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Tomato spotted wilt virus (TSWV) is an emerging pathogen with wide host 

range and one of the most important viruses of plants. Information regarding 

processing of negative single stranded RNA viruses such as TSWV in the RNA 

silencing pathway remains limited. In nature TSWV is only transmitted by thrips 

as vectors and since infection occurs in both thrips and plants, an experimental 

system to transmit using thrips and the detection of TSWV were established. In 

order to understand the processing of TSWV in the RNA silencing pathway, 

Arabidopsis thaliana as a model plant was used in the genetic analysis against 

TSWV. Core components of the RNA silencing machinery tested were Dicer-like 

proteins(DCLs), RNA dependent RNA Polymerases (RDRs), and Argonaute 

proteins (AGOs).  Results suggest DCL4 and DCL2 proteins are involved in the 

recognition and processing of TSWV. RDR1 is needed for the amplification of 

siRNAs derived from TSWV. AGOs protein levels remain unaffected after TSWV 



 

inoculation compared to mock inoculated plants suggesting that degradation by 

TSWV does not occur.  

It is well known that plant viruses encode suppressors of RNA silencing to 

facilitate plant infection and TSWV encodes the Non-Structural-small protein 

(NSs) whose mechanism of suppression has not been elucidated. NSs protein 

from TSWV was cloned from viral RNA and tagged with a 6HIS-3xFLAG tag at 

the C terminus for detection (NSs-HF). In transient assays activity of NSs as a 

suppressor of RNA silencing was corroborated by preventing silencing of green 

fluorescent protein (GFP) at three days post infiltration (dpi). Infectious clones of 

TSWV are not available and to determine the mechanism of suppression, NSs-

HF was introduced in a previously described inactive model virus Turnip mosaic 

virus (TuMV-GFP-AS9) which has an inactive suppressor a does not infect wild 

type plants. The rescue of pathogenicity of this virus was observed after GFP 

detection under UV light and the presence of the NSs protein by western blotting. 

These experiments establish a foundation to study TSWV within the RNA 

silencing pathway and are the basis for future experiments to understand the 

mechanism of suppression of RNA silencing by TSWV. 
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INTRODUCTION 

World’s population is around 7.3 billion and is projected to reach 9.7 billion 

by 2050 (United Nations, 2015). To feed that population with today’s technology 

seems almost impossible without compromising the environment. Changes are 

needed in the production systems focusing in sustainability for future generations 

and the planet. In order to improve today’s technology advances in sciences are 

needed to elucidate important pathways and missing information. 

Available arable land, erosion and water including high cost of supplies 

are abiotic factors affecting agricultural production. Biotic factors as damage by 

insects, weeds and diseases can also present a threat to agricultural production. 

Combination of biotic factors and abiotic factors such as climate change also 

affect the roles of vectors and compromise the immune responses of plants to 

plant pathogens (Bevan et al., 2017) 

Plant pathogens and the diseases they cause are the origin of significant 

losses in valuable food crops throughout the world. Diseases account for at least 

10% of crop loss globally and are partially responsible for the suffering of 800 

million people who lack adequate food sources (De Wolf and Isard, 2007). 

Viruses are among the most agriculturally important and biologically 

intriguing plant pathogens. Serious economic losses are associated to viral 

diseases by reducing yield and quality of agricultural products. Viruses are 

relatively simple genetic entities but still little is known about the mechanisms 
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they use to hijack and sequester host functions in order to favor their own 

replication (Kang et al., 2005).  

DISEASES CAUSED BY TOMATO SPOTTED WILT VIRUS 

The spotted wilt disease of tomato is the representative disease caused 

by Tomato spotted wilt virus (TSWV) and its transmission by western flower 

thrips Frankliniella occidentallis (Sherwood et al., 2009). TSWV and its 

transmission by thrips insects was initially associated and described in Australia 

around 1919 (Adkins, 2000; Jones, 2004; Scholthof et al., 2011).  

TSWV has a global distribution and infects more than 1000 plant species 

in more than 70 families including both crops and ornamentals (Margaria et al., 

2014). TSWV unique interaction with thrips is of exceptional importance since 

infection occurs in both thrips and plants (Gilbertson et al., 2015).  Losses 

associated with this disease exceeded tens of millions dollars and for the US only 

in a 10 year period losses have ascended to 1.4 billion dollars (Rotenberg et al., 

2015).  

Symptoms of the disease vary with the host. The most common symptoms 

are yellowing in leaves, stunting of plants, reduced quality of fruits and 

sometimes necrotic/chlorotic rings in leaves, stems and fruits (Scholthof et al., 

2011; Oliver and Whitfield, 2016). Some ornamental plants and some weeds are 

asymptomatic or present weak symptoms. Special attention should be given to 

alternative hosts of TSWV also known as “green bridges”, where TSWV and thrip 

species may overwinter for the next season (Jones, 2004).  
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TSWV is not transmitted through seeds or mechanical contact in field 

conditions (Scholthof et al., 2011). The only mode of transmission is through 

insect vectors (thrips) (Sherwood et al., 2009). For experimental purposes, and 

due to lack of infectious clones TSWV can be transmitted through mechanical 

inoculations (Mandal et al., 2008). 

Management strategies of the disease are focused mainly in the vector 

and avoiding introduction of TSWV to new fields. Control of thrips is particularly 

difficult because of their small size and preference for protected places as petals. 

In addition, extreme polyphagy, rapid development of resistance to insecticides, 

fast generation of multiple populations and long distance movement when 

winged adults are present also complicate management (Gilbertson et al., 2015) 

Crop rotations are not effective in the management of this disease 

because TSWV has also wide host range and thrips are polyphagous. 

Resistance cultivars are effective but available effective resistance may not be 

present for some crops or quickly overcome by natural variation of TSWV (Jones, 

2004).  

 

TOMATO SPOTTED WILT VIRUS GENOME ORGANIZATION AND 

REPLICATION 

TSWV belongs to the genus Tospovirus in the family Bunyaviridae 

commonly known to infect vertebrates and invertebrates (Hedil and Kormelink, 

2016). All Bunyaviridae species feature genomes composed of three RNA 
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segments encoded in a negative sense orientation and sometimes in an 

ambisense orientation (Kormelink et al., 2011). The genus Tospovirus is unique 

among the family because infects both thrips and plants (Oliver and Whitfield, 

2016). After a century of TSWV’s first detection and 30 years of intensive 

molecular research, TSWV is among the top 10 most economical, destructive 

and scientifically important plant viruses (Scholthof et al., 2011). 

 

 

Figure 1.1 TSWV genome organization and replication strategies. Arrows show 
orientation of genes and black squares hairpin-like structures as terminators of 
transcription (Ocampo Ocampo et al., 2016) with permission. 
 

The genome of TSWV consists of three single stranded RNA segments 

denoted L, M and S according to their size L (~8.9 Kb), M (~4.8 Kb), S (~2.9 Kb) 

respectively (Turina et al., 2016). The L segment encodes a RNA dependent 

RNA polymerase (L) in a negative sense orientation in the viral or genomic RNA 

(Figure 1.1 Segment L). The M segment encodes two proteins in an ambisense 

orientation, the GN-GC glycoprotein precursor encoded in a negative orientation 
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while the NSm movement protein is encoded in a positive sense orientation 

(Figure 1.1 Segment M). The S segment also encodes two proteins in an 

ambisense orientation, the nucleocapsid protein (N) in negative sense orientation 

and the NSs protein in a positive orientation (Figure 1.1 Segment S) (Kormelink 

et al., 2011; Oliver and Whitfield, 2016; Turina et al., 2016). 

TSWV virions are spherical and measure from 80 nm to 120 nm (Adkins, 

2000). Compared to other plant viruses TSWV virions have a phospholipid 

membrane embedded with glycoproteins forming projections (Kormelink et al., 

2011). The phospholipid membrane is host derived and protects the RNA 

genome. In addition viral genomic RNA segments interact with nucleocapsid 

proteins (N) and RNA dependent RNA polymerases (RdRp also known as L 

proteins) to form ribonucleoproteins that act as templates of replication (Oliver 

and Whitfield, 2016). The genomic RNA segments have complementary terminal 

sequences that allow the ssRNA segments to adopt semicircular or panhandle 

structures (Adkins, 2000). 

Replication of TSWV in plants starts with transcription of the genes 

encoded in a negative sense orientation by the RdRp to produce mRNAs. 

Transcription of ambisense segments is terminated after the first ORF in a 

conservative zone where a hairpin like structure (Figure 1.1 black squares) may 

release the RdRp (Kormelink et al., 2011; Jackson and Li, 2016; Turina et al., 

2016). After initial rounds of transcription and production of subgenomic RNAs 

that serve as mRNAs for translation of the negative encoded ORF, the RdRp 
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switches to a replicative mode yielding complete positive single stranded 

antigenomic RNA segments. ORFs located in the new antigenomic segments in 

a negative orientation can be used as templates for the transcription of the 

remaining proteins NSm and NSs (Gielen et al., 1991; Jackson and Li, 2016). 

 

TSWV TRANSMISSION BY WESTERN FLOWER THRIPS  

Nearly all species in the genus Tospoviruses are known to be transmitted 

by thrips insects in the order Thysanoptera in a persistent propagative manner 

(Hedil and Kormelink, 2016). Of the thousands of recognized thrips species only 

about a dozen transmit Tospoviruses (Gilbertson et al., 2015). TSWV is 

transmitted by Frankliniella bispinosa, Frankliniella cephalica, Frankliniella 

gemina, Frankliniella fusca, Frankliniella intonsa, Frankliniella occidentalis, 

Frankliniella schultzei, Thrips setosus and Thrips tabaci (Oliver and Whitfield, 

2016). Some vectors have wide host range and global distribution (Gilbertson et 

al., 2015). 

Early literature reported onions thrips (Thrips tabaci) as the most important 

vector of TSWV. Recently TSWV is predominantly transmitted by western flower 

thrips (Frankliniella occidentalis). Interestingly, today’s TSWV is no longer able to 

efficiently infect and by transmitted by onions thrips (Thrips tabaci) (Jones, 2004; 

Oliver and Whitfield, 2016).  
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Even though Tospoviruses have specific interactions with thrips and many 

thrips are able to transmit more than one species, TSWV has become the most 

important Tospovirus species (Gilbertson et al., 2015; Turina et al., 2016).  

Frankliniella occidentalis has become the most important and efficient 

Tospovirus vector and also an emerging threat to food security because of its 

role as a vector of many plant viruses (Gilbertson et al., 2015; Oliver and 

Whitfield, 2016). Frankliniella occidentalis has played a key role in the global 

emergence of the genus Tospovirus and specifically TSWV (Gilbertson et al., 

2015).  

TSWV transmission cycle begins with acquisition of TSWV by thrips and 

culminates with dispersal and inoculation of plants by adult thrips. In order to 

become competent vectors virus acquisition must occur in the first and second 

instar of the thrips’ life cycle.  

