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Abstract  Much of the world’s quantitative data resides in 

scattered web tables. For a meaningful role in Big Data 

analytics, the facts reported in these tables must be brought 

into a uniform framework. Based on a formalization of 

header-indexed tables, we proffer an algorithmic solution to 

end-to-end table processing for a large class of human-

readable tables. The proposed algorithms transform header-

indexed tables to a category table format that maps easily to 

a variety of industry-standard data stores for query 

processing. The algorithms segment table regions based on 

the unique indexing of the data region by header paths, 

classify table cells, and factor header category structures of 

two-dimensional as well as the less common multi-

dimensional tables. Experimental evaluations substantiate 

the algorithmic approach to processing heterogeneous tables. 

As demonstrable results, the algorithms generate queryable 

relational database tables and semantic-web triple stores. 

Application of our algorithms to 400 web tables randomly 

selected from diverse sources shows that the algorithmic 

solution automates end-to-end table processing. 
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1. Introduction 

 
Tables provide a convenient and succinct way to 
communicate data of interest to human readers. Cafarella 
and others called attention to the immense accumulation of 
tabulated data on the Web even before Big Data became a 
byword [1]. Assuming “that an average table contains on 
average 50 facts it is possible to extract more than 600 
billion facts taking into account only the 12 billion sample 
tables found in the Common Crawl” [2].  

Tables are not, however, inherently amenable to machine-
based search and query.  Research in document image 
analysis suggests that there is a natural progression from 
source document images to a searchable database via 
“physical” and “logical” layout analysis. In the case of 
tables, physical analysis must assign literal content to cells 
laid out on a grid. Logical analysis determines the indexing 
relationship between header cells and data cells. The 
indexing structure can be readily converted to any 
appropriate machine-queryable representation such as 
relations in a relational database or subject-predicate-object 
fact assertions in a semantic web triple store. We propose 
here a complete and coherent table-processing framework to 
accomplish all of these tasks. We call the constraints 
necessary to solve the ill-posed inverse problem of table 
understanding table regularization. The exemplary table in 
Fig. 1 will serve to illustrate the analysis of physical and 
logical layout and the assertion of facts in machine-
queryable form. Although our methods could be applied to 
scanned tables, here we address only tables where the basic 
grid structure and the cell contents are already available in 
encoded form. 
 
 Physical Layout. All tables have a grid structure. Every 

literal (word, phrase, or numerical value) has a row and 
a column coordinate. In Fig. 1, as in most tables, the data 
values form a natural grid. When spanning header labels 
(Country, Million dollar, and Percentage of GNI in Fig. 
1) are replicated into the cells they span, the header labels 
also become part of the grid. Because we also process 
table titles, footnotes, and other notes associated with 
tables, we treat these auxiliary components as spanning 
cells and replicate them across the row (or column) of 

https://link.springer.com/article/10.1007/s10032-016-0259-1
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grid cells in which they appear. Our processing chain 
starts with a grid, as described here, because HTML and 
spreadsheet tables are already built on a grid. As shown 
below, methods have been developed earlier for 
converting scanned, ASCII, and searchable PDF tables 
to a grid of cells in spite of the variety of framing, partial 
ruling, typeface, color scheme, and cell formatting 
details. Explicit distinctions between cells containing 
table title, data values, row and column headers, and 
footnotes, however, are totally absent in our initial grid 
representation. Furthermore, there are no rulings that 
might indicate divisions between data values and other 
parts of a table, and cell content is just text without color 
or font formatting. Surprisingly, this lossy representation 
of an original table often suffices to automatically extract 
the fact assertions stated therein. 

 
 Logical Layout. Starting with a table as a grid of text-

filled or empty cells, we reveal its indexing structure in 
terms of categories and an ordered list of category paths 
for each data cell. The table in Fig. 1 has three 
hierarchical header categories: (Country (Norway, 
Denmark, …), (Year (2007, 2008, …)), and (development 
assistance (Million dollar, Percentage of GNI)). The 
index for each data value comprises one header path 
from each category tree. The upper-left data value 3 735 
in the table, for example, is indexed by: 
(Country.Norway, Year.2007, development_assistance. 
Million_dollar).  This representation mirrors Wang’s 
formalization of indexing in tables [3], which maps a  
2-D grid table into an n-D array with coordinates 
corresponding to the categories, i.e., a data cube. 

 
 Fact Assertions. The final output of our table-

processing work is a collection of fact assertions, 
represented as relational-database tables and also as 
subject-predicate-object triples in a semantic-web 
standard. Each data value in a table makes a fact 
assertion. The assertion for the data value 3 735 in 
Fig. 1, is: The Country Norway in Year 2007 provided 
development assistance in the amount of 3 735 
Million dollars. Our table-processing system yields 
these assertions in a form that can be queried with 
standard query languages—SQL for relational-
database tables and SPARQL for semantic-web 
triples. When table headers agree, cross-table query 
processing is possible, as illustrated in Section 7. We 
also identify auxiliary information, comprising titles, 
footnotes, footnote markers and references, and 
notes, and turn their existence into fact assertions, 
which can then be queried as such.  

 
Whereas most previous work addresses specific types of 

tables, we exploit the commonality of the grid format and 
indexing structure. Human readers often depend on rulings, 
fonts, and typesetting to reveal the intrinsic relationship 
between headers and content cells, but our method relies 
only on structural constraints. We also extract embedded 
auxiliary data without dependence on formatting.  

We do not deal here with concatenated (composite) 
tables, nested tables, tables containing graphic data, or 
“egregious” tables (those not laid out on a rectangular grid 
with headers above and left).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A table from Statistics Norway, used as a running example throughout the paper. 

 http://www.ssb.no/a/english/kortnavn/uhjelpoecd_en/tab-2012-05-15-01-en.html, accessed Jan. 2015)  
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Although most research in document processing is 
experimental, our table-processing work makes several 
theoretical contributions that have immediate practical 
applications. We provide 

 
1. a formal (block grammar) definition of header-indexed 

tables that can be used for analysis of most human-
readable tables; 

2. an automatic transformation of header-indexed tables to 
a new canonical category table format via: 

a) segmenting table regions by algorithmic data cell 
indexing, 

b) factoring header paths into categories by algorithmic 
header analysis, and 

c) generating queryable canonical relational tables and 
semantic-web triple stores. 
 

Our program accepts rectangular tables posted on the web 
for human reading in HTML XLS or CSV format.  Some 
publishers already include CSV tables in online versions of 
published papers. The input tables are heterogeneous in the 
sense that they are not restricted to any specific domain or 
by any formatting constraint. Their headers could have any 
reasonable number of rows or columns. Multiple header 
hierarchies could be indicated by any combination of 
spanning cells. The tables could have footnotes, footnote 
references, or other notes. They are just web tables, 
generated either manually or from some database, posted for 
human reading. Our program always finds a row header, a 
column header, and an indexing structure. These do not, 
however, necessarily correspond to what a sensible human 
may have assigned as ground truth. For example, a row of 
units may be assigned to the data region rather than to notes. 
In principle, the input tables could have been produced by 
any of the earlier methods for transforming scanned tables 
into computer-readable grid tables, but we have not yet 
experimented with scanned tables. Although our test data 
consists of tables from statistical sites, we have carefully 
avoided dependence on statistical or numerical data. 

We find it remarkable that random collections of 
heterogeneous tables can be segmented by reliance on the 
indexing property of their row and column headers. 

 
After reviewing relevant prior research in Section 2, we 

present in Section 3 classical (printing and publishing) table 
terminology and formalize header-indexed tables in terms of 
a block grammar. We explain how our table-processing 
software segments and classifies cells in Section 4 and how 
it finds categories, assigns indexes for data cells and 
produces Category tables in Section 5. In Section 6, we 
validate our work over a collection of tables. Section 7 
shows SQL and SPARQL queries to demonstrate that the 
human readable tables are indeed converted into data stores 
of machine-queryable fact assertions. In Section 8, we draw 
conclusions and point to further research opportunities. 

2. PriorWork 

 
Ulpian’s life-expectancy tables [4] indicate that presenting 
related data in rows and columns was already familiar to the 
Romans, but systematic use of scientific tables did not come 
about until the 17th Century. Over the last 40 years, the 
prospect of computer access to data available in tables 
stimulated several hundred research projects on table 
analysis. Diverse methods were developed for bitmapped 
images of scanned or digitally photographed hardcopy 
tables, ASCII tables found in email messages or in early 
computer-generated documents, searchable or raw PDF 
files, and both manually coded and automatically generated 
spreadsheet and HTML tables. We describe previous table 
models and summarize published methods of table analysis 
(variously called table recognition, table interpretation, 
table understanding, or table data extraction). 

