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ABSTRACT

Population genetic analysis is a powerful tool to understand how pathogens emerge and adapt. However, determining the genetic structure of
populations requires complex knowledge on a range of subtle skills that are often not explicitly stated in book chapters or review articles on
population genetics. What is a good sampling strategy? How many isolates should I sample? How do I include positive and negative controls in my
molecular assays? What marker system should I use? This review will attempt to address many of these practical questions that are often not readily
answered from reading books or reviews on the topic, but emerge from discussions with colleagues and from practical experience. A further
complication for microbial or pathogen populations is the frequent observation of clonality or partial clonality. Clonality invariably makes analyses
of population data difficult because many assumptions underlying the theory from which analysis methods were derived are often violated. This
review provides practical guidance on how to navigate through the complex web of data analyses of pathogens that may violate typical population
genetics assumptions. We also provide resources and examples for analysis in the R programming environment.

Characterizing the population biology of microbes and parasites
including genetically distinct groups such as insects, fungi, oomycetes,
nematodes, bacteria, or viruses is a complex task requiring subtle skills
that are often not explicitly stated in the scientific literature (Goodwin
1997; Grünwald and Goss 2011; McDonald 1997). For many reasons,
population genetics is a tremendously useful discipline with a long
history of application to plant pathology. For example, one can
establish where the likely center of origin of a plant pathogen is
located, which in turn allows harnessing of plant resistance genes
(Goss et al. 2014; Grünwald and Flier 2005; Stukenbrock et al.
2007; Vleeshouwers and Oliver 2014; Vleeshouwers et al. 2011).
Plant pathogens continue to emerge and reemerge and population
genetic analyses can be used to infer genetic patterns (subdivision,
bottlenecks, clonality, etc.) and processes (gene flow, migration,
mutation, genetic drift, etc.) of pathogen emergence. For example,
it is now clear that the sudden oak death pathogen, Phytophthora
ramorum, emerged repeatedly on two continents, most likely via
migration in association with shipments of ornamental plants
(Goss et al. 2009b; Grünwald et al. 2012). The human pathogen
Cryptococcus gattii arose recently in the North-Western United
States (Byrnes et al. 2010).Batrachochytrium dendrobatidis, causal
agent of the chytridiomycosis pandemic of amphibians, can be
traced back to the outbreak of a single clonal lineage (James et al.

2009). Yet other pathogens have been shown to emerge via
hybridization or speciation (Geiser et al. 1998; Giraud et al. 2010;
Goss et al. 2011; Stukenbrock et al. 2007). Population genetics can
also be useful to provide inferences on the degree of sexual out-
crossing by studying linkage among markers (Atallah et al. 2010;
Goss et al. 2014; Milgroom 1996; Milgroom et al. 2014).

This review is geared towards biologists who are interested in
learning the fundamentals of conducting scientifically rigorous
studies into the population genetics of microbial populations. This
review assumes that the reader has a basic knowledge of genetics. A
critical analysis of the preferred and minimum requirements for
tools, techniques and analyses typically used to describe patterns
and infer processes in populations of organisms is provided. At the
same time, we acknowledge that within the space constraints of a
review article not all aspects can be covered in detail. Finally, this
review provides resources for reproducing some of the analyses
shown here in the R programming environment (R Core Team
2016).

POPULATION GENETICS

Populationgenetics is the studyof thedistribution in space and time
of allele frequencies (patterns) resulting from certain evolutionary
forces or processes (Carbone and Kohn 2004; Milgroom 2015).
Characterization of allele frequencies and distributions in a population
enable inferences about processes (genetic drift, mutation, gene flow,
and natural selection), which have shaped the patterns observed for a
given population (e.g., clustering, differentiation, divergence, etc.)

†Corresponding author: N. J. Grünwald; E-mail: nik.grunwald@ars.usda.gov
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(Hartl and Clark 1997). For example, onemight find populations that
are moderately differentiated (Fig. 1A), poorly differentiated (Fig.
1B), or clonal (Fig. 1C) in nature (Table 1). A good population
analysis consists of asking relevant biological questions, sampling
individuals, determining frequencies of alleles at loci and using
statistical approaches to infer patterns and processes (Fig. 2). A
rigorous population genetic study requires a series of iterative steps
necessary for analysis (Fig. 2). We also refer the reader to a seminal
textbook on the population biology of plant pathogens that provides a
treasure of resources that go beyond the content of our review given
the space limitations, yet are highly complementary (Milgroom
2015). Most fundamental to a good study is the ability to formulate
and test biological hypotheses.

