
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department of

2016

Converting Heterogeneous Statistical Tables on the
Web to Searchable Databases
David W. Embley
Brigham Young University, embley@cs.byu.edu

Mukkai Krishnamoorthy
Rensselaer Polytechnic Institute, mskmoorthy@gmail.com

George Nagy
Rensselaer Polytechnic Institute, nagy@ecse.rpi.edu

Sharad C. Seth
University of Nebraska-Lincoln, seth@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csearticles

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Embley, David W.; Krishnamoorthy, Mukkai; Nagy, George; and Seth, Sharad C., "Converting Heterogeneous Statistical Tables on the
Web to Searchable Databases" (2016). CSE Journal Articles. 142.
http://digitalcommons.unl.edu/csearticles/142

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/127440919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 1 of 21

Converting Heterogeneous Statistical Tables on the Web

to Searchable Databases

David W. Embley Mukkai S. Krishnamoorthy George Nagy Sharad Seth

Received: ?

© Springer-Verlag 2015

Abstract Much of the world’s quantitative data resides in

scattered web tables. For a meaningful role in Big Data

analytics, the facts reported in these tables must be brought

into a uniform framework. Based on a formalization of

header-indexed tables, we proffer an algorithmic solution to

end-to-end table processing for a large class of human-

readable tables. The proposed algorithms transform header-

indexed tables to a category table format that maps easily to

a variety of industry-standard data stores for query

processing. The algorithms segment table regions based on

the unique indexing of the data region by header paths,

classify table cells, and factor header category structures of

two-dimensional as well as the less common multi-

dimensional tables. Experimental evaluations substantiate

the algorithmic approach to processing heterogeneous tables.

As demonstrable results, the algorithms generate queryable

relational database tables and semantic-web triple stores.

Application of our algorithms to 400 web tables randomly

selected from diverse sources shows that the algorithmic

solution automates end-to-end table processing.

Keywords document analysis table segmentation
table analysis table header factoring end-to-end table
processing· table headers queries over table data

D. W. Embley

Computer Science Department, Brigham Young University

Provo, UT 84602, USA

e-mail: embley@cs.byu.edu

M. Krishnamoorthy G. Nagy

Rensselaer Polytechnic Institute

Troy, NY 12180, USA

e-mail: moorthy@cs.rpi.edu; nagy@ecse.rpi.edu

S. Seth

University of Nebraska Lincoln

Lincoln, NE 68502, USA

e-mail: seth@cse.unl.edu

1. Introduction

Tables provide a convenient and succinct way to
communicate data of interest to human readers. Cafarella
and others called attention to the immense accumulation of
tabulated data on the Web even before Big Data became a
byword [1]. Assuming “that an average table contains on
average 50 facts it is possible to extract more than 600
billion facts taking into account only the 12 billion sample
tables found in the Common Crawl” [2].

Tables are not, however, inherently amenable to machine-
based search and query. Research in document image
analysis suggests that there is a natural progression from
source document images to a searchable database via
“physical” and “logical” layout analysis. In the case of
tables, physical analysis must assign literal content to cells
laid out on a grid. Logical analysis determines the indexing
relationship between header cells and data cells. The
indexing structure can be readily converted to any
appropriate machine-queryable representation such as
relations in a relational database or subject-predicate-object
fact assertions in a semantic web triple store. We propose
here a complete and coherent table-processing framework to
accomplish all of these tasks. We call the constraints
necessary to solve the ill-posed inverse problem of table
understanding table regularization. The exemplary table in
Fig. 1 will serve to illustrate the analysis of physical and
logical layout and the assertion of facts in machine-
queryable form. Although our methods could be applied to
scanned tables, here we address only tables where the basic
grid structure and the cell contents are already available in
encoded form.

 Physical Layout. All tables have a grid structure. Every

literal (word, phrase, or numerical value) has a row and
a column coordinate. In Fig. 1, as in most tables, the data
values form a natural grid. When spanning header labels
(Country, Million dollar, and Percentage of GNI in Fig.
1) are replicated into the cells they span, the header labels
also become part of the grid. Because we also process
table titles, footnotes, and other notes associated with
tables, we treat these auxiliary components as spanning
cells and replicate them across the row (or column) of

https://link.springer.com/article/10.1007/s10032-016-0259-1
mailto:embley@cs.byu.edu
mailto:moorthy@cs.rpi.edu
mailto:nagy@ecse.rpi.edu
mailto:seth@cse.unl.edu
proyster2
Typewritten Text

proyster2
Typewritten Text
Published as IJDAR (2016) 19:119–138
DOI 10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 2 of 21

grid cells in which they appear. Our processing chain
starts with a grid, as described here, because HTML and
spreadsheet tables are already built on a grid. As shown
below, methods have been developed earlier for
converting scanned, ASCII, and searchable PDF tables
to a grid of cells in spite of the variety of framing, partial
ruling, typeface, color scheme, and cell formatting
details. Explicit distinctions between cells containing
table title, data values, row and column headers, and
footnotes, however, are totally absent in our initial grid
representation. Furthermore, there are no rulings that
might indicate divisions between data values and other
parts of a table, and cell content is just text without color
or font formatting. Surprisingly, this lossy representation
of an original table often suffices to automatically extract
the fact assertions stated therein.

 Logical Layout. Starting with a table as a grid of text-

filled or empty cells, we reveal its indexing structure in
terms of categories and an ordered list of category paths
for each data cell. The table in Fig. 1 has three
hierarchical header categories: (Country (Norway,
Denmark, …), (Year (2007, 2008, …)), and (development
assistance (Million dollar, Percentage of GNI)). The
index for each data value comprises one header path
from each category tree. The upper-left data value 3 735
in the table, for example, is indexed by:
(Country.Norway, Year.2007, development_assistance.
Million_dollar). This representation mirrors Wang’s
formalization of indexing in tables [3], which maps a
2-D grid table into an n-D array with coordinates
corresponding to the categories, i.e., a data cube.

 Fact Assertions. The final output of our table-

processing work is a collection of fact assertions,
represented as relational-database tables and also as
subject-predicate-object triples in a semantic-web
standard. Each data value in a table makes a fact
assertion. The assertion for the data value 3 735 in
Fig. 1, is: The Country Norway in Year 2007 provided
development assistance in the amount of 3 735
Million dollars. Our table-processing system yields
these assertions in a form that can be queried with
standard query languages—SQL for relational-
database tables and SPARQL for semantic-web
triples. When table headers agree, cross-table query
processing is possible, as illustrated in Section 7. We
also identify auxiliary information, comprising titles,
footnotes, footnote markers and references, and
notes, and turn their existence into fact assertions,
which can then be queried as such.

Whereas most previous work addresses specific types of

tables, we exploit the commonality of the grid format and
indexing structure. Human readers often depend on rulings,
fonts, and typesetting to reveal the intrinsic relationship
between headers and content cells, but our method relies
only on structural constraints. We also extract embedded
auxiliary data without dependence on formatting.

We do not deal here with concatenated (composite)
tables, nested tables, tables containing graphic data, or
“egregious” tables (those not laid out on a rectangular grid
with headers above and left).

Fig. 1. A table from Statistics Norway, used as a running example throughout the paper.

 http://www.ssb.no/a/english/kortnavn/uhjelpoecd_en/tab-2012-05-15-01-en.html, accessed Jan. 2015)

https://link.springer.com/article/10.1007/s10032-016-0259-1
http://www.ssb.no/a/english/kortnavn/uhjelpoecd_en/tab-2012-05-15-01-en.html

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 3 of 21

Although most research in document processing is
experimental, our table-processing work makes several
theoretical contributions that have immediate practical
applications. We provide

1. a formal (block grammar) definition of header-indexed

tables that can be used for analysis of most human-
readable tables;

2. an automatic transformation of header-indexed tables to
a new canonical category table format via:

a) segmenting table regions by algorithmic data cell
indexing,

b) factoring header paths into categories by algorithmic
header analysis, and

c) generating queryable canonical relational tables and
semantic-web triple stores.

Our program accepts rectangular tables posted on the web
for human reading in HTML XLS or CSV format. Some
publishers already include CSV tables in online versions of
published papers. The input tables are heterogeneous in the
sense that they are not restricted to any specific domain or
by any formatting constraint. Their headers could have any
reasonable number of rows or columns. Multiple header
hierarchies could be indicated by any combination of
spanning cells. The tables could have footnotes, footnote
references, or other notes. They are just web tables,
generated either manually or from some database, posted for
human reading. Our program always finds a row header, a
column header, and an indexing structure. These do not,
however, necessarily correspond to what a sensible human
may have assigned as ground truth. For example, a row of
units may be assigned to the data region rather than to notes.
In principle, the input tables could have been produced by
any of the earlier methods for transforming scanned tables
into computer-readable grid tables, but we have not yet
experimented with scanned tables. Although our test data
consists of tables from statistical sites, we have carefully
avoided dependence on statistical or numerical data.

