
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department of

2011

Diagnosis of Multiple Scan-Chain Faults in the
Presence of System Logic Defects
Zhen Chen
Tsinghua National Laboratory for Information Science and Technology

Sharad C. Seth
University of Nebraska-Lincoln, seth@cse.unl.edu

Dong Xiang
Tsinghua University, Beijing

Bhargab B. Bhattacharya
Indian Statistical Institute, Kolkata, India, bhargab@isical.ac.in

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork

Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons,
and the Other Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Chen, Zhen; Seth, Sharad C.; Xiang, Dong; and Bhattacharya, Bhargab B., "Diagnosis of Multiple Scan-Chain Faults in the Presence of
System Logic Defects" (2011). CSE Conference and Workshop Papers. 301.
http://digitalcommons.unl.edu/cseconfwork/301

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/127440920?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork/301?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages

Diagnosis of Multiple Scan-Chain Faults in the Presence of System Logic
Defects

Zhen Chen1, Sharad Seth2, Dong Xiang3, Bhargab B. Bhattacharya4

1,3Tsinghua National Laboratory for Information Science and Technology
1Dept. of Comp. Sci. and Techn., 3School of Software, Tsinghua University, Beijing 100084, China

2Computer Sci. and Eng., University of Nebraska-Lincoln, Lincoln NE 68588-0115, U.S.A.
4Indian Statistical Institute, Kolkata, India

Abstract —We present a combined hardware-software
based approach to scan-chain diagnosis, when the outcome of a
test may be affected by system faults occurring in the logic out-
side of the scan chain. For the hardware component we adopt
the double-tree scan (DTS) chain architecture, which has pre-
viously been shown to be effective in reducing power, volume,
and application time of tests for stuck-at and delay faults. We
develop a version of flush test which can resolve a multiple
fault in a DTS chain to a small number of suspect candidates.
Further resolution to a unique multiple fault is enabled by the
software component comprising of fault simulation and analy-
sis of the response of the circuit to test patterns produced by
ATPG. Experimental results on benchmark circuits show that
near-perfect scan-chain diagnosis for multiple faults is possible
even when a large number of random system faults are injected
in the circuit.

Keywords: Double tree scan, Scan chain diagnosis, system
logic defects.

I. Introduction

As the scan chains provide the critical test infrastructure
through which all test data must pass, establishing the integrity
of scan chains is essential for drawing meaningful conclusions
from any scan-based test. In this paper, we focus on diagnosis
of multiple faults in scan chains. This diagnosis step could be
followed by another step in which faulty nodes in the system
logic are identified with the knowledge of the scan-cell faults.

Our scan-chain diagnosis process starts with the application
of a flush test (aka chain pattern) to detect scan cell faults.
The flush test can only partially resolve the faults and fault
types [1], therefore additional steps that analyze failure infor-
mation of scan patterns are required to complete the diagnosis.
Many early scan chain diagnosis methods make the unrealistic
assumption that the system logic is fault-free [14]. The diag-
nosis process is considerably more challenging for a compound
fault model in which system logic faults can co-occur with scan
chain faults and can corrupt the test results obtained in the ab-
sence of system logic faults [2, 3, 6, 16]. Prior studies that allow
compound faults in scan chain diagnosis, however, are limited
to solutions that solve specific cases or can tolerate only a small
number of logic defects for perfect diagnosis.

A recent survey provides a convenient classification of the
many schemes that have been proposed for scan chain diagno-
sis and discusses their pros and cons [1]. In the tester-based
approach, the tester works in conjunction with a physical fail-
ure analysis (PFA) device to scan-shift test patterns, capture
responses, and analyze defective responses at different loca-
tions to identify failing scan cells [8, 9]. The hardware-based
schemes employ special scan-chain or scan-cell designs to facili-
tate diagnosis [10, 11]. Software-based methods algorithmically
analyze the test data for diagnosis. These can be further bro-
ken down into two broad sub-categories: (1) simulation based
in which available test patterns are fault simulated and ana-
lyzed [2, 4, 12], and (2) deterministic diagnostic pattern gen-

eration (DDPG) based which target individual scan cells on a
faulty scan chain for test generation [13, 15].

In this paper, we propose a hybrid hardware-software based
approach. For the hardware scheme we adopt the double-tree
scan (DTS) which duplicates a scan chain in function and pro-
vides a unified approach to reducing the power, volume, and ap-
plication time of tests for stuck-at and delay faults [7]. We show
that the flush test can already narrow the ambiguity about each
component of a multiple fault to at most three faults in a scan
chain. The software scheme compares the simulation results of
available test patterns against observed responses and resolves
the ambiguity of each fault component down to a unique fault
in the presence of hundreds of random sys- tem logic defects
in the circuit. To the best of our knowledge, this is the first
method that can achieve near-perfect resolu- tion in the pres-
ence of hundreds of system logic defects

The rest of the paper is organized as follows. Section II pro-
vides the background on the DTS architecture necessary for an
understanding of this paper. It also precisely defines the fault
model for scan-chain faults used in the paper. In Section III,
a flush test for a DTS scan chain is developed. Software based
techniques for further resolving the fault to a single scan cell are
discussed in Section IV. The experimental set up and results
are discussed in Section V. The paper concludes in Section VI
with a discussion of possible extensions of this work.