TEST BIOLOGICAL HYPOTHESES

Perhaps the single most important aspect of a good population
genetic study is the testing of specific hypotheses. Formulated
as questions, these might consist of: Are populations regionally

differentiated? Is this population introduced? Is there gene flow
among populations? Are there sink and source populations? What
is the center of origin or diversity? Are populations clonal, sexual
or mixed? Too many studies neglect the formulation of testable
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FIGURE 1
Three distinct scenarios depicting sampling of 20 individuals of a diploid organism with up to four alleles (black, blue, red, and yellow) per locus for

populations that are A, moderately differentiated, B, poorly differentiated, or C, are clonal across a hierarchy consisting of subpopulations (gray) and

populations (blue). Basic population genetic metrics on these three populations are provided in Table 1.

TABLE 1
Basic population statistics for the three scenarios presented in
Figure 1: highly differentiated populations (A), poorly differenti-

ated (B), and clonal populations (C)

Population N MLGa Hetb GST
c

A 80 10 0.538 0.143

B 80 6 0.513 0.007

C 80 6 0.588 0.069

a MLG 5 number of multilocus genotypes.
b Het 5 observed heterozygosity.
c GST 5 Nei’s measure of population differentiation for multiple allele
cases (Nei 1973).
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hypotheses and are thus rightly rejected in journals because they
merely describe genetic or genotypic diversity without answering
biological questions. To formulate testable hypotheses, we need to
understand the natural history of the organism.

KNOW YOUR ORGANISM

Knowing the genetics and natural history of the organism one
works with is fundamentally important (Fig. 2). For example,
knowing the organism spreads via air over long distances as opposed
to spreading more locally via water splash dispersal will result in
different expectations for testing hypotheses and sampling individ-
uals across the most appropriate spatial scales (Linde et al. 2002;
Mundt et al. 2009, 2011).

Similarly, knowledge of ploidy of an individual will influence
selection of an appropriate marker system or analysis method.
For example, a codominant marker system such as microsatellites,
sequences, or single nucleotide polymorphisms (SNPs) are a

preferred choice for diploid or polyploid organism (Grünwald and
Goss 2011; Grünwald et al. 2016b). In diploid, nuclear loci alleles
can be sequenced and show one (homozygous) or two (heterozy-
gous) alleles per locus.A pertinent example comes from sequencing
nuclear loci of the sudden oak death pathogen Phytophthora ramorum
to determine ancestry (Goss et al. 2009a). For haploid pathogens
sequencing of genes is simplified by the fact that only one allele is
found at a locus (Berbegal et al. 2013; Milgroom et al. 2014).

Observing sexual reproductive structures in nature will provide
an expectation that the organism is sexual (Goss et al. 2014;Milgroom
1996; Peever et al. 2004). However, populations exhibiting a mixed
mating system (e.g., involving both outcrossing and selfing)maypurge
the variation needed to infer a sexual mode of reproduction through
inbreeding, resulting in a situation where it becomes difficult to detect
if sexual reproduction occurs. Knowing that hybridizationmight occur
will result in selection of different analysis methods (see below).
Investigators should inform their analyses as much as possible by
deriving methods, sampling schemes, and hypotheses from prior

FIGURE 2
Summary of major steps in a population genetic analysis. The first step is to know your organism and generate hypotheses that inform the next step in the

process, experimental design. After genotyping populations, data should be summarized and hypotheses tested with more complex analyses. While the

focus of the analysis is to address biological questions, it is of central importance to consider quality control; ensure conclusions take into consideration quality

and limitations of the data and analyses. Completion of these steps will hopefully conclude in generating new knowledge, whereupon new hypotheses may

be generated.
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knowledge about the biology of the organism. Often, a small pilot
study will enable design of a more rigorous study.

HOW SHOULD I SAMPLE POPULATIONS?

All population genetic analyses start with sampling individuals
randomly from a population (Fig. 1). One of the biggest pitfalls in
conducting a population genetic analysis is to just pick a few isolates
off the shelves of your culture collection and request a few more
isolates from colleagues around the world without development of a
sound sampling strategy geared toward testing a specific hypothesis
or answering specific biological questions. Most importantly, the
individual samples are expected to be a random sample of the
population they should represent. Thus, sampling design can make
or break a study.