This literature review has four parts. We first review X. 
Wang’s pioneering research which has long guided our 
approach to table understanding. In the second subsection 
we point out research that justifies our claim that table 
spotting, table isolation, and conversion of source tables to 
grid tables are no longer major obstacles to table 
understanding. Next we review research that aims, like ours, 
at higher-level, logical analysis of tables. Finally, we 
summarize our own previous work that underlies our current 
endeavors. For a thorough survey of earlier work, we 
recommend [5]. 

 
2.1 Wang Tables 

 
Wang regarded tables as an abstract data type [3]. She 
formalized the distinction between physical and logical 
structure in the course of building X-Table for practical table 
composition in a Unix X-Windows environment. She 
defined layout structure as the presentation form of a table, 
and logical structure as a set of labels and entries. Labels are 
assigned to hierarchies of categories and sub-categories, and 
each value in a data cell is associated with one label from 
each of the categories. The number of categories defines the 
dimensionality of the abstract table.  

More specifically, Wang formulated the logical structure 
of a table in terms of category trees corresponding to the 
header structure of the table [3]. “Wang categories,” a form 
of multidimensional indexing, are defined implicitly by the 
2-D geometric indexing of the data cells by row and column 
headers. The index of each data cell is unique (but it may be 
multidimensional and hierarchical in spite of the flat, two-
dimensional physical layout of the table). She used the 
object-oriented dot notation, label1.label2.label3 entry, to 
represent a path in the category tree from header cells to data 
cells. Thus, for example, Wang would identify the three 
category trees in Fig. 1 for countries, years, and development 
assistance, and index each data cell as a triple of paths, one 
for each category tree.  

https://link.springer.com/article/10.1007/s10032-016-0259-1
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2.2 Physical Structure Extraction  

(Low-level Table Processing) 

 

In printed tables, boxing, rules, or white-space alignment are 
used for separating cell entries. In one of the earliest works, 
Laurentini and Viada extracted cell corner coordinates from 
the ruling lines [6]. Image processing techniques for the 
extraction of physical structure from scanned tables include 
Hough Transforms [7], run-length encoding [8], word 
bounding boxes [9], and conditional random fields (CRF) 
[10]. Hirayama presented an algorithm for segmenting 
partially-ruled tables into a rectangular lattice [11].  
Handley’s method of iterative identification of cell 
separators successfully processed large, complex, fully-
lined, semi-lined, and unruled tables with multiple lines of 
text per cell [12]. Zuyev used connected components, and 
projection profiles to identify the cell contents for an OCR 
system [13]. Methods for detecting and locating tables were 
demonstrated in [14] and [15]. 

The notion of converting paper tables into Excel 
spreadsheets dates back at least to 1998 [16]. Early research 
in table processing suffered from the isolation of the 
graphics research community from the OCR community. 
Current OCR products can locate tables on a printed page 
and convert them into a designated (e.g. word-processor) 
table format. Most desktop publishing software has 
provisions for the inter-conversion of tables and 
spreadsheets. Our methods are applicable to scanned tables 
segmented as prescribed in [6,7,8,10,11,12], provided that 
cell contents are converted to ASCII even with mediocre 
OCR. Related research addressing raw PDF tables, which 
requires recovering the grid structure as well as OCR for the 
label contents, was recently presented in [17]. 

Less attention has been focused on ASCII table analysis, 
where the structure must often be discovered from the 
correlation of text blocks on successive lines. Grid structure 
is preserved by spacing, although vertical separators (“|”) 
and extra new-line symbols for blank rows or rows filled 
with dashes are sometimes used. Pyreddy and Croft 
demonstrated results on over 6000 tables from the Wall 
Street Journal [18]. T-Recs clustered words for bottom-up 
structural analysis of ASCII tables [19]. Hu et al. explored 
row and column alignment via directed acyclic attribute 
graphs [20]. Work on such tables has diminished since the 
development of XML for communicating structured data 
without sacrificing ASCII encoding. 

Fig. 2a shows some of the cells in the exemplary table and 
the HTML tags that preserve table topology. The tagging 
makes the extraction of a table’s underlying grid structure 
from its customary HTML representation relatively simple. 
Fig. 2b shows the limited information retained when the 
HTML representation in Fig. 2a is converted into CSV 
format. In the CSV file (1) the labels of spanning cells are 
followed by delimiters (here commas) that form a full grid 
of cells; and (2) all type and cell formatting and ruling lines 

are removed. Excel displays files with an equal number of 
delimiters between new-line symbols as a table. Excel does 
not retain appearance based edits when the file is saved in 
CSV format.  

<html> 

… 

<!-- START TABELL --> 
… 

<tr> 

<throwspan=2class=level11>Country</th> 

<thclass=multispancolspan=5style=border-bottom:  
1px #000000 solid; >Million dollar</th> 

<thclass=multispancolspan=5style=border-bottom: 

 1px #000000 solid; >Percentage of GNI</th> 

</tr> 
… 

<tr> 

<th>2007</th> 

<th>2008</th> 
<th>2009</th> 

<th>2010*</th> 

… 

</tr> 
 

<!-- SLUTT TABELL --> 
… 
</html> 

(a) 

 

 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

Country,Million dollar,,,,,Percentage of 

GNI,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

,2007,2008,2009,2010*,2011*,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,, 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

(b) 

 

Fig. 2. File repsentation of tables. We import HTML [21] or XLSX 

files and convert them into CSV [22] files that preserve only the grid 

structure and labels without font type, size, color, and spacing.  

(a) Some of the 446 line source code of the HTML table in Fig. 1.   

(b) Text (Notepad) display of the same part of the CSV file after 

import from the HTML in Fig. 2a. 

 

2.3 Logical Structure Extraction  
(High-level Table Processing) 
 
Gattebauer et al. presented a geometric approach to table 
extraction from arbitrary web pages  based on the spatial 
location of table elements prescribed by the DOM tree [23].  
They formulated a “visual table model” of nested 
rectangular boxes derived from Cascading Style Sheets. 
They applied spatial reasoning—primarily based on 
adjacency topology and Allen interval relations—to their 

https://link.springer.com/article/10.1007/s10032-016-0259-1
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visualization model in order to determine the final box 
structure, and conducted some semantic analysis with a 
known or assumed list of keywords. Their interpretation 
consists of XML-tagged generalized n-tuples. They 
evaluated several steps of their process on 269 web pages 
with 493 tables and reported 48% precision and 57% recall. 

Amano and Asada have published a series of papers on 
graph grammars based on box adjacency for “table-form” 
documents [24]. Their grammars encode the relationship 
between “indicator,” “example,” and data boxes. Similarities 
between table and form processing were already emphasized 
by Bing et al. [25] and Kieninger and Dengel [26]. 
Grammar-based approaches that can be specialized to forms 
and tables have been demonstrated on large data sets 
[27,28,29]. However, bureaucratic forms often have 
preprinted labels rather than indexing headers like tables. 
Forms like invoices are less tightly structured than tables 
[30]. Therefore we cannot take advantage of advanced forms 
processing methods like [31,32].  

A group headed by T. Watanabe aimed at learning the 
various types of information necessary to interpret a ruled 
scanned table [33]. They used a training set of diverse tables 
to populate a “Classification Tree.” The nodes of the tree are 
“Structure Description Trees” that can interpret a specific 
family of tables. In their operational phase, new 
classification nodes and tree structure descriptions are added 
for unrecognized tables. 

Shamalian et al. demonstrated a model-based table reader 
for reading batches of similar tables [34]. Their model 
specifies the location of the data cells, thus obviating the 
need to interpret headers either syntactically or semantically. 

Table headers in PDF files were detected and analyzed in 
[35] in order to classify table types. A rule-based system 
with goals similar to ours was presented in [36].. 

