of multicellular organismal 

development 

30 

Histone ubiquitination 4 Cell division 29 

Maintenance of protein localization to 

organelle 

4 Cellular component movement 27 

Nerve development 4 Organelle fission 26 

Neural crest cell development 4 Cell motility 26 

Neural crest cell differentiation 4 Cellular membrane organization 26 

Neural crest cell migration 4 M phase of mitotic cell cycle 26 

Organic cation transport 4 Mitosis 26 

Regulation of mRNA stability 4 Nuclear division 25 

Regulation of RNA stability 4 Response to abiotic stimulus 24 

Response to antibiotic 4 Cardiovascular system development 24 

T cell mediated immunity 4 Cell migration 24 

Activation of caspase  by cytochrome C 3 Circulatory system development 24 

Axon cargo transport 3 Secretion by cell 23 

Cellular respose to radiation 3 Microtubule based process 21 

Copulation 3 Cellular amine metabolic process 18 

DNA integration 3 Microtubule cytoskeleton organization 17 

DNA ligation 3 Regulation of system process 15 

Endothelial cell differentiation 3 Heart development 15 
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Glutamine metabolic process 3 Positive regulation of protein metabolism 15 

Maintenance of protein localization to nucleus 3 Tissue morphogenesis 14 

Negative regulation of cytokine biosynthesis 3 Chromosome segregation 14 

Nucleotide excision repair, DNA gap filling 3 Positive regulation of multicellular process 13 

Outflow tract morphogenesis 3 Golgi vesicle transport 13 

Quaternary ammonium group transport 3 Positive regulation of protein modification 12 

Response to vitamin D 3 Muscle tissue development 12 

Steroid catabolic process 3 Organelle localization 12 

Thymus development 3 Establishment of organelle localization 12 

Androgen biosynthetic process 2 Protein oligomerization 11 

Anterograde axon cargo transport 2 Striatal muscle tissue development 11 

Apoptotic cell clearance 2 Spindle organization 10 

Asparagine metabolic process 2 Proteosomal ubiquitin-dependent catabolism 10 

Assembly of splisosomal tri-snRNP 2 Mitotic prometaphase 9 

Betaine transport 2 Rho protein signal transduction 9 

Carnitine transport 2 Heart morphogenesis 8 

Cholesterol import 2 Meiotic cell cycle 8 

Cholesterol storage 2 Mitotic spindle organization 8 

Diacylglycerol metabolic process 2 Positive regulation of phosphate metabolism 8 

Dicotomous subdivision of an epithelial 

terminal unit 

2 Positive regulation of phosphorus metabolism 8 

DNA ligation involved in DNA repair 2 Positive regulation of phosphorylation 8 

Enteric nervous system development 2 Positive regulation of protein phosphorylation 8 

Establishment of mitotic spindle localization 2 Striatal muscle cell development 8 

Establishment of mitotic spindle orientation 2 Vesicle localization 8 

Establishment of spindle localization 2 Vesicle organization 8 

Establishment of spindle orientation 2 Body fluid secretion 7 

I-kappaB phosphorylation 2 Camera-type eye development 7 

Induction of apoptosis by oxidative stress 2 Cellular component assembly in 

morphogenesis 

7 

Mannose metabolic process 2 Establishment of vesicle localization 7 

Meiotic chromosome segregation 2 Heart contraction 7 

Mitochondrial respiratory chain complex 1 

assembly 

2 Membrane budding 7 

Muscarinic acetylcholine receptor signaling 2 Muscle fiber development 7 

NADH dehydrogenase complex assembly 2 Cardiac muscle tissue development 6 

Negative regulation of macrophage derived 

from foam cell differentiation 

2 Positive regulation of protein ubiquitination 6 

Neurotransmitter catabolic process 2 Protein heterooligomerization 6 

Optic nerve development 2 Regulation of action potential 6 

Positive regulation of fatty acid biosynthesis 2 Regulation of cellular amine metabolism  6 