A sampling strategy should be developed based on what is known
about the biology of the pathogen (e.g., mode of spread, known
sexual/asexual cycles, local/regional/global distribution, etc.) and the
primary research question. For example, clonal populations do not
require asmany samples as sexual populations or populations that are
highly structured. A recent study was based on knowledge that the
brown rot pathogen Monilinia fructicola infects both blossoms and
fruit. This raised the question as to whether all fruit infections are
caused primarily by prior blossom infections (Everhart and Scherm
2015). This study required a hierarchical sampling at two dates
during flowering and fruiting, respectively. To measure the relative
contribution of immigration to populations, sampling over space
and time is needed (Zhan et al. 1998). For most marker systems, a
suggested sample might include around 10 to 20 individuals per
sample unit, e.g., subpopulation, and upwards of 25 to 30 individuals
per population (Milgroom 2015). Note, however, that sample size
considerations depend on many factors including the biological
question, ploidy, the marker system, the diversity expected, and the
statistical power required (Hale et al. 2012). For example, statistical
power to detect linkage disequilibrium requires larger sample sizes
(Brown 1975; Milgroom 2015). User-friendly software for opti-
mizing sampling strategy for common genetic study topics such as
hybridization, temporal sampling, bottlenecks, connectivity and
assignment is available (Hoban et al. 2013).

Another crucial aspect is the strategy of sampling across
populations. Ideally, populations should be sampled hierarchically
in order to assess population variation that may occur over different
spatial or temporal scales (Everhart and Scherm 2015; Grünwald
and Goss 2011; Grünwald and Hoheisel 2006; Kamvar et al. 2015b;
McDonald 1997; Zhan et al. 1998). Without a hierarchical sample
one cannot infer if variation is observed at the overall, population, or
subpopulation level. Figure 1 illustrates a hierarchical sample with
subpopulation and population level samples.

A less obvious aspect of sampling is whether we sampled a single
individual or a mixture of individuals. In mycology or microbiol-
ogy, this is typically attained by single-spore isolation or hyphal-
tipping of strains. If sampling does not isolate a single individual,
genotyping methods will result in a mixture of genotypes that
cannot be differentiated. The fundamental assumption of genotyp-
ing is that an individual, rather than mixtures of individuals, are
sampled and genotyped.

A final consideration might include the choice of outgroups or
sister taxa to include that can provide information on the ancestral
state for observed polymorphisms. For example, a recent study
included all Phytophthora clade 1c taxa to infer the origin and
evolutionary history of the Irish famine pathogen Phytophthora
infestans (Goss et al. 2014). In the absence of a close relative the
ancestral state of any locus cannot be inferred. Once a population
sample is in hand, a suitablemolecular marker needs to be chosen to
genotype individuals and assess allelic diversities.

CHOOSING AND USING MOLECULAR MARKERS

Molecular markers need to be chosen appropriately to be neutral,
reasonably polymorphic, reproducible, and provide insights at the
right evolutionary scale (Grünwald and Goss 2011). Markers with
high mutation rates such as microsatellites (also known as simple
sequence repeats or SSRs) provide insights into recent divergence
(Atallah et al. 2010; Baumgartner et al. 2010; Berbegal et al. 2013;
Dunn et al. 2014; Dutech et al. 2010; Goss et al. 2009b), whereas
mitochondrial, nuclear or other sequence loci provide inferences
about the more distant evolutionary history given the slower
mutation rates (Carbone et al. 2004; Goss et al. 2009a; Malvarez
et al. 2007; Schoebel et al. 2014; Stukenbrock et al. 2007).

One important aspect of genotyping is the reproducibility of
allele calling (Bonin et al. 2004). Often authors do not provide
information on how they address genotyping error. Marker systems
like random amplified polymorphic DNA, amplified fragment
length polymorphism, simple sequence repeats (SSR), or genotyp-
ing by sequencing (GBS) differ in regards to reproducibility
(Jones et al. 1997; Grünwald et al. 2016b). To avoid this pitfall, we
recommend replication of analyses on independent DNA extrac-
tions, PCR runs, electrophoresis runs, and/or sequencing runs. This
is ideally done on either all individuals sampled or a statistically
representative random subset of individuals. Furthermore, a set of
positive controls should be included in all steps of the analyses.
Good positive controls may consist of a panel of strains with known
genotypes that cover most of the range of alleles observed in the
population. Negative controls should also be included, particularly
for samples from obligate pathogens such as rusts or powdery
mildews to assure that genotyping is specific to the organism and

FIGURE 3

A genotype accumulation curve is useful in determining a threshold

needed to discriminate among a given percentage of unique individuals

given a random sample of n loci. n loci were randomly sampled 1,000

times in order to create the distribution using poppr in R with simple

sequence repeats data for populations of the potato late blight patho-

gen Phytophthora infestans (Goss et al. 2014; Grünwald et al. 2016a;

Kamvar et al. 2015a).
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does not amplify fragments from contaminants such as epiphytic
microbes. Inclusion of appropriate controls is just as important with
current deep sequencing technologies, such as RADseq and GBS
(Elshire et al. 2011; Baird et al. 2008; Grünwald et al. 2016b).