In the last several years, an active and inventive group at 
Google, possibly inspired by Halevy, Norvig, and Pereira 
[37], collected and analyzed millions of tables harvested 
from the web [1,38,39]. Visual verification of their results 
has necessarily been restricted to much smaller samples. 
Their general approach has been to treat table rows as tuples 
with attributes specified by the top row. Extending this work 
to tables more complex than simple relational tables, Adelfio 
and Samet leveraged the principles of table construction to 
generate interpretations for spreadsheet and HTML tables 
[40].  Using Conditional Random Fields, they classified each 
table row as: header, data, title, group header, aggregate, 
non-relational metadata, or blank.  With their test set of 
1048 spreadsheet tables and 928 HTML tables, they 
achieved an accuracy of 76.0% for classifying header and 
data rows for spreadsheet tables and 85.3% for HTML 
tables, and for classifying all rows, 56.3% and 84.6% 
respectively. In contrast to the work of the Google group and 
of Adelfio and Samet, we treat row headers the same as 
column headers, and instead of depending on appearance 
features, we use indexing properties for further analysis. 

A series of papers culminating in V. Long’s doctoral 
thesis [41] analyzes a large sample of tables from Australian 
Stock Exchange financial reports. An interesting aspect of 
this work is the detection and verification of the scope and 
value of aggregates like totals, subtotals, and averages. The 
analysis is based on a blackboard framework with a set of 
cooperating agents. This dissertation has a good 
bibliography of table papers up to 2009. Other work dealing 
with aggregates in tables includes [42]. 

Already in 1997, Hurst and Douglas advocated 
converting tables into relational form: Once the relational 
structure of the table is known it can be manipulated for 
many purposes [43]. Hurst provided a taxonomy of category 
attributes in terms of is-a, part-of, unit-is, quantity-is. He 
pointed out that the physical structure of a table is somewhat 
analogous to syntax in linguistic objects. He also 
emphasized the necessity and role of natural language 
analysis for table understanding, including the syntax of 
within-cell strings [44]. Hurst’s dissertation contains a 
wealth of interesting examples of tables [45]. 

Hurst’s work was reviewed and augmented by Costa e 
Silva et al. [46], who analyzed prior work in detail in terms 
of contributions to the tasks of table location, segmentation, 
functional analysis (tagging cells as data or attribute), 
structural analysis (header index identification), and 
interpretation (semantics). Costa e Silva’s research group 
also provides a clear distinction between tables, forms, and 
lists. The ultimate objective of this group is the operational 
analysis of financial tables with feedback between the five 
tasks based on confidence levels. 

Kim and Lee reviewed web table analysis from 2000 to 
2006 and found logical hierarchies in HTML tables using 
cell formats and syntactic coherency [47]. They extracted the 
table caption and divided spanning cells correctly. Like us, 
but in contrast to many other researchers, they handled 
vertical and horizontal column headers symmetrically. 

The TARTAR (Transforming ARbitraryTAbles into 
fRames) system developed by Pivk et al. has objectives 
similar to ours: “The input to the system is semi-structured 
information in the form of arbitrary (HTML, PDF, EXCEL, 
etc.) tables.” [48]. However, in the cited paper, the authors 
demonstrated their work only on HTML tables. Their 
“cleaned and canonicalized” matrix representation is similar 
to our grid table. Downstream analysis and region 
segmentation proceeded, however, on the basis of cell 
formats (letters, numerals, capitalization, and punctuation) 
rather than indexing properties. The cells were functionally 
labeled in a manner similar to Hurst as access or data cells 
and assembled into a Functional Table Model. An attempt 
was made for semantic interpretation of strings using 
WordNet.  The final output was a semantic (F-logic) frame. 
The complex evaluation scheme that was presented and 
applied to 158 HTML tables was hampered by human 
disagreement over the description of the frames. 

 

https://link.springer.com/article/10.1007/s10032-016-0259-1
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Chen and Cafarella recently presented a table-processing 
system that transforms spreadsheet tables into relational 
database tables [49]. Like Adelfio and Samet [40] and Pinto 
et al. [10], they adapt a CRF to label each row as title, 
header, data, and footnote, using similar row features. 
(Rows labeled as “data” also include the cells in the row 
header, hence to distinguish between the two, they must 
assume, unlike us, that the data region is purely numeric.) 
Their hierarchy extractor builds parent-child candidates of 
cells in the header region using formatting, syntactic, and 
layout features. The candidate list is pruned by an SVM 
classifier that enforces the resulting set of candidate pairs to 
be cycle-free. In our algorithmic approach to table 
processing, the resulting structure is guaranteed to be cycle-
free by construction. Their corpus of tables was posted on-
line, and we use a random sampling of these tables in our 
experiments. 

Some researchers consider wholly automated table 
analysis too remote and advocate interactive methods based 
on expert advice and user feedback [50,51].  

Our approach differs from previous work by its reliance 
on the fundamental indexing property of headers and by the 
completeness of its output in standard computer-searchable 
formats. 

 
2.4 Our earlier work 
 
We reviewed early work on table processing and presented 
a collection of tables that stretch the very definition of table 
in 1999 [52]. Examples of human ambiguity in table 
interpretation were discussed in [53]. The extent to which 
semantic information is revealed by table structure was 
explored in [54]. We compiled a comprehensive survey of 
table processing for IJDAR in 2006 [55]. Input tables were 
matched with known conceptualizations in an attempt to 
interpret them in [56]. Information extraction from sibling 
tables with identical headers was demonstrated in [57]. A 
taxonomy of tables based on the geometric relationship of 
tabular structures to isothetic tessellations and to X-Y trees 
was proposed in [58], a machine learning approach to 
segmentation of grid tables in [59], and algorithms for 
turning web tables into relational tables by recovering and 
factoring header paths in [60]. VeriClick, an interactive tool 
for table segmentation and ground-truthing, was described 
in [61]. We introduced algorithmic table segmentation, 
based on the fundamental indexing property, in [62]. Some 
other conference reports of our experiments on various 
aspects of table processing are cited in the above 
publications. 

In addition to the already-mentioned IEA/AIE’11 [60] 
and ICDAR’13 [62] papers, three precursors to this article 
have recently appeared in conference proceedings. At the 
2014 Document Analysis Systems workshop, we reported 
on our initial, automatic end-to-end conversion of web tables 
to relational databases [63]. We showed SQL queries on 

HTML tables imported into MS-Access at ICPR 2014 [64]. 
At the 2015 IST/SPIE Conference on Document 
Recognition and Retrieval, we clustered the headers of 
category hierarchies to reveal commonalities among tables 
[65].  

The current paper combines and significantly expands 
these precursors.  (1) The updated literature review contrasts 
prior work with ours. (2) We describe header-indexed tables 
in terms of a block algebra that formalizes the conventional 
typesetting practices of the printing and publishing industry 
that underlie web tables [66].  (3) The MIPS (Minimum 
Indexing Point Search) and the category-tree extraction 
algorithm (i.e., header factoring) are reframed in terms of the 
new header-indexed table formalization. (4) Exercising 
these algorithms on a collection of heterogeneous tables, we 
present a detailed analysis of the required header 
modifications for Wang category-tree construction. (5) We 
transform algorithmically-discovered table content to 
semantic-web triple stores and to relational databases, and 
we execute both SQL and SPARQL queries over two 
hundred automatically processed HTML tables. 

 

3 Human-readable Tables 

 
Good table layout is an art described in several books and 

in lengthy sections of the US Government Printing Office 
Style Manual and in the Chicago Manual of Style. In this 
section, we first informally present the generally accepted 
view of tables. We then specify a visual schematic model of 
the header-indexed tables that we can process. The model is 
formalized in a 2-D interval algebra over the inherent spatial 
constraints. 

 
3.1 What is a table? 
 
Tables are universally used for presenting data logically 
organized into two or more categories: Country, Year, and 
development assistance in Fig. 1. Their data cells are laid 
out on a grid so that each data cell can be indexed by its row 
and column headers. In conventional printing terminology, 
the principal zone of a table comprises regions called stub 
head, row header (or stub), column header, and data. 
Auxiliary information, such as the table title, notes, and 
footnotes appear outside this principal zone. Notes may also 
appear in the principal zone. The stub head may be empty or 
augment information carried by row or column headers, or 
the table title. In Fig. 1, the stub head contains Country.  

A single category can be indexed by a flat header like the 
list of countries in Fig. 1, or by a hierarchical header laid out 
in several rows or columns or designated by indentations or 
font characteristics. Hierarchical headers also allow 2-D 
display of more than two categories by repeated labels.  
Fig. 1 displays two categories, development assistance and 
Year as hierarchies: (Million dollar (2007, …, 2011*) and 
Percentage of GNI (2007, …, 2011*)).  
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Since horizontal and vertical table organization is 
symmetric and permutable, the number of possible table 
layouts increases combinatorially with the number of 
categories and the number of their content labels. The choice 
may be guided by the aspect ratio of the available page or 
display space, preference for horizontal or vertical labels, 
compatibility with existing tables, and expected reader 
interests. Larger tables tend to be laid out with more rows 
than columns. Thus Canadian provinces often appear as 
column headers, while US states are typically row headers. 
The order of rows and columns does not affect indexing. 
When row order is significant, the leading column may be 
populated with integers denoting rank. Since these uniquely 
index all the remaining rows, they logically serve as row 
headers in spite of their descriptive poverty.  