Pre-microRNA processing 2 Response to hexose stimulus 6 

Production of miRNA involved in gene 

silencing 

2 Response to monosaccharide stimulus 6 

Protein destabilization 2 Retrograde vesicle transport. Golgi to ER 6 

Protein homotrimerization 2 Cardiac muscle contraction 5 

Regulation of apetite 2 Cardiac muscle tissue morpogenesis 5 

Regulation of cholesterol efflux 2 Catechol metabolism 5 

Retinal ganglion cell axon guidance 2 Catecholamine metabolism 5 

Ribosomal large subunit biogenesis 2 COPI coating of Golgi vesicle 5 

Ribosome assembly 2 Diol metabolic process 5 

Spindle localization 2 Golgi transport vesicle coating 5 

Sterol import 2 Mitotic sister chromatid segregation 5 

Sterol transmembrane transport 2 Muscle organ morphogenesis 5 
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Sulfur compound transport 2 Muscle tissue morphogenesis 5 

Trachea development 2 Phenol-containing compound metabolism 5 

V(D)J recombination 2 Response to glucose stimulus 5 

  Response to heat 5 

  Response to osmotic stress 5 

  Sister chromatid segregation 5 

  Ameboidal cell migration 4 

  Dopamine metabolic process 4 

  Miofibril assembly 4 

  Paterning of blood vessels 4 

  Peptide biosynthesis 4 

  Pigmentation 4 

  Positive regulation of ERK1 and ERK2 

cascade 

4 
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Supplementary Table 2. Distribution of genes, whose knockdown increases Cu or Fe levels, 

according to their standard scores (z-scores, derived from 3 replicates).  

 

z-score 2 3 4 5 6 7 8 9 10 

Cu  2324 876 317 110 43 18 10 7 3 

Fe 2301 764 239 61 13 1 0 0 0 
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Supplementary Table 3. Comparison of biological processes influencing copper and iron ionomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To generate this table, gene ontology analysis was performed for all genes down-regulation of which was associated 

with increased copper or iron levels (z-score above 4, derived from 3 replicates).  Biological processes common for 

copper and iron ionomes are indicated in italic.  The majority of processes were unique for each ionome.  

Copper Iron 

Biological Process 

Number 

of genes Biological Process 

Number 

of genes 

cellular macromolecular complex 

subunit organization 15 reproductive process 24 

cellular membrane organization 13 

generation of precursor metabolites and 

energy 12 

endocytosis 9 negative regulation of cell differentiation 9 

membrane invagination 9 cellular component biogenesis  7 

nuclear mRNA splicing, via spliceosome 8 lipid localization 7 

RNA splicing, via transesterification 

reactions 8 lipid transport 7 

RNA splicing, via transesterification 

with bulged adenosine as nucleophile 8 ribonucleoprotein complex biogenesis 7 

regulation of GTP catabolic process 6 canonical Wnt receptor signaling pathway 5 

regulation of GTPase activity 6 cellular response to extracellular stimulus 5 

cyclic-nucleotide-mediated signaling 5 G2/M transition of mitotic cell cycle 5 

elevation of cytosolic calcium ion 

concentration 5 

regulation of transmission of nerve 

impulse 5 

G-protein signaling, coupled to cyclic 

nucleotide second messenger 5 response to vitamin 5 

induction of apoptosis by extracellular 

signals 5 ribonucleoprotein complex assembly 5 

neuron apoptosis 5 

ribonucleoprotein complex subunit 

organization 5 

neuron death 5 cellular response to nutrient 4 

regulation of neuron apoptosis 5 cellular response to nutrient levels 4 

regulation of synaptic transmission 5 chloride transport 4 

regulation of transmission of nerve 

impulse 5 embryonic appendage morphogenesis 4 

ribonucleoprotein complex subunit 

organization 5 embryonic limb morphogenesis 4 

circadian rhythm 4 gene silencing 4 

ribonucleoprotein complex assembly 4 inorganic anion transport 4 

actomyosin structure organization 3 mitochondrial transport 4 
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Supplementary Table 4.  Transport/trafficking proteins down-regulation of which 

produces copper elevation with the standard score (z-score, derived from 3 replicates) > 4.  

Blue color indicates protein with known/predicted roles in intracellular protein or vesicle 

trafficking. The Table was generated using GeneSifter. 