II. Background

In the DTS approach, each linear scan chain is replaced by
its equivalent nonlinear DTS chain. In this section we cover the
salient aspects of the double-tree scan (DTS) architecture that
are essential to an understanding of this paper. We also define
the fault model used for scan-chain and system logic faults.

A. Double-Tree Scan

Structure: A complete binary tree has k levels (with the
root assumed at level 0) and consists of 2k leaf nodes and (2k-1)
internal nodes. The DTS structure resembles two complete k-
level binary trees whose leaf nodes are merged pair-wise. Thus,
a full double-tree DTS(k) consists of N = (2k−1+2k+2k−1) =
3 ∗ 2k − 2 nodes. Each node of the tree represents a scan flip-
flop. The edges in the tree are directed from top to bottom.
A directed edge (i, j) in the DTS indicates that Q(i), the Q-
output of the flip-flop i, drives D(j), the D-input of the flip-
flop j. For each node with in-degree 2 (i.e., a merge node) in
the bottom half of the DTS, a 2-1 MUX is needed to select
the predecessor flip-flop during the scan-load operation. Fig. 1
shows a full DTS(2) with 10 nodes. A DTS with an arbitrary
number of nodes can be obtained by either pruning a larger full
DTS or chaining together multiple DTS structures of smaller
size [7].

The full DTS structure can be partitioned into three roughly
equal parts according to the type of nodes in the tree. The top

2011 Asian Test Symposium

1081-7735/11 $26.00 © 2011 IEEE

DOI 10.1109/ATS.2011.61

297

Figure 1: A DTS chain with 10 nodes.

part consists of 2k-1 forking nodes with in-degree 1 and out-
degree 2; the middle part consists of just one level of 2k nodes,
with in-degree and out-degree equal to 1; and the bottom part
consists of 2k -1 merging nodes with in-degree 2 and out-degree
1.

Operation: A defining characteristic of DTS is that it can
functionally replace a scan chain, by connecting the topmost
(source) node to the scan-in signal and the bottommost (sink)
node to the scan-out signal. The full DTS(k) has 2k overlap-
ping scan paths, each of length (2k + 1), from the source to the
sink. The control unit to load and unload the DTS repeatedly
selects a source-to-sink scan-shift path in each clock cycle, so
that externally the DTS appears indistinguishable from a scan
chain of length N , where N is the number of FFs in the DTS.
However, in each clock cycle, only O(log N) FFs are enabled,
thus providing O(N/logN) improvement in test power per cy-
cle. This translates to a reduction by a factor of over 250 for
a DTS chain of 6000 FFs. By using a gated test clock and
rippling it from the bottom of the tree with the data input still
at the top of the tree, not only is the race condition between
the data and the control signals completely eliminated but sig-
nificant reduction in clock power also becomes possible [17].

The original DTS architecture [18] has been shown to be a
unified way of reducing power, volume, and application time of
tests for stuck-at and delay faults [7].

Implementation: The impact of the DTS architecture on the
area, routing, and test power was recently studied for several
benchmarks (including a RISC CPU design and several ITC
99 benchmarks) mapped to the IBM 0.18-micron process [17].
The results show a centralized DTS area overhead of 15% over
standard scan for most circuits. In all cases, the design area
did not have to be artificially expanded to allow more routing
resources, i.e., it was possible to use the same standard cell uti-
lization (over 95%) for all versions of the design. Further, for a
fabricated design of a sinc decimation filter with 188 functional
flip-flops, the measured power savings on random test patterns
is 9x-10x, which is consistent with the O(N/logN) reduction
predicted by analysis.

The huge savings in test power provide a means of reducing
the are overhead of DTS: by replacing the flip-flop at each node
by a chain of N flip-flops, the area overhead of DTS per node
is reduced by a factor of N , at the expense of an N times
increase in the power consumption. Thus, the measured 18%
area overhead over scan of a benchmark with over 6000 flip-
flops could be reduced to just 2% by chaining 9 flip-flops at
each node, while still realizing a power reduction of over 25.
The reduction in area occurs because the control overhead for
node implementation remains essentially unchanged.

B. Fault model

Although intermittent faults have been considered [5], most
studies on scan-chain diagnosis assume single permanent faults
that may be restricted to only stuck-at faults at the cell output,
or extended to include timing faults also. With the current
density of devices on a chip, a single fault model is hard to
justify, therefore, in this paper we allow multiple faults to occur
in a DTS chain. Further, the type of components of a multiple
faults is also extended to account for the increased complexity
of a scan cell in a DTS vs. a linear chain. Our objective is to
diagnose a multiple scan chain fault in the presence of system
logic faults, where the latter can be quite large (up to 50 in our
experiments) number.