When TSWV is ingested by larval stages, enters and replicates in the 

midgut ephitelial cells and spreads in the gut tissues. TSWV disseminates in the 

vector and must reach the principal salivary glands (PSGs) for virus inoculation 

to a new plant host to occur (Montero-Astua et al., 2016; Oliver and Whitfield, 

2016). In Frankliniella occidentalis, the gut is connected to the PSGs by the 

tubular salivary glands, and this tissue may serve as a conduit for virus 

dissemination in the vector (Oliver and Whitfield, 2016). 

TSWV is not transovarially transmitted but can go through molting stages 

and still replicate transtadially (Whitfield et al., 2005; Oliver and Whitfield, 2016). 
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DEFENSE RESPONSES AGAINST PATHOGENS IN PLANTS 

Plants have evolved a variety of immune systems conferred by host-

encoded disease resistant genes to defend from pathogens including viruses 

(Pumplin and Voinnet, 2013).  Mechanistically, plant defense mechanisms 

against viruses can be divided into two classes: protein-based and RNA 

silencing-based responses. 

 

PROTEIN-BASED RESPONSES 

These systems include pathogen-associated molecular pattern-triggered 

immunity (PTI) and effector-triggered immunity (ETI) (Wang et al., 2012; Pumplin 

and Voinnet, 2013). Effective resistance against TSWV is a desirable trait as the 

introduction to commercial cultivar crops. However, sources of resistance against 

TSWV are limiting. The gene cluster Sw-5 from Solanun peruviamun is a 

promising source (Spassova et al., 2001). Non-adaptive effective resistance is 

found in the Sw-5b protein from the gene cluster Sw-5. Resistance from Sw-5b 

protein is monogenetic; only one protein triggers cell death after detection of 

TSWV NSm movement protein (Hoang et al., 2013). Even though there are more 

resistance genes found in other species, to date the molecular details of their 

resistance have not been fully described. In addition selection pressure and 

mixed infections generate new reassortants that are able to break resistance by 

changing as few as 2 nucleotides in the TSWV genome as in the case of the 

resistance provided by Sw-5b protein (Turina et al., 2016).  
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ANTIVIRAL RNA SILENCING AGAINST TSWV 

RNA silencing is used to regulate invasive RNA via sequence-specific 

degradation (Alvarado and Scholthof, 2009). RNA silencing models explaining 

viral degradation of plant viruses are based on positive single stranded RNA 

viruses such as Potyviruses but genome organization and properties are different 

compared to negative single stranded RNA viruses. Processing of plant negative 

RNA viruses such as TSWV and its interactions within the RNA silencing 

pathway remain unknown (Jackson and Li, 2016). Some models proposed (Hedil 

and Kormelink, 2016) may be applicable to Tospoviruses in general but their 

demonstration to specific species has not been demonstrated.  

Currently, it has been demonstrated that: 

- TSWV NSs protein is a silencing suppressor by preventing GFP 

silencing and by restoring pathogenicity to two suppressor deficient viruses 

(Takeda et al., 2002; Ocampo Ocampo et al., 2016). NSs silencing suppressor 

has also been described preventing local and systemic silencing of GFP (Hedil et 

al., 2015). 

- TSWV genome is processed into small interfering RNAs derived from all 

three genomic RNAs by detection of small interfering RNAs derived from TSWV 

in RNA sequencing analysis. The use of suppressor deficient viruses also led to 

an increase accumulation of 21 nucleotide small interfering RNAs (Margaria et 

al., 2015). 
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The mechanisms of induction and suppression of RNA silencing of TSWV 

remain to be determined.  

 

ENDOGENOUS RNA SILENCING IN PLANTS  

RNA silencing is an adaptive eukaryote mechanism used to regulate gene 

expression (Alvarado and Scholthof, 2009). In plants RNA silencing regulates a 

high number of genes with functions in developmental processes, including 

flowering and developmental timing, control of cell proliferation, meristem identity 

and patterning (Allen et al., 2005).   

RNA silencing in plants depends on the production of small RNAs 

(Baulcombe, 2004). Plant small RNAs range from 21 to 24 nucleotides in length 

and can be divided in two main classes: micro RNAS (miRNAs) that regulate 

endogenous genes (Alvarado and Scholthof, 2009; Budak and Akpinar, 2015) 

and small interfering (siRNAs) involved in the silencing of transposons, repetitive 

DNA and viruses (Ruiz-Ferrer and Voinnet, 2009).  

In Arabidopsis thaliana biogenesis of miRNAs occurs in the nucleus from 

transcription of genes from different loci in the genome by a cellular polymerase 

II (Bologna and Voinnet, 2014). After transcription miRNAs precursors form 

hairpin-like structures that are recognized and cleaved by a RNase III 

endonuclease protein called Dicer-like protein (DCL). There are four DCLs in the 

Arabidopsis genome and specific functions have been assigned for every 

member (Bologna and Voinnet, 2014). In the miRNA pathway DCL1 protein 
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cleaves and produces small RNA duplexes measuring 21 nucleotides in length 

showing 5’ phosphate groups and two nucleotides overhanging 3’ ends (Ding 

and Voinnet, 2007; Bologna and Voinnet, 2014). Small RNA duplexes are 

stabilized through 2′ -O-methylation by a HUA ENHANCER 1 (HEN1) protein to 

prevent degradation by endonucleases.  

One strand of the RNA duplex (guide strand) is loaded into an Argonaute 

(AGO) family member of the 1O AGOs proteins found in Arabidopsis (Bologna 

and Voinnet, 2014). Argonaute proteins are the main effectors of RNA silencing 

across kingdoms and their protein complex known as RNA Induced Silencing 

Complex (RISC) (Bologna and Voinnet, 2014). Activated RISCs target 

complementary mRNA transcripts to the loaded small RNA and prevent 

translation through binding by blocking the ribosomes or through slicer activity by 

slicing mRNAs (Baulcombe, 2004; Carbonell et al., 2012).  

RNA silencing core components also go through self-regulation via cellular 

miRNAs. Specific miRNAs target mRNA of DCLs and AGOs proteins. DCL1 is 

regulated by miR162.  AGO1 is regulated by miR168 and AGO2 levels are 

regulated by miR403 (Bologna and Voinnet, 2014) 

Biogenesis of siRNAs is complex and depending on the origin siRNAs can 

be subdivided in more groups based in their biogenesis and their targets. siRNAs 

are derived from dsRNA precursors and cleavage occurs by DCL2 to DCL4. 

DCLs generate dsRNA duplexes measuring 22 to 24 nucleotides in length that 

can be loaded into AGOs and direct cleavage of mRNAs of transgenes, 



 13 

transposons and repetitive regions as in the miRNA silencing pathway. Trans-

acting small interfering RNAs (tasiRNAs) are generated when TAS transcripts 

are targeted by miRNAs, after cleavage of TAS transcripts siRNAs are processed 

to produce tasiRNAs that are loaded in the AGOs to direct cleavage of several 

new mRNA targets (Borges and Martienssen, 2015). 

A secondary amplification of siRNAs can occur via a cellular RNA 

dependent RNA polymerase (RdRp) that produces complementary sequences or 

double stranded RNA (dsRNA) to the remaining products of the mRNA 

transcripts and single stranded small RNAs. dsRNA is recognized by DCL 

proteins and incorporated in the RNA silencing pathway (Bologna and Voinnet, 

2014). Plants can protect themselves from viral infections through RNA silencing 

using virus derived siRNAs (Ding and Voinnet, 2007). RNA viruses often 

resemble dsRNA structures in their genomes or replication intermediates 

generate dsRNA that is recognized by DCL2 and DCL4. Generation of virus 

derived small interfering RNAs (vsiRNAs) occurs in the cytoplasm where 

vsiRNAs are incorporated in the RISC and direct targeting of RNA viruses 

restricting replication and infection of viruses (Garcia-Ruiz et al., 2010). DCL2 

and DCL4 have hierarchical roles and DCL4 appears to preferentially be 

expressed over DCL2. If DCL4 is not present DCL2 replaces DCL4 generating 

vsiRNAs 22 nucleotides in length compared to normal 24 nucleotides from DCL4 

(Garcia-Ruiz et al., 2010; Bologna and Voinnet, 2014). 
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MOLECULAR TECHNIQUES FOR DETECTION OF TSWV 

There are several techniques for virus detection and the use of them will 

depend on the nature of the virus and what needs to be detected. Detection of 

viral proteins is based in antibodies that binds to specific proteins such as 

nucleocapsid proteins. However, its effectiveness can be limited by nonspecific 

binding and consequent background signals (Wu et al., 2002) 

TSWV is a single stranded RNA virus that can be detected using Northern 

Blotting. Northern Blotting is a molecular technique that can detect specific 

sequences in RNA preparations by using blotting and hybridization techniques 

that were originally developed for DNA (Southern Blotting)(Brown et al., 2004).  

Hybridization of probes to complementary sequences and detection of 

probes previously labelled with radioactive isotope 32P is the basis of this 

molecular technique and still a common and sensitive technique (Hloch et al., 

2001). The main disadvantages of Northern blotting techniques using radioactive 

probes are the possible health hazards, inconvenience during handling and the 

short half-life of radioactive probes. Nevertheless, there are alternatives to 

radiation probes such as the digoxigenin-dUTP probes (DIG) (Roche, Basel, 

Switzerland) where detection occurs using specific antibodies that detect 

digoxygenin within the probes. Digoxygenin is incorporated in the new 

synthesized DNA strands during a normal PCR (Eisel et al., 2008).  
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INTRODUCTION 

A TSWV infectious clone is not available due to limitations in today’s 

cloning strategies to amplify a full-length clone of the L segment (Jackson and Li, 

2016). Recent advances in molecular techniques may overcome that limitation 

(Gibson et al., 2009; Kosuri and Church, 2014). Therefore, to work with this virus 

complete virions must be used. Mechanical inoculations and protocols to transmit  

TSWV are well established (Mandal et al., 2008); however, if repeated 

mechanical inoculations are used with the same inoculum mutations and loss of 

proteins involved during the thrips’ infection cycle are common to appear 

(Spassova et al., 2001). In order to avoid mutations that may interfere with the 

normal infection and replication cycles of TSWV, a thrips transmission and 

maintenance protocol has been established (Ocampo Ocampo et al., 2016). 

Emilia fosbergii is used to maintain TSWV active because it is known to have 

less effects on virions (Spassova et al., 2001). Besides, continuous natural 

transmissions using living thrips as vectors is also a good strategy to avoid 

generation of mutant virions that may affect TSWV infection. 