One practical issue arises with obligate pathogens such as downy
mildews or rusts that cannot be cultured and thus do not allow for
DNA extraction. These pathogens must be grown on a host and DNA
extraction thus often includes at least low levels of contamination with
nontarget organisms. Several approaches have been used to cope with
this issue. DNA can be enriched for the target pathogen by washing

spores off sporulating lesions to lower concentration of nontarget
DNA. PCR primers can be developed for amplification of species
specific loci (Ali et al. 2011).A referencegenomeof the organisms can
be developed where contamination is removed by filtering based on
sequence homology analysis (Baxter et al. 2010). GBS can readily be
used on obligate pathogens, particularly if a reference genome is
available (Summers et al. 2015).

Ascertainment bias should be avoided when developing markers
and will improve the applicability of the markers for other studies
(Schlötterer 2004). Ascertainment bias here refers to the fact that

FIGURE 4
Contrasting A to F, clonal and G to L, sexual populations based on multilocus simple sequence repeats data. These data are taken from published,

observed populations of the potato late blight pathogen Phytophthora infestans (Goss et al. 2014). From top to bottom we see histograms of total (A
and G) and clone-corrected (B and H) multilocus genotypes, resampled and observed index of association for total and clone-corrected data (C and I),
minimum spanning networks (D and J), dendrogram based on genetic distance (E and K), and clustering of individuals into populations using

STRUCTURE (F and L). The code to reproduce this figure is provided on github (https://github.com/grunwaldlab/popgen_review_examples).
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loci are chosen based on a nonrepresentative group of isolates such
that they are not variable in all populations, thus biasing the
population genetic inferences. Loci for any marker system should be
evaluated on a geographically diverse group of isolates. This bias is
typically avoided when knowledge of the natural history of an
organism is taken into consideration, as mentioned above.

The minimum number of markers that should be used in a
population genetic study varies with the genetic diversity of the
population, scale of the study, and type of marker used. For
example, clonal plant pathogens may exhibit low genetic diversity
and require more markers to detect allelic variation. Similarly, fine-
scale studies may require larger numbers of markers. The amount
of allelic variation also varies with the type of marker used: SSR
markers can have a large number of alleles at a locus while SNP
markers have a fixed number of allelic states. Thus, fewer micro-
satellite markers may be needed when compared with SNP markers
to achieve the same degree of resolution (Avise 1994;Grünwald et al.
2003; Schlötterer 2004). However, SSR markers are subject to
significantly higher levels of homoplasy as compared with SNP
markers.Agenotype accumulation curve, available in theRpackages
poppr and RClone, is a useful tool for determining if more markers
are needed (Arnaud-Haond et al. 2007; Bailleul et al. 2016; Kamvar
et al. 2014, 2015a) (Fig. 3). When using whole genome or reduced
representation genome sequencing, these considerations are less
important (Elshire et al. 2011; Baird et al. 2008; Grünwald et al.
2016b; Luikart et al. 2003).

DATA QUALITY AND FORMATTING

One of the most challenging aspects of conducting analyses of
populations is that there aremanyways toconduct the analysis relying
on many different data formats given the diversity of computa-
tional tools required. Moreover, after going down one route, further
analysis might be needed and most good analyses are inherently
iterative (Fig. 2). One open source approachmight be to conductmost
analyses in theRprogramming and statistical language (RCoreTeam
2016), for which many analysis methods are available in different
packages. R providesmany packages suitable for population genetics
(Jombart 2008; Jombart and Ahmed 2011; Kamvar et al. 2014;
Oksanen et al. 2013; Kamvar et al. 2015a), population genomics
(Knaus and Grünwald 2017), and network analysis (Csardi and
Nepusz 2006; Wickham 2009). While R is an extremely powerful
and adaptable environment, it can be intimidating to new users and
involves a steep learning curve. GenAlEx, a macro for Microsoft
Excel, is commonly used formanaging data andpreliminary analyses
(Peakall andSmouse2012), but is limited in the scope of analyses that

can be conducted as well as relying on proprietary software. The R
package poppr (Kamvar et al. 2014, 2015a) can import GenAlEx
formatted data providing a streamlined workflow into R. Further
tools provided in poppr allow export of data in formats compatible
with other commonly used population genetic software. A recent
special issue on population genetics in R has been published in
MolecularEcologyResources includes novel tools forworkingwith
variant call format (VCF) files, large SNP data sets, conducting
simulations, and educational resources (Archer et al. 2017; Kamvar
et al. 2017; Knaus and Grünwald 2017; Paradis et al. 2017; Parobek
et al. 2017; Stanley et al. 2017). R provides great publication-ready
graphing tools as exemplified byFigure 3.Because of these tools, it has
been possible to produce all the tables and figures necessary for
manuscripts entirelywithin R (Kamvar et al. 2015b; Rojas et al. 2017).
We also provide a primer on conducting analyses in R (Grünwald et al.
2016a; https://grunwaldlab.github.io/Population_Genetics_in_R/).