In describing the effect of a scan-cell fault during the load-
ing/unloading process, it is helpful to define the upstream and
downstream relations between two scan cells a and b on a scan
path. Cell a is upstream of cell b if a appears before b on the
scan path, otherwise, it is downstream. As an example, if cell a
is stuck-at-0, all the cells downstream of a will have the value 0
after the loading process. Similarly, the response values for all
the cells passing through a during the unloading process would
appear to have the value 0 after the unloading process. It is
noteworthy that, unlike a linear scan chain, these relations do
not hold for all pairs of cells in a DTS chain (e.g. cells 4 and 6
in Fig 1).

The types of fault allowed at a DTS node are related to ei-
ther its storage or switching function. For the storage function
we permit the standard stuck-at and timing faults to occur at
a scan cell, i.e. the cell output could be SA0, SA1, STR (slow-
to-rise), and STF (slow-to-fall). For a failure in the switching
function, we assume a clock gating scheme, similar to that de-
scribed in [17], where the test clock and test data propagate
from the opposite ends of the double-tree scan. Specifically,
the test clock is routed bottom-to-top, via demux switches in
the bottom part and mux switches in the top part, while the
data terminals of the scan cells are directly connected top-
to-bottom, according to the DTS topology. We assume that
the switching failures are related to the select functions of the
routing switches. Specifically, a switch could be stuck-right or
stuck-left depending on whether the switch always passes to
the right or left due to the failure of the select function.

To illustrate how switch failures affect the operation of a
DTS chain, consider the fault: switch (demux) at node 10
stuck-right in Fig. 1. As a result of this fault, any time a scan
path in the left half of the double-tree scan is normally selected
by clock gating, a scan path in the right half would be selected
instead. For example, instead of the path (1, 2, 5, 8, 10), the
path (1, 3, 7, 9, 10) will be selected. Equivalently, we can
denote this fault as either missing-edge (1,2) or missing-edge
(8,10), from the perspective of the DTS operation.

A switch failure in the top part can be illustrated by consid-
ering the fault: switch (mux) at node 2 stuck right in Fig. 1. As
a result, the test clock arriving at node 4, from nodes 10 and 8,
would be blocked from further propagation to nodes 2 and 1.
Thus, whenever, the path (1,2,4,8,10) is selected for shifting in
the normal operation, nodes 1 and 2 will hold their values and
the shift operation would occur only on the sub-path (4,8,10).
Equivalently, we can denote this fault as a missing-clock fault
on nodes 1 and 2.

In summary, our fault model includes multiple faults with
components of the following types: Storage Faults: stuck-at-0
(SA0), stuck-at-1 (SA1), slow-to-rise (STR), and slow-to-fall
(STF). Switching Faults: missing-edge and missing-clock.

Further, for diagnosis, we only consider multiple faults in
which no masking relationship exists between fault compo-
nents. For example, in Figure 2, instead of the multiple fault

298

Table 1: Loading and unloading process for a flush pattern
Node index

Cycle Active scan path 1 2 3 4 5 6 7 8 9 10

1 1-2-5-8-10 b1

2 1-3-7-9-10 b2 b1

3 1-2-4-8-10 b3 b2 b1

4 1-3-6-9-10 b4 b2 b3 b1

5 1-2-5-8-10 b5 b4 b3 b2 b1

6 1-3-7-9-10 b6 b4 b5 b2 b1 b3

7 1-2-4-8-10 b7 b6 b5 b4 b2 b1 b3

8 1-3-6-9-10 b8 b6 b7 b4 b2 b5 b3 b1

9 1-2-5-8-10 b9 b8 b7 b4 b6 b5 b3 b2 b1

10 1-3-7-9-10 b10 b8 b9 b4 b6 b5 b7 b2 b3 b1 (r1)

11 1-2-4-8-10 b11 b10 b9 b8 b6 b5 b7 b4 b3 b2 (r2)

12 1-3-6-9-10 b12 b10 b11 b8 b6 b9 b7 b4 b5 b3 (r3)

13 1-2-5-8-10 b12 b11 b8 b10 b9 b7 b6 b5 b4 (r4)

14 1-3-7-9-10 b12 b8 b10 b9 b11 b6 b7 b5 (r5)

15 1-2-4-8-10 b12 b10 b9 b11 b8 b7 b6 (r6)

16 1-3-6-9-10 b12 b10 b11 b8 b9 b7 (r7)

17 1-2-5-8-10 b12 b11 b10 b9 b8 (r8)

18 1-3-7-9-10 b12 b10 b11 b9 (r9)

19 1-2-4-8-10 b12 b11 b10 (r10)

20 1-3-6-9-10 b12 b11 (r11)

21 1-2-5-8-10 b12 (r12)

(node-2 SA0, node-4 SA0), we will consider the single fault
node-2 SA0, because it masks the effect of the other fault. Sim-
ilarly, the missing edge fault on edge (8,10) masks the missing
edge fault on edge (4,8).