In this chapter, the establishment of a protocol to transmit TSWV using 

thrips as vectors, storage of infected tissue, propagation in N. benthamiana, 

inoculation of Arabidopsis thaliana as a model host for TSWV replication, 

detection of TSWV genomic RNA segments and total small RNAs derived from 

TSWV are described. 
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MATERIALS AND METHODS 

TSWV maintenance in Emilia fosbergii  

The Hawaii isolate of TSWV was transmitted by thrips (Frankliniella 

occidentalis) to Emilia fosbergii plants for maintenance. Adult thrips were 

collected from flowers of healthy Arabidopsis plants growth in the Plant 

Pathology Greenhouse (University of Nebraska-Lincoln East Campus) and fed 

on green beans inside pots in lab conditions (8 hours of white light, to mate and 

produce offspring). Leaves of Emilia fosbergii plants with TSWV infection were 

introduced inside pots to feed thrips in order to acquire TSWV. Pupal and adult 

stages were then moved to chambers containing healthy Emilia fosbergii plants 

in order to infect healthy plants. Plants were monitored to observe development 

of systemic TSWV infection. Infected leaves with systemic symptoms were 

collected and frozen or used for mechanical inoculation of Nicotiana 

benthamiana plants. 

TSWV amplification in Nicotiana benthamiana 

Before inoculation of Arabidopsis thaliana, TSWV inoculum was 

propagated in N. benthamiana plants. Using a mortar and pestle, inoculum was 

prepared by grinding 1 g of systemically infected Emilia fosbergii fresh leaves in 

10 mL of TSWV inoculation buffer (final concentration 0.1 M potassium 

phosphate pH 7.0, 10 mM sodium sulfite, 10 mM β-mercaptoethanol and 1 mM 

phenylmethylsulfonyl fluoride PMSF) in the cold room at 4° C. The extract was 
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centrifuged at 4000 rpm for 10 min at 4° C, and the supernatant transferred to a 

new tube and kept on ice all the time.   

Leaves were dusted with carborundum and rub-inoculated with 50 µL of 

inoculum per leaf.  Plants were inoculated when they were 25-30 days old and 

kept in a growth chamber at 22°C under a 16:8 h light:dark cycle. Systemically 

infected N. benthamiana leaves were collected at 15 days post inoculation (dpi), 

respectively and these leaves were used as inoculum for mechanical inoculation 

of Arabidopsis thaliana plants. 

Mechanical inoculation of Arabidopsis thaliana 

Four Arabidopsis leaves per plant were dusted with carborundum and rub-

inoculated with 10 µL of inoculum per leaf. Plants were inoculated when they 

were 23 days old. Control plants were mock-inoculated with only buffer solution. 

Plants were kept in a growth chamber at 22° C under a 16:8 h light:dark cycle. 

Inflorescences from systemic infected Arabidopsis plants were collected at 15 

dpi, frozen in liquid nitrogen and stored at -80° C until protein and RNA 

extractions. 

TSWV virion purification 

TSWV virions were purified from systemically infected N. benthamiana 

plants as described in (Ocampo Ocampo et al., 2016). Total and virion RNA was 

extracted and analyzed in agarose gels as described in (Ocampo Ocampo et al., 

2016). 
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Protein extraction 

Samples from systemically infected Arabidopsis thaliana plants were 

ground for 3 minutes in glycine grinding buffer (final concentration 0.1 M glycine-

NaOH pH 9.0, 0.1 M NaCl, 10mM EDTA, 2% sodium dodecyl sulfate SDS and 

1% sodium lauroylsarcosine) using zirconia beads and a BeadBeater (Biospect 

Products, Bartlesville, OK USA). After grinding samples were centrifuged at 

14,000 rpm for 3 min at 4° C. An aliquot of 100 µl supernatant was transferred to 

an equal amount of 2X Protein Dissociation Buffer (final concentration 0.0625 M 

Tris pH 6.8, 2% sodium dodecyl sulfate, 10% glycerol, 10% 2-mercaptoethanol 

and saturated bromophenol blue) and boiled for three minutes at 100ºC. Protein 

samples were stored at -80ºC until further use. The remaining supernatant was 

kept on ice and used for RNA extraction. 

Western blotting 

5 µl of total protein extraction were loaded on TGX Stain-Free™ 

FastCast™ 12% Acrylamide gels or Mini-PROTEAN® TGX Stain-Free™ gels and 

proteins separated by electrophoresis at 150 V for 60 min using a Mini-Protean® 

Tetra Cell (Bio-Rad, Hercules, CA) in 1X Tris-Glycine/SDS buffer (final 

concentration 0.05 M Tris, 0.38 M Glycine and 0.01 M sodium dodecyl sulfate). 

Protein transfer to an Amersham protran 0.45 µm nitrocellulose protein 

membrane (GE Healthcare, Little Chalfont, UK) was done using a Mini Trans-

Blot® Electrophoretic Transfer Cell in western transfer buffer (final concentration 

25 mM Tris, 192 mM glycine, 20% v/v methanol, pH 8.3). After being transferred, 
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blots were stained with Ponceau S solution (Sigma, St. Louis, MO, USA) to 

detect the Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) protein 

which was used as a loading control. Ponceau S solution was de-stained with 

potassium buffered saline solution 1X PBS (137 mM NaCl, 3 mM KCl, 10 mM 

Na2HPO4 and 2 mM KH2PO4) containing 0.1% v/v Tween 20 (Thermo Fisher 

Scientific, Waltham, MA) to obtain 1X PBS-T. For blocking blots were incubated 

for thirty minutes at room temperature in 5% milk (Research Products 

International Corp, Prospect, Illinois) diluted in 1X PBS-T.   

Nucleocapsid protein was detected using a primary antibody (Anti-TSWV-

N) from rabbit (dilution was 1:64,000) as described in (Ocampo Ocampo et al., 

2016). An incubation time with gently shaking of a least 1 hour at room 

temperature or overnight incubation at 4° C were used.  A secondary antibody 

from goat anti-rabbit immunoglobulin G was used to detect the first antibody 

(1:10,000; NA934-1; GE Healthcare, Little Chalfont, UK). Chemiluminescence 

was detected with Clarity Western ECL Substrate and a ChemiDoc® MP Imaging 

system (Bio-Rad, Hercules, CA, USA).  

RNA extraction 

After protein extraction samples were kept on ice all the time to prevent 

RNA degradation and total RNA was extracted using TRIzol® (Invitrogen, 

Carlsbad, CA, USA) as described in (Ocampo Ocampo et al., 2016). Remaining 

aliquots were mixed with 800 µl of TRIzol® reagent and vigorously mixed for 10 

seconds using a vortex, following centrifugation at 8,300 g for three minutes at 4° 
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C to remove debris. The supernatant was carefully transferred to a new tube 

containing 500 µl of chloroform and vigorously vortexed to remove TRIzol® and 

centrifuged at 14,000 rpm for 10 min at 4° C to separate the phases. The 

supernatant was again transferred to a new tube containing 500 µl of clean 

chloroform to remove remaining TRIzol®. For RNA precipitation, the supernatant 

was transferred to a new tube containing 1 mL of ice-cold isopropanol followed 

by fifteen minutes of incubation time at room temperature. Centrifugation at 

14,000 rpm for 10 minutes at 4° C was done to precipitate the RNA in a pallet in 

the bottom of the tube. RNA pallets were washed with 70% ethanol and 

centrifuged to remove ethanol which was done carefully to avoid loss of RNA. 

RNA pallets were completely dried at room temperature for one hour or until 

complete removal of ethanol was observed. Once RNA was completely dried 

resuspension in 50 µl of 0.1 X TE in DEPC water was done for one hour with 

samples on ice. 

RNA concentration was measured with a NanoDrop (Thermo Fisher 

Scientific, Waltham, MA, USA) and normalized to 1 mg/µl using 0.1 X TE. 

Samples containing 1 mg RNA were mixed with 5 µl of RNA loading dye (final 

concentration 95% formamide, 0.025% SDS, 0.025% Bromophenol blue, 0.025% 

xylene cyanol and 0.5 mM EDTA) and run for 40 minutes at 85 volts on a 1% 

non-denaturing agarose gel previously stained with ethidium bromide (1 µl at 10 

mg/µl per every 10 mL of agarose) to visualize quality of total RNA. 
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DIG-labelled oligos and cDNA probes  

TSWV genomic RNAs: L, M, and S were detected in high molecular RNA 

gels with DIG random labelled dsDNA PCR products amplified from DNA 

plasmids harboring cDNA regions of TSWV genomic segments using DIG DNA 

labeling kit (11175033910 Roche, Basel, Switzerland) and following 

manufacturer’s instructions. 

 Corresponding cDNA regions in the dsDNA probes: L segment from 

nucleotide 1 to nucleotide 1508, M segment from nucleotide 1 to nucleotide 1477 

including the Gn/Gc ORF and S segment from nucleotide 1 to nucleotide 1491 

including the NSs ORF (Figure 2.1 A). A dsDNA DIG random labelled 18S 

ribosomal probe was used as loading control in high molecular gels and detected 

as described in (Garcia-Ruiz et al., 2015). 

Endogenous miR166, miR168, miR390, miR403, siRNA02, siRNA255 and 

nuclear RNA U6 (Garcia-Ruiz et al., 2010; Garcia-Ruiz et al., 2015) were 

detected in small RNA gels using DIG labeled oligonucleotides probes. TSWV 

virus derived small RNAs were detected using the random labelled DIG probes 

used for the detection of TSWV RNA segments. 

High molecular weight Northern blotting  

 Samples were run in a 1% agarose, 2.7% formaldehyde high molecular 

RNA gel at 90 V for one hour at room temperature to separate TSWV genomic 

segments. RNA was overnight transferred to a positively charged nylon 

membrane at room temperature (Roche, Basel, Switzerland) by capillarity using 
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a 10X SSC (1.5 M NaCI and 0.15 M Trisodium Citrate) salt gradient and paper 

towels. Membrane was auto-crosslinked in two positions using a UV 

Stratalinkerâ 1800 (Stratagene, La Jolla, CA, USA) to immobilize RNA to the 

membrane.  

Pre-hybridization of blots was done using 10 mL of PerfectHyb™ Plus 

Hybridization Buffer (Thermo Fisher Scientific, Waltham, MA) for one hour at 38° 

C. For hybridization, probes for L, M, and S segments were added in equal 

amounts to the blots containing 10 mL of PerfectHyb™ Plus Hybridization Buffer 

solution and 16 hours or overnight incubation at 38° C were required. For surplus 

probe removal two washes at 42° C with 50 mL of high salt solution (100 mL 20X 

SSC, 20 mL 10% SDS and 880 mL Water) and a final wash with 50 mL low salt 

solution (50 mL 20X SSC, 10 mL 10% SDS and 940 mL Water) were required. 

To remove SDS from blots two washes in 3X SSC were done at room 

temperature. Special care was taken to prevent dried of the blots at any time 

according to manufacturer’s instructions. 

For DIG detection blocking of the blots for at least 30 minutes was done 

using 15 mL of 1X DIG blocking solution (11 175 033 910; Roche). After blocking 

0.75 µl of Anti-DIG antibody were added to the blots and one hour of incubation 

at room temperature were needed. For DIG detection blots were equilibrated in 

DIG detection Buffer (0.1M Tris-HCl, 0.1M NaCl, pH 9.5) for five minutes. 