Every category is a rooted tree. Its root serves as its 
Category Name. In practice, it is often omitted because it is 
obvious to the reader. In Fig. 1, for example, the label Year 
does not appear (and could offend some readers if it did). 
Even when the category root is not missing, an arbitrary 
string (e.g., RootHeader#2) may be inserted to complete the 
category structure because category roots cannot affect 
indexing.  Our algorithms always assign a virtual root 
because assigning a meaningful name could require 
semantic analysis of the contents of the table, table title, 
notes, or of the surrounding text.  The complete indexing 
structure of a table consists of a forest of rooted category 
trees—two trees for a two Wang-category table, three trees 
for a three-Wang-category table, etc. Multi category headers 
(like the two-category column header in Fig. 1) factor into a 
cross-product of header rows or columns. The height of the 
category trees depends on the minimum number of header 
columns or rows required to index the data cells.  

The indexing structure can be exploited for searching 
relational DBMS and RDF triples. Although printed and 
HTML tables are logically symmetric in row and column 
organization, in relational tables indexing is asymmetric. 
Rows are records (or tuples), and columns are fields (or 
attributes). This distinction opens the way for a wealth of 
useful operations based on predicate logic and governed by 
the laws of relational algebra and calculus. 

 
The fundamental property of a header-indexed table 

(HIT) is that every data cell is uniquely indexed by its row 
and column header paths, which are respectively left of and 
above the data region. A hierarchical (row or column) header 
may index one or more categories. A single-category header 
path consists of the root-to-leaf path of the corresponding 
category tree. A multi-category header path consists of 
concatenated category paths. Header-indexed tables are 
generally amenable to automated data extraction using only 
structural information. 

Egregious tables (those that are not header-indexed) may 
not puzzle human readers [52], but they challenge 
algorithms and require external context to extract values 

with their applicable indexes. The genetic code tables in Fig. 
3, for example, may have a much better layout for human 
understanding than if they were laid out as HITs.  Although  
it is easy for humans to recast such tables as HITs, the task 
is far from trivial for machines. The periodic table is a classic 
example: its layout succinctly captures element properties 
for an informed human reader. It can be cast into the layout 
of a HIT by listing the element symbols as row headers and 
providing column header labels for each of the depicted 
element properties. Egregious tables are relatively rare. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Genetic coding tables. The table on the left is egregious 

because the second column of the row index is on the right. It can be 

converted to a HIT by moving the last column either to the left or the 

right of the first column. The table on the right (also a three-category 

table) presents the same data with radial indexing header paths.  

 

3.2 Header Indexed Tables: Formal Characterization 
 
Fig. 4a shows a visual model of the HITs we process, which 
account for almost all human-readable tables (and even 
relational tables). The only essential spatial constraints are 
that the RowHeader must be to the left and aligned with the 
Data region, and that the ColumnHeader must be above and 
also aligned with the Data region. The remaining 
components are optional. The TableTitle, if included within 
the table, should be the topmost non-empty row. Footnotes 
along with their preceding FootnoteMarkers must be below 
the RowHeader and Data regions and cannot share their row 
with anything else. The corresponding reference to the 
footnote, matching the footnote marker, may occur in any 
cell above the footnote. Notes, which can occur anywhere, 
provide information about the source or dissemination of the 
data (e.g., Source: OECD in Fig. 1). Duplicate rows and 
columns, including repeated row and column headers 
inserted to avoid scrolling, are detected and skipped. Empty 
rows or columns can be deleted without loss of information, 
yielding the simplified model in Fig. 4b. 

Critical cells (CC1, CC2, CC3, CC4) delineate regions. 
As Fig. 4 shows, CC1 and CC2 demarcate the StubHeader 
and CC3 and CC4 demarcate the Data region. Furthermore, 
in combination with one another, these critical cells also 
demarcate both the ColHeader and RowHeader regions.  
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Letting row ri and column ci be the coordinates of critical 
cell CCi, a HIT satisfies the following constraints: r1 ≤ r2 < 
r3≤ r4 and c1 ≤ c2 < c3 ≤ c4. These constraints guarantee that 
the ColHeader and RowHeader regions properly align with 
the Data region and that the Data region is not degenerate. 
A single row (r3= r4) or column (c3 = c4) of data is acceptable, 
provided both row and column headers exist. To complete 
our formalization of a HIT, we formulate region-level and 
cell-level constraints, that provide a computable version of 
the visual representation of Fig. 4.  
 
Region-level Constraints. The region-level spatial 
constraints can be formalized using a block algebra [67], 
which is a spatial application of Allen’s interval algebra [68].  
 
 
 
 
       (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        (b) 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Visual HIT model: (a) complete  

(b) simplified by removing all empty rows and columns to reduce size 

of constraint table. As an example of the m, eq constraint in the fourth 

row and last column of Table 1 below, RowHeader meets Data 

horizontally, and is equal to Data vertically. 

Fig. 5 shows the 7 basic relations of interval algebra. The 
inverse relations interchange the roles of x and y:  
x b y  y bi x, x m y  y mi x, etc. The row and column 
intervals of 2-D blocks are independent. Hence a constraint 
between any two blocks can be expressed as a pair of row 
and column constraints, as exemplified in Fig. 4b. If more 
than one horizontal or vertical relationship is possible, it is 
expressed as a disjunction, e.g., vertically, TableTitle b  m 
ColHeader.  

The constraints on a HIT are shown in a matrix form in 
Table 1. The relation pairs (fi, b  m) appear in the row of 
TableTitle and column ColHeader. Further, the entry in the 
symmetrical cell (row: ColHeader, column: TableTitle) will 
be its inverse, i.e., f, bi  mi. Because of this symmetry, the 
cell entries in the gray region are not shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The relations of Allen’s interval algebra. 

 

Cell-level Constraints. Apart from the region-level structural 
constraints, a HIT also satisfies the following cell-level 
constraints related to data cells, header cells, categories, and 
auxiliary cells comprising titles, notes, and footnotes. 

Data Cells 
1. Each DataCell in a grid table is a singleton cell. 
2. Every DataCell is indexed by header cells from every 

category. 

Header Cells 
1. Every HeaderCell belongs to at least one 

HeaderPath—a vertical sequence of cells through the 
column header or a horizontal sequence of cells 
through the row header. 

2. DataCell (r,c) has RowHeaderPath Cell(r,c1), …, 
Cell(r,c2), where c1 and c2 are the column coordinates 
of CC1 and CC2, i.e., the sequence of horizontal cells 
in the RowHeader region in row r; and has 
ColHeaderPath Cell(r1,c), …, Cell(r2,c), where r1 
and r2 are the row coordinates of CC1 and CC2, i.e., 
the sequence of vertical cells in the ColHeader region 
in column c. 

3. Col(Row)HeaderPaths (concatenations of 
HeaderPaths for multi-category headers) uniquely 
identify a column  (row) of data cells.  

m , eq 
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Table 1. Spatial constraints of the Header-indexed Table model in Fig. 4(b).The notation is based on Fig. 5. Each cell contains a horizontal 

constraint and a vertical constraint separated by a comma. Each constraint may have OR clauses indicated by V. 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Part of the table of Fig. 1 in CSV grid table format that preserves the grid structure of the original HTML table. CCs shaded yellow. 

Auxiliary Cells 
1. A footnote marker and its associated footnote may 

appear in a single cell or in two row-adjacent cells.  
2. Every footnote marker has a footnote reference that 

may appear in the table title, header or data region. 
 

In summary, the class of tables that we call HITs can be 
precisely specified in terms of computable spatial and 
logical constraints. We believe that HITs cover most printed, 
web, and spreadsheet tables, as well as relational database 
tables displayed in standard form with keys on the left. We 
shall now show that the above formalization makes HITs 
amenable to model-driven analysis. 