We find it remarkable that random collections of
heterogeneous tables can be segmented by reliance on the
indexing property of their row and column headers.

After reviewing relevant prior research in Section 2, we

present in Section 3 classical (printing and publishing) table
terminology and formalize header-indexed tables in terms of
a block grammar. We explain how our table-processing
software segments and classifies cells in Section 4 and how
it finds categories, assigns indexes for data cells and
produces Category tables in Section 5. In Section 6, we
validate our work over a collection of tables. Section 7
shows SQL and SPARQL queries to demonstrate that the
human readable tables are indeed converted into data stores
of machine-queryable fact assertions. In Section 8, we draw
conclusions and point to further research opportunities.

2. PriorWork

Ulpian’s life-expectancy tables [4] indicate that presenting
related data in rows and columns was already familiar to the
Romans, but systematic use of scientific tables did not come
about until the 17th Century. Over the last 40 years, the
prospect of computer access to data available in tables
stimulated several hundred research projects on table
analysis. Diverse methods were developed for bitmapped
images of scanned or digitally photographed hardcopy
tables, ASCII tables found in email messages or in early
computer-generated documents, searchable or raw PDF
files, and both manually coded and automatically generated
spreadsheet and HTML tables. We describe previous table
models and summarize published methods of table analysis
(variously called table recognition, table interpretation,
table understanding, or table data extraction).

This literature review has four parts. We first review X.
Wang’s pioneering research which has long guided our
approach to table understanding. In the second subsection
we point out research that justifies our claim that table
spotting, table isolation, and conversion of source tables to
grid tables are no longer major obstacles to table
understanding. Next we review research that aims, like ours,
at higher-level, logical analysis of tables. Finally, we
summarize our own previous work that underlies our current
endeavors. For a thorough survey of earlier work, we
recommend [5].

2.1 Wang Tables

Wang regarded tables as an abstract data type [3]. She
formalized the distinction between physical and logical
structure in the course of building X-Table for practical table
composition in a Unix X-Windows environment. She
defined layout structure as the presentation form of a table,
and logical structure as a set of labels and entries. Labels are
assigned to hierarchies of categories and sub-categories, and
each value in a data cell is associated with one label from
each of the categories. The number of categories defines the
dimensionality of the abstract table.

More specifically, Wang formulated the logical structure
of a table in terms of category trees corresponding to the
header structure of the table [3]. “Wang categories,” a form
of multidimensional indexing, are defined implicitly by the
2-D geometric indexing of the data cells by row and column
headers. The index of each data cell is unique (but it may be
multidimensional and hierarchical in spite of the flat, two-
dimensional physical layout of the table). She used the
object-oriented dot notation, label1.label2.label3 entry, to
represent a path in the category tree from header cells to data
cells. Thus, for example, Wang would identify the three
category trees in Fig. 1 for countries, years, and development
assistance, and index each data cell as a triple of paths, one
for each category tree.

https://link.springer.com/article/10.1007/s10032-016-0259-1
proyster2
Typewritten Text

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 4 of 21

2.2 Physical Structure Extraction

(Low-level Table Processing)

In printed tables, boxing, rules, or white-space alignment are
used for separating cell entries. In one of the earliest works,
Laurentini and Viada extracted cell corner coordinates from
the ruling lines [6]. Image processing techniques for the
extraction of physical structure from scanned tables include
Hough Transforms [7], run-length encoding [8], word
bounding boxes [9], and conditional random fields (CRF)
[10]. Hirayama presented an algorithm for segmenting
partially-ruled tables into a rectangular lattice [11].
Handley’s method of iterative identification of cell
separators successfully processed large, complex, fully-
lined, semi-lined, and unruled tables with multiple lines of
text per cell [12]. Zuyev used connected components, and
projection profiles to identify the cell contents for an OCR
system [13]. Methods for detecting and locating tables were
demonstrated in [14] and [15].

The notion of converting paper tables into Excel
spreadsheets dates back at least to 1998 [16]. Early research
in table processing suffered from the isolation of the
graphics research community from the OCR community.
Current OCR products can locate tables on a printed page
and convert them into a designated (e.g. word-processor)
table format. Most desktop publishing software has
provisions for the inter-conversion of tables and
spreadsheets. Our methods are applicable to scanned tables
segmented as prescribed in [6,7,8,10,11,12], provided that
cell contents are converted to ASCII even with mediocre
OCR. Related research addressing raw PDF tables, which
requires recovering the grid structure as well as OCR for the
label contents, was recently presented in [17].

Less attention has been focused on ASCII table analysis,
where the structure must often be discovered from the
correlation of text blocks on successive lines. Grid structure
is preserved by spacing, although vertical separators (“|”)
and extra new-line symbols for blank rows or rows filled
with dashes are sometimes used. Pyreddy and Croft
demonstrated results on over 6000 tables from the Wall
Street Journal [18]. T-Recs clustered words for bottom-up
structural analysis of ASCII tables [19]. Hu et al. explored
row and column alignment via directed acyclic attribute
graphs [20]. Work on such tables has diminished since the
development of XML for communicating structured data
without sacrificing ASCII encoding.

Fig. 2a shows some of the cells in the exemplary table and
the HTML tags that preserve table topology. The tagging
makes the extraction of a table’s underlying grid structure
from its customary HTML representation relatively simple.
Fig. 2b shows the limited information retained when the
HTML representation in Fig. 2a is converted into CSV
format. In the CSV file (1) the labels of spanning cells are
followed by delimiters (here commas) that form a full grid
of cells; and (2) all type and cell formatting and ruling lines

are removed. Excel displays files with an equal number of
delimiters between new-line symbols as a table. Excel does
not retain appearance based edits when the file is saved in
CSV format.

<html>

…

<!-- START TABELL -->
…

<tr>

<throwspan=2class=level11>Country</th>

<thclass=multispancolspan=5style=border-bottom:
1px #000000 solid; >Million dollar</th>

<thclass=multispancolspan=5style=border-bottom:

 1px #000000 solid; >Percentage of GNI</th>

</tr>
…

<tr>

<th>2007</th>

<th>2008</th>
<th>2009</th>

<th>2010*</th>

…

</tr>

<!-- SLUTT TABELL -->
…
</html>

(a)

,,,

Country,Million dollar,,,,,Percentage of

GNI,,,

,2007,2008,2009,2010*,2011*,,,

,,,,,,,,,,,,,,,,

,,,

(b)

Fig. 2. File repsentation of tables. We import HTML [21] or XLSX

files and convert them into CSV [22] files that preserve only the grid

structure and labels without font type, size, color, and spacing.

(a) Some of the 446 line source code of the HTML table in Fig. 1.

(b) Text (Notepad) display of the same part of the CSV file after

import from the HTML in Fig. 2a.

2.3 Logical Structure Extraction
(High-level Table Processing)

Gattebauer et al. presented a geometric approach to table
extraction from arbitrary web pages based on the spatial
location of table elements prescribed by the DOM tree [23].
They formulated a “visual table model” of nested
rectangular boxes derived from Cascading Style Sheets.
They applied spatial reasoning—primarily based on
adjacency topology and Allen interval relations—to their

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 5 of 21

visualization model in order to determine the final box
structure, and conducted some semantic analysis with a
known or assumed list of keywords. Their interpretation
consists of XML-tagged generalized n-tuples. They
evaluated several steps of their process on 269 web pages
with 493 tables and reported 48% precision and 57% recall.

Amano and Asada have published a series of papers on
graph grammars based on box adjacency for “table-form”
documents [24]. Their grammars encode the relationship
between “indicator,” “example,” and data boxes. Similarities
between table and form processing were already emphasized
by Bing et al. [25] and Kieninger and Dengel [26].
Grammar-based approaches that can be specialized to forms
and tables have been demonstrated on large data sets
[27,28,29]. However, bureaucratic forms often have
preprinted labels rather than indexing headers like tables.
Forms like invoices are less tightly structured than tables
[30]. Therefore we cannot take advantage of advanced forms
processing methods like [31,32].

A group headed by T. Watanabe aimed at learning the
various types of information necessary to interpret a ruled
scanned table [33]. They used a training set of diverse tables
to populate a “Classification Tree.” The nodes of the tree are
“Structure Description Trees” that can interpret a specific
family of tables. In their operational phase, new
classification nodes and tree structure descriptions are added
for unrecognized tables.

Shamalian et al. demonstrated a model-based table reader
for reading batches of similar tables [34]. Their model
specifies the location of the data cells, thus obviating the
need to interpret headers either syntactically or semantically.

Table headers in PDF files were detected and analyzed in
[35] in order to classify table types. A rule-based system
with goals similar to ours was presented in [36]..