Chemiluminescence was detected using substrate CDP-Star (Roche, Basel, 
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Switzerland) and a ChemiDoc® MP Imaging system (Bio-Rad, Hercules, CA, 

USA).  

Small RNA Northern blotting  

A protocol  (Llave et al., 2002) was modified to detect small RNAs, 17% 

PAGE urea gels (12.6 g of Urea, 1.5 mL of 10X TBE buffer, 2 mL of water and 17 

mL of 30% of acrylamide:bisacrylamide 37.5: 1) were made using glass plates 

previously treated with RNaseZap® RNase Decontamination Solution (Thermo 

Fisher Scientific, Waltham, MA), washed with 10% sodium dodecyl sulfate (SDS) 

and rinsed with 70% alcohol. 

  Gels were equilibrated on an Owl™ P9DS Dual-Gel Vertical 

Electrophoresis System (Owl Separation Systems Inc. Marietta, OH, USA) for at 

least one hour in 0.5 X TBE running buffer. 15 µl of RNA samples normalized 1 

µg/1 µl were mixed with 15 µl of RNA loading dye, denatured for five minutes at 

95° C and run for three hours and fifteen minutes. 

After separation of the RNA samples gels were stained with 8 µl (10 

mg/µl) of ethidium bromide and a picture was taken under UV light to visualize 

RNA quality and separation of the bands. Transfer of the gels to a positive 

charged nylon membrane was done using a Bio-Rad Semi-dry transfer unit (Bio-

Rad, Hercules, CA) following manufacturer’s instructions. Membranes were twice 

auto-cross linked using a UV Stratalinkerâ 1800 (Stratagene, La Jolla, CA, USA) 

and stored in sheets of filter paper until hybridization protocols. 
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Membranes were cut in two parts, bottom parts for detection of small 

RNAs and upper parts for detection of U6 nuclear RNA that was used as a 

loading control. In parallel upper blots were pre-hybridized in glass cylinders with 

10 mL of NorthernMax® Prehybridization/Hybridization Buffer (Thermo Fisher 

Scientific, Waltham, MA) at 38° C. Hybridization was done by addition of 4 µl of 

U6 oligo labelled DIG probe and blots were processed in parallel with the bottom 

parts of the membranes. 

Pre-hybridization of bottom blots was done in glass cylinders and 10 mL of 

PerfectHyb™ Plus Hybridization Buffer (Thermo Fisher Scientific, Waltham, MA) 

for thirty minutes at 38° C in a Autoblotâ Micro Hybridization Oven (Bellco Glass 

Inc, Vineland, NJ, USA). Hybridization was followed by addition of 10 µl of 

corresponding oligo DIG labelled probe or 15 µl of random labelled probes (a 

mixture of 5 µl per TSVW segment) to the blots and overnight incubation for 16 

hours at 38° C. Washes to remove exceeding probes were repeated at 42° C as 

described in High Molecular RNA gels. Dig detection of 21-24 nucleotides small 

RNAs and nuclear U6 RNA were also followed as described in the High 

Molecular Weight RNA gels. 
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RESULTS 

TSWV segments are detected by northern blotting from total and 

nucleocapsids RNA extractions. 

Figure 2.1 TSWV RNA detection in N. benthamiana using genomic RNA-specific 
probes. (A)  L RNA (8.8 Kb), M RNA (4.8 Kb), S RNA (2.9 Kb) Black lines 
represent the length of the random labelled DIG probe used for detection of RNA 
segments. (B) Representative blot showing accumulation of TSWV genomic RNA 
in total RNA samples and in nucleocapsid preparations. 18S rRNA was used as 
a loading control. (C) TSWV genomic RNAs were detected with DIG-labelled 
probes made by random priming from cDNA corresponding to parts of genomic 
RNA L, M, or S. Triplicate gels were run and segment specific probes used in 
equal amounts. 
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Based in cDNA obtained from RT-PCR from TSWV nucleocapsid RNA 

extractions, regions in black represent the length of the dsDNA probe used to 

detect TSWV genomic RNA (Figure 2.1 A). 

In a non-denaturing agarose gel stained with ethidium bromide, TSWV L, 

M and S segments could not be observed in samples from total RNA extractions 

(Figure 2.1 B). Nonetheless, TSWV segments were detected in samples where 

RNA extractions were made from nucleocapsids isolations. According to their 

size they corresponded to TSWV segments and were clearly visible in a normal 

ethidium bromide gel. 

 TSWV segments were consecutively detected by Northern blotting using 

dsDNA probes to target the sequences from cDNA regions in black (Figure 2.1 

A). In duplicative blots detection of each segment using only one probe for each 

segment detected the corresponding segment in total RNAs extractions and RNA 

extractions from nucleocapsids (Figure 2.1 C). 

In samples where RNA extractions were made from nucleocapsids 

multiple segments were detected using only one probe as in the case of the 

segment S probe that was able to detect the M segment. Segment M probe 

detected the S segment and the L segment. Finally segment L probe detected 

not only segment L but M and S (Figure 2.1 C).  
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TSWV induces symptoms and accumulates in Arabidopsis thaliana wild 

type and selected mutants. 

 

Figure 2.2 TSWV is routed through antiviral RNA silencing in Arabidopsis 
thaliana. Selected Arabidopsis mutants lacking core components of antiviral RNA 
silencing were mechanically inoculated with TSWV. Pictures were taken and 
samples were collected at 15 days post inoculation. (A) Local and systemic 
symptoms of TSWV infection. (B) Representative immunoblots showing 
accumulation of TSWV nucleocapsid protein in inflorescence. The large unit of 
Rubisco was used as a loading control. (C) Representative blots showing 
accumulation of endogenous and TSWV-derived siRNAs. U6 was used as a 
loading control. TSWV-derived siRNAs were detected with DIG-labeled random 
probes. Endogenous small RNAs were detected with DIG-labeled oligonucleotide 
probes. 
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Symptoms after mechanical inoculation of TSWV in Arabidopsis thaliana 

plants were clearly visible after 10 days post inoculation. Systemic symptoms as 

yellowing, reduced size of bolts and necrosis were more evident at 15 days post 

inoculation (Figure 2.2 A) 

TSWV accumulation in selective mutant plants as result of infection was 

demonstrated by the presence of nucleocapsid protein (Figure 2.2 B) and the 

detection of TSWV S segment by Northern blotting.  

Production of small RNAs derived from TSWV (Figure 2.2 C) accumulated 

and were detected in samples with TSWV infection and not in mock inoculated 

plants. Endogenous small RNAs are clearly upregulated and downregulated 

when TSWV is present and even production of smaller miR403 siRNAs were 

detected (Figure 2.2 C). 

 

DISCUSSION 

 TSWV segments in total RNA extractions could not be detected in a 

normal ethidium bromide gels due to degradation or available quantity. TSWV 

segments were only visualized in a normal ethidium bromide gel if samples were 

from nucleocapsids isolations; TSWV genomic RNA was enriched and protected 

during the nucleocapsid isolation which incremented RNA quantity and quality 

during the RNA extraction.  

Nonetheless, the use of the DIG probes and Northern blotting detected 

TSWV RNA segments in both total and nucleocapsid samples which may be 
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attributed to the sensitivity of the technique but also indicating the presence of 

TSWV genomic RNA segments in total RNA extractions (Figure 2.1 C). 

It is worthwhile noticing that the design of the probes corresponded to 

conservative and repetitive zones of TSWV RNA segments (Adkins, 2000). 

Segments were detected based in complementary with regions matching the 

cDNA regions of the dsDNA probe and since this region is conserved by the 

three TSWV segments, probes used were able to detect multiple segments. 

Detection of specific segments i.e. genomic, antigenomic cannot be differentiated 

with the probes generated in this study since probes are dsDNA products; 

matching both genomic and antigenomic TSWV RNA segments. Development of 

new probes will be helpful to resolve differences between genomic, antigenomic 

segments and even subgenomic RNAs. 

TSWV infection in Arabidopsis thaliana induced typical symptoms of 

tomato spotted wilt disease such as yellowing, necrosis and reduced sized of 

bolts and flowers which were a sign of positive infection. TSWV is not 

transovarially transmitted (Oliver and Whitfield, 2016) and collection of adults 

harboring wild type TSWV or other Tospoviruses may include additional variation 

to the system. The use of offspring as vectors fed on green beans before they 

acquired the TSWV isolate was an important step to prevent variation by 

introduction of exogenous viruses. 

A positive infection in selective mutant plants lacking core components of 

the RNA silencing pathway was required to determine the differences in small 
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RNA biogenesis of endogenous and virus derived upon TSWV infection and was 

corroborated by the accumulation of the nucleocapsid protein.   

Small RNA analysis showed TSWV segments are differently processed in 

the RNA silencing pathway. Small RNAs derived from the L segment are less 

abundant than small RNAs from the M and S segments in the WT plant. Small 

RNAs from the S segment are the most abundant suggesting that this segment is 

transcribed at higher levels in order to trigger RNA silencing.  

Small RNAs derived from any TSWV segment were not detected in the dcl 

triple mutant suggesting TSWV is processed by DCL2, DCL3 or DCL4 or a 

combination. Production of small RNAs from the S segment are also detected in 

the rdr1-1, rdr2-1 and rdr6-15 triple mutant which is interesting since RDR1, 

RDR2 and RDR3 produce and amplify secondary siRNA; these siRNAs could 

have been originated from another RDR protein or derived from the virus after 

recognition and processing by Dicer proteins. No clear role of the Argonaute 

proteins was found in the initial small RNA analysis after TSWV infection. 

TSWV infection affected the biogenesis of several endogenous 

Arabidopsis miRNAs and tasiRNAs. Upregulation of miR168 involved in the 

negative feedback regulation of AGO1(Bologna and Voinnet, 2014) accumulates 

after TSWV infection. Production of smaller and bigger miR403 which regulate 

AGO2 (Bologna and Voinnet, 2014) are also found after TSWV infection, the role 

of this variants is not clear. miR390 involved in the targeting of TAS3 transcripts 

and guided by AGO7 (Cuperus et al., 2010) is also upregulated after TSWV 
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infection but this response may be triggered as a defense response from the 

plant in the form of auxin hormone responses (Baldrich and San Segundo, 2016). 

small RNAs from tasiR255 and siRNA02 used as genetic controls did not 

accumulate in the mutants lacking core components of the RNA silencing 

pathway except in the ago triple mutant plants due to the involvement of AGO 

proteins other than AGO1, AGO2 and AGO10 in their processing and biogenesis 

(Garcia-Ruiz et al., 2010). 