Despite best efforts, therewill undoubtedly be some form of error
when generating a data set. Before analysis, data should be checked
carefully for quality issues, including spurious allele calls, private
alleles,missing data or fixed alleles. Basic per locus summary statistics
allow inspection of the behavior of individual loci, revealing potential
abnormalities in the data.

Missing or null alleles, should be calculated per locus andmay be
indicative of technical error during amplification. Loci or samples
with missing data might have to be removed from analyses. It is
suggested that analyses be conducting by selectively removing loci
and/or samples with missing data to assess if inferences change
substantially. In some cases, missing data might be informative.
This occurs if the null alleles are restricted to occurrence in a certain
subpopulation, suggesting that lack of amplification is due to a
heritable mutation in the primer-recognition site flanking the
amplified locus. Missing data are also a considerable problem with
GBS data where read depth per locus is very variable andmany loci
lack any sequence reads (Grünwald et al. 2016b). Given that this
technology is rapidly evolving, it is too early for recommendations,
but researchers should make sure missing data or imputed data do
not bias their inferences.

GENOTYPIC DIVERSITY

A useful first analysis is the determination of basic diversity
statistics including the calculation of genotypic diversity, evenness
and richness. Diversity measures such Stoddart and Taylor’s index
G (Stoddart and Taylor 1988) or Shannon-Wiener index H’ (Shannon
and Weaver 1949) measure genotypic diversity, which combines both
aspects of evenness and richness. Evenness indices measure how
uniformlygenotypes are distributedwithin apopulation,while richness
is ameasure of the number of genotypes observed regardless of relative
abundance (Ludwig 1988). Genotypic diversity is an important metric
for clonal or partially clonal populations often encountered with
microbes.

Authors are often interested in comparing populations with unequal
samples sizes and incorrectly divide a given index of diversity by
sample size n as follows for the Shannon-Wiener or Stoddart and
Taylor indices, respectively, H’/ln(n) or G/n. However, this scaling is
inappropriate as the index decreases to 0 as n increases to infinity. A
more appropriate correction is the number of genotypes observed (g) or
expected by rarefaction (Grünwald et al. 2003): H’/ln(g) or Stoddard
and Taylor’s G/g. Since diversity comprises both richness and
evenness, scaling by g thus reduces diversity to a simple measure of
evenness.

POPULATION STRUCTURE

When we talk about population structure we are interested in
describing the pattern of genetic relatedness among different

BOX 1

HARDY-WEINBERG EQUILIBRIUM

In diploid populations experiencing random sexual mating, the

allele frequencies in the population can be used to predict

genotype frequencies at single loci (i.e., combinations of alleles)

(Hartl and Clark 1997). This equilibrium is met in populations

where mutation, migration and natural selection are absent

and whose size is large enough such that genetic drift is

inconsequential. Like the Wright-Fisher model, one assumes

that generations are nonoverlapping and focusing on a single

locus, which has two alleles. A strength of this equilibrium is that

a population may deviate from this equilibrium for many

generations, but with one generation of satisfying these

assumptions, this equilibrium can be restored. This equilib-

rium was originally formulated independently by G. H. Hardy

and W. Weinberg and published in 1908.
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perceived groups (e.g., populations or subpopulations). These groups
can be defined a priori based on our knowledge of the biology or can
be inferred a posteriori based on various clustering methods. It is
suggested to use both methods as they get at the same question from
two sides of the same coin based on either our prior knowledge of the
system or assuming no prior knowledge. When defining groupings a
priori one often uses geographic regions, treatments (such as different
hosts or fungicide applications), or time periods (e.g., years).
Populations are then analyzed for genetic variation within and
among these predefined groups. Typical analyses across a spatial or
temporal hierarchy might include analysis of molecular variance
(Excoffier et al. 1992) or population differentiation based on
fixation indices (Weir and Cockerham 1984). Below, we provide a
discussion of the relative merits and trade-offs of using model-
based, distance-based, and ordination-based clustering methods.