III. FLUSH TESTS FOR DTS

In this section, first, we discuss a defining feature of DTS
that helps improve its fault resolution significantly, as com-
pared to the linear scan chain. Then, we develop flush tests
for stuck-at and timing faults. For ease of exposition, we first
discuss the diagnosis of single faults, then extend the same to
multiple faults in Section V.

A. Fault Resolvability of DTS for Flush Tests

As noted in the last section, among the many source-to-sink
scan paths in the DTS only one is active during any clock cycle.
We can use this property to obtain high diagnostic resolution.
We assume that, a flush pattern denoted by (b1, b2, . . . , b10)
is loaded into the DTS chain in Fig. 1 while the observed re-
sponse, after unloading, is denoted by (r1, r2 . . . , r10). The
loading and unloading processes are shown in Table 1. If we
index the scan paths from left to right as P1, P2, P3, P4, the
loading sequence shown in the table cycles through the paths
in the following order: (P2, P4, P1, P3). In the flush tests, we
use this loading sequence.

Each bit scanned into the tree passes through exactly one
of these four paths before being observed, e.g. bit b1 passes
through path P3 consisting of scan cells (1, 3, 6, 9, 10) and
then is observed as r1. If r1 differs from b1, we can conclude
that the faulty scan cell must be one of the five cells in P3. In
general, each failure bit can be ascribed precisely to one scan
path. Further, after analyzing the paths for all the failure bits,
we can narrow down the suspect list of faulty cells to one or
two candidates. This result can be demonstrated by means of
an example. If only scan-path P1 has a fault (P2, P3, and
P4 are fault-free), the faulty scan cell must be 4 because every
other cell on P1 appears also on at least one other path. If
failures are observed for both P1 and P2 then the faulty cell
must be either 2 or 8, because these are the only two cells that

are common to both P1 and P2. On the other hand, if failures
are observed on all four paths, the faulty cell must be 1 or 10
by the same logic.

In contrast, for a linear scan chain, the response analysis of
a flush test can only narrow the suspect list to a chain segment
bounded to upper-bound (UB) and lower-bound (LB) cells and,
in the worst case, the suspect list might correspond to all the
cells in the scan chain.

B. Flush test for non-timing faults

In this subsection, we consider the stuck-at, missing-edge,
and missing-clock faults. First, we give the analysis on how
these faults affect the loading and unloading process. Next, we
provide a flush test for detecting these faults.

From the previous discussion, we know that a SA-0(1) fault
causes all the bits passing through the faulty node to be ob-
served as 0(1). For example, if there is a SA-0 fault for node
2 in Fig. 1, all the bits passing through P1 and P2 will be
observed as 0, no matter what kind of flush pattern is loaded.

We can also illustrate the effect of a missing-edge fault by an
example. Suppose in Fig. 1, there is a missing-left-edge fault
at node 1, i.e., the clock at node 1 always routes to the right so
that instead of the normal cycle of activated paths (P2, P4, P1,
P3), we would get (P4, P4, P3, P3). In other words, the paths
P1 and P3 would never be activated and the values of nodes (2,
4, 5, 8) will never get out. Consequently, the fault results in a
pruned DTS in operation, and we cannot load as many values
as the number of nodes in the DTS. We can get the number
of inaccessible nodes quite simply by initially loading the tree
with all 0s and following it will all 1s. The number of 0s that
come out during the second pattern load would represent the
number of inaccessible nodes.

The missing-clock fault means that the faulty node and all
its ancestors to the source node are never clocked, but all the
downstream nodes on the selected path will be clocked. For
example, in Fig. 1, if the fault blocks the propagation of clock
from node 2 to node 1, whenever path P1 (or P2) is selected for
shifting, node 1 would hold its old value because of the missing
clock. Further, the shift operation would proceed normally
for the remaining path 2-4-8-10 (or 2-5-8-10). If the value at

299

node 2 before the flush test is x, this missing-clock fault would
appear as equivalent to the stuck-at-x fault at node 2. This is
because node 2 is no longer controllable from the input and its
value x is propagated to all the downstream nodes. If x=0, it
is equivalent to the SA-0 fault otherwise, it is equivalent to the
SA-1 fault.

Next, we give a flush test for diagnosing single non-timing
faults:

• Pattern 1: Apply all 0s.

• Pattern 2: Apply all 1s and observe the output.

• Pattern 3: Apply all 1s.

• Pattern 4: Apply all 0s and observe the output.

Note that because the four test patterns involve no signal
transitions, these tests would mask any timing faults. The ex-
pected response for for the second pattern (R2) is all 0s and for
the fourth pattern (R4), it is all 1s. Any deviation from these
responses signals the occurrence of a non-timing fault. Further,
by analyzing the deviation more closely, we can distinguish the
missing-edge faults from the stuck-at and missing-clock faults
and narrow the suspect list to a small number of candidates.
This can be explained as follows. For a missing-edge fault,
as explained earlier, R2 will include some 1s, equal in number
to the inaccessible nodes, conversely, R4 will include an equal
number of 0s. For example, if R2 has four 1s and R4 has four
0s, we can conclude that a DTS sub-tree of size 4 is made in-
accessible, hence the missing-edge fault can be attributed to
node 1, but we cannot say whether the left or the right edge
is missing at this node, i.e. whether nodes (2,4,5,8) or nodes
(3,6,7,9)are made inaccessible.