In the last several years, an active and inventive group at
Google, possibly inspired by Halevy, Norvig, and Pereira
[37], collected and analyzed millions of tables harvested
from the web [1,38,39]. Visual verification of their results
has necessarily been restricted to much smaller samples.
Their general approach has been to treat table rows as tuples
with attributes specified by the top row. Extending this work
to tables more complex than simple relational tables, Adelfio
and Samet leveraged the principles of table construction to
generate interpretations for spreadsheet and HTML tables
[40]. Using Conditional Random Fields, they classified each
table row as: header, data, title, group header, aggregate,
non-relational metadata, or blank. With their test set of
1048 spreadsheet tables and 928 HTML tables, they
achieved an accuracy of 76.0% for classifying header and
data rows for spreadsheet tables and 85.3% for HTML
tables, and for classifying all rows, 56.3% and 84.6%
respectively. In contrast to the work of the Google group and
of Adelfio and Samet, we treat row headers the same as
column headers, and instead of depending on appearance
features, we use indexing properties for further analysis.

A series of papers culminating in V. Long’s doctoral
thesis [41] analyzes a large sample of tables from Australian
Stock Exchange financial reports. An interesting aspect of
this work is the detection and verification of the scope and
value of aggregates like totals, subtotals, and averages. The
analysis is based on a blackboard framework with a set of
cooperating agents. This dissertation has a good
bibliography of table papers up to 2009. Other work dealing
with aggregates in tables includes [42].

Already in 1997, Hurst and Douglas advocated
converting tables into relational form: Once the relational
structure of the table is known it can be manipulated for
many purposes [43]. Hurst provided a taxonomy of category
attributes in terms of is-a, part-of, unit-is, quantity-is. He
pointed out that the physical structure of a table is somewhat
analogous to syntax in linguistic objects. He also
emphasized the necessity and role of natural language
analysis for table understanding, including the syntax of
within-cell strings [44]. Hurst’s dissertation contains a
wealth of interesting examples of tables [45].

Hurst’s work was reviewed and augmented by Costa e
Silva et al. [46], who analyzed prior work in detail in terms
of contributions to the tasks of table location, segmentation,
functional analysis (tagging cells as data or attribute),
structural analysis (header index identification), and
interpretation (semantics). Costa e Silva’s research group
also provides a clear distinction between tables, forms, and
lists. The ultimate objective of this group is the operational
analysis of financial tables with feedback between the five
tasks based on confidence levels.

Kim and Lee reviewed web table analysis from 2000 to
2006 and found logical hierarchies in HTML tables using
cell formats and syntactic coherency [47]. They extracted the
table caption and divided spanning cells correctly. Like us,
but in contrast to many other researchers, they handled
vertical and horizontal column headers symmetrically.

The TARTAR (Transforming ARbitraryTAbles into
fRames) system developed by Pivk et al. has objectives
similar to ours: “The input to the system is semi-structured
information in the form of arbitrary (HTML, PDF, EXCEL,
etc.) tables.” [48]. However, in the cited paper, the authors
demonstrated their work only on HTML tables. Their
“cleaned and canonicalized” matrix representation is similar
to our grid table. Downstream analysis and region
segmentation proceeded, however, on the basis of cell
formats (letters, numerals, capitalization, and punctuation)
rather than indexing properties. The cells were functionally
labeled in a manner similar to Hurst as access or data cells
and assembled into a Functional Table Model. An attempt
was made for semantic interpretation of strings using
WordNet. The final output was a semantic (F-logic) frame.
The complex evaluation scheme that was presented and
applied to 158 HTML tables was hampered by human
disagreement over the description of the frames.

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 6 of 21

Chen and Cafarella recently presented a table-processing
system that transforms spreadsheet tables into relational
database tables [49]. Like Adelfio and Samet [40] and Pinto
et al. [10], they adapt a CRF to label each row as title,
header, data, and footnote, using similar row features.
(Rows labeled as “data” also include the cells in the row
header, hence to distinguish between the two, they must
assume, unlike us, that the data region is purely numeric.)
Their hierarchy extractor builds parent-child candidates of
cells in the header region using formatting, syntactic, and
layout features. The candidate list is pruned by an SVM
classifier that enforces the resulting set of candidate pairs to
be cycle-free. In our algorithmic approach to table
processing, the resulting structure is guaranteed to be cycle-
free by construction. Their corpus of tables was posted on-
line, and we use a random sampling of these tables in our
experiments.

Some researchers consider wholly automated table
analysis too remote and advocate interactive methods based
on expert advice and user feedback [50,51].

Our approach differs from previous work by its reliance
on the fundamental indexing property of headers and by the
completeness of its output in standard computer-searchable
formats.

2.4 Our earlier work

We reviewed early work on table processing and presented
a collection of tables that stretch the very definition of table
in 1999 [52]. Examples of human ambiguity in table
interpretation were discussed in [53]. The extent to which
semantic information is revealed by table structure was
explored in [54]. We compiled a comprehensive survey of
table processing for IJDAR in 2006 [55]. Input tables were
matched with known conceptualizations in an attempt to
interpret them in [56]. Information extraction from sibling
tables with identical headers was demonstrated in [57]. A
taxonomy of tables based on the geometric relationship of
tabular structures to isothetic tessellations and to X-Y trees
was proposed in [58], a machine learning approach to
segmentation of grid tables in [59], and algorithms for
turning web tables into relational tables by recovering and
factoring header paths in [60]. VeriClick, an interactive tool
for table segmentation and ground-truthing, was described
in [61]. We introduced algorithmic table segmentation,
based on the fundamental indexing property, in [62]. Some
other conference reports of our experiments on various
aspects of table processing are cited in the above
publications.

In addition to the already-mentioned IEA/AIE’11 [60]
and ICDAR’13 [62] papers, three precursors to this article
have recently appeared in conference proceedings. At the
2014 Document Analysis Systems workshop, we reported
on our initial, automatic end-to-end conversion of web tables
to relational databases [63]. We showed SQL queries on

HTML tables imported into MS-Access at ICPR 2014 [64].
At the 2015 IST/SPIE Conference on Document
Recognition and Retrieval, we clustered the headers of
category hierarchies to reveal commonalities among tables
[65].

The current paper combines and significantly expands
these precursors. (1) The updated literature review contrasts
prior work with ours. (2) We describe header-indexed tables
in terms of a block algebra that formalizes the conventional
typesetting practices of the printing and publishing industry
that underlie web tables [66]. (3) The MIPS (Minimum
Indexing Point Search) and the category-tree extraction
algorithm (i.e., header factoring) are reframed in terms of the
new header-indexed table formalization. (4) Exercising
these algorithms on a collection of heterogeneous tables, we
present a detailed analysis of the required header
modifications for Wang category-tree construction. (5) We
transform algorithmically-discovered table content to
semantic-web triple stores and to relational databases, and
we execute both SQL and SPARQL queries over two
hundred automatically processed HTML tables.

3 Human-readable Tables

Good table layout is an art described in several books and

in lengthy sections of the US Government Printing Office
Style Manual and in the Chicago Manual of Style. In this
section, we first informally present the generally accepted
view of tables. We then specify a visual schematic model of
the header-indexed tables that we can process. The model is
formalized in a 2-D interval algebra over the inherent spatial
constraints.

3.1 What is a table?

Tables are universally used for presenting data logically
organized into two or more categories: Country, Year, and
development assistance in Fig. 1. Their data cells are laid
out on a grid so that each data cell can be indexed by its row
and column headers. In conventional printing terminology,
the principal zone of a table comprises regions called stub
head, row header (or stub), column header, and data.
Auxiliary information, such as the table title, notes, and
footnotes appear outside this principal zone. Notes may also
appear in the principal zone. The stub head may be empty or
augment information carried by row or column headers, or
the table title. In Fig. 1, the stub head contains Country.

A single category can be indexed by a flat header like the
list of countries in Fig. 1, or by a hierarchical header laid out
in several rows or columns or designated by indentations or
font characteristics. Hierarchical headers also allow 2-D
display of more than two categories by repeated labels.
Fig. 1 displays two categories, development assistance and
Year as hierarchies: (Million dollar (2007, …, 2011*) and
Percentage of GNI (2007, …, 2011*)).

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 7 of 21

Since horizontal and vertical table organization is
symmetric and permutable, the number of possible table
layouts increases combinatorially with the number of
categories and the number of their content labels. The choice
may be guided by the aspect ratio of the available page or
display space, preference for horizontal or vertical labels,
compatibility with existing tables, and expected reader
interests. Larger tables tend to be laid out with more rows
than columns. Thus Canadian provinces often appear as
column headers, while US states are typically row headers.
The order of rows and columns does not affect indexing.
When row order is significant, the leading column may be
populated with integers denoting rank. Since these uniquely
index all the remaining rows, they logically serve as row
headers in spite of their descriptive poverty.