 
4. Table Region Segmentation and Cell Classification 

 

Segmentation consists of locating the critical “corner” cells 
CC1 and CC2 of the stub-header, and CC3 and CC4 of the 
data region, as well as the rows or elementary cells 
containing the embedded table title, footnotes, footnote 
marks, footnote references, and miscellaneous notes. Our 
MIPS (Minimum Indexing Point Search) algorithm finds 
CC1, and CC2. The underlying assumption is that the row 
headers (on the left) and column headers (above) index the 
data cells. Header indexing requires header cells to be 
aligned with the data cells they index, as is also required of 
HITs. Therefore MIPS transforms near-HITs into HITs by 
straightening out any “crooked” header paths by prefixing 

duplicate labels with unique labels.  
Although CC1 and CC2 are found algorithmically, 

heuristics are needed to demarcate the top and bottom of the 
data region (indicated by CC3 and CC4) from its 
surrounding regions. As shown in Section 4.3, the output of 
the segmentation and cell classification stage is a CSV 
classification table in a uniform format with one row for 
each cell of the source table. 
 
4.1. Header Segmentation 
 
The input to the MIPS algorithm is a CSV table, converted 
from a web table. Fig. 6 shows the first seven and last six 
rows of the exemplary table of Fig. 1 converted to CSV 
format and rendered as a table. Empty rows and columns are 
labeled as EMPTY (not shown in Fig. 6) to indicate that 
these rows and columns can be ignored during segmentation 
and classification. They are not deleted because that would 
interfere with referencing the original cell coordinates and 
because they sometimes serve as visual clues to focus on 
certain aspects of the table (e.g., Nordic countries in Fig. 1).   

We explain MIPS using the pseudo-code of Fig. 7, the 
table in Fig. 1, and the diagram of the search path for a 
slightly more complicated table in Fig. 8, As shown in the 
HIT model (Fig. 4b), the data region extends to the right of 
the table. MIPS operates on the portion of the table above 
the bottom of the data region whose rightmost bottom cell is 
indicated by CC4. This critical cell is found before MIPS is 

1 Official development assistance.

Country Million dollar Percentage of GNI

2007 2008 2009 2010* 2011* 2007 2008 2009 2010* 2011*

Norway 3 735 4 006 4 081 4 580 4 936 0.95 0.89 1.06 1.1 1

Denmark 2 562 2 803 2 810 2 871 2 981 0.81 0.82 0.88 0.91 0.86

…

…

Australia 2 669 2 954 2 762 3 826 4 799 0.32 0.32 0.29 0.32 0.35

New Zealand 320 348 309 342 429 0.27 0.3 0.28 0.26 0.28

OECD/DAC1 countries total104 206 121 954 119 778 128 465 133 526 0.27 0.3 0.31 0.32 0.31

1 DAC-countries are members of OECD's Development Assistance Committee.

Source: OECD.

TableTitle StubHeader ColHeader RowHeader Notes Footnotes Data

TableTitle eq , eq si , bVm fi , bVm si , b eq , mVb eq , b fi , b

StubHeader eq , eq m , eq eq , mVb s , mVmiVb s , b m , mVb

ColHeader eq , eq mi , bVm f , mVmiVb f , b eq , mVb

RowHeader eq , eq s , mVbVmiVbi s , b m , eq

Notes eq , eqVbiVb eq , bVbiVmi fi , biVmiVbVm

Footnotes eq , eq fi , mi

Data eq , eq
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launched by searching from the bottom of the original table 
for the last row with a minority of empty cells (in Fig. 1, it is 
Row 30, with OECD/DAC in its first cell).  Rows with at 
most a few empty cells are assumed to be part of the data 
region rather than notes or footnotes rows (which usually 
have only one or two non-empty cells).  

Before the algorithm is called, empty cells resulting from 
splitting spanning cells are filled with the label of the 
spanning cell (like Million Dollar in Fig. 6). Duplicate labels 
(like “%”), if any, are prefixed with the preceding (to the left 
or above, respectively) unique labels (if available). 
Repetitive labels resulting from spanning cells are not 
considered duplicates.  No prefixing is required for the 
exemplary table, but an example will be shown below. 

The first while loop in Fig. 7 searches for the Minimum 
Indexing Point (MIP), which is the bottom right corner of 
cell CC2 = (R2, C2). In Fig. 6 CC2 = (4, 1). The algorithm 
finds the row header with the smallest number of columns 
that have no duplicate rows below R2, and the column header 
with the smallest number of rows and no duplicate columns 
to the right of C2. The minimality property is local:  
(1) moving R2 up one cell or C2 left one cell would destroy 
the indexing property because the shorter column headers or 
narrower row headers will not be unique, and (2) moving R2 
down or C2 to the right would destroy the minimality 
property because it adds unnecessary rows or columns. The 
global MIP (R2, C2) is indexing, locally minimal, and has the 
largest data area among the MIP candidates. 

 
MIPS Algorithm 

# MIPS locates the critical cells that demarcate the minimum row and column headers needed to index every data cell. 

 

Input:   CSV Table with ASCII cell strings, critical cell CC4 

Output: critical cells CC1 and CC2 (CC2 is the minimum indexing point) 

 

# Initialize:  

Cmax  last column of data cells;  Rmax  last row of data cells  # from CC4 

R11;    C1  1; ….R2Rmax – 1;    C21 # (R1, C1) and (R2, C2) are the current CC1 and CC2 candidates 

Rightflag = Upflag = 0   # these flags indicate whether R1 or C1 changed last. 

Max_area  0    # for storing maximum data area so far 

 

# Locate candidate MIPs by finding the minimum indexing headers: 

while C2 < Cmax and R2 R1 

 # "[... : ...]" denotes a rectangular region of the table. 

if [R2 + 1, C1 : Rmax,, C2] has no duplicate rows and [R1,C2 + 1 : R2-1,Cmax] has no duplicate columns,  

# i.e., candidate headers uniquely index the data rows to its right and the data columns below it 

R2  R2 – 1    # move CC2 up as long as indexing is preserved 

Upflag1; Rightflag0 

else C2  C2 + 1    # move CC2 right (moving right always preserves indexing) 

Rightflag  1 

if Upflag = Rightflag = 1  

Data_area  (Rmax – R2 + 1) × (Cmax–C2 + 1 )   # No. of data rows × columns 

If Data_area > Max_area 

 Max_area  Data_area 

 CC2  (R2, C2)  # minimum indexing point with the largest data area so far 

Upflag0 

 

# Locate CC1 at intersection of the top row and the leftmost column necessary for indexing 

R1 = 1, C1 = 1 

while [R1 + 1, C2 +1 : R2, Cmax]  has unique columns, R1R1+1  

while [R2 + 1, C1 + 1 : C2, Rmax] has unique rows,  C1C1+1 

return CC1 = (R1,C1),    CC2 = (R2,C2) 

 
Fig. 7. The MIPS algorithm\searches the input CSV table for minimum indexing points. During the first while loop the CC2 candidate moves up 

whenever it can, and to the right otherwise. Empty and duplicate rows and columns that extend over the whole table are tagged earlier and skipped.  

Header rows and columns with empty data, and data with empty header cells, are tagged as Notes. The provision for tagging trivial tables (only one 

data row or column) is not shown.  
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Fig. 8. An example with three local MIPs. The search path (black arrows) follows the boundary cells of the yellow indexing region to detect minimum 

indexing points at inside corners. The row and column headers are outlined in red. A red * marks local MIPs. The global, MIP, i.e., cell (4,2), is 

shaded red. Its data area is 49 cells, whereas the data areas of the other MIP are only 24 and 27. The critical cells are CC1 = (2,1) and CC2 = (4,2). 

Therefore the stub header is [R1,C1,:R2,C2]. = (2,1 : 4,2). The first row will be designated as Table title in a subsequent step, and the bottom rows will 

become Notes or Footnotes. This figure does not show empty rows and columns beyond the actual table, which are detected and bypassed. 

 

 

 

 

 

 

 
Fig. 9. Part of a web table that requires prefixing. The duplicate labels “Change %” become unique after being prefixed as: 

Short messages, thousands 1)/Change, % and Multimedia messages, thousands/Change, % 

  

Fig. 8 shows the search path followed by the MIPS 
algorithm of Fig. 7 on a hypothetical table. The search begins 
at the bottom left corner (at Column 1 in the CC4 row) and 
moves up as long as both candidate header rows below and 
columns to the right are unique. When that condition is 
violated, the search turns to the right. The MIP must be 
located at an inside corner (right turn on the search path) 
where both the indexing and the minimality conditions are 
met. 