For a stuck-at or missing-clock fault, errors will appear in
only one of the two response vectors, hence these type of faults
are easily distinguished from the missing-edge faults. For ex-
ample, if R2 is error-free but we observe errors (0s) for paths
P1 and P2 in R4, then we can conclude that node 2 or 8 may
have a SA0 fault.

A missing-clock fault and a SA-fault have different effects
during the scan process, since the upstream nodes of the faulty
node with missing-clock fault cannot load values into the faulty
node. However, a missing-clock fault will have the same syn-
drome as SA-0 or SA-1 for the flush test, hence we cannot
distinguish it from the stuck-at faults by flush tests.

In summary, the flush test narrows the suspect list to one or
two type of faults and to a small number of actual faults within
each type. For a further refinement of the suspect list, we will
need to use scan-based patterns, as described in Section IV.

C. Flush test for Timing Faults

For identifying the faulty cell with a timing fault, a flush test
should meet two goals: (1) Ensure that both transitions (0→ 1
and 1→ 0) pass through each cell. (2) Generate different syn-
dromes for different faulty scan cells in order to achieve a high
diagnostic resolution. The linear scan chain cannot achieve
high diagnostic resolution for timing faults by flush tests, since
the syndromes for all scan cells are the same. Here, we make
use of the flexibility of DTS to improve the resolution.

We show that the flush patterns 001001001001 and
110110110110, for DTS(2) in Fig. 1, meet the two goals (for
DTS(k), these flush patterns correspond to 2k consecutive 001
and 110). Although there are 10 nodes in Fig. 1, the flush pat-
tern needs 12 bits so as to ensure that at least two transitions
passing through each scan cell. Scan cell 4 in Fig. 1 will have
only one transition (from b4 to b8) passing through it, if only
the first 10 bits are used in the flush pattern.

We first show that the flush patterns can detect any faulty
scan cell in the DTS chain. Next, we show that the resolution

Table 2: Fault syndromes for a single STR fault
Faulty cell Failure bits in observed response

1 r3 , r6 , r9 , r12

2 r6 , r12

3 r3 , r9

4 r12

5 r6

6 r9

7 r3

8 r6 , r12

9 r3 , r9

10 r3 , r6 , r9 , r12

of syndromes for different faulty scan cells is less than or equal
to 2.

From a simulation of the two flush patterns, it can be ver-
ified that both the rising transition and falling transition pass
through each scan cell. For example, for the flush pattern is
(b1, b2, . . . , b12) = 001001001001, two 0→1 transitions pass
through scan cell 2 in cycles 7 and 13 and there is a 1→0 tran-
sition for scan cell 2 in cycle 9 . Therefore, any timing fault in
a cell will also result in a failure of the flush test.

The syndromes for different faulty scan cells are shown in
Table 2, given that the flush pattern is 001001001001 and fault
is slow-to-rise (STR). For example, from Table 1, we see that
test bits b4, b8 and b12 pass the scan cell 4, and there is a
rising transition in clock cycle 15 when the value changes from
b8 to b12. If scan cell 4 has a STR fault, the value of b12 is
corrupted by the fault, and the syndrome is that r12 is different
from the expected value b12.

From the example, we can see that only the symmetric scan
cells (e.g. cells 2 and 8 or cells 3 and 9 in Fig. 1) have the same
syndrome when they have faults. Therefore, we can narrow
the suspected scan cells to 1 or 2 by observing their unloading
response.

IV. REFINING FAULT RESOLUTION

In this section, we show how the fault resolution can be
further improved by additional tests. The strategy we use for
timing faults differs from that used for no-timing faults. For
simplicity, we first talk about the single fault model, then give
the multiple fault scheme based on it in Section V.

A. Non-timing Faults

After the flush test, a SA-fault can be narrowed down to
two symmetric nodes (one in the top part and the other in the
bottom part) or one node (in the middle part); a missing-edge
fault can be narrowed down to some symmetric parts (for ex-
ample part (2,4,5,8) or (3,6,7,9) in Fig.1); a missing-clock fault
can be narrowed down to one candidate, but we cannot distin-
guish it from the SA-fault in the same position. Therefore, we
first give the scheme to distinguish two SA-faults in the sym-
metric nodes and the missing-clock fault in the top part. Next,
we attempt to identify the inaccessible nodes for missing-edge
faults.

Our strategy for disambiguating stuck-at faults and missing-
clock faults is based on the failure information for production
test patterns. In order to describe the idea, we use the following
notation.