Every category is a rooted tree. Its root serves as its
Category Name. In practice, it is often omitted because it is
obvious to the reader. In Fig. 1, for example, the label Year
does not appear (and could offend some readers if it did).
Even when the category root is not missing, an arbitrary
string (e.g., RootHeader#2) may be inserted to complete the
category structure because category roots cannot affect
indexing. Our algorithms always assign a virtual root
because assigning a meaningful name could require
semantic analysis of the contents of the table, table title,
notes, or of the surrounding text. The complete indexing
structure of a table consists of a forest of rooted category
trees—two trees for a two Wang-category table, three trees
for a three-Wang-category table, etc. Multi category headers
(like the two-category column header in Fig. 1) factor into a
cross-product of header rows or columns. The height of the
category trees depends on the minimum number of header
columns or rows required to index the data cells.

The indexing structure can be exploited for searching
relational DBMS and RDF triples. Although printed and
HTML tables are logically symmetric in row and column
organization, in relational tables indexing is asymmetric.
Rows are records (or tuples), and columns are fields (or
attributes). This distinction opens the way for a wealth of
useful operations based on predicate logic and governed by
the laws of relational algebra and calculus.

The fundamental property of a header-indexed table

(HIT) is that every data cell is uniquely indexed by its row
and column header paths, which are respectively left of and
above the data region. A hierarchical (row or column) header
may index one or more categories. A single-category header
path consists of the root-to-leaf path of the corresponding
category tree. A multi-category header path consists of
concatenated category paths. Header-indexed tables are
generally amenable to automated data extraction using only
structural information.

Egregious tables (those that are not header-indexed) may
not puzzle human readers [52], but they challenge
algorithms and require external context to extract values

with their applicable indexes. The genetic code tables in Fig.
3, for example, may have a much better layout for human
understanding than if they were laid out as HITs. Although
it is easy for humans to recast such tables as HITs, the task
is far from trivial for machines. The periodic table is a classic
example: its layout succinctly captures element properties
for an informed human reader. It can be cast into the layout
of a HIT by listing the element symbols as row headers and
providing column header labels for each of the depicted
element properties. Egregious tables are relatively rare.

Fig. 3 Genetic coding tables. The table on the left is egregious

because the second column of the row index is on the right. It can be

converted to a HIT by moving the last column either to the left or the

right of the first column. The table on the right (also a three-category

table) presents the same data with radial indexing header paths.

3.2 Header Indexed Tables: Formal Characterization

Fig. 4a shows a visual model of the HITs we process, which
account for almost all human-readable tables (and even
relational tables). The only essential spatial constraints are
that the RowHeader must be to the left and aligned with the
Data region, and that the ColumnHeader must be above and
also aligned with the Data region. The remaining
components are optional. The TableTitle, if included within
the table, should be the topmost non-empty row. Footnotes
along with their preceding FootnoteMarkers must be below
the RowHeader and Data regions and cannot share their row
with anything else. The corresponding reference to the
footnote, matching the footnote marker, may occur in any
cell above the footnote. Notes, which can occur anywhere,
provide information about the source or dissemination of the
data (e.g., Source: OECD in Fig. 1). Duplicate rows and
columns, including repeated row and column headers
inserted to avoid scrolling, are detected and skipped. Empty
rows or columns can be deleted without loss of information,
yielding the simplified model in Fig. 4b.

Critical cells (CC1, CC2, CC3, CC4) delineate regions.
As Fig. 4 shows, CC1 and CC2 demarcate the StubHeader
and CC3 and CC4 demarcate the Data region. Furthermore,
in combination with one another, these critical cells also
demarcate both the ColHeader and RowHeader regions.

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 8 of 21

TableTitle

Notes

CC1

StubHeader ColHeader
CC2

Notes

CC3

Data

Notes

CC4

Footnotes

Notes

 R
o

w
H

ea
d

er

N
o

te
s

Letting row ri and column ci be the coordinates of critical
cell CCi, a HIT satisfies the following constraints: r1 ≤ r2 <
r3≤ r4 and c1 ≤ c2 < c3 ≤ c4. These constraints guarantee that
the ColHeader and RowHeader regions properly align with
the Data region and that the Data region is not degenerate.
A single row (r3= r4) or column (c3 = c4) of data is acceptable,
provided both row and column headers exist. To complete
our formalization of a HIT, we formulate region-level and
cell-level constraints, that provide a computable version of
the visual representation of Fig. 4.

Region-level Constraints. The region-level spatial
constraints can be formalized using a block algebra [67],
which is a spatial application of Allen’s interval algebra [68].

 (a)

 (b)

Fig. 4. Visual HIT model: (a) complete

(b) simplified by removing all empty rows and columns to reduce size

of constraint table. As an example of the m, eq constraint in the fourth

row and last column of Table 1 below, RowHeader meets Data

horizontally, and is equal to Data vertically.

Fig. 5 shows the 7 basic relations of interval algebra. The
inverse relations interchange the roles of x and y:
x b y  y bi x, x m y  y mi x, etc. The row and column
intervals of 2-D blocks are independent. Hence a constraint
between any two blocks can be expressed as a pair of row
and column constraints, as exemplified in Fig. 4b. If more
than one horizontal or vertical relationship is possible, it is
expressed as a disjunction, e.g., vertically, TableTitle b  m
ColHeader.

The constraints on a HIT are shown in a matrix form in
Table 1. The relation pairs (fi, b  m) appear in the row of
TableTitle and column ColHeader. Further, the entry in the
symmetrical cell (row: ColHeader, column: TableTitle) will
be its inverse, i.e., f, bi  mi. Because of this symmetry, the
cell entries in the gray region are not shown.

Fig. 5. The relations of Allen’s interval algebra.

Cell-level Constraints. Apart from the region-level structural
constraints, a HIT also satisfies the following cell-level
constraints related to data cells, header cells, categories, and
auxiliary cells comprising titles, notes, and footnotes.

Data Cells
1. Each DataCell in a grid table is a singleton cell.
2. Every DataCell is indexed by header cells from every

category.

Header Cells
1. Every HeaderCell belongs to at least one

HeaderPath—a vertical sequence of cells through the
column header or a horizontal sequence of cells
through the row header.

2. DataCell (r,c) has RowHeaderPath Cell(r,c1), …,
Cell(r,c2), where c1 and c2 are the column coordinates
of CC1 and CC2, i.e., the sequence of horizontal cells
in the RowHeader region in row r; and has
ColHeaderPath Cell(r1,c), …, Cell(r2,c), where r1
and r2 are the row coordinates of CC1 and CC2, i.e.,
the sequence of vertical cells in the ColHeader region
in column c.

3. Col(Row)HeaderPaths (concatenations of
HeaderPaths for multi-category headers) uniquely
identify a column (row) of data cells.

m , eq

TableTitle

Notes

CC1

StubHeader ColHeader

CC2

Notes

CC3

Data

Notes

CC4

Footnotes

Notes

N
o

te
s

 R
o

w
H

ea
d

er

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 9 of 21

Table 1. Spatial constraints of the Header-indexed Table model in Fig. 4(b).The notation is based on Fig. 5. Each cell contains a horizontal

constraint and a vertical constraint separated by a comma. Each constraint may have OR clauses indicated by V.

Fig. 6. Part of the table of Fig. 1 in CSV grid table format that preserves the grid structure of the original HTML table. CCs shaded yellow.

Auxiliary Cells
1. A footnote marker and its associated footnote may

appear in a single cell or in two row-adjacent cells.
2. Every footnote marker has a footnote reference that

may appear in the table title, header or data region.

In summary, the class of tables that we call HITs can be
precisely specified in terms of computable spatial and
logical constraints. We believe that HITs cover most printed,
web, and spreadsheet tables, as well as relational database
tables displayed in standard form with keys on the left. We
shall now show that the above formalization makes HITs
amenable to model-driven analysis.

4. Table Region Segmentation and Cell Classification

Segmentation consists of locating the critical “corner” cells
CC1 and CC2 of the stub-header, and CC3 and CC4 of the
data region, as well as the rows or elementary cells
containing the embedded table title, footnotes, footnote
marks, footnote references, and miscellaneous notes. Our
MIPS (Minimum Indexing Point Search) algorithm finds
CC1, and CC2. The underlying assumption is that the row
headers (on the left) and column headers (above) index the
data cells. Header indexing requires header cells to be
aligned with the data cells they index, as is also required of
HITs. Therefore MIPS transforms near-HITs into HITs by
straightening out any “crooked” header paths by prefixing

duplicate labels with unique labels.
Although CC1 and CC2 are found algorithmically,

heuristics are needed to demarcate the top and bottom of the
data region (indicated by CC3 and CC4) from its
surrounding regions. As shown in Section 4.3, the output of
the segmentation and cell classification stage is a CSV
classification table in a uniform format with one row for
each cell of the source table.