There may be more than one inside corner along the 
search path. The (R2, C2) coordinates and area of the data 
region corresponding to a local MIP is recorded if the area 
exceeds the current maximum. After the algorithm 
completes the search from the bottom left corner to the top 
right corner, the MIP with the largest data area becomes CC2 
(searching from the top right would work equally well.).  

CC2 determines only the rightmost column of the row 
header and the bottom row of the column header. In the last 
two while loops, CC1 is found by deleting the rows above 
the column header and the columns left of the row header 
that are not necessary for indexing the data region.  

In the table of Fig. 1 all the headers are properly aligned, 
so all that is required is distributing the labels into the atomic 
cells resulting from fragmented spanning cells. But Fig. 9 
shows an example where it is necessary to prefix the labels 
of some header cells. This table is not a HIT because it 
violates the header-cell-uniqueness constraint of a HIT. 

Prefixing converts it into a HIT by inserting a row with 
unique predecessor labels before the duplicate labels. 

Over 15% of the tables in our collection require prefixing 
to turn them into HITs. Unlike the example in Fig. 9, most 
of them are in row headers. After this prefixing step and the 
analogous step on the transposed rows, the MIPS algorithm 
proceeds as explained.  

MIPS finds only CC1 and CC2. Then the program checks 
the original table under the column header candidate to find 
CC3 as the leftmost cell of the first filled row of data region. 
CC4, was already located earlier as the rightmost cell of the 
last filled row. The cells in the corresponding regions are 
then labeled StubHeader, RowHeader, ColHeader, or Data.  

 
4.2 Auxiliary Regions 
 
Table titles are almost invariably in a spanning cell at the top 
of a table, therefore all the cells of the topmost non-empty 
row are labeled TableTitle. Footnote markers, if present, are 
found by searching below the data region for a list of 
common footnote-mark symbols (*, #, . , †, etc.) and for 
single digits and letters (possibly followed by a period or a 
parenthesis). They are labeled FNprefix. All the cells 
following a footnote marker in the same row are marked 
FNtext. A cell containing both a FNprefix  and a  FNtext is 
marked FNprefix&FNtext. The program searches the entire 
table above the footnotes for the already detected and 

C1 C2 Cmax
1 2 3 4 5 6 7 8 9

1

R1
2 CC1          *

3

R2 4 CC2

5

6

7

              *

9

10

Rmax 11 CC4

12

13

14
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isolated footnote markers. If the footnote reference is found, 
the cell is labeled FNref (if the footnote reference is in a cell 
by itself) or X&FNref, where X can be any of the table 
regions above the footnote region, e.g., RowHeader& FNref 
for the last cell of the row header in Fig. 1. Here our program 
missed the footnote reference “1” because it is embedded in 
the middle of the header label OECD/ DAC1 countries total, 
and of course its superscript formatting disappeared in CSV. 

Finally, every cell in a row that contains only non-empty 
cells that have not been otherwise classified is labeled Note. 
 
4.3 Cell Classification 
 
The output of this stage is a Classification Table, e.g., Fig. 
10 for the table in Fig. 1. This table is in a five-column 
format, with a row entry (after the header row) for each cell 
of its source table. The first column is a unique cell identifier 
with the file name of the CSV table and the cell coordinates. 
The second and third row give the numerical cell coordinates 
separately for ease of handling. The fourth column is the 
content of the cell in the original table, and the last column 
is its assigned class. Section 7 contains some examples of 
the application of this table. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10. First 30 rows of the 408-row Classification Table for the 

table of Fig. 1. 

 

5 Complex Header Structures  

 
Among our 400 tables, over 30% have complex header 
structures—multiple-row column headers, multiple-column 
row headers, and single row (column) headers that require 
prefixing. We analyze all the headers to discover their 

category structure, and we use the discovered structure to 
create canonical relational tables which are searchable with 
standard database query languages. 

 
5.1 Category Analysis 

 
We define a simple algebra over the set of header labels. 
Each label appearing in a header is said to cover a subset of 
the cells in a table’s data region. For example, in Fig. 1 the 
label Million dollar covers the first five columns of data cells 
and the label 2007 covers the first and the sixth columns. We 
define two binary operations, × (intersection) and + (union) 
over the header labels with respect to their covering 
properties. For example, the expression Million dollar + 
Percentage of GNI covers all the columns of the data region, 
while Million dollar × 2007 covers only the first column. In 
this formulation, each header path can be equated with the 
product of labels appearing in it, and the set of all header 
paths can be equated with a sum of products (SOP) 
expression, in which each product term corresponds to a 
unique header path. 

To determine the number of categories and their 
hierarchical structures, a factorization of an SOP expression 
E is carried out under the following constraints: 

1. Only the distributive law and the associative laws are 
used. The × operation has higher precedence than +. 
(The commutative law is disallowed, so that ordering 
is maintained both among header paths for + and 
within header paths for ×. To avoid changing the 
number and length of paths, the idempotency laws are 
also disallowed). 

2. The factorization preserves the unique indexing 
property of E. 

The factorization is complete in the sense that none of its 
terms can be factored further. 
 
5.2 Factorization Algorithm 
 

Fig. 11a shows the column header of a table in our 

collection. In Fig. 11b, the lengthy cell labels are replaced 

by alphabetic symbols to shorten the algebra. Fig. 12 

presents a formal description of the recursive algorithm for 

the factorization of header paths. E is a sum of products 

(SOP) algebraic expression where × denotes vertical 

concatenation and + denotes horizontal concatenation of 

table cells. For the column header shown in Fig. 11 (b),  

E = a×c×d + a×c×e + a×c×f + b×c×d + b×c×e + b×c×f 

The output of Fact(E) is the header factored into one or more 

Wang categories.  In the first pass of the factorization, the 

product terms of E are scanned from left to right, factoring 

out common prefix (first) symbols, producing 

corresponding suffix SOP expressions: 

E = a×(c×d + c×e + c×f) + b×(c×d + c×e + c×f) 

Cell_ID Row Column Content Class

ODA_R1_C1 1 1 1 Official development assistance. tabletitle

ODA_R1_C2 1 2 tabletitle

ODA_R1_C3 1 3 tabletitle

ODA_R1_C4 1 4 tabletitle

ODA_R1_C5 1 5 tabletitle

ODA_R1_C6 1 6 tabletitle

ODA_R1_C7 1 7 tabletitle

ODA_R1_C8 1 8 tabletitle

ODA_R1_C9 1 9 tabletitle

ODA_R1_C10 1 10 tabletitle

ODA_R1_C11 1 11 tabletitle

ODA_R2_C1 2 1 EMPTY

ODA_R2_C2 2 2 EMPTY

ODA_R2_C3 2 3 EMPTY

ODA_R2_C4 2 4 EMPTY

ODA_R2_C5 2 5 EMPTY

ODA_R2_C6 2 6 EMPTY

ODA_R2_C7 2 7 EMPTY

ODA_R2_C8 2 8 EMPTY

ODA_R2_C9 2 9 EMPTY

ODA_R2_C10 2 10 EMPTY

ODA_R2_C11 2 11 EMPTY

ODA_R3_C1 3 1 Country stubheader

ODA_R3_C2 3 2 Million dollar colheader

ODA_R3_C3 3 3 colheader

ODA_R3_C4 3 4 colheader

ODA_R3_C5 3 5 colheader

ODA_R3_C6 3 6 colheader

ODA_R3_C7 3 7 Percentage of GNI colheader
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Figure 11: Example column header to illustrate recursive factorization. (a) Column header of table T120 in our collection; (b) Equivalent 

representation with the cell labels replaced by letter symbols. 

 
Fact(E): 
 X = “”  # Initialize to null string 
 if E is a simple sum:      # simple sum: a literal or sum of literals 
  X = E  
 else:        # sum of products 
  factor out common prefix and factor out common suffix  # Passes 1 & 2 
   to find the decomposition, E = S1×F1 + S2×F2 + … + Sn×F n   
  for i = 1 to n-1:     # Loop not executed if n = 1 
   X = Cat(X , Si, “x”, Fact(Fi), “+”)  # Cat is string concatenation 
  X =  Cat(X, Sn , “×”, Fact(Fn))    # Accumulate last term of the decomposition 
 return X 

Fig. 12: The factorization algorithm to determine the category structure of table headers.  