These results establish a foundation to investigate the mechanisms of 

induction and suppression of antiviral RNA silencing by Tospoviruses, using 

Arabidopsis and TSWV as model systems. 
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CHAPTER 3: 

GENETIC ANALYSIS OF RNA SILENCING AGAINST TOMATO SPOTTED 

WILT VIRUS 
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INTRODUCTION  

Arabidopsis thaliana encodes 4 Dicer proteins DCL1 to DCL4. DCL1 is the 

primary synthesizer of miRNAs, whereas DCL2, DCL3 and DCL4 process long 

double stranded RNA structures from different cellular origins into siRNAs 

measuring 22, 24 and 21 nucleotides in length respectively. (Bologna & Voinnet, 

2014; Ding & Voinnet, 2007). The Arabidopsis genome encodes 10 AGOs with 

unique properties and specific interactions with small RNAs (Alvarado & 

Scholthof, 2009b). RNA Dependent RNA Polymerases (RDRs) are defined by 

conserved domains used for copying single stranded RNA and Arabidopsis 

encodes 6 RDR genes. RDR1, RDR2 and RDR6 share similarities in the C-

terminal catalytic DLDGS motif. RDR3a, RDR3b and RDR3c share an atypical 

DFDGD motif and a their role has not yet been established (Bologna & Voinnet, 

2014). Effector complexes RISC are assembled after loading one small RNA 

strand into one AGO protein. Viral replicates of RNA viruses often assemble 

dsRNA structures that can be recognized by DCL proteins and be processed in 

the natural occurring RNA silencing pathway (Ding & Voinnet, 2007). 

 The main objectives of these experiments are to analyze what are the 

effects of core components of the RNA silencing pathway in Arabidopsis thaliana 

when mutant plants lacking specific core components are challenged with TSWV 

infection and to determine how TSWV is processed in the same pathway. 
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MATERIALS AND METHODS  

Arabidopsis genotypes 

Mutant Arabidopsis thaliana plants were used as follows: Arabidopsis col-

0 wild type ecotype, dcl1, dcl2, dcl3 and dcl4 single mutants, dcl2 dcl3, dcl-2 

dcl4, dcl3 dcl4, double mutants and dcl2 dcl3 dcl4 triple mutants (Xie et al., 2004; 

Xie et al., 2005). Arabidopsis, rdr1-1, rdr2-1, rdr-3a, rdr-3b, rdr-3c, rdr6-15 single 

mutants (Allen et al., 2005; Xie et al., 2005). Transgenic plants expressing 

catalytic mutant 3xHA-tagged-ago1-dah (Col-0), 3xHA-ago2-dad (ago2-1) and 

3xHA-ago10-dah (ago10-4) (Garcia-Ruiz et al., 2015). Transgenic plants 

expressing GUS (Col-0) used as controls described in (Carbonell et al., 2012; 

Garcia-Ruiz et al., 2015). 

Mechanical inoculation of Arabidopsis plants. 

At 21 days after emergence Arabidopsis plants were mechanically 

inoculated with TSWV, as described in chapter II. Leaves were dusted with 

carborundum and rub-inoculated with 10 µL of inoculum per leaf. TSWV 

inoculum was prepared by grinding systemically infected N. benthamiana at 15 

dpi in TSWV inoculation buffer. For each plant 4 leaves were inoculated and 18 

to 24 Arabidopsis genotype plants in total. In parallel, equal number of col-0 wild 

type plants were mock-inoculated with only TSWV inoculation buffer. Plants were 

grown at 22° C and long day (16 h light and 8h dark) in growth chambers. After 

15 days post inoculation 10 clusters per systemically infected plant showing 
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TSWV infection symptoms were collected using 2 mL epitubes, frozen in liquid 

nitrogen and stored at -80° C degrees until protein and RNA extractions.  

DNA plasmids  

pCB302 plasmids expressing HA tagged Argonaute proteins HA-AGO1, 

HA-AGO2, HA-AGO4, HA-AGO5, HA-AGO7 and HA-AGO10 and harboring the 

kanamycin and rifampicin resistance genes previously described (Carbonell et 

al., 2012; Garcia-Ruiz et al., 2015) were used during transient assays.  

pMDC32-NSs-6HIS-3xFlag. TSWV NSs protein was tagged at the C terminus 

with 6HIS and 3xFlag and expressed from the 35S promoter in pMDC32 vector. 

This clone was made using the NSs clone described in (Takeda et al., 2002). 

Using oligos NSs-ORF-F-947(caccATGTCTTCAAGTGTTTATGAGTC) where 

cacc TOPOÒ recognition site was included and NSs-HA-R 948 

(CTAAGCGTAATCTGGAACATCGTATGGG) to produce pENTR-NSs-HA using 

TOPOÒ directional cloning kit (Invitrogen, Carlsbad, CA, USA). This plasmid was 

used as template for addition of 6HIS and 3xFlag epitope by PCR mutagenesis 

with oligos NSs-ORF-F-947 (caccATGTCTTCAAGTGTTTATGAGTC) and 

6xHIS3xFLAG-NSs-714 

(ggcggccgctctagaTCACTTGTCATCGTCATCCTTGTAGTCGATGTCATGATCTT

TATAATCACCGTCATGGTCTTTGTAGTCGTGATGGTGATGGTGATGTTTTGA

TCCTGAAGC) resulting in pENTR-NSs-6xHIS3xFLAG this plasmid was moved 

into pMDC32 by LR recombination using Gateway™ LR Clonase™ II Enzyme 

Mix (Thermo Fisher Scientific, Waltham, MA). 
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Agro-infiltrations 

Glycerol stocks of Agrobacterium tumefaciens strain GV3101 containing 

HA-AGOs pCB302 plasmids were activated in plates containing solid Lysogenic 

broth (LB) with Rifampicin (0.1 mg/mL) and Kanamycin (0.1 mg/mL). After three 

days single colonies were used for initial 1 mL cultures. 

100 ng of pMDC32-NSs-6HIS-3xFlag DNA plasmid were introduced into 

Agrobacterium tumefaciens strain GV3101 by electroporation, four single 

colonies were tested to determine silencing suppression activity (Chapter IV 

Transient RNA silencing suppression assays). Glycerol stocks were prepared 

using colonies with strong inhibition of GFP silencing and used for co-expression 

with AGOs proteins. 

1.5 ml epitubes with 1 mL of liquid LB + Rifampicin (0.1 mg/mL) and 

Kanamycin (0.1 mg/mL) where used for initial activation of Agrobacterium 

tumefaciens stored in glycerol stocks for 32 hours at 28° C with shaking in dark 

conditions. Induction of vir genes was made by diluting Agrobacterium cells to 

optical density (OD600) of 0.002 on LB vir induction solution (10 mM MES pH 5.2, 

100 µM Acetosyringone 0.1 mg/mL Rifampicin and 0.1 mg/mL Kanamycin) and 

incubated for 16 hours at 28° C with shaking. Cell cultures where centrifuged for 

10 minutes at 4° C and VIR induction media was discarded. Cells were re-

suspended in equal volumes of infiltration solution (10 mM MgCl2, 10 mM MES, 

150 µM of acetosyringone) and diluted to a final infiltration OD600 of 0.5 and kept 

in the dark for two hours. Corresponding AGOs + NSs treatments were made by 
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mixing diluted constructs to a final concentration of 0.5. N. benthamiana plants 

with six to eight leaves where used for infiltration and two upper leaves were 

used. After infiltration plants were kept at 25° C for 2 days and 0.15 g of infiltrated 

leaves were collected for protein extraction. 

Western blotting 

Protein extraction was done using protocol described in chapter II. 0.15 g 

of N. benthamiana leaf samples were collected at 2 days post infiltration (dpi). 

For gel electrophoresis 10 µl of total undiluted protein sample were separated 

using Mini-PROTEAN® TGX Stain-Free™ gels at 150 V for 60 minutes at room 

temperature and transferred onto nitrocellulose membranes.  

Nucleocapsid protein was detected as described in chapter II. NSs protein 

was detected using 2 µl of Anti-Flag antibody (Sigma-Aldrich, St. Louis, MO). HA-

AGOs (Carbonell et al., 2012; Garcia-Ruiz et al., 2015) were detected using 10 µl 

anti-HA antibody with peroxidase (Roche, Basel, Switzerland). Luminescence 

was measured with Clarity Western ECL Substrate and a ChemiDoc® MP 

Imaging system (Bio-Rad, Hercules, CA, USA). 

RNA extraction   

Total RNA used in small RNA analysis was extracted using TRIzol® and 

concentration was measured with a NanoDropâ as described in chapter II. 

Samples were normalized to 1 µg/µl and 1 µg of RNA was run on a 1% non-

denaturing agarose gel to visualize ribosomal RNA quality. 
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Northern blotting for analysis of small RNAs. 

Urea gels as described in chapter II were made to analyze small RNAs 

derived from the virus and cellular miRNAs derived from the plants. 15 µl of 

normalized to 1 µg/µl or 15 µg of total RNA were run in an Owl™ P9DS Dual-Gel 

Vertical Electrophoresis System. Transfer of gels to a positive charged nylon 

membrane was done using a Bio-Rad Semi-dry transfer unit. Blots were twice 

auto cross-linked using a UV Stratalinkerâ 1800. Blots were cut in half for small 

RNA analysis and detection of U6 nuclear RNA as a loading control. Blots were 

pre-hybridized and hybridized in glass cylinders in a Autoblotâ Micro 

Hybridization Oven. DIG detection was made following protocol described in 

chapter II. 

DIG-labelled oligos and cDNA probes  

Random labelled DIG probes as described in chapter II were used for the 

detection of small RNAs derived from TSWV. 5 µl of dsDNA probe per segment 

were added in equal amounts (15 µl in total) for complete detection of small 

RNAs derived from the three segments.   

Oligo labelled probes were made using kit 11 175 033 910 (Roche, Basel, 

Switzerland) following manufacturer’s instructions for the detection of cellular 

miRNAs. In the dcl northerns: 10 µl of oligo DIG probes were used to detect 

miR390, miR255 used as genetic controls. In the rdr Northerns 10 µl of oligo DIG 

probes were used to detect miRNA390, miRNA255, and miRNA02 used as 

genetic controls. In the transgenic HA-AGOs northerns 10 µl of oligo DIG probes 
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were used to detect miR390, miR168 and miR403 used as genetic controls. 10 µl 

of oligo DIG labelled probe to detect U6 nuclear RNA used as loading control as 

described in (Garcia-Ruiz et al., 2010). 

Blots were stripped to remove random labelled probes and re-hybridized 

with different oligo DIG labelled probe to measure cellular miRNAs using a 

stripping solution of (50% formamide, 0.1X SSC and 1% SDS). 50 mL of 

stripping solution were added to the blots in a hybridization glass cylinder and 

incubated to 80° C in a Autoblotâ Micro Hybridization Oven for 2 hours. Stripping 

solution was discarded and new fresh 50 mL of stripping solution was added and 

incubated at 80° C overnight (16 hours). Two more washes steps were repeated 

two more times using the stripping solution. Two additional washes in 3X SSC 

were done to remove SDS and membranes were ready to be hybridized or 

stored in 3X SSC at 4° C. 
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RESULTS 

TWSV-derived siRNAs are made by DCL4 and DCL2 

 

Figure 3.1 Accumulation of TSWV-derived siRNAs in Arabidopsis dcl mutants. 
Inflorescence samples were collected at 15 days post inoculation for total protein 
and RNA extraction. dcl2-1 dcl3-1 dcl4-2 triple mutant plants were used as 
controls.  TWSV N protein, genomic RNA and small RNAs were detected as 
described in chapter II. (A) TSWV nucleocapsid protein (N) accumulation. (B) 
TSWV genomic small RNA accumulation in selected dcl mutant plants and 
selective plant small RNA accumulation used genetic controls. 
 