4.1. Header Segmentation

The input to the MIPS algorithm is a CSV table, converted
from a web table. Fig. 6 shows the first seven and last six
rows of the exemplary table of Fig. 1 converted to CSV
format and rendered as a table. Empty rows and columns are
labeled as EMPTY (not shown in Fig. 6) to indicate that
these rows and columns can be ignored during segmentation
and classification. They are not deleted because that would
interfere with referencing the original cell coordinates and
because they sometimes serve as visual clues to focus on
certain aspects of the table (e.g., Nordic countries in Fig. 1).

We explain MIPS using the pseudo-code of Fig. 7, the
table in Fig. 1, and the diagram of the search path for a
slightly more complicated table in Fig. 8, As shown in the
HIT model (Fig. 4b), the data region extends to the right of
the table. MIPS operates on the portion of the table above
the bottom of the data region whose rightmost bottom cell is
indicated by CC4. This critical cell is found before MIPS is

1 Official development assistance.

Country Million dollar Percentage of GNI

2007 2008 2009 2010* 2011* 2007 2008 2009 2010* 2011*

Norway 3 735 4 006 4 081 4 580 4 936 0.95 0.89 1.06 1.1 1

Denmark 2 562 2 803 2 810 2 871 2 981 0.81 0.82 0.88 0.91 0.86

…

…

Australia 2 669 2 954 2 762 3 826 4 799 0.32 0.32 0.29 0.32 0.35

New Zealand 320 348 309 342 429 0.27 0.3 0.28 0.26 0.28

OECD/DAC1 countries total104 206 121 954 119 778 128 465 133 526 0.27 0.3 0.31 0.32 0.31

1 DAC-countries are members of OECD's Development Assistance Committee.

Source: OECD.

TableTitle StubHeader ColHeader RowHeader Notes Footnotes Data

TableTitle eq , eq si , bVm fi , bVm si , b eq , mVb eq , b fi , b

StubHeader eq , eq m , eq eq , mVb s , mVmiVb s , b m , mVb

ColHeader eq , eq mi , bVm f , mVmiVb f , b eq , mVb

RowHeader eq , eq s , mVbVmiVbi s , b m , eq

Notes eq , eqVbiVb eq , bVbiVmi fi , biVmiVbVm

Footnotes eq , eq fi , mi

Data eq , eq

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 10 of 21

launched by searching from the bottom of the original table
for the last row with a minority of empty cells (in Fig. 1, it is
Row 30, with OECD/DAC in its first cell). Rows with at
most a few empty cells are assumed to be part of the data
region rather than notes or footnotes rows (which usually
have only one or two non-empty cells).

Before the algorithm is called, empty cells resulting from
splitting spanning cells are filled with the label of the
spanning cell (like Million Dollar in Fig. 6). Duplicate labels
(like “%”), if any, are prefixed with the preceding (to the left
or above, respectively) unique labels (if available).
Repetitive labels resulting from spanning cells are not
considered duplicates. No prefixing is required for the
exemplary table, but an example will be shown below.

The first while loop in Fig. 7 searches for the Minimum
Indexing Point (MIP), which is the bottom right corner of
cell CC2 = (R2, C2). In Fig. 6 CC2 = (4, 1). The algorithm
finds the row header with the smallest number of columns
that have no duplicate rows below R2, and the column header
with the smallest number of rows and no duplicate columns
to the right of C2. The minimality property is local:
(1) moving R2 up one cell or C2 left one cell would destroy
the indexing property because the shorter column headers or
narrower row headers will not be unique, and (2) moving R2
down or C2 to the right would destroy the minimality
property because it adds unnecessary rows or columns. The
global MIP (R2, C2) is indexing, locally minimal, and has the
largest data area among the MIP candidates.

MIPS Algorithm

MIPS locates the critical cells that demarcate the minimum row and column headers needed to index every data cell.

Input: CSV Table with ASCII cell strings, critical cell CC4

Output: critical cells CC1 and CC2 (CC2 is the minimum indexing point)

Initialize:

Cmax  last column of data cells; Rmax  last row of data cells # from CC4

R11; C1  1; ….R2Rmax – 1; C21 # (R1, C1) and (R2, C2) are the current CC1 and CC2 candidates

Rightflag = Upflag = 0 # these flags indicate whether R1 or C1 changed last.

Max_area  0 # for storing maximum data area so far

Locate candidate MIPs by finding the minimum indexing headers:

while C2 < Cmax and R2 R1

 # "[... : ...]" denotes a rectangular region of the table.

if [R2 + 1, C1 : Rmax,, C2] has no duplicate rows and [R1,C2 + 1 : R2-1,Cmax] has no duplicate columns,

i.e., candidate headers uniquely index the data rows to its right and the data columns below it

R2  R2 – 1 # move CC2 up as long as indexing is preserved

Upflag1; Rightflag0

else C2  C2 + 1 # move CC2 right (moving right always preserves indexing)

Rightflag  1

if Upflag = Rightflag = 1

Data_area  (Rmax – R2 + 1) × (Cmax–C2 + 1) # No. of data rows × columns

If Data_area > Max_area

 Max_area  Data_area

 CC2  (R2, C2) # minimum indexing point with the largest data area so far

Upflag0

Locate CC1 at intersection of the top row and the leftmost column necessary for indexing

R1 = 1, C1 = 1

while [R1 + 1, C2 +1 : R2, Cmax] has unique columns, R1R1+1

while [R2 + 1, C1 + 1 : C2, Rmax] has unique rows, C1C1+1

return CC1 = (R1,C1), CC2 = (R2,C2)

Fig. 7. The MIPS algorithm\searches the input CSV table for minimum indexing points. During the first while loop the CC2 candidate moves up

whenever it can, and to the right otherwise. Empty and duplicate rows and columns that extend over the whole table are tagged earlier and skipped.

Header rows and columns with empty data, and data with empty header cells, are tagged as Notes. The provision for tagging trivial tables (only one

data row or column) is not shown.

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 11 of 21

Fig. 8. An example with three local MIPs. The search path (black arrows) follows the boundary cells of the yellow indexing region to detect minimum

indexing points at inside corners. The row and column headers are outlined in red. A red * marks local MIPs. The global, MIP, i.e., cell (4,2), is

shaded red. Its data area is 49 cells, whereas the data areas of the other MIP are only 24 and 27. The critical cells are CC1 = (2,1) and CC2 = (4,2).

Therefore the stub header is [R1,C1,:R2,C2]. = (2,1 : 4,2). The first row will be designated as Table title in a subsequent step, and the bottom rows will

become Notes or Footnotes. This figure does not show empty rows and columns beyond the actual table, which are detected and bypassed.

Fig. 9. Part of a web table that requires prefixing. The duplicate labels “Change %” become unique after being prefixed as:

Short messages, thousands 1)/Change, % and Multimedia messages, thousands/Change, %

Fig. 8 shows the search path followed by the MIPS
algorithm of Fig. 7 on a hypothetical table. The search begins
at the bottom left corner (at Column 1 in the CC4 row) and
moves up as long as both candidate header rows below and
columns to the right are unique. When that condition is
violated, the search turns to the right. The MIP must be
located at an inside corner (right turn on the search path)
where both the indexing and the minimality conditions are
met.

There may be more than one inside corner along the
search path. The (R2, C2) coordinates and area of the data
region corresponding to a local MIP is recorded if the area
exceeds the current maximum. After the algorithm
completes the search from the bottom left corner to the top
right corner, the MIP with the largest data area becomes CC2
(searching from the top right would work equally well.).

CC2 determines only the rightmost column of the row
header and the bottom row of the column header. In the last
two while loops, CC1 is found by deleting the rows above
the column header and the columns left of the row header
that are not necessary for indexing the data region.

In the table of Fig. 1 all the headers are properly aligned,
so all that is required is distributing the labels into the atomic
cells resulting from fragmented spanning cells. But Fig. 9
shows an example where it is necessary to prefix the labels
of some header cells. This table is not a HIT because it
violates the header-cell-uniqueness constraint of a HIT.

Prefixing converts it into a HIT by inserting a row with
unique predecessor labels before the duplicate labels.

Over 15% of the tables in our collection require prefixing
to turn them into HITs. Unlike the example in Fig. 9, most
of them are in row headers. After this prefixing step and the
analogous step on the transposed rows, the MIPS algorithm
proceeds as explained.

MIPS finds only CC1 and CC2. Then the program checks
the original table under the column header candidate to find
CC3 as the leftmost cell of the first filled row of data region.
CC4, was already located earlier as the rightmost cell of the
last filled row. The cells in the corresponding regions are
then labeled StubHeader, RowHeader, ColHeader, or Data.