 

z-score 

 Gene 

Identifier Gene Name 

14.247 NM_004886 Amyloid beta (A4) precursor protein-binding, family A, member 3 

10.242 NM_007332 Transient receptor potential channel, subfamily A, member 1 

9.493 NM_000052 ATPase, Cu++ transporting, alpha polypeptide 

6.744 NM_015525 Inhibitor of Bruton agammaglobulinemia tyrosine kinase 

6.512 NM_015064 ELKS/RAB6-interacting/CAST family member 1 

6.215 NM_002269 Karyopherin alpha 5 (importin alpha 6) 

5.978 NM_173160 FXYD domain containing ion transport regulator 4 

5.848 NM_002674 Pro-melanin-concentrating hormone 

5.658 NM_198822 ATP5L2 

5.6 NM_003786 ATP-binding cassette, sub-family C (CFTR/MRP), member 3 

5.481 NM_152701 ATP-binding cassette, sub-family A (ABC1), member 13 

5.429 NM_004547 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4, 15kDa 

5.308 NM_020845 Phosphatidylinositol transfer protein, membrane-associated 2 

5.216 NM_021168 RAB40C, member RAS oncogene family 

5.203 NM_016112 Polycystic kidney disease 2-like 1 

5.2 NM_014770 ArfGAP with GTPase domain, ankyrin repeat and PH domain 2 

5.125 NM_001680 FXYD domain containing ion transport regulator 2 

5.095 NM_001128 Adaptor-related protein complex 1, gamma 1 subunit 

5.003 NM_001834 Clathrin, light chain (Lcb) 

4.948 NM_016224 Sorting nexin 9 

4.932 NM_005959 Melatonin receptor 1B 

4.923 NM_018384 GTPase, IMAP family member 5 

4.883 NM_006827 Transmembrane emp24-like trafficking protein 10 (yeast) 

4.808 NM_018977 Neuroligin 3 

4.721 NM_003027 SH3-domain GRB2-like 3 

4.708 NM_004045 ATX1 antioxidant protein 1 homolog (yeast) 

4.699 NM_006395 ATG7 autophagy related 7 homolog  

4.686 NM_024723 FLJ23471 

4.663 NM_005856 Receptor (G protein-coupled) activity modifying protein 3 

4.522 NM_198686 RAB15, member RAS onocogene family 

4.437 NM_004541 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5kDa 

4.404 NM_178450 Membrane-associated ring finger (C3HC4) 3 

4.381 NM_012417 Phosphatidylinositol transfer protein, cytoplasmic 1 

4.372 NM_002564 Purinergic receptor P2Y, G-protein coupled, 2 

4.336 NM_173637 Solute carrier family 25, member 41 

4.33 NM_000830 Glutamate receptor, ionotropic, kainate 1 

4.328 NM_031431 Component of oligomeric golgi complex 3 

4.326 NM_017954 Ca++-dependent secretion activator 2 

4.305 NM_003627 Solute carrier family 43, member 1 

4.289 NM_000184 Hemoglobin, gamma G 

4.289 NM_016075 Vacuolar protein sorting 36 homolog  

4.286 NM_020783 Synaptotagmin IV 
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4.28 NM_003042 Solute carrier family 6 (neurotransmitter transporter, GABA), member 1 

4.202 NM_004305 Bridging integrator 1 

4.165 NM_001157 Annexin A11 

4.164 NM_030636 Endonuclease/exonuclease/phosphatase family domain containing 1 

4.162 NM_000841 Glutamate receptor, metabotropic 4 

4.153 NM_001293 Chloride channel, nucleotide-sensitive, 1A 

4.138 NM_016128 Coatomer protein complex, subunit gamma 

4.121 NM_198991 Potassium channel tetramerisation domain containing 1 

4.056 NM_004518 Potassium voltage-gated channel, KQT-like subfamily, member 2 

4.035 NM_004794 RAB33A, member RAS oncogene family 
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Supplementary Table 5. Biological processes associated with changes in copper levels. The 

table was generated using Gene Ontology analysis (Genesifter) for the set of genes down-

regulation of which changes copper levels in cells with a standard score (z-score, derived from 3 

replicates) above 3. 