Several methods exist to infer clusters or subpopulations from a
sample a posteriori. Some of these tools make the assumptions that
populations are sexual in nature (e.g., STRUCTURE; Pritchard et al.
2000), while other methods are model free (e.g., K-means clustering,
ordination, etc. discussed below). The software STRUCTURE has
become a popular tool to make inferences about the number of groups
which may exist in a sample of genotyped individuals, as well as
what proportion of each individual originated from these groups
(i.e., admixed individuals) (Pritchard et al. 2000). STRUCTURE is

amodel based statistical clusteringmethod implemented in aBayesian
framework to infer the population membership of individuals (Falush
et al. 2003; Hubisz et al. 2009; Pritchard et al. 2000). STRUCTURE
plots, showinggenetic admixture as stackedbar charts for an individual
based on inferred grouping, are now a common component of
population genetic analyses (Fig. 4F and L). The optimal number of
clusters may be determined based on a post hoc test (Pritchard et al.
2000) or amore formal test (Evanno et al. 2005). Themodel employed
assumes Hardy-Weinberg equilibrium (Box 1) as well as a lack of
linkage disequilibrium among markers, such that each allele at each
locus of each genotype is an independent draw from its frequency
distribution (Milgroom 1996; Grünwald and Goss 2011). For clonal
or populations with mixed reproduction (e.g., sexual and asexual), we
suggest using model free clustering methods.

Several model free alternatives to STRUCTURE are available
and are generally the preferred choice for inferring population
structure in clonal populations. These methods range from clustering
individuals based on a genetic distance (Box 2) to some form of
ordination. Dendrograms based on pairwise genetic distance with
bootstrap support are themost traditional of these techniques (Fig. 4E
and K). Minimum spanning networks (MSN) are another way to
visualize genetic relatedness among individual multilocus genotypes
(MLGs) or haplotypes represented by size of the node and genetic
distances among MLGs shown with connecting branches (Fig. 4D

BOX 2

CHOOSING A GENETIC DISTANCE

Clustering methods including minimum spanning networks and bootstrapped dendrograms (or ‘trees’) rely on the calculation of a genetic

distance matrix that summarizes the relatedness between individuals or populations. The choice of genetic distance to use can have a

profound effect on the result (Hartl and Clark 1997; Kosman and Leonard 2005; Weir 1996). To properly choose a genetic distance, one

must consider the scope (individuals or populations), marker type, ploidy of the study organism, and any underlying assumptions about

biological processes that lead to variation such as drift and mutation.

Distances between individuals: Inter-individual distances are computed without any knowledge of population structure and can be used

for clustering, creating dendrograms, and variance partitioning methods such as analysis of molecular variance. For a model-free distance

applicable for haploids and diploids with codominant markers, Kosman and Leonard (2005) provide a detailed comparison of the Dice,

Jaccard, and simple mismatch distance. They recommend the use of a simple mismatch distance (aka Manhattan distance), which is

represented as the fraction of mismatched alleles between two individuals, and is implemented in several programs including the R

packages poppr, mmod, and PopGenReport (Adamack and Gruber 2014; Kamvar et al. 2014; Winter 2012). The main advantage of this

distance is that it is easily interpretable, despite it not having any biological meaning. It should be noted that GenAlEx also calculates a form

of this distance, but it differs in that homozygotes that share no alleles at a locus are further apart than a homozygote and heterozygote

sharing no alleles at a locus (Kosman and Leonard 2005; Smouse and Peakall 1999). Model-based distances depend primarily on the type

of marker used. For dominant markers derived from restriction fragments, the restdist program in Phylip is appropriate as it assumes a

nucleotide substitution model for the restriction sites (Felsenstein 2004; Nei and Li 1979). Distances for sequence data are easily calculated

using one of the nucleotide substitution models present in the dist.dna() function in the ape R package (Paradis et al. 2004), but are only

applicable to haplotype data. For simple sequence repeats (SSR) data, if one can assume that the alleles mutate in a stepwise fashion,

Bruvo’s distance, as implemented in poppr, polysat, and Genodive is appropriate for all ploidy levels (Bruvo et al. 2004; Clark and Jasieniuk

2011; Kamvar et al. 2014; Meirmans and Van Tienderen 2004). Calculating genetic distance for polyploid data are challenging because of

ambiguity of heterozygous genotypes (e.g., a tetraploid heterozygote with alleles A and T could be ATTT, AATT, or AAAT). Bruvo et al.

(2004) addressed this with three models that account for allelic ambiguity, all of which are implemented in both polysat and poppr. For

polyploid SSR data that doesn’t follow a stepwise mutation model one can use the methods implemented in the meandist.matrix2()

function in polysat or turn Bruvo’s distance into the simple mismatch distance by multiplying all fragment lengths by 1,000 as demonstrated

in Metzger et al. (2015).

Distances between populations: Population-based distances first assume that you have some knowledge of the population structure.