Detection of TSWV nucleocapsid protein (Figure 3.1 A) was an indicative 

of TSWV positive infection. Samples containing Nucleocapsid protein were used 

for Northern analysis (Figure 3.1 B).  
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Production of bigger 22 nucleotides small RNAs where detected in the 

dcl4 single mutant (Figure 3.1 B).  A complete reduction of small RNAs derived 

from TSWV were observed in the double mutant dcl2 and dcl4. Dicer triple 

mutant was used as control and no production of small RNAs were observed. 

siRNA255 did not accumulate in the dcl1 single and dcl2 dcl4 double 

mutant. When dcl4 was absent production of 22 nucleotides was observed 

suggesting this population was originated from 22 nucleotides producer dcl2; 

corroborating mutant plants were DCL mutants. Accumulation of miRNA390 was 

reduced in the dcl1 mutant and an increment was observed after TSWV infection. 
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Amplification of antiviral silencing against TWSV is mediated by RDR1 

 

Figure 3.2 Accumulation of TSWV-derived siRNAs in single rdr Arabidopsis 
mutants. Inflorescence samples were collected at 15 days post inoculation for 
total protein and RNA extraction. dcl2-1 dcl3-1 dcl4-2 triple mutant plants were 
used as controls. (A) Representative immunoblots showing accumulation of 
TSWV nucleocapsid protein (N) in inflorescence. The large unit of Rubisco was 
used as a loading control. (B) Representative blots showing accumulation of 
TSWV genomic RNA in inflorescence. Representative blots showing 
accumulation of TSWV-derived siRNAs and selected miRNAs. U6 was used as a 
loading control.  
 

 TSWV nucleocapsid protein accumulated and was detected in single 

mutant RDRs plants as indicative of TSWV infection (Figure 3.2 A). 

A reduction in the levels of small RNAs derived from TSWV were only 

observed in the rdr1 single mutant (Figure 3.2 B). Dicer triple mutant was used 

as control and no small RNAs derived from TSWV were detected. 
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siRNA225 and siRNA02 were used as genetic controls, siRNA225 did not 

accumulate in the rdr6 and dcl2-3-4 mutant. siRNA02 did not accumulate in the 

rdr2 and dcl2-3-4 mutant. 
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TSWV infection does not trigger degradation of AGO proteins 

 

Figure 3.3 Accumulation of HA-AGO1, HA-AGO2 and HA-AGO10 in leaves and 
inflorescence of mock inoculated and TSWV-infected plants. (A) Representative 
immunoblots showing accumulation of HA-AGO1, HA-AGO2 and HA-AGO10 and 
TSWV nucleocapsid protein (N) in leaves. The large unit of Rubisco was used as 
a loading control. Representative blots showing accumulation of TSWV-derived 
siRNAs and selected miRNAs. U6 was used as a loading control.  (B) 
Representative immunoblots showing accumulation of HA-AGO1, HA-AGO2 and 
HA-AGO10 and TSWV nucleocapsid protein (N) in inflorescence. The large unit 
of Rubisco was used as a loading control. Representative blots showing 
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accumulation of TSWV-derived siRNAs and selected miRNAs. U6 was used as a 
loading control.   
 

 

Western blots showed HA-AGOs are not degraded after TSWV infection in 

samples from leaves infected with TSWV compared to mock inoculated leaves 

(Figure 3.3 A). The same pattern was also found in samples from inflorescences 

where no degradation of HA-AGO occurred compared to mock inoculated 

samples after TSVW infection (Figure 3.3 B).  

Northerns detected siRNAs derived from TSWV in both leaves and 

inflorescences samples (Figure 3.3 A B). A reduction in the production of siRNAs 

derived from TSWV in leaves compared to inflorescences was found (Figure 3.3 

A, B, L, M, S siRNAs gels) siRNAs derived from TSWV were also indicators of 

TSWV infection.  

Northerns to detect micro RNAs involved in the self-regulation of AGOs 

proteins showed miRNA403-AGO1 accumulates in leaves at similar levels in 

both TSWV and MOCK inoculated transgenic HA-AGO plants (Figure 3.3 A). In 

inflorescences of transgenic HA-AGO plants miRNA403 accumulates again at 

similar levels (Figure 3.3 B).  

miRNA168-AGO2 in leaves of transgenic HA-AGO plants (Figure 3.3 A) 

was found at similar levels in both TSWV and mock inoculated samples however, 

an increment in miRNA168 was found in inflorescence samples of transgenic 

HA-AGO2, HA-AGO10 plants (Figure 3.3 B) after TSWV infection.  
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TSWV NSs does not degrade HA-AGOs proteins during transient assays 

 

Figure 3.4 Transient accumulation of selected HA-tagged AGO proteins in the 
presence of NSs-HF. Two leaves of Nicotiana benthamiana plants were agro-
infiltrated with Agrobacterium tumefaciens harboring selective HA-AGOs and 
NSs-HF alone or in combination at final infiltration 0.5 OD. Samples were 
collected from infiltrated leaves for total protein extraction at 2 dpi. Accumulation 
of HA-AGOs was measured relative to HA-AGO1. 
 

During transient assays of NSs-6HIS-3xFlag in combination with HA-

AGO1, HA-AGO2, HA-AGO4, HA-AGO5, HA-AGO7 and HA-AGO10, 

accumulation of HA-AGO proteins in the presence NSs-6HIS-3xFlag occurred 

and degradation of HA-AGOs proteins was not observed. 

DISCUSSION 

The effects of TSWV in dcl mutant plants show TSWV is recognized and 

processed by the generation of small RNAs in the WT Arabidopsis plant. The fact 
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that TSWV RNA segments form panhandle structures (Adkins, 2000) could 

represent a source of dsRNA as potential inducer of RNA silencing or replication 

intermediates reassembling dsRNA structures.  

When DCL4 is not present DCL2 replace its functions and generation of 

bigger 22 nucleotides small RNAs compared to 21 nucleotides in length are 

produced (Bologna and Voinnet, 2014). This corresponded to what was observed 

and also it was corroborated when DCL2 and DCL4 were not present 

demonstrating their role in the recognition and processing of TSWV in the RNA 

silencing pathway. It seems TSWV can be recognized by the other DCLs at 

some extent but when absent these DCL do not have important roles, however, 

in absence of DCL2 and DCL4 they may replace their roles. TSWV in processed 

into virus-derived siRNAs by a mechanism that is dependent on DCL2 and/or 

DCL4. As expected siRNA255, did not accumulate in dcl1 and dcl4 mutant plants 

due to requirements of these proteins during the biogenesis of tasiRNAs(Garcia-

Ruiz et al., 2010) and miR390 did not accumulate in dcl1 mutant plants meaning 

that plants used for these experiments were in effect dcl mutants.  

The role of RDRs in the amplification and generation of secondary small 

RNAs used in the RNA silencing pathway have been attributed to RDR1 and 

RDR6 (Garcia-Ruiz et al., 2010). Here we found amplification of TSWV-derived 

small RNAs occurred by RDR1 by comparing levels of TSWV-derived small 

RNAs in the rdr1 mutant to the WT plant (Figure 3.2 A). No other significant 

result was attributed to other RDRs suggesting they may not be involved in the 
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secondary amplification of TSWV. Antiviral RNA silencing against TSWV was 

amplified by a mechanism that is dependent on RDR1. 

In the AGO analysis after comparing the levels of HA-AGO protein in 

mock and TSWV infected transgenic plants no statistic difference was found, 

suggesting HA-AGO protein degradation is not occurring.  

After Northern blots to measure cellular miRNAs used in the self-

regulation of AGO1 and AGO2 some interesting results were observed in the 

TSWV infected samples. Accumulation of miRNA168 and miRNA403 involved in 

the negative regulation of AGO1 and AGO2 respectively (Bologna and Voinnet, 

2014) hypothesize degradation of HA-AGO1 and HA-AGO2 but, these results do 

not correspond to HA-AGO protein levels found in the western blots (Figure 3.4). 

This finding also suggests TSWV may trigger negative regulation of AGOs by 

production of cellular miRNAs but at the same time NSs silencing suppressor 

may be sequestering total miRNAs (Schnettler et al., 2010) and as a result 

degradation is not occurring.  

Antiviral RNA silencing against viruses is mediated by AGO1, AGO2, 

and/or AGO10 (Carbonell et al., 2012), the roles of suppressors and interactions 

with these core components of the RNA silencing pathway could be occurring at 

different steps or by not previously described mechanisms. This genetic analysis 

against TSWV is the foundation to understand how a negative RNA virus gets 

processed in the RNA silencing pathway. 
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CHAPTER 4 

CHIMERIC TUMV EXPRESSING TSWV NSS SILENCING SUPPRESSOR  
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INTRODUCTION 

In previous experiments the ability of TSWV NSs silencing suppressor to 

inhibit GFP silencing as the rescue of pathogenicity of two suppressor deficient 

viruses during transient assays have been previously described (Ocampo 

Ocampo et al., 2016).  Co-expression of different proteins during transient 

assays is a potent tool to detect suppressors of RNA silencing using GFP as 

sensor.  However, Agrobacterium tumefaciens’ transgene expression may be 

silenced during normal plant defenses and mask the effects of the suppressors 

or proteins involved. One approach to reduce additional transgene silencing is to 

test the activity of suppressors expressed in infectious clones once its activity as 

suppressor of RNA silencing has been demonstrated. Infectious clones are 

useful tools to measure activity of viruses in plants using the Agrobacterium 

system. DNA plasmids harboring infectious clones can be modified through 

deletions, mutagenesis and even introduction of different proteins such as GFP 

sensors.  

TuMV-GFP-AS9 (Garcia-Ruiz et al., 2010) chimeric infectious clone 

harboring an AS9 mutation is not able to infect both WT, N. benthamiana and A. 

thaliana. Introduction of TSWV NSs silencing suppressor will be useful to 

understand the mechanistic role of this protein in the rescue of pathogenicity of 

this mutant virus. The objectives of this study are to generate a chimeric virus 

harboring NSs suppressor and to test the pathogenicity compared to the WT 

virus. 
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MATERIALS AND METHODS 

DNA plasmids 

 For inactivating the NSs protein point mutations involved the substitution 

of conserved amino acids by alanine and are described as the original amino 

acid, position number and followed by the alanine substitution. 

pMDC32-NSs-S48A-R51A-6HIS3xFlag Inactivating mutations S48A and R51A 

in RNA binding motif 1 (de Ronde et al., 2013) were introduced by site directed 

mutagenesis by rolling circle amplification using oligos NSs_R_975 

(ATACAGCTGGGTTTGAACTAGTGGAGAACC) and NSs_S48A_R51A_794 

(gCaGAtTCAgctAGCAAAAGTAGCTTTGGC) using pENTR-NSs-6HIS-3xFlag as 

template, resulting plasmid pENTR-NSs-S48A-R51A-6HIS3xFlag was moved 

into pMDC32 by LR recombination. The pMDC32 vector harbors the left and right 

border for Agrobacterium transformation. 

pMDC32-NSs-K182A-L413A-6HIS3xFlag. This construct harbors both the NSs-

1 and NSs-2 inactivating mutations in the essential GKT motif (Zhai et al., 2014). 