Assume that the two symmetric suspect cells in the DTS
chain are a and b, where b is downstream of a. Then, the set of
all scan cells downstream of a and upstream of b, exclusive of a
and b, is denoted by (a, b). If cell b is included, we denote the
set as (a, b]. The faults we attempt to distinguish are SA-fault
of a, missing-clock fault of a and SA-fault of b. The differences

300

between SA-fault of a and missing-clock fault of a are that the
latter may be SA1 or SA0 for different test patterns. During
the capture cycle, if node a captures value 1, it will be a SA1
fault. Otherwise, it is a SA0 fault. If for many independently
generated test patterns, consistently, only SA1 or only SA0
value is captured for a suspect node, we declare the fault type
to be stuck-type, otherwise, it must be a missing-clock fault.

Let r(a) represent the expected observed value for scan cell
a and r∗(a) be its real observed value. The observed value
could differ from r(a) not only because the applied (loaded)
test stimuli are different from their nominal values due to a
scan-chain fault but also because of system faults. As these
two causes are not easily separated, we can only say that:

r∗(a) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v if cell a is upstream of the SA-v
faulty scan cell,

r(a) if cell a is downstream of the faulty
scan cell and is unaffected by the

system logic defects,

r(a) otherwise.

(1)

For each test vector, the response can be classified into two
cases:

(1) For at least one cell, say x, in the segment (a, b], the
following condition holds: r∗(x) = v, given that a SA-v
fault has occurred in either cell a or cell b. In this case,
the fault must be in scan cell a, because r∗(x) = v for all
cells x in (a, b] if scan cell b is faulty.

(2) Otherwise, that is, r∗(x) = v for all cells x in the segment
(a, b].

If case (1) occurs for any test vector, the diagnosis process
terminates, as we can conclude that scan cell a is faulty. If
case (2) occurs for all the test vectors, we cannot distinguish
the faulty cell: the observed response could be because either
scan cell b is faulty or scan cell a is faulty along with system
logic faults.

For resolving the ambiguity in the second case, we use a
probability-based method that compares the observed response
of a test vector to two simulated responses, obtained by assum-
ing the stuck-at fault in cell a and cell b, respectively.

Instead of comparing all the bits in the test response, we
only compare them on a subset of bits in the response. We find
the set of good scan cells that are not affected in the loading
and unloading process, denoted by Sgood.

For each test vector, we define the following:

• Robserved: the response observed by ATE. It is the re-
sponse of fault simulation when both scan chain fault and
system logic faults are randomly injected.

• Ra: the response of fault simulation when only scan cell
a is faulty and there is no system logic defect.

• Rb: the response of fault simulation when only scan cell b
is faulty and there is no system logic defect.

score(a) = |{x|x ∈ Sgood ∩ Robserved(x) = Ra(x)}|/DFF
score(b) = |{x|x ∈ Sgood ∩ Robserved(x) = Rb(x)}|/DFF
Here, DFF is the number of scan cells in the circuit.

We claim that scan cell a or b is faulty if (|∑ score(a) −∑
score(b)| > margin) after summing the scores of all the test

vectors (the larger one will be the candidate). Otherwise, both
scan cell a and b are reported. Here, the parameter margin
is introduced to avoid a false decision. We set the value for
margin based on the statistics of samples from all the circuits.

For the missing-edge fault, the inaccessible nodes can never
be activated in the scan process, thus, their captured values
will never get out during the scan process. From the flush test,
we can infer the number of inaccessible nodes in the DTS. Take

Fig. 1 as an example, if nodes (2,4,5,8) or (3,6,7,9) are inac-
cessible, only the first 6 bits during the unloading process for
a pattern are captured response bits, while the other four bits
are error bits. Based on the values of the 6 observed response
bits, we can determine which part (nodes (2,4,5,8) or (3,6,7,9))
is inaccessible. Therefore, for a DTS with inaccessible candi-
date parts, P1 and P2, we first calculate the expected response
of P1 and P2 for each pattern. Then, we compare the expected
response of P1 and P2 with the observed response in the ATE.
Finally, the part whose expected response more matches the
observed response is more likely to be the suspect.

B. Timing Faults

Timing faults can be uniquely identified by using another
flush pattern, as demonstrated below for the running example.

Assume that the suspected faulty scan cells are 2 and 8, and
the timing fault is STR (01→00). In the new flush pattern, we
load (0, 0, 1, 1) into scan cells (8, 4, 5, 2) and arbitrary values
into other scan cells.

Suppose the four values are scanned into the scan cells by
activating paths P1 and P2 in each clock cycle as follows:

• Cycle 1: (P1 is active) 0 into cell 2.

• Cycle 2: (P2 is active) 0 into cell 5 and 0 into cell 2.

• Cycle 3: (P1 is active) 0 into scan cell 4 and 1 into scan
cell 2.

• Cycle 4: (P2 is active) 0 into cell 8, 1 into cell 5, and 1
into scan cell 2.