 
In the second pass, the resulting expression is scanned again 

from left to right, to factor out common suffixes, producing 

simple sums of prefixes that multiply them: 

E = (a+b)×F, where, F = (c×d + c×e + c×f) 

In general, after the two passes, E is decomposed into the 

following form: 

E = S1×F1 + S2×F2 + … + Sn×Fn 

where each Si is a simple sum of prefixes (degenerately, a 

singleton) and each Fi is an SOP simpler than E. After the 

second pass, Fact(E) recursively calls itself with Fi’s as the 

arguments and returns the factorization as: 

E = S1×Fact(F1) + S2× Fact(F2) + … + Sn× Fact(Fn) 

For the example header, the recursive call Fact(F) results in 

the factorization: 

F = c ×(d+e+f) 

with resulting factorization of the original expression: 

E = (a+b)×c×(d+e+f) 

= (2006+2007) × Government transfers × (Average $ 

constant 2007 + Implicit transfer rates1 % + Shares %) 

showing the two non-degenerate categories {a, b} and  

{d, e, f} and the degenerate category {c}. 

5.3 Category Tables 

 
The table designer’s choice of rows or columns for laying 
out the categories depends primarily on the number of leaf 
nodes in the category tree and on the size and aspect ratio of 
the available space. In relational tables, however, rows are 
tuples (records in Access), while columns are attributes 
(fields in Access). The database schema immutably assigns 
the values of each category to either a record or a field. We 
introduce category tables to represent the data elements in 
“ordinary” tables within the constraints of relational tables.  
 

Our category table is a relational table where each row 
comprises the indexing header paths and the corresponding 
indexed data value. Therefore the number of rows in the 
category table equals the number of data cells in the original 
table (plus one for the relational table’s field names in a 
header row). The number of columns is one for the Cell_ID, 
plus one for DATA, plus the sum of the heights of the 
category trees (which, usually, equals the sum of the column 
width of the row header and row height of the column 
header). For our exemplary table, the category table has 240 
rows and 5 columns.  
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Fig. 13. Category table for the table in Fig. 1 (first 30 of 240 rows). 

 
In the category table, Cell_ID is a key field and each cell 

label in the original header paths becomes a key field value 
in the composite key comprising all the category fields. The 
data values become non-key field values. Fig. 13 shows part 
of the category table for the exemplary table. The first 
column references the original (table, row, and column) 
location of each data cell. The row headers in Fig. 1 are 
values in the RowCat_1.1 column in Fig. 13 and the column 
headers are distributed as values in the ColCat_1.1 and 
ColCat_2.1 columns according to their factorization—
values in ColCat_1.1 from the factor (Million dollar + 
Percentage of GNI) and values in ColCat_2.1 from the factor 
(2007 + 2008 + 2009 + 2010* + 2011*).  

The combined row and column headers that uniquely 
index each data value in the DATA column also index the 
data values in the original table. Because “ordinary” tables 
can always be recast as category tables, the formulation of 
the category table format and the automated transformation 
of HITs to category tables make a significant contribution to 
importing tabular web content into structured and searchable 
relational data structures. Moreover, as we show in Section 
7, category tables also provide a direct path to the 
formulation of RDF triples and thus to searchable semantic-
web content. 

 
 

6. Experimental Results 

 
200 HTML tables (Troy 200) were randomly drawn from a 
set of tables collected earlier from large statistical websites 
in the US and abroad [69]. The geopolitical and research 
sources included Statistics Canada, Science Direct, The 
World Bank, Statistics Norway, Statistics Finland, US 
Department of Justice, Geohive, US Energy Information 
Administration, and US Census Bureau.  

We also tested our program on 200 spreadsheet tables 
(SAUS 200) randomly selected from a published dataset of 
over 1300 spreadsheet tables from the Statistical Abstract of 
the United States (SAUS) posted by Michel Cafarella 
[49,70]. For each workbook, we only converted the first data 
sheet that contained a table without the footnotes. Table 2 
shows the results reported by our program on all 400 tables. 
The SAUS tables are larger than the Troy tables, with about 
twice as many rows and columns and four times as many 
cells. Many tables have over 100 rows or columns.  

The critical cells obtained by our program were verified 
against the ground truth obtained with VeriClick [61]: for 
each table, the four critical cells that demarcate the minimum 
indexing headers and the data region were identified.  

One of the 200 Troy tables was found to be trivial, having 
only one data column. Of the 199 non-trivial HTML tables, 
the MIP (CC2) was correctly located in 197 tables. All four 
CC errors were caused by notes-data confusions, such as 
rows or columns filled with blanks or periods or X’s that did 
not exhibit enough variety to qualify as data, or to rows with 
a variety of units that were mistaken for data.  

The corresponding numbers for the SAUS spreadsheets 
were 2 unprocessed trivial tables, 2 MIP errors, and 9 tables 
(including the above two) with errors in some critical cells. 
Seven of the nine miss-segmentations were caused by notes-
data confusions. One header had an unprefixable duplicate 
label by mistake (a source error). Indexing of another 
column header failed because the appropriate prefix was to 
the right of a duplicate label. The overall segmentation 
accuracy, excluding trivial tables, was (195+189)/397 
=96.7%. 

Table 3 shows the distributions of the 198 non-trivial 
SAUS row and column header sizes. The data shows that 
multi-row column headers are more frequent (99) than 
multi-column row headers (64). The statistics on header 
sizes, prefixed rows and columns, number of row and 
column categories, and number of notes rows are based on 
analysis of the minimal indexing headers found by MIPS 
that do not depend on subjective interpretation of the table.   

Different ground truth could be formulated to include 
rows redundant for indexing above this minimal column 
header. One could also justify including in the column 
header some redundant rows (for example, units) above the 
data region. Options for expanding headers are under 
investigation. 

  

https://link.springer.com/article/10.1007/s10032-016-0259-1


Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1         Page 15 of 21 

 

Table 2. Experimental results. 

Observations 

Corpus 

Troy 

200 

SAUS 

200 

Number of tables 200 200 

      Successfully processed 199 198 

      Only one row or col of data 1 2 

Errors   

      Minimum indexing point (MIP) 2 2 

      Critical Cells (CCs) 4 9 

Gross size of tables   

      Rows average 25 64 

                maximum  183 453 

      Columns average 11 17 

                      maximum  80 81 

      Cells average 290 1184 

               maximum  7320 15094 

Net size of tables   

      Data rows (average) 15 45 

      Data columns (average) 5 15 

      Data cells (average) 85 676 

Categories   

      Multi-category row headers 7 12 

      Multi-category column headers 14 13 

Prefixed headers   

    Row headers 23 63 

    Column headers 3 0 

Size of headers   

     1-col row header & 1-row col 

header 

145 56 

      Row headers w. 3 or more columns 1 9 

      Column headers w. 3 or more rows 3 44 

Footnotes   

      Footnoted tables 56 NA 

      Reference markers (total) 91 NA 

      References found (total) 158 NA 

      References not found (total) 15 NA 

Notes   

      Rows (average) 5.13 8 

      Columns (average) 0.06 0.89 

   

Run time (seconds) w/o file output 15.6 61.9 

 
 
 

All 46 multi-category row and column headers were 
determined correctly by factoring after prefixing when 
required. Only one table had both multiple row and column-
categories. Prefixing is more prevalent in row headers where 
hierarchies are usually indicated by indentation or distinctive 
type style rather than additional columns. Of the 397 
processed tables, 89 required row or column prefixing. Only 
one table required two levels of row prefixing.  

The footnotes were checked only on the Troy tables 
because in SAUS the footnotes were on separate worksheets. 
All the footnotes were found in the 56 tables that had them, 
but not all the references to them. The program detected 158 
reference marks to the footnotes within the body of the tables 
(some had more than a dozen). It missed 15 in three tables. 
Superscripts are not retained in CSV files. 

 
Table 3. Joint distribution of minimum indexing row and column 

header sizes in the original (non-prefixed) tables 

|RH| 
|CH| 

1 2 3 4 

1 56 35 8 0 

2 43 12 0 0 

3 24 7 0 0 

4 4 1 1 0 

5 7 0 0 0 

 
Processing the Troy tables, excluding writing the 199 

files for category tables and the 199 classification files, 
required only 16 seconds on a 2.4 GHz Dell Optiplex 7010 
with 8GB RAM running Python 2.7 under Windows 7.0. 
The larger SAUS tables took 62 seconds on the same 
platform. 

 
 

7.  Application Queries 

 
Having shown how to transform a human-readable table to 
a machine-readable table, we now demonstrate that the 
transformations yield directly useable information for 
formal queries in widely available application software. 
Such a “proof of the pudding” is seldom offered in prior 
work where the table processing results are usually retained 
only in an ad hoc format. 