The K182A mutation was introduced by PCR site directed mutagenesis using 

oligo NSs-1-R_977 (GCCTAAAGCTTGATTGTAGCACATCTCG) and NSs-1-

F_976 (gctGTGAATGTTCTATCCCCTAACAG) and pENTR-NSs-6HIS-3xFlag 

plasmid as template, generating pENTR-NSs-K182A-6HIS-3xFlag. The L413A 

mutation was introduced by PCR site directed mutagenesis using oligos NSs-2-

R_979 (GTAAGACATAGTTTGTGTGTTAGATGG) and NSs-2-F_978 

(gctGACAGCATCCAAATCCC) using pENTR-NSs-K182A-6HIS-3xFlag as 
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template, generating pENTR-NSs-K182A-L413A-6HIS-3xFlag. The NSs-K182A-

L413A-6HIS-3xFlag was moved into pMDC32 by LR recombination, generating 

pMDC32-NSs-K182A-L413A-6HIS3xFlag. 

pPZP_ssGFP This plasmid was donated by Dr. Satyanarayana Tatineni and 

harbors a single stranded ORF of the soluble Green Fluorescent Protein from 

jellyfish Aequorea victoria expressed under the 35S promoter and between the 

left and right border. This plasmid also harbors the Spectinomycin and Rifampicin 

resistance gene (Qu et al., 2003)  

pMDC32-p19 This clone was made by amplifying the ORF from the previously 

described pCB302-HA-p19 (Chapman et al., 2004) introduced in the cloning 

vector pENTR and moved by LR recombination to the pMDC32 vector (Gateway 

system). 

pCB302-TuMV-GFP-AS9-NSs-HF Vector insert digestion protocol was followed 

using plasmid pCB302-TuMV-GFP-HGR as vector and insert from a cloning 

intermediate pENTR_NIb_NSsHF_CP(TuMV) harboring a partial Nib and CP 

region using restriction sites MluI and PvuI. pENTR_Nib-CP(TuMV) cloning 

intermediate was used to introduce the NSs ORF by stitching PCR. Using 

fragments amplified from three different plasmids: fragment A from plasmid 

pENTR_Nib-CP(TuMV) using oligos TuMV_Nib_ENTR_780 

(caccGCGATGATTGAGTCGTGGGG) and Nib-NSs_R_1069 

(tgCctggtgataaacacaagcctcagc), fragment B from plasmid pENTR_NSs-

6HIS3XFlag (AT) using oligos Nib-NSs_F_1070 
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(TCTTCAAGTGTTTATGAGTCGATCATTCAGAC) and Flag-CP_R_1071 

(CTTGTCATCGTCATCCTTGTAGTCG) and fragment C from plasmid 

pENTR_Nib-CP(TuMV) using oligos Flag-CP_F_1072 

(gcaggtgaaacgcttgatgcagg) and pCB302_Ter_Rev_719 

(ATCGCAAGACCGGCAACAGG) were used in a stitching PCR reaction to 

produce a fragment harboring a partial NIb fragment, NSs introduced with the 

addition of a NIb cleavage site CTGGTGATAGACACA at the N terminus and a 

partial CP, both partial NIb and CP harbor the MluI and PvuI site respectively. 

 The full-length fragment was introduced into pENTRÒ cloning vector by TOPOÒ 

Cloning to produce pENTR_NIb_NSsHF_CP(TuMV) used as source of insert 

after digestion with 10 U of MluI and PvuI enzymes (New England Biolabs, 

Ipswich, MA) and ligated in the pCB302-TuMV-GFP-AS9 vector to produce final 

pCB302-TuMV-GFP-AS9-NSs-HF. 

pCB302-TuMV-GFP-AS9-NSs-HF-N48A_R51A This plasmid was made in 

parallel and following the protocol used for the plasmid pCB302-TuMV-GFP-AS9-

NSs-HF by replacing the source of insert within the MluI and PvuI site with 

plasmid pENTR_NIb_NSsHF_S48AR51A_CP(TuMV). To make this last plasmid 

fragment D was obtained from plasmid pENTR-NSs-

6HIS3xFLAG_S48A_R51A(AT) with oligos Nib-NSs_F_1070 

(TCTTCAAGTGTTTATGAGTCGATCATTCAGAC) and Flag-CP_R_1071 

(CTTGTCATCGTCATCCTTGTAGTCG). Fragment B was replaced by fragment 

D in the stitching protocols to make pCB302-TuMV-GFP-AS9-NSs-HF-
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N48A_R51. This plasmid harbors inactivating point mutations in the NSs ORF 

and was digested with 10 units of enzyme PvuI and MluI. 

pCB302-TuMV-GFP-NSs-HF and pCB302-TuMV-GFP-NSs-HF-N48A_R51A 

These plasmids were made using the same protocols described while making 

pCB302-TuMV-GFP-AS9-NSs-HF and pCB302-TuMV-GFP-AS9-NSs-HF-

N48A_R51A. The only difference was the vector; instead of using pCB302-

TuMV-GFP-AS9 with the AS9 mutation the TuMV-GFP WT plasmid whose HC-

Pro does not harbor the AS9 mutation was used as vector. 

Agro-infiltrations and transient RNA silencing suppression assays 

Silencing suppression activity of TSWV NSs clones was determined using 

an established protocol (Johansen and Carrington, 2001). Agrobacterium strain 

GV3101 containing pMDC32 or pCB302 plasmids after electroporation were 

growth in 1 mL of Lysogenic broth (LB) containing Rifampicin (0.1 mg/mL) and 

Kanamycin (0.1 mg/mL) or Spectinomycin (0.1 mg/mL) and Rifampicin (0.1 

mg/mL) for pPZP plasmids for 24 hours at 28° C with shaking for initial activation.  

1 mL cultures were diluted to an optical density (OD600) of 0.002 and 

growth in 10 mL of VIR infiltration solution (10 mM MES pH 5.2, 100 µM 

acetosyringone and corresponding antibiotic) for 16 hours at 28° C. 

 Cell cultures were centrifuged at 6000 rpm for 10 min at 4 C and re-

suspended in infiltration solution (10 mM MgCl2, 10 mM MES, 150 µM of 

Acetosyringone) and kept in the dark for 2 hours until infiltrations. Single 

stranded GFP was diluted and infiltrated to a final OD600 of 0.125, NSs clones to 
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a final OD600 of 0.5, TuMV constructs to a final OD600 of 0.05. GUS and p19 

(Chapman 2005) were used as negative and positive controls, respectively and 

infiltrated to a final OD600 of 0.5. in 15 days old N. benthamiana plants with 5 to 6 

leaves; two leaves were infiltrated by treatment. NSs infiltrated leaves were 

monitored for GFP expression, and pictures taken under UV light at 3 days post 

inoculation. 

For TuMV constructs additional infiltration of 15 days old A. thaliana plants 

Col-0 WT and Dicer triple mutant plants were used to measure activity of 

different constructs. GFP of TuMV constructs was monitored at 5, 7, 10, 15 days 

post infiltration (dpi) and pictures taken at 7, 10 and 15 dpi. 

Western blotting 

Protein extraction was done using protocol described in chapter II. 0.15 g 

of N. benthamiana leaf samples were collected at 3 dpi for NSs clones, for TuMV 

constructs systemic infected leaves or 10 clusters of Arabidopsis samples were 

collected at 15 dpi.  

For gel electrophoresis 10 µl of total undiluted protein sample were 

separated using Mini-PROTEAN® TGX Stain-Free™ gels at 150 V for 60 minutes 

and transferred onto nitrocellulose membranes.  

GFP was detected using 5 µl of anti GFP antibody (Merck Millipore, 

Darmstadt, Germany). NSs protein was detected using 2 µl of Anti-Flag antibody 

(Sigma-Aldrich, St. Louis, MO). p19 protein (Chapman et al., 2004) was detected 

using 10 µl anti-HA antibody with peroxidase (Roche, Basel, Switzerland). 
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HSP70 used as loading control was detected using 3 µl of Primary Anti-HSP70 

(Merck Millipore, Darmstadt, Germany) and 2 µl of secondary antibody from goat 

anti-rabbit immunoglobulin G used to detect the first antibody (1: 10,000; NA934-

1; GE Healthcare, Little Chalfont, UK).  TuMV CP was detected using 4 µl of Anti-

CP from rabbit and 2 µl of secondary antibody from goat NA934-1. 

Luminescence was measured with Clarity Western ECL Substrate and a 

ChemiDoc® MP Imaging system (Bio-Rad, Hercules, CA, USA). 
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RESULTS 

NSs inhibits GFP silencing at 3 dpi and point mutations inactivate this 

protein  

 

Figure 4.1 Suppression activity of NSs clones and GFP accumulation in 
Nicotiana benthamiana plants at 3 dpi. (A) NSs clones with relative positions of 
epitope His-Flag tag and point mutations used to inactivate the NSs protein. (B) 
Suppression activity of NSs clones in N. benthamiana plants at 3 dpi, the large 
unit of Rubisco protein was used as a loading control. NSs and GFP proteins 
were detected at 3 dpi using anti-Flag and anti-GFP antibodies respectively. 
Relative accumulation of GFP relative to p19, treatments with different letters are 
different Tukey HSD 0.05. Detection of NSs mutants using anti-Flag antibody 
when co-expressed with p19 at 3 dpi. 
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Previously described NSs clone (Takeda et al., 2002) was used as 

template for introduction of 6xHIS and 3xFLAG epitope tags at the C terminus 

(Figure 4.1 A). This clone was also used to introduce point mutations to 

inactivate the NSs protein based in conserved regions (Zhai et al., 2014).  