Model-free methods include Prevosti’s distance (Prevosti et al. 1975) (absolute differences between alleles) or Rogers’ distance (Rogers

1972) (Euclidean), whereas Edwards’ angular distance (Edwards 1971) (Euclidean), Reynolds’ coancestry distance (Reynolds et al. 1983)

(Euclidean), and Nei’s 1978 distance (Nei 1972, 1978) all assume differences arise via genetic drift. Note that Nei’s distance additionally

assumes that mutations arise via an infinite alleles model. These methods are available in the R package adegenet and poppr (Jombart

2008; Kamvar et al. 2015a). All the population-level distances are based on population-level allele frequencies, which are readily obtained for

haploids and diploids in several programs. For clonal populations, because population frequencies can be skewed due to the presence of

repeated genotypes, it is recommended to calculate allele frequencies from clone-corrected data or by using a round-robin approach as

implemented in both RClone and poppr (Arnaud-Haond et al. 2007; Bailleul et al. 2016; Kamvar et al. 2014, 2015a). For autopolyploid data,

one can calculate frequencies in the polysat R package.
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and J). An MSN provides a network of MLGs (called nodes or
vertices) connected by lines (or edges) that reflect the genetic distance
between nodes (Excoffier and Smouse 1994). Both reticulation, in
cases with several possible connections due to homoplasy, re-
combination or hybridization, complicate rendering of MSNs and
more detail can be found in the book authored by Milgroom (2015).
Networks with reticulation provide the ability to show clusters of
genetically like individuals (Kamvar et al. 2015a).

A more recent, rapidly adopted model-free ordination technique
called discriminant analysis of principal components, can be used to
visualize population structure (Jombart et al. 2010). This analysis
can begin with identification of groups within the data based on
K-means clustering. By reducing the dimensionality of the data
to select principal components, one can then determine how well
the data explain predefined groups via discriminant analysis on an
unlimited number of markers, maximizing the variation among
groups, while minimizing the within-group variation. Results are
typically shown in a two-dimensional ordination scatter plot for the
first two principal components.

CLONAL POPULATIONS VIOLATE SOME

COMMON ASSUMPTIONS

Clonal or partially clonal species provide some complications for
population genetic analysis commonly encountered in plant pathol-
ogy and microbial ecology. Most importantly, many assumptions
made during analysesmight beviolated.Genetic theorywas built on
idealized population such as theWright-Fisher model that make the
mathematical analyses feasible (Box 3). For many plant pathogens
that may have both clonal and sexual reproduction, analyzing data
both before and after clone correction can provide insight into
the contributions of each reproductive mode to genetic structure
of the resulting population. Figure 4 reveals some differences of
populations of the potato late blight pathogen Phytophthora infestans
in clonal (left) versus sexual (right) populations (Goss et al. 2014).
Clone correction collapses samples into one observationpermultilocus
genotype (Fig. 4B and H). These types of comparisons are recom-
mended for all microbial populations that may have both a sexual and

asexualmode of reproduction. Several groups have developed tools for
working with clonal organisms (Ali et al. 2016; Arnaud-Haond et al.
2007; Bailleul et al. 2016; Kamvar et al. 2014, 2015a).

THE SPECIAL CASES OF RECOMBINATION

AND HYBRIDS

Recombination is the independent assortment of DNA sequences
between different genomes, typically through sexual recombina-
tion, but potentially also through hybridization or horizontal gene
transfer. When recombination occurs, a single haplotype can have
two DNA regions with different ancestry where there is no single
evolutionary history of descent. Methods to detect recombination
include phylogenetic incompatibility testing between loci using the
four-gamete test (Hudson and Kaplan 1985) or network analysis with
emphasis on finding reticulation indicative of different ancestries
(Milgroom et al. 2014; Posada andCrandall 2001). In all cases, several
methods should be used to determine recombination including tree and
network methods (Woolley et al. 2008).

BOX 4

SUGGESTED APPROACHES BASED ON COMMON PITFALLS

ENCOUNTERED IN POPULATION GENETIC STUDIES

� Test hypotheses. Mere description of genotypic diversity does not

suffice for publication in most journals. Researchers should strive

toward testing rigorous, biological hypotheses based on the current

knowledge of the biology of the organism.

� Know your organism and design sampling strategies accord-
ingly. A hierarchical sampling is typically most informative for sexual

populations and provides critical insights as to how genetic diversity

is partitioned among (sub)populations (or strata, clusters, groups,

etc.). In contrast, sampling clonal populations will not necessar-

ily require a hierarchical sampling.

� Provide evidence that allele calls are reproducible. This is

particularly important for any marker systems that might be

subject to contamination, PCR error, electrophoresis error (e.g.,

obligate pathogens, random amplified polymorphic DNA, amplified

fragment length polymorphism, etc.), or bioinformatic allele calling

errors (genotyping-by-sequencing, RADseq, resequencing). This is

particularly important for the current technology, namely whole

genome or reduced-representation genome sequencing, given

issues with missing allele calls, sequencing error, and imputation.