Biological processes, downregulation of 

which is associated with copper elevation 

Biological processes, downregulation of 

which is associated with copper loss 

Ontology 

Genes 

total Ontology 

Genes 

total 

generation of precursor 

metabolites and energy 25 macromolecule localization 24 

response to inorganic substance 17 

cellular component assembly at 

cellular level 14 

lipid catabolic process 15 cell growth 6 

organic acid transport 15 maintenance of location 6 

carboxylic acid transport 14 regulation of cell size 6 

phospholipid metabolic process 14 maintenance of location in cell 5 

lipid modification 13 maintenance of protein  location 5 

lipid transport 12 

maintenance of protein  location in 

cell 5 

glycerophospholipid metabolic 

process 11 response to metal ion 5 

monocarboxylic acid transport 10 positive regulation of cell adhesion 4 

phospholipid biosynthetic process 10 protein-DNA complex assembly 4 

lipoprotein metabolic process 9 

protein-DNA complex subunit 

organization 4 

glycerophospholipid biosynthetic 

process 8 receptor-mediated endocytosis 4 

double-strand break repair 7 RNA localization 4 

fatty acid oxidation 7 establishment of RNA localization 3 

fatty acid transport 7 heart contraction 3 

lipid oxidation 7 heart process 3 

lipoprotein biosynthetic process 7 homophilic cell adhesion 3 

monocarboxylic acid catabolic 

process 7 lipid modification 3 

oxidative phosphorylation 7 mitotic prometaphase  3 

ATP synthesis coupled electron 
6 

monovalent inorganic cation 
3 
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transport homeostasis 

fatty acid  catabolic process 6 

negative regulation of response to 

external stimulus 3 

iron ion transport 6 nucleic acid transport 3 

mitochondrial ATP  synthesis 

coupled electron transport 6 

nucleobase, nucleoside,  nucleotide 

and nucleic acid transport 3 

nucleotide-excision repair 6 regulation of heart contraction 3 

protein lipidation 6 

regulation of inflammatory 

response 3 

long-chain fatty acid transport 5 regulation of pH 3 

meiosis I 5 response to calcium ion 3 

response to calcium ion 5 RNA transport 3 

cellular potassium ion transport 4 spermatid development 3 

chloride transport 4 spermatid differentiation 3 

heme metabolic process 4 transition metal ion transport 3 

histone ubiquitination 4 chloride transport 2 

multicellular organismal response 

to stress 4 filopodium assembly 2 

nucleobase, nucleoside and 

nucleotide interconversion 4 inorganic anion transport 2 

potassioum ion transmembrane 

transport 4 lipoprotein metabolic process 2 

reciprocal meiotic recombination 4 microspike assembly  2 

regulation of lipid catabolic 

process 4 response to pH 2 

response to dsRNA 4 sterol  biosynthetic process 2 

transcription-coupled nucleotide-

excision repair 4   

actomyosin structure organization 3   

alkene biosynthetic process 3   

CD4-positive, alpha beta T cell 

differentiation 3   

chromosome localization 3   

copper ion transport 3   
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establishment of chromosome 

localization 3   

fibrinolysis 3   

foam cell differentiation 3   

heme biosynthetic process 3   

icosanoid secretion 3   

icosanoid transport 3   

leukotriene  biosynthetic process 3   

macrophage derived  foam cell 

differentiation 3   

myofibril assembly 3   

neuroprotection 3   

nucleoside diphosphate metabolic 

process 3   

parturition 3   

preassembly of GPI anchor in ER 

membrane 3   

purine-containing compound 

transmembrane transport 

pyrimidine nucleotide  

biosynthetic process 

3 

3   

pyrimidine ribonucleotide  

biosynthetic process 3   

pyrimidine ribonucleotide  

metabolic process 3   

regulation of epidermal cell 

differentiation 3   

regulation of epidermis 

development 3   

regulation of receptor activity 3   

response to pain 3   

response to purine-containing 

compound 3   

retrograde transport, endosome to 

Golgi 3   
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steroid hormone mediated 

signaling pathway 3   

beta-amyloid metabolic process 2   

blastoderm segmentation 2   

cGMP-mediated signaling 2   

cholesterol storage 2   

chromosome organization 

involved in meiosis 2   

DNA ligation 2   

dsRNA fragmentation 2   

fat-soluble vitamin catabolic 

process 2   

fatty acid alpha-oxidation 2   

female meiosis 2   

gap junction assembly 2   

GTP  biosynthetic process 2   

meiotic prophase I 2   

myeloid dendritic cell 

differentiation 2   

negative regulation of appetite 2   

negative regulation of cell-matrix 

adhesion 2   

negative regulation of fibrinolysis 2   

negative regulation of  

macrophage derived  foam cell 

differentiation 2   

negative regulation of  response 

to food 2   

nucleotide phosphorylation 2   

pericardium development 2   
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Supplementary Table 6. Comparison of the ICP-MS data for Saccharomyces cerevisiae 