4.2 Auxiliary Regions

Table titles are almost invariably in a spanning cell at the top
of a table, therefore all the cells of the topmost non-empty
row are labeled TableTitle. Footnote markers, if present, are
found by searching below the data region for a list of
common footnote-mark symbols (*, #, . , †, etc.) and for
single digits and letters (possibly followed by a period or a
parenthesis). They are labeled FNprefix. All the cells
following a footnote marker in the same row are marked
FNtext. A cell containing both a FNprefix and a FNtext is
marked FNprefix&FNtext. The program searches the entire
table above the footnotes for the already detected and

C1 C2 Cmax
1 2 3 4 5 6 7 8 9

1

R1
2 CC1 *

3

R2 4 CC2

5

6

7

 *

9

10

Rmax 11 CC4

12

13

14

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 12 of 21

isolated footnote markers. If the footnote reference is found,
the cell is labeled FNref (if the footnote reference is in a cell
by itself) or X&FNref, where X can be any of the table
regions above the footnote region, e.g., RowHeader& FNref
for the last cell of the row header in Fig. 1. Here our program
missed the footnote reference “1” because it is embedded in
the middle of the header label OECD/ DAC1 countries total,
and of course its superscript formatting disappeared in CSV.

Finally, every cell in a row that contains only non-empty
cells that have not been otherwise classified is labeled Note.

4.3 Cell Classification

The output of this stage is a Classification Table, e.g., Fig.
10 for the table in Fig. 1. This table is in a five-column
format, with a row entry (after the header row) for each cell
of its source table. The first column is a unique cell identifier
with the file name of the CSV table and the cell coordinates.
The second and third row give the numerical cell coordinates
separately for ease of handling. The fourth column is the
content of the cell in the original table, and the last column
is its assigned class. Section 7 contains some examples of
the application of this table.

Fig. 10. First 30 rows of the 408-row Classification Table for the

table of Fig. 1.

5 Complex Header Structures

Among our 400 tables, over 30% have complex header
structures—multiple-row column headers, multiple-column
row headers, and single row (column) headers that require
prefixing. We analyze all the headers to discover their

category structure, and we use the discovered structure to
create canonical relational tables which are searchable with
standard database query languages.

5.1 Category Analysis

We define a simple algebra over the set of header labels.
Each label appearing in a header is said to cover a subset of
the cells in a table’s data region. For example, in Fig. 1 the
label Million dollar covers the first five columns of data cells
and the label 2007 covers the first and the sixth columns. We
define two binary operations, × (intersection) and + (union)
over the header labels with respect to their covering
properties. For example, the expression Million dollar +
Percentage of GNI covers all the columns of the data region,
while Million dollar × 2007 covers only the first column. In
this formulation, each header path can be equated with the
product of labels appearing in it, and the set of all header
paths can be equated with a sum of products (SOP)
expression, in which each product term corresponds to a
unique header path.

To determine the number of categories and their
hierarchical structures, a factorization of an SOP expression
E is carried out under the following constraints:

1. Only the distributive law and the associative laws are
used. The × operation has higher precedence than +.
(The commutative law is disallowed, so that ordering
is maintained both among header paths for + and
within header paths for ×. To avoid changing the
number and length of paths, the idempotency laws are
also disallowed).

2. The factorization preserves the unique indexing
property of E.

The factorization is complete in the sense that none of its
terms can be factored further.

5.2 Factorization Algorithm

Fig. 11a shows the column header of a table in our

collection. In Fig. 11b, the lengthy cell labels are replaced

by alphabetic symbols to shorten the algebra. Fig. 12

presents a formal description of the recursive algorithm for

the factorization of header paths. E is a sum of products

(SOP) algebraic expression where × denotes vertical

concatenation and + denotes horizontal concatenation of

table cells. For the column header shown in Fig. 11 (b),

E = a×c×d + a×c×e + a×c×f + b×c×d + b×c×e + b×c×f

The output of Fact(E) is the header factored into one or more

Wang categories. In the first pass of the factorization, the

product terms of E are scanned from left to right, factoring

out common prefix (first) symbols, producing

corresponding suffix SOP expressions:

E = a×(c×d + c×e + c×f) + b×(c×d + c×e + c×f)

Cell_ID Row Column Content Class

ODA_R1_C1 1 1 1 Official development assistance. tabletitle

ODA_R1_C2 1 2 tabletitle

ODA_R1_C3 1 3 tabletitle

ODA_R1_C4 1 4 tabletitle

ODA_R1_C5 1 5 tabletitle

ODA_R1_C6 1 6 tabletitle

ODA_R1_C7 1 7 tabletitle

ODA_R1_C8 1 8 tabletitle

ODA_R1_C9 1 9 tabletitle

ODA_R1_C10 1 10 tabletitle

ODA_R1_C11 1 11 tabletitle

ODA_R2_C1 2 1 EMPTY

ODA_R2_C2 2 2 EMPTY

ODA_R2_C3 2 3 EMPTY

ODA_R2_C4 2 4 EMPTY

ODA_R2_C5 2 5 EMPTY

ODA_R2_C6 2 6 EMPTY

ODA_R2_C7 2 7 EMPTY

ODA_R2_C8 2 8 EMPTY

ODA_R2_C9 2 9 EMPTY

ODA_R2_C10 2 10 EMPTY

ODA_R2_C11 2 11 EMPTY

ODA_R3_C1 3 1 Country stubheader

ODA_R3_C2 3 2 Million dollar colheader

ODA_R3_C3 3 3 colheader

ODA_R3_C4 3 4 colheader

ODA_R3_C5 3 5 colheader

ODA_R3_C6 3 6 colheader

ODA_R3_C7 3 7 Percentage of GNI colheader

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 13 of 21

2006 2006 2006 2007 2007 2007

Government
transfers

Government
transfers

Government
transfers

Government
transfers

Government
transfers

Government
transfers

Average $
constant 2007

Implicit transfer
rates1 % Shares %

Average $
constant 2007

Implicit transfer
rates1 % Shares %

(a)

a a a b b b

c c c c c c

d e f d e f

(b)

Figure 11: Example column header to illustrate recursive factorization. (a) Column header of table T120 in our collection; (b) Equivalent

representation with the cell labels replaced by letter symbols.

Fact(E):
 X = “” # Initialize to null string
 if E is a simple sum: # simple sum: a literal or sum of literals
 X = E
 else: # sum of products
 factor out common prefix and factor out common suffix # Passes 1 & 2
 to find the decomposition, E = S1×F1 + S2×F2 + … + Sn×F n
 for i = 1 to n-1: # Loop not executed if n = 1
 X = Cat(X , Si, “x”, Fact(Fi), “+”) # Cat is string concatenation
 X = Cat(X, Sn , “×”, Fact(Fn)) # Accumulate last term of the decomposition
 return X

Fig. 12: The factorization algorithm to determine the category structure of table headers.

In the second pass, the resulting expression is scanned again

from left to right, to factor out common suffixes, producing

simple sums of prefixes that multiply them:

E = (a+b)×F, where, F = (c×d + c×e + c×f)

In general, after the two passes, E is decomposed into the

following form:

E = S1×F1 + S2×F2 + … + Sn×Fn

where each Si is a simple sum of prefixes (degenerately, a

singleton) and each Fi is an SOP simpler than E. After the

second pass, Fact(E) recursively calls itself with Fi’s as the

arguments and returns the factorization as:

E = S1×Fact(F1) + S2× Fact(F2) + … + Sn× Fact(Fn)

For the example header, the recursive call Fact(F) results in

the factorization:

F = c ×(d+e+f)

with resulting factorization of the original expression:

E = (a+b)×c×(d+e+f)

= (2006+2007) × Government transfers × (Average $

constant 2007 + Implicit transfer rates1 % + Shares %)

showing the two non-degenerate categories {a, b} and

{d, e, f} and the degenerate category {c}.

5.3 Category Tables

The table designer’s choice of rows or columns for laying
out the categories depends primarily on the number of leaf
nodes in the category tree and on the size and aspect ratio of
the available space. In relational tables, however, rows are
tuples (records in Access), while columns are attributes
(fields in Access). The database schema immutably assigns
the values of each category to either a record or a field. We
introduce category tables to represent the data elements in
“ordinary” tables within the constraints of relational tables.

Our category table is a relational table where each row
comprises the indexing header paths and the corresponding
indexed data value. Therefore the number of rows in the
category table equals the number of data cells in the original
table (plus one for the relational table’s field names in a
header row). The number of columns is one for the Cell_ID,
plus one for DATA, plus the sum of the heights of the
category trees (which, usually, equals the sum of the column
width of the row header and row height of the column
header). For our exemplary table, the category table has 240
rows and 5 columns.

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 14 of 21

Fig. 13. Category table for the table in Fig. 1 (first 30 of 240 rows).

In the category table, Cell_ID is a key field and each cell

label in the original header paths becomes a key field value
in the composite key comprising all the category fields. The
data values become non-key field values. Fig. 13 shows part
of the category table for the exemplary table. The first
column references the original (table, row, and column)
location of each data cell. The row headers in Fig. 1 are
values in the RowCat_1.1 column in Fig. 13 and the column
headers are distributed as values in the ColCat_1.1 and
ColCat_2.1 columns according to their factorization—
values in ColCat_1.1 from the factor (Million dollar +
Percentage of GNI) and values in ColCat_2.1 from the factor
(2007 + 2008 + 2009 + 2010* + 2011*).