� Understand the assumptions of each analysis method. For
example, STRUCTURE (Pritchard et al. 2000) assumes Hardy-

Weinberg equilibrium (Box 1) and that markers are unlinked, an

assumption that is violated in clonal populations. While assumptions

can be violated to some degree, authors should investigate if results

are sensitive to violation of assumptions by using independent

model free methods (e.g., minimum spanning networks). Clonality

requires analyses with and without clone-correction.

� Avoid redundant analyses. Showing the same figures or tables

analyzed in several different ways for analogous methods is redun-

dant. For example, it is not necessary to show analogous clustering

methods (K-means clustering, genetic distance-based dendrogram,

STRUCTURE plot, minimum-spanning-network, etc.) in multiple

figures and/or tables. Ideally, each figure or table should test non-

identical (but if appropriate, related), specific hypothesis. Conversely,

during exploratory data analysis, conducting all possible analyses is

encouraged.

BOX 3

THE WRIGHT-FISHER MODEL

A basic concept in population genetics is the Wright-Fisher

model (Hartl and Clark 1997; Wakeley 2008). Many of the

statistical analyses employed in population genetics make

assumptions that a population is evolving as a Wright-Fisher

population or test for deviations from this model. In its simplest

form, it consists of a single locus with two alleles in a population

of constant finite size and does not incorporate selection or

mutation. At a specified time interval (i.e., one season, one

generation) all individuals randomly mate and then die, leaving

only the new, nonoverlapping generation. Through the process

of random mating one allele may produce more offspring in one

generation due to drift. Due to the finite population size, this

means that the other allele must decrease in abundance to

accommodate the other’s increase. Through time one allele

eventually might become extinct resulting in the system

moving to a state of fixation, where only one allele exists.

Because this is a stochastic model it is frequently proposed

as a null hypothesis when testing for other scenarios, such as

whether selection has favored an allele. This model is named

after Sewall Wright and Ronald Fisher, two individuals who set

much of our foundation in theoretical population genetics.
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In this review, we define a hybrid organism as offspring derived
from two different species (Stukenbrock 2016). Hybrids can inmost
cases be recognized for diploid or polyploid species by having two
(instead of one) most common recent ancestors. This hybrid state
can be detected by sequencing and cloning genetic loci and showing
polyphyletic ancestry. For example, the hybrid species Phytoph-
thora andina shows independent segregation of haplotypes at
nuclear loci that do not share the same most recent ancestor which
can only be explained by a hybrid origin (Goss et al. 2011). In-
creased heterozygosity is typically also observed. The story can
however be more complex. Following the process of hybridization,
any hybrid can segregate into different lineages that gradually loose
portions of the parental genomes and might eventually revert to a
diploid state. At this state, detection of a hybrid might be more
difficult as the signal of alleles deriving from different ancestral
parents might be lost across large parts of the genome. Finally,
horizontal gene transfer (HGT) can be seen as a similar case where
a DNA sequence with unrelated ancestry is inserted into a non-
homologous genome.

RESOURCES

This review isaccompaniedwithweb-based resources to reproduce
some of the analyses discussed above that can be conducted in R. The
code to reproduce Figure 4 is provided on github (https://github.com/
grunwaldlab/popgen_review_examples). A more extensive primer
on conducting population genetics in R is available online
providing numerous examples on how to reproduce other aspects
of thework presented in this paper (Grünwald et al. 2016a; https://
grunwaldlab.github.io/Population_Genetics_in_R/).

CONCLUSIONS AND OUTLOOK

In closing, it is hoped that the reader finds this review useful in
designing and conducting rigorous analyses of the genetic structure
of populations. Including hypothesis-driven research, a good sam-
pling strategy based on knowledge of the biology, combined with
rigorous controls and careful data analysis will provide the basis for
good population genetic research. Box 4 provides a quick overview
of the most notable pitfalls encountered most often in the literature.

Two aspects that were not covered here are gaining rapid prom-
inence. First, coalescent analyses provide powerful tools that go
beyond the scope of this review yet provide complementary ap-
proaches to those discussed here (Carbone et al. 2004; Carbone and
Kohn 2001; Drummond et al. 2005; Goss 2015; Goss et al. 2009a;
Grünwald and Goss 2011; Hudson 1990). Second, the field of
population genetics is now increasingly relying on high throughput
sequencing technologies to genotype individuals at thousands of
SNPs using for example GBS or RADseq (Andrews and Luikart
2014; Davey et al. 2011; Elshire et al. 2011; Grünwald et al. 2016b;
Luikart et al. 2003; Vinatzer et al. 2014;Weigel andNordborg 2015).
With GBS, scientists must rethink their toolbox given a range of new
challenges such as removal of linked SNPs, massive amounts of
missing data, imputation, ensuring appropriate allele calls, and use of
reference genomes among others (Grünwald et al. 2016b).
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