After the loading process, the values in scan cells (8,4,5,2)
are (0,0,1,1). For unloading, we activate only path P1. This
scheme allows distinguishing the timing fault in cell 2 vs. cell
8 as follows:

If cell 2 is faulty, the value in scan cell 5 after loading will
be 0, since the 0→1 transition in cell 2 in Cycle 3 will change
to 0→0, and the faulty value 0 is loaded into cell 5 in Cycle
4. However, the loaded values in cells 2, 4, and 8 remain un-
changed, independent of whether cell 2 is faulty or fault-free.
In the unloading process, we only activate path P1 for 5 con-
secutive cycles. The values 1 and 0, respectively in cells 4 and
2, define a rising transition that must pass through cell 8. If
the rising transition is observed, it indicates that cell 8 is fault-
free; hence the timing fault must be in cell 2. Otherwise, scan
cell 8 is faulty.

The overhead for this method is a minor enhancement to
the DTS control that allows for activating a single scan path
for multiple cycles during unloading.

V. Multiple faults diagnosis

For multiple faults, we adopt the law of parsimony, i.e.,
we attempt to use the smallest number of suspects to explain
the faulty syndrome. For example, if stuck-at faults appear to
occur on both P1 and P2, the culprits may be nodes 4 and 5
together, or node 2 alone. According to parsimony, we declare
node 2 to be the cause.

If there are multiple stuck-at and missing-clock faults, we
attempt to find the smallest number of suspects by the flush
tests. Then, use scan-based patterns to determine the fault
type and location. For example, if we observe SA-0 faults for
P1, P2 and P3 in the flush test, the suspected list of nodes will
be 2, 8 and 6. Further, we must distinguish between the SA-0
fault at node 2, SA-0 fault at node 8, missing-clock fault at
node 2, SA-0 fault at node 6 and missing-clock fault at node 6.
We use multiple procedures for single fault model to solve this.
For the SA-0 faults at nodes 2 and 8, and missing edge fault
of node 2, we use the method in Section IV.A to distinguish

301

Table 3: Performance of the proposed method
Circuit 1 chain fault 2 chain fault 3 chain fault

Logic faults 0 10 50 0 10 50 0 10 50

s13207 @1 100 99 98 97 97 94 93 91 86
@2 100 100 100 99 98 97 95 92 90
@5 100 100 100 100 100 100 100 99 97

s15850 @1 100 99 97 97 94 93 93 90 87
@2 100 100 100 99 99 98 96 92 92
@5 100 100 100 100 100 100 100 100 99

s38417 @1 100 100 100 98 98 94 94 93 89
@2 100 100 100 100 100 97 99 96 94
@5 100 100 100 100 100 100 100 98 98

s38584 @1 100 100 99 97 96 93 92 90 85
@2 100 100 100 100 99 94 96 96 93
@5 100 100 100 100 100 100 100 98 98

s35932 @1 100 100 100 100 99 97 95 91 90
@2 100 100 100 100 100 100 98 98 96
@5 100 100 100 100 100 100 100 100 99

them. For the SA-0 fault at node 6 and missing-clock fault at
node 6, we also use the method in Section IV.A to distinguish
them. Therefore, we use the method for single fault multiple
times to distinguish the multiple faults.

If there are multiple stuck-at, missing-clock faults and
missing-edge faults, we first use the method in the last para-
graph of Section IV.A to find the locations for missing-edge
faults, then, use the probability-based method in Section IV.A
to distinguish the stuck-at, and missing-clock faults.

VI. EXPERIMENTAL SET UP AND RESULTS

The proposed method was implemented to demonstrate its
efficacy in diagnosing scan chain faults. In the results reported
in Table 3, we demonstrate that the proposed method can iden-
tify all kinds of faults in the scan chain for almost all the cases.

After the flush tests, we use the method described in Section
IV and V to further improve the resolution. For each circuit, we
randomly inject 1, 2, or 3 chain faults in a DTS, and report the
results for three cases, corresponding to the injection of 0, 10,
or 50 random logic defects, respectively, in the non-scan part of
the circuit. For each case, we carried out 100 trials. In order to
capture non-traditional fault modes, a flipping line fault model
is used for the logic defects, i.e., we assume that the defect
complements the normal logic value that would occur on that
line. Thus, with 10 injected faults, 10 randomly selected lines in
the circuit will have their normal values complemented. Based
on the failure information of test vectors, we use the method
in Section IV and V to distinguish between the suspected scan
cells.

For each circuit in Table 3, , we report the fraction of times
at least one component of the injected multiple chain faults
appears in the top-N (N=1,2,5) suspect list (@2 means that
at least one chain fault is reported in top-2 suspect list). The
entries in the table represent the accuracy for 100 trials. In the
experiment, the parameter margin in the method of Section
IV.A is 0.5. From the result, we can see that the proposed
method can obtain near 100% accuracy with dozens of logic
defects, when there is one chain fault. Even for two or three
chain faults, the accuracy is very high with dozens of logic de-
fects. The time of the flush test in our method is about six
times as that for linear scan chains. The average CPU runtime
(9 cases for each circuit) for the five circuits are 1.9, 3.4, 10.5,
11.7 and 7.2 seconds in one trial, respectively. Since the time
is mainly consumed by simulation process, highly parallel solu-
tions are possible when used in the industry for large circuits.
To the best of our knowledge, this is the first scan-chain di-
agnosis method that can tolerate so many system logic defects

without a significant diminishing of its performance.