We process queries using industry standards—Microsoft 
Access for SQL queries over a generated relational database  
and the OpenLink Virtuoso semantic-web endpoint and 
Protégé for SPARQL queries over a generated triple store 
represented in the semantic-web languages RDF [71] and 
OWL [72].  In all cases the generated, canonical category 
tables and the generated classification tables are 
automatically imported into an appropriate data store where 
their content can be queried directly. Before importing them, 
an automated editing pass over cell content replaces decimal 
commas with periods and deletes thousands-separator 

https://link.springer.com/article/10.1007/s10032-016-0259-1


Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1         Page 16 of 21 

 

blanks and commas (as in Fig. 13). To accommodate syntax 
requirements, the dots in RowCat and ColCat identifiers are 
also removed. 

The query in Fig. 14 computes the GNI for every country 
for every year from the category table in Fig. 13. Fig. 15 
shows partial results. 

A second query illustrates combining disparate, but 
semantically overlapping tables. The table in Fig. 16 
quantifies international trade by land through Detroit, 
Michigan, and another table in our test set quantifies and 
compares U.S. trade with its NAFTA partners, Canada and 
Mexico. Its “U.S. surface trade” column over several years 
enables a query across the tables that finds the percent of 
U.S. land trade through Detroit vs. the surface trade with 
NAFTA partners for all the years the two tables have in 
common. For the year 1999, for example, the Detroit land 
trade was 18.5% of the land trade with NAFTA partners. 

Queries over category tables require that query writers 
know the row and column categories of the tables. A third 
SQL query applies to classification tables (e.g. Fig. 10), 
which are independent of category structure. Classification 
tables contain the meta-information needed for further 
downstream processing in automating table interpretation 
such as identifying aggregate operations. The third query 
checks for one of the most common aggregate-operation 
configurations: a row of data values labeled Total whose 
corresponding column data values sum to the total values. 
Interestingly, the query found several discrepancies with 
actual totals not matching stated totals, e.g. the 2003 column 
in Fig. 16. 

To produce semantic-web data for queries, we create 
RDF triples—(subject, predicate, object) statements (Fig. 
17). As an illustration of querying semantic-web data, Fig. 
18 gives a SPARQL query for the land-trade query above.  

 
 
SELECT MDollarTbl.RowCat_11 AS Country, MDollarTbl.ColCat_21 AS Year, 
FORMAT(MDollarTbl.DATA, ‘#,###’) AS MDollarAmt, 
FORMAT(PrcntTbl.DATA, ‘#.##’) AS PrcntGNI, 
FORMAT(100000000*MDollarTbl.DATA/PrcntTbl.DATA, ‘###,###,###,###’) AS GNI 
FROM ODA_Mx1 AS MDollarTbl, ODA_Mx1 AS PrcntTbl 
WHERE MDollarTbl.RowCat_11 = PrcntTbl.RowCat_11 
    AND MDollarTbl.RowCat_11 <> ‘EMPTY’ AND MDollarTbl.RowCat_11 NOT LIKE ‘OECD*’ 
    AND MDollarTbl.ColCat_11 = ‘Million dollar’ AND PrcntTbl.ColCat_11 LIKE ‘Percentage*’ 
    AND MDollarTbl.ColCat_21 = PrcntTbl.ColCat_21; 
 

Fig. 14.Access SQL query to compute GNI for every country in the ODA able of Fig. 1. 

 

 

 
 
 
 
 
 
 
 

Fig. 15. MS-Access screenshot of results of Query 1 (partial). 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 16. Table C10028 in our test set: International land trade with the U.S. through Detroit, Michigan. 
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The SPARQL query formulated above requires some 
knowledge of the queried table. In Fig. 18, for example, we 
see the line ?DetroitLandTradeCell  T028Mx1:RowCat_11  
?TransportationMode. Formulating this line (and some 
others) of the query requires understanding the structure of 
input tables. To remove structure dependencies for global 
queries, we programmed the construction of a uniform set of 
triples based on the canonical category tables. While in the 
triple construction described above the number of triples for 
each cell depends on the category structure of each table, the 
uniform OWL model triples do not. Instead, each cell is 
described by the same number of triples (based on the widest 
of the category tables). Hence, all of our tables can be 
searched simultaneously with a single query, for example, to 
determine in which tables Exports appears as a column 
category. Because of the uniformity of the model, the query 
(with prefix headers omitted) simplifies to:  
 

Select distinct ?cell ?value where{ 
?cell table:hasColumn ?col filter regex(?col, Exports). 
?cell table:hasValue ?value} 
 
In Protégé on a Lenovo T61 laptop, this query executed 

in a fraction of a second over a 104 megabyte triple store. 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 17. Generated RDF triples. The first triple is (C10028_R8_C2, 

RowCat_11, Truck), the second is (C10028_R8_C2, ColCat_11, 

1999), and the third is (C10028_R8_C2, DATA, 83889), which 

altogether means that the cell identified by C10028_R8_C2 (the cell in 

Table C10028 displayed in Fig. 16 at Row 8 and Column 2) has row 

header Truck, column header 1999, and data value 83889. 

 

 

8. Conclusion 

 
The formalization of header-indexed tables (HITs) by means 
of block algebra and cell constraints models the table layouts 
that cover the vast majority of tables encountered in print and 
on the web. It obviates previous attempts to recognize their 
infinite variety of framing, partial ruling, typeface, color 
scheme, or cell formatting details. The formalization serves 
as the basis for indexing and factoring algorithms that 
convert human-readable HITs into a machine-processable 
form. Importing the transformed web tables into either a  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18.SPARQL query. 

 

relational database or an RDF/OWL triple store enables 
them to be queried with SQL or SPARQL. Moreover, the 
HIT formalization encompasses auxiliary information: table 
titles, footnote components, and miscellaneous notes, 
broadening previously reported work. 

The HIT formalization not only engenders an algorithmic 
solution to discovering indexing headers and finding their 
multi-categorical indexing structure, it also provides a target 
for processing tables that do not strictly satisfy the HIT 
definition. As shown in Section 4, prefixing converts tables 
with “crooked” header indexes into bona fide HITs. 

The proposed algorithms are based on a formal definition 
of header-indexed tables. Thus they need no statistically 
significant experimental validation, only a demonstration of 
implementability and applicability. Although tables on the 
web are not always well formed, most are or can be 
converted (e.g., through prefixing) to be so. In our small but 
heterogeneous collection of 200 web tables, MIPS found all 
but two of the minimum indexing points and correctly 
segmented 98% of the minimal table headers and the data 
regions. Fact discovered all 21 multi-category headers. The 
heuristics for table titles, notes and footnotes probe the limits 
of purely syntactic table processing. The category and 
classification tables were imported and queried in Access, 
Virtuoso, and Protégé. The tables and the critical-cell ground 
truth, already in use by other researchers, will be posted at 
the IAPR TC-11 website. 

The breadth of our definition of header-indexed tables 
was confirmed by running our program on 200 spreadsheet 
tables posted by others. All 25 multi-category headers were 
found. Many of the spreadsheets have truly puzzling headers 
and layouts, yet our program correctly segmented all but 
nine. Only one error was caused by a table that violates the 
HIT postulates (by a repeated header); the other 8 errors 
were data/notes/units confusions. For further improvement, 
we could either make our program more robust to 
unexpected features like columns containing only detached 
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footnote references, rows or columns of identical data or 
unusual symbols, and misplaced headers, or turn to more 
source-specific information like formatting conventions and 
domain semantics. Given how few errors are left, evaluating 
either option will require ground-truthing much larger and 
more varied collections of tables, or developing downstream 
applications that provide useful feedback. 

This research also sets the stage for other near-future 
work. In addition to enabling formal queries, the cell-
classification table tags each cell of every processed table 
according to its function in the table. Knowing the cell 
classification and the category-tree indexing structure are 
likely to aid discovering the scope of aggregate operations 
and the operands of simple arithmetic operations, typing data 
values, and discovering implicit roots of category trees. 
Without meaningful category labels for every category, we 
cannot really claim that we understand tables. Resolving 
these issues will require matching table facets and features 
with semantic resources, whereas our work here is based on 
syntactic analysis.  

Longer term research objectives include (1 interpreting 
tables with fully resolved syntax and semantics, (2) turning 
egregious tables into HITs, (3) integrating interpreted tables 
into ontologies, and (4) automating free-form query 
processing over collections of interpreted and integrated 
table content. All of this will require continuing efforts to 
combine the perspectives of the document-processing, 
information-retrieval, database, and web-science 
communities. 
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