The combined row and column headers that uniquely
index each data value in the DATA column also index the
data values in the original table. Because “ordinary” tables
can always be recast as category tables, the formulation of
the category table format and the automated transformation
of HITs to category tables make a significant contribution to
importing tabular web content into structured and searchable
relational data structures. Moreover, as we show in Section
7, category tables also provide a direct path to the
formulation of RDF triples and thus to searchable semantic-
web content.

6. Experimental Results

200 HTML tables (Troy 200) were randomly drawn from a
set of tables collected earlier from large statistical websites
in the US and abroad [69]. The geopolitical and research
sources included Statistics Canada, Science Direct, The
World Bank, Statistics Norway, Statistics Finland, US
Department of Justice, Geohive, US Energy Information
Administration, and US Census Bureau.

We also tested our program on 200 spreadsheet tables
(SAUS 200) randomly selected from a published dataset of
over 1300 spreadsheet tables from the Statistical Abstract of
the United States (SAUS) posted by Michel Cafarella
[49,70]. For each workbook, we only converted the first data
sheet that contained a table without the footnotes. Table 2
shows the results reported by our program on all 400 tables.
The SAUS tables are larger than the Troy tables, with about
twice as many rows and columns and four times as many
cells. Many tables have over 100 rows or columns.

The critical cells obtained by our program were verified
against the ground truth obtained with VeriClick [61]: for
each table, the four critical cells that demarcate the minimum
indexing headers and the data region were identified.

One of the 200 Troy tables was found to be trivial, having
only one data column. Of the 199 non-trivial HTML tables,
the MIP (CC2) was correctly located in 197 tables. All four
CC errors were caused by notes-data confusions, such as
rows or columns filled with blanks or periods or X’s that did
not exhibit enough variety to qualify as data, or to rows with
a variety of units that were mistaken for data.

The corresponding numbers for the SAUS spreadsheets
were 2 unprocessed trivial tables, 2 MIP errors, and 9 tables
(including the above two) with errors in some critical cells.
Seven of the nine miss-segmentations were caused by notes-
data confusions. One header had an unprefixable duplicate
label by mistake (a source error). Indexing of another
column header failed because the appropriate prefix was to
the right of a duplicate label. The overall segmentation
accuracy, excluding trivial tables, was (195+189)/397
=96.7%.

Table 3 shows the distributions of the 198 non-trivial
SAUS row and column header sizes. The data shows that
multi-row column headers are more frequent (99) than
multi-column row headers (64). The statistics on header
sizes, prefixed rows and columns, number of row and
column categories, and number of notes rows are based on
analysis of the minimal indexing headers found by MIPS
that do not depend on subjective interpretation of the table.

Different ground truth could be formulated to include
rows redundant for indexing above this minimal column
header. One could also justify including in the column
header some redundant rows (for example, units) above the
data region. Options for expanding headers are under
investigation.

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 15 of 21

Table 2. Experimental results.

Observations

Corpus

Troy

200

SAUS

200

Number of tables 200 200

 Successfully processed 199 198

 Only one row or col of data 1 2

Errors

 Minimum indexing point (MIP) 2 2

 Critical Cells (CCs) 4 9

Gross size of tables

 Rows average 25 64

 maximum 183 453

 Columns average 11 17

 maximum 80 81

 Cells average 290 1184

 maximum 7320 15094

Net size of tables

 Data rows (average) 15 45

 Data columns (average) 5 15

 Data cells (average) 85 676

Categories

 Multi-category row headers 7 12

 Multi-category column headers 14 13

Prefixed headers

 Row headers 23 63

 Column headers 3 0

Size of headers

 1-col row header & 1-row col

header

145 56

 Row headers w. 3 or more columns 1 9

 Column headers w. 3 or more rows 3 44

Footnotes

 Footnoted tables 56 NA

 Reference markers (total) 91 NA

 References found (total) 158 NA

 References not found (total) 15 NA

Notes

 Rows (average) 5.13 8

 Columns (average) 0.06 0.89

Run time (seconds) w/o file output 15.6 61.9

All 46 multi-category row and column headers were
determined correctly by factoring after prefixing when
required. Only one table had both multiple row and column-
categories. Prefixing is more prevalent in row headers where
hierarchies are usually indicated by indentation or distinctive
type style rather than additional columns. Of the 397
processed tables, 89 required row or column prefixing. Only
one table required two levels of row prefixing.

The footnotes were checked only on the Troy tables
because in SAUS the footnotes were on separate worksheets.
All the footnotes were found in the 56 tables that had them,
but not all the references to them. The program detected 158
reference marks to the footnotes within the body of the tables
(some had more than a dozen). It missed 15 in three tables.
Superscripts are not retained in CSV files.

Table 3. Joint distribution of minimum indexing row and column

header sizes in the original (non-prefixed) tables

|RH|
|CH|

1 2 3 4

1 56 35 8 0

2 43 12 0 0

3 24 7 0 0

4 4 1 1 0

5 7 0 0 0

Processing the Troy tables, excluding writing the 199

files for category tables and the 199 classification files,
required only 16 seconds on a 2.4 GHz Dell Optiplex 7010
with 8GB RAM running Python 2.7 under Windows 7.0.
The larger SAUS tables took 62 seconds on the same
platform.

7. Application Queries

Having shown how to transform a human-readable table to
a machine-readable table, we now demonstrate that the
transformations yield directly useable information for
formal queries in widely available application software.
Such a “proof of the pudding” is seldom offered in prior
work where the table processing results are usually retained
only in an ad hoc format.

We process queries using industry standards—Microsoft
Access for SQL queries over a generated relational database
and the OpenLink Virtuoso semantic-web endpoint and
Protégé for SPARQL queries over a generated triple store
represented in the semantic-web languages RDF [71] and
OWL [72]. In all cases the generated, canonical category
tables and the generated classification tables are
automatically imported into an appropriate data store where
their content can be queried directly. Before importing them,
an automated editing pass over cell content replaces decimal
commas with periods and deletes thousands-separator

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 16 of 21

blanks and commas (as in Fig. 13). To accommodate syntax
requirements, the dots in RowCat and ColCat identifiers are
also removed.

The query in Fig. 14 computes the GNI for every country
for every year from the category table in Fig. 13. Fig. 15
shows partial results.

A second query illustrates combining disparate, but
semantically overlapping tables. The table in Fig. 16
quantifies international trade by land through Detroit,
Michigan, and another table in our test set quantifies and
compares U.S. trade with its NAFTA partners, Canada and
Mexico. Its “U.S. surface trade” column over several years
enables a query across the tables that finds the percent of
U.S. land trade through Detroit vs. the surface trade with
NAFTA partners for all the years the two tables have in
common. For the year 1999, for example, the Detroit land
trade was 18.5% of the land trade with NAFTA partners.

Queries over category tables require that query writers
know the row and column categories of the tables. A third
SQL query applies to classification tables (e.g. Fig. 10),
which are independent of category structure. Classification
tables contain the meta-information needed for further
downstream processing in automating table interpretation
such as identifying aggregate operations. The third query
checks for one of the most common aggregate-operation
configurations: a row of data values labeled Total whose
corresponding column data values sum to the total values.
Interestingly, the query found several discrepancies with
actual totals not matching stated totals, e.g. the 2003 column
in Fig. 16.

To produce semantic-web data for queries, we create
RDF triples—(subject, predicate, object) statements (Fig.
17). As an illustration of querying semantic-web data, Fig.
18 gives a SPARQL query for the land-trade query above.

SELECT MDollarTbl.RowCat_11 AS Country, MDollarTbl.ColCat_21 AS Year,
FORMAT(MDollarTbl.DATA, ‘#,###’) AS MDollarAmt,
FORMAT(PrcntTbl.DATA, ‘#.##’) AS PrcntGNI,
FORMAT(100000000*MDollarTbl.DATA/PrcntTbl.DATA, ‘###,###,###,###’) AS GNI
FROM ODA_Mx1 AS MDollarTbl, ODA_Mx1 AS PrcntTbl
WHERE MDollarTbl.RowCat_11 = PrcntTbl.RowCat_11
 AND MDollarTbl.RowCat_11 <> ‘EMPTY’ AND MDollarTbl.RowCat_11 NOT LIKE ‘OECD*’
 AND MDollarTbl.ColCat_11 = ‘Million dollar’ AND PrcntTbl.ColCat_11 LIKE ‘Percentage*’
 AND MDollarTbl.ColCat_21 = PrcntTbl.ColCat_21;

Fig. 14.Access SQL query to compute GNI for every country in the ODA able of Fig. 1.

Fig. 15. MS-Access screenshot of results of Query 1 (partial).

Fig. 16. Table C10028 in our test set: International land trade with the U.S. through Detroit, Michigan.