gene deletions producing significant changes of Fe or Cu levels and their orthologs in HeLa 

cells. Yeast genes producing statistically significant changes of copper or iron levels upon 

knockdown were selected from the database available at http://www.ionomicshub.org/ and the 

fold change was calculated using normalized ICP-MS value available at the website. Human 

orthologs of these yeast genes were identified through Ensembl database; and the ICP-MS data 

for these orthologs was taken from the dataset generated in the current study. The Z-score values 

for yeast data are defined in Yu and colleagues 
21

; the Z-score values for HeLa screen are as 

defined in the text. All the statistical results were derived from 3 replicates.  

Yeast-haploid Cu levels  HeLa cells Cu levels  

Protein (gene) name Fold 

change  

Moderated 

z-score  

Protein (gene) 

name 

Fold 

change  

z-score 

STP22 (YCL008C) 1.076* -4.219 TSG 101 1.04  0.914 

CHA1 (YCL064C) 1.101* -4.702 SDS 1.016 0.224 

   SDSL 0.979 -0.331 

TUP1 (YCR084C) 0.266 -5.980 WDR5 1.171 2.785 

RPP2B (YDR382W) 0.855 -3.589 RPLP2 0.953 -0.386 

SXM1(YDR395W) 0.793 -4.437 IPO7 1.195 1.685 

   IPO8 0.923 -0.997 

HPT1 (YDR399W) 0.947 -4.813 HPRT1 1.007 0.117 

NPP2 (YEL016C) 0.826* -3.435 ENPP1 0.958 -0.167 

   ENPP2 1.007 0.088 

   ENPP3 1.099 1.200 

   ENPP6 0.701 -3.189 

RPO41 (YFL036W) 0.904* -5.239 POLRMT 1.003 0.119 

AIR1 (YIL079C) 1.000* -5.068 ZCCHC7 0.972 -0.298 

PRK1 (YIL095W) 0.979* -4.799 AAK1 1.128 1.895 

   BMP2K 0.935 -1.585 

GRR1 (YJR090C) 0.427 -4.961 FBXL15 0.767  -4.961 

   FBXL4 1.020 0.324 

   LRRC29 (FBXL9) 1.329 5.559 

   FBXL16 1.107  1.123 

   FBXL14 1.002  -0.019 

SKY1 (YMR216C) 0.748* -3.810 SRPK1 1.030 0.358 

   SRPK2 1.115 1.627 

   SRPK2 (STK23) 1.288  4.232 

GSH2 (YOL049W) 0.991* -4.008 GSS 1.037 0.691 

PKH2 (YOL100W) 0.861* -5.039 PDPK1 0.985 -0.323 

http://www.ionomicshub.org/
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* outlier ICP-MS values were not included in the calculations; NR: non-reliable data due to wide 

range of values. Orthologs that result in similar effects on Cu or Fe ionomes in yeast and human 

cells are indicated in red. 

 

VPS16 (YPL045W) 0.958* -3.819 VPS16 1.003 0.045 

      

Yeast-haploid Fe levels  HeLa cells Fe levels  

name Fold 

change   

Moderated 

z-score  

name Fold 

change  

z-score 

DNM1 (YLL001W) 0.973* -3.661 DNM1L 1.001 0.056 

HCA4 (YJL033W) NR -4.287 DDX10 0.991 -0.141 

MTR4 (YJL050W) NR -3.608 SKIV2L2 0.940 -1.045 

   DDX60/FLJ20035  1.046 1.363 

   DDX60L/FLJ31033 0.986 -0.280 

MET30 (YIL046W) NR -4.450 FBXW11 1.004 0.141 

   FBXW7 0.926 -2.273 

   FBXW2 0.887 -3.510 

   BTRC 1.106 3.347 

LST8 (YNL006W) 0.986* -3.570 MLST8/NM_02237

2  1.026 

0.896 

CLA4 (YNL298W) 0.763* -3.818 LIMK1 0.990 -0.310 

   LIMK2 0.996 -0.158 

   TESK1 1.232 1.500 

   TESK2 1.092 0.780 

FUR1 (YHR128W) 1.159* -3.789 UPRT/MGC23937 1.126 2.644 
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