VII. Conclusions

In this paper, we proposed a combined hardware-software
based approach to scan-chain diagnosis, in the presence of sys-
tem logic defects. First, we used flush patterns to narrow down
the suspected scan cells to a small number. Next, we improved
the resolution for timing faults to one with the help of another
flush test. Further improvements in the resolution of stuck-at
faults were made. The proposed approach was extended to
multiple faults in a scan chain validated for its accuracy by
experiments on benchmark circuits.

References

[1] Y. Huang, R. Guo, W.-T. Cheng, and J. C.-M. Li,“Survey of
Scan Chain Diagnosis,” IEEE Design & Test of Computers, vol.
25(3), 2008, pp. 240-248.

[2] Y. Huang, W. Hsu, Y.-S. Chen, W.-T. Cheng, R. Guo, A.
Mann, “Diagnose Compound Scan Chain and System Logic De-
fects,” Proc. of. Int’l Test Conf., 2007, pp. 1-10.

[3] F. Wang, Y. Hu, Y. Huang, H. Li, X. li, J. Ye, “Determinis-
tic Diagnostic Pattern Generation (DDPG) for Compound De-
fects”, Proc. of. Int’l Test Conf., 2008, paper 14.1.

[4] R. Guo and S. Venkataranman, “A Technique for Fault Diag-
nosis of Defects in Scan Chains,” Proc. Int’l Test Conf., 2001,
pp. 268-277.

[5] Y. Huang et al., “Statistical Diagnosis for Intermittent Scan
Chain Hold-Time Fault,” Proc. Int’l Test Conf., 2003, pp. 319-
328.

[6] C-W Tzeng, J-S Yang, and S-Y Huang, “A Versatile Paradigm
for Scan Chain Diagnosis of Complex Faults Using Signal Pro-
cessing Techniques,”, ACM Trans. Design Automation of Elec-
tronic Systems, 13(1), January 2008, pp. 9:1-9:27.

[7] Z. Chen, S Seth, D. Xiang, and B. B. Bhattacharya, “PVT:
Unified Reduction of Test Power, Volume, and Test Time using
Double-Tree Scan Architecture,” Journal of Low Power Elec-
tronics (JOLPE), 6(3), October 2010, pp. 457-468.

[8] P. Song et al., “A Novel Scan Chain Diagnostics Technique
Based on Light Emission from Leakage Current,” Proc. Int’l
Test Conf. (ITC 04), IEEE CS Press, 2004, pp. 140-147.

[9] F. Stellari et al., “Broken Scan Chain Diagnostics Based
on Time-Integrated and Time-Dependent Emission Measure-
ments,” Proc. 30th Int’l Symp. Testing and Failure Analysis
(ISTFA 04), 2004, pp. 52-57.

[10] S. Narayanan and A. Das, “An Efficient Scheme to Diagnose
Scan Chains,” Proc. Int’l Test Conf. (ITC 97), IEEE CS Press,
1997, pp. 704-713.

[11] F. Motika, P.J. Nigh, and P.T. Tran, Diagnostic Method for
Structural Scan Chain Designs, US patent 6961886, Patent and
Trademark Office, 2005.

[12] Y.-L. Kao, W.-S. Chuang, J. C.-M. Li, “Jump Simulation: A
Technique for Fast and Precise Scan Chain Fault Diagnosis,”
Proc. Int’l Test Conf. (ITC), 2006, pp. 1-9.

[13] R. Guo, Y. Huang, and W.-T. Cheng, “A Complete Test Set
to Diagnose Scan Chain Failures,” Proc. Int’l Test Conf. (ITC
07), IEEE Press, 2007.

[14] A. Crouch, “Debugging and Diagnosing Scan Chains,” EDFAS,
Vol. 7, No. 1, 2005, pp. 16-24.

[15] J.C.-M. Li, “Diagnosis of Multiple Hold-Time and Setup-Time
Faults in Scan Chains,” IEEE Trans. Computers, vol. 54, no.
11, Nov. 2005, pp. 1467-1472.

[16] J.-S. Yang and S.-Y. Huang, “Quick Scan Chain Diagnosis Us-
ing Signal Profiling”, Proc. of Int’l Conf. On Computer Design,
Oct., 2005, pp. 157-160.

[17] N. Schemm, S. Balkir, and S. Seth, “Hardware implementation
of the double-tree scan architecture,” in Proc. Int. Symposium
on Circuits and Systems, 2010.

[18] B. B. Bhattacharya, S. C. Seth, and Z. Sheng, “Double-tree
scan: a novel low-power scan-path architecture,” in Proceedings
Int’l Test Conf., 2003, pp. 470-479.

302

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2011

	Diagnosis of Multiple Scan-Chain Faults in the Presence of System Logic Defects
	Zhen Chen
	Sharad C. Seth
	Dong Xiang
	Bhargab B. Bhattacharya

	Diagnosis of Multiple Scan-Chain Faults in the Presence of System Logic Defects