NSs clones under the expression of the 35S promoter were used to 

determine suppression activity in co-expression with single stranded GFP. During 

transient RNA silencing suppression assays wild type NSs inhibited GFP 

silencing at 3 dpi. Mutant NSs clones pMDC32-NSs-S48A-R51A-6HIS3xFlag and 

pMDC32-NSs-K182A-L413A-6HIS3xFlag lost suppression activity and did not 

suppress GFP silencing at 3 dpi. GFP accumulation in the mutant NSs clones 

was different compared to wild type NSs. In addition, detection of mutant NSs 

clones using the FLAG antibody did not detect any proteins. To determine NSs 

protein was being produced in the mutant NSs clones and that reduction in the 

accumulation of GFP was not attributed to protein absence, co-expression of 

NSs mutants with p19 facilitated NSs detection but at lower levels compared to 

wild type NSs (Figure 4.1 B). 
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TuMV-AS9-GFP-NSs infects Nicotiana benthamiana and both WT and Dicer 

triple mutant Arabidopsis thaliana 

 

Figure 4.2 Stability and accumulation of TuMV-GFP-NSs clones expressing both 
WT and mutant NSs. (A) TuMV-GFP clones, relative position of AS9 mutation 
and position of NSs-6H3xFlag and S48A-R51A-6HIS3xFlag. (B) Systemic 
infection and GFP accumulation of TuMV-GFP clones in N. benthamiana and A. 
thaliana at 15 dpi. (C) NSs and CP protein accumulation from TuMV-AS9-GFP-
NSs and TuMV-GFP-NSs at 15 dpi in N. benthamiana and NSs and CP 
accumulation of TuMV-AS9-GFP-NSs in A. thaliana dicer triple mutant. HSP70 
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was used as a loading control. TuMV CP accumulation was calculated relative to 
TuMV-GFP. 
 

To determine NSs suppression activity when active in a virus, NSs ORF 

was introduced in the inactive infectious clone TuMV-GFP-AS9 (Garcia-Ruiz et 

al., 2010) which due to a AS9 mutation in the HC-Pro protein is not able to infect 

wild type plants. Both NSs-HF and NSs-HF_S48A_R51A variants were 

introduced between NIb and the CP after addition of a NIb cleavage site at the N 

terminus and removal of start and stop codon in order to process NSs as 

Potyviral protein. Relative position of TSWV NSs protein in the TuMV-GFP clone 

(Figure 4.2 A). 

GFP accumulation from TuMV-GFP-AS9-NSs-HF was observed only in A. 

thaliana Col-0 ecotype and wild type N. benthamiana, no GFP was observed in 

controls TuMV-GFP-AS9 and TuMV-GFP-AS9-NSs-HF-NSs-K182A-L413A 

corroborating TuMV-GFP-AS9-NSs-HF construct was active and infective in wild 

type plants. A. thaliana Dicer triple mutant confirmed activity of controls, TuMV-

GFP (WT) was used as positive control and brighter and full covering of GFP on 

leaves was observed in both A. thaliana Col-0 ecotype and wild type N. 

benthamiana (Figure 4.2 B). 

NSs protein accumulation was detected by western blotting at 15 dpi using 

the anti-FLAG antibody in N. benthamiana (Figure 4.2 C). A reduction in the 

accumulation of NSs from the TuMV-GFP-AS9-NSs-HF-NSs-K182A-L413A 

clone was observed indicating NSs protein with point mutations was inactive and 
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tended to be degraded. A reduction of CP accumulation compared to TuMV-GFP 

(WT) was also observed which was also similar to GFP detection under UV light.  

Protein samples from A. thaliana Dicer triple mutants showed TuMV-GFP-

AS9-NSs-HF was active by detection of NSs protein at 15 dpi including TuMV-

GFP-AS9-NSs-HF-NSs-K182A-L413A even though at lower levels. Similar 

accumulation levels of CP from TuMV-GFP-AS9-NSs-HF and controls were also 

detected. 

 To determine effects in TuMV-GFP-AS9-NSs-HF after addition of NSs 

ORF into TuMV-GFP-AS9 a new construct was made, TuMV-GFP-NSs-HF by 

introducing the NSs ORF in the TuMV-GFP (WT). This new construct showed to 

be different than TuMV-GFP-AS9-NSs-HF, systemic infection was slower in 

TuMV-GFP-NSs-HF but more similar to previous tested TuMV-GFP (WT) (Figure 

4.2 B). Accumulation of NSs protein, wild type and mutant was similar to TuMV-

GFP-AS9-NSs-HF. CP accumulation of TuMV-GFP-NSs-HF was also higher 

than TuMV-GFP-AS9-NSs-HF (Figure 4.2 C) but not higher than TuMV-GFP 

(WT) demonstrating there was an effect in the infection process by the addition of 

external sequences.  
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TuMV-GFP-AS9-NSs-HF infects Nicotiana benthamiana and Arabidopsis 

thaliana but symptoms are different than WT TuMV-GFP 

 

Figure 4.3 Systemic infection progression of TuMV-GFP-AS9-NSs constructs 
compared to TuMV-GFP. (A) Percentage of N. benthamiana plants showing 
systemic infection every day after post inoculation, 18 plants with 20 days old 
were Agro-infiltrated per treatment with a 0.05 final OD. (B) Percentage of A. 
thaliana WT and Dicer triple mutant plants showing systemic infection every day 
after post inoculation, 18 plants with 16 days old were Agro-infiltrated per 
treatment with a 0.05 final OD. 
 

Agro-infiltrations of Nicotiana benthamiana and Arabidopsis thaliana 

plants showed chimeric TuMV-GFP-AS9-NSs-HF required more days to produce 

systemic infection compared to TuMV-GFP (Figure 4.3).  While TuMV-GFP 
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required 4 to 5 days to produce systemic infection in Nicotiana benthamiana 

TuMV-GFP-AS9-NSs-HF required 7 to 10 days to show 100% of systemic 

infection (Figure 4.3 A). 

The same pattern was found in both Col-0 and Dicer triple mutant 

Arabidopsis thaliana plants (Figure 4.3 B). TuMV-GFP required only 6 to 10 days 

to reach systemic infection in Col-0 compared to TuMV-GFP-AS9-NSs-HF that 

required 10 to 12 days. In the Dicer triple mutant ecotype TuMV-GFP-AS9-NSs-

HF was also found to require additional days to systemically infect this ecotype 

compared to controls. 
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Systemic infection of TuMV-GFP-AS9-NSs-HF reassembles TSWV 

symptoms. 

 

Figure 4.4 TuMV-GFP-AS9-NSs symptoms in Nicotiana benthamiana at 7, 10 
and 15 dpi. (A) N. benthamiana plants were Agro-infiltrated at final infiltration 
0.05 OD with TuMV- GFP-AS9 clones or infected with TSWV and plant 
symptoms pictures taken at 7, 10 and 15 days post inoculation under visible light. 
(B) Systemic infection of upper leaves under UV light at 7, 10 and 15 days post 
inoculation. (C) Leaf symptoms of TuMV-GFP-NSs clones under visible light and 
UV light at 15 days post inoculation. 
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After Agro-infiltrations pictures were taken at 7, 10 and 15 dpi and clear 

differences were observed between the TuMV-GFP-AS9-NSs-HF and controls 

(Figure 4.4 A) while TuMV-GFP affected growth of plants since day 7 and 

consequently killed plants at 15 dpi, TuMV-GFP-AS9-NSs-HF did not affect 

severely the growth of N. benthamiana at 15 dpi. Reduced sizes of plants were 

observed in the TSWV and TuMV-GFP WT infected plants compared to TuMV-

GFP-AS9-NSs-HF where no reduction in sizes where evident at 15 dpi. 

 Systemic infection of N. benthamiana plants (Figure 4.4 B) with TuMV-

GFP-AS9-NSs-HF showed GFP was scattered all over the leaf compared to 

TuMV-GFP where covering of the whole leaf was observed. In addition, no local 

infection by the presence of GFP in the infiltration zone of TuMV-GFP-AS9-NSs-

HF was observed.   

Visible and UV light pictures were taken at 10 and 15 dpi to detect 

distribution of GFP from TuMV-GFP-AS9-NSs-HF in leaves (Figure 4.4 C) yellow 

zones observed under visible light corresponded to GFP presence under UV light 

and these yellowing symptoms were similar when compared to TSWV infection.  

 

DISCUSSION 

Activity of NSs protein as a silencing suppressor has been previously 

described and NSs-6HIS-3xFlag clone inhibited GFP silencing at 3 dpi, (Figure 

4.1 B) the fact that GFP protein accumulation is lower in the wild type NSs 

compared to p19 suggests this protein acts at a different step in the RNA 
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silencing pathway; p19 binds 21 nucleotides small RNAs (Chapman et al., 2004). 

Another important consideration is the quantity of NSs protein compared to p19, 

NSs differs in size by more than 30 kDa and this could affect protein movement, 

availability and even protein degradation. Important domains in the NSs protein 

may have additional or even new effects in the RNA silencing pathway and 

cannot be ruled out.  

After introduction of point mutations to inactivate the NSs protein westerns 

showed NSs mutants where unstable and accumulation was not detected until 

co-expression of silencing suppressor p19. This highlights the importance of 

these amino acids in the protein as having important activity or involved in the 

folding of the NSs protein. 

After suppression activity of NSs protein was corroborated introduction of 

this protein in the TuMV-GFP-AS9 clone was an important step to study the 

activity of this suppressor in the rescue of pathogenicity of a mutant virus. TuMV-

GFP-AS9 in not able to infect Nicotiana benthamiana nor Arabidopsis thaliana 

but is able to infect the Dicer triple mutant ecotype. TuMV-GFP-AS9 was also 

used as a negative control in the infection of wild type Nicotiana and Arabidopsis 

plants and as positive control in the infection of Dicer triple mutants. Introduction 

of the NSs protein in the TuMV-GFP-AS9 rescues pathogenicity of this virus; 

making inactive TuMV-GFP-AS9 to be active again. Interestingly detection of the 

NSs protein by western blotting at the corresponding size suggests this protein is 

active and correctly processed inside the virus. 
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 A reduction in the accumulation of TuMV CP suggested that addition of 

NSs protein has an effect in the pathogenicity of TuMV-GFP-AS9-NSs-HF; this 

was also shown when the percentage of plants showing systemic symptoms after 

Agro-infiltration where calculated, positioning TuMV-GFP-AS9-NSs-HF behind 

TuMV-GFP (WT). Introduction of NSs protein in the WT TuMV-GFP to compare 

effects showed there is an effect in the infection process due to presence of local 

infection compared to TuMV-GFP-AS9-NSs-HF where no local infection was 

observed (Figure 4.3 A 3 dpi). Nevertheless, differences in pathogenicity 

compared to TuMV-GFP (WT) could be attributed only to NSs silencing 

suppressor and the mechanistic roles this suppressor uses to interact with the 

RNA silencing pathway. 

The protocol used to Agro-infiltrate Arabidopsis plants still needs to be 

reviewed and optimized due to some plants do not showing GFP in certain 

occasions; otherwise data generated by these plants may produce erroneous 

data in the appearance of local and systemic symptoms. 

The presence of symptoms with high similitudes to TSWV infection in this 

system could attribute yellowing symptoms in natural host plants infected with 

TSWV to be caused only by presence of the NSs suppressor. These findings 

open interesting hypotheses to follow in current and future experiments involving 

the use of the chimeric TuMV-GFP-AS9-NSs-HF here described in order to 

understand the effects of this suppressor. The fact that the NSs protein is 

processed and cleaved after the introduction of NIb cleavage site in the region 
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used also opens the possibility to introduce different suppressors of different 

viruses. 
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