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 17 of 21

The SPARQL query formulated above requires some
knowledge of the queried table. In Fig. 18, for example, we
see the line ?DetroitLandTradeCell T028Mx1:RowCat_11
?TransportationMode. Formulating this line (and some
others) of the query requires understanding the structure of
input tables. To remove structure dependencies for global
queries, we programmed the construction of a uniform set of
triples based on the canonical category tables. While in the
triple construction described above the number of triples for
each cell depends on the category structure of each table, the
uniform OWL model triples do not. Instead, each cell is
described by the same number of triples (based on the widest
of the category tables). Hence, all of our tables can be
searched simultaneously with a single query, for example, to
determine in which tables Exports appears as a column
category. Because of the uniformity of the model, the query
(with prefix headers omitted) simplifies to:

Select distinct ?cell ?value where{
?cell table:hasColumn ?col filter regex(?col, Exports).
?cell table:hasValue ?value}

In Protégé on a Lenovo T61 laptop, this query executed

in a fraction of a second over a 104 megabyte triple store.

Fig. 17. Generated RDF triples. The first triple is (C10028_R8_C2,

RowCat_11, Truck), the second is (C10028_R8_C2, ColCat_11,

1999), and the third is (C10028_R8_C2, DATA, 83889), which

altogether means that the cell identified by C10028_R8_C2 (the cell in

Table C10028 displayed in Fig. 16 at Row 8 and Column 2) has row

header Truck, column header 1999, and data value 83889.

8. Conclusion

The formalization of header-indexed tables (HITs) by means
of block algebra and cell constraints models the table layouts
that cover the vast majority of tables encountered in print and
on the web. It obviates previous attempts to recognize their
infinite variety of framing, partial ruling, typeface, color
scheme, or cell formatting details. The formalization serves
as the basis for indexing and factoring algorithms that
convert human-readable HITs into a machine-processable
form. Importing the transformed web tables into either a

Fig. 18.SPARQL query.

relational database or an RDF/OWL triple store enables
them to be queried with SQL or SPARQL. Moreover, the
HIT formalization encompasses auxiliary information: table
titles, footnote components, and miscellaneous notes,
broadening previously reported work.

The HIT formalization not only engenders an algorithmic
solution to discovering indexing headers and finding their
multi-categorical indexing structure, it also provides a target
for processing tables that do not strictly satisfy the HIT
definition. As shown in Section 4, prefixing converts tables
with “crooked” header indexes into bona fide HITs.

The proposed algorithms are based on a formal definition
of header-indexed tables. Thus they need no statistically
significant experimental validation, only a demonstration of
implementability and applicability. Although tables on the
web are not always well formed, most are or can be
converted (e.g., through prefixing) to be so. In our small but
heterogeneous collection of 200 web tables, MIPS found all
but two of the minimum indexing points and correctly
segmented 98% of the minimal table headers and the data
regions. Fact discovered all 21 multi-category headers. The
heuristics for table titles, notes and footnotes probe the limits
of purely syntactic table processing. The category and
classification tables were imported and queried in Access,
Virtuoso, and Protégé. The tables and the critical-cell ground
truth, already in use by other researchers, will be posted at
the IAPR TC-11 website.

The breadth of our definition of header-indexed tables
was confirmed by running our program on 200 spreadsheet
tables posted by others. All 25 multi-category headers were
found. Many of the spreadsheets have truly puzzling headers
and layouts, yet our program correctly segmented all but
nine. Only one error was caused by a table that violates the
HIT postulates (by a repeated header); the other 8 errors
were data/notes/units confusions. For further improvement,
we could either make our program more robust to
unexpected features like columns containing only detached

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1 Page 18 of 21

footnote references, rows or columns of identical data or
unusual symbols, and misplaced headers, or turn to more
source-specific information like formatting conventions and
domain semantics. Given how few errors are left, evaluating
either option will require ground-truthing much larger and
more varied collections of tables, or developing downstream
applications that provide useful feedback.

This research also sets the stage for other near-future
work. In addition to enabling formal queries, the cell-
classification table tags each cell of every processed table
according to its function in the table. Knowing the cell
classification and the category-tree indexing structure are
likely to aid discovering the scope of aggregate operations
and the operands of simple arithmetic operations, typing data
values, and discovering implicit roots of category trees.
Without meaningful category labels for every category, we
cannot really claim that we understand tables. Resolving
these issues will require matching table facets and features
with semantic resources, whereas our work here is based on
syntactic analysis.

Longer term research objectives include (1 interpreting
tables with fully resolved syntax and semantics, (2) turning
egregious tables into HITs, (3) integrating interpreted tables
into ontologies, and (4) automating free-form query
processing over collections of interpreted and integrated
table content. All of this will require continuing efforts to
combine the perspectives of the document-processing,
information-retrieval, database, and web-science
communities.

Acknowledgment

Mukkai Krishnamoorthy acknowledges the help of Dr. Ravi
Palla with Protégé.

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1
Page 19 of 21

References

1 W.J. Cafarella,A. Halevy, D.Z. Wang, E. Wu, Y. Zhang, WebTables: “Exploring the Power of Tables on the Web,” VLDB ’08

Auckland, New Zealand, 2008.
2 M. Galkin, D. Mouromtsev, S. Auer,” Identifying Web Tables –Supporting a Neglected Type of Content on the Web,”

International Conference on Knowledge Engineering and Semantic Web (KESW), arXiv:1503.06598 [cs.IR] 2015.

3 X. Wang, Tabular abstraction, editing, and formatting, Ph.D. thesis, University of Waterloo 1996.
4 B. Frier, Roman Life Expectancy: Ulpian’s Evidence, Harvard Studies in Classical Philogy, 86, 213-251, 1982.

5 R. Zanibbi, D. Blostein, J. R. Cordy: “A survey of table recognition,” International Journal of Document Analysis and

Recognition, 7(1): 1-16, 2004.

6 A. Laurentini, P. Viada, “Identifying and understanding tabular material in compound documents,” Proceedings of the Eleventh
International Conference on Pattern Recognition (ICPR’92), pp. 405–409, The Hague 1992.

7 E. Turolla, Y. Belaid, A. Belaid, “Form item extraction based on line searching,” Kasturi, R., Tombre, K. (eds.) Graphics

Recognition—Methods and Applications. Lecture Notes in Computer Science, vol. 1072, pp. 69–79. Springer-Verlag, Berlin,
Germany 1996.

8 S. Chandran, R. Kasturi, “Structural recognition of tabulated data.” Proceedings of the Second International Conference on

Document Analysis and Recognition (ICDAR’93), pp. 516–519. Tsukuba Science City, Japan 1993.

9 K. Itonori, “A table structure recognition based on textblock arrangement and ruled line position,” Proceedings of the Second

International Conference on Document Analysis and Recognition (ICDAR’93), pp. 765–768. Tsukuba Science City, Japan 1993.

10 D. Pinto, A. McCallum, X. Wei, W.B. Croft, “Table extraction using conditional random fields,” Proceedings of the 26th Annual
International ACM Y. SIGIR Conference on Research and Development in Information Retrieval, pp. 235–242 2003.

11 Y. Hirayama, “A method for table structure analysis using DP matching,” Proceedings of the Third International Conference on

Document Analysis and Recognition (ICDAR’95), pp. 583– 586. Montreal, Canada 1995.

12 J.C. Handley, “Document recognition,” Dougherty, E.R. (ed.) Electronic Imaging Technology, chapter 8. SPIE—The International

Society for Optical Engineering 1999.

13 K. Zuyev, “Table image segmentation,” Proceedings of the International Conference on Document Analysis and Recognition
(ICDAR’97), pp. 705–708. 1997.

14 F. Cesarini, S. Marinai, L. Sarti, G. Soda, Traininable table location in document images, Procs. ICPR 2002, vol. 3,236-240, 2002.

15 Y. Wang and J. Hu, A machine learning approach to table detection on the web, WWW Conference, 242-250, Honolulu, 2002.

16 A. Abu-Tarif, Table processing and table understanding, Master’s thesis, Rensselaer Polytechnic Institute, May 1998.

17 R. Rastan, H-Y Paik, J. Shepherd, TEXUS: A Task-based Approach for Table Extraction and Understanding, Procs. ACM Conf. on

Document Engineering ‘15, 25-34, Lausanne, Sept. 2015.

18 P. Pyreddy, W.B. Croft, TINTIN, A system for retrieval in text tables. Technical Report UM-CS-1997-002. University of

Massachusetts, Amherst 1997.

19 T.G. Kieninger, “Table structure recognition based on robust block segmentation,” Proceedings of Document Recognition V
(IS&T/SPIE Electronic Imaging’98), vol. 3305, pp. 22–32. San Jose, CA 1998.

20 J. Hu, R. Kashi, D. Lopresti, G. Wilfong, “Table structure recognition and its evaluation” Kantor, P.B., Lopresti, D.P., Zhou,

J.(eds.) Proceedings of Document Recognition and Retrieval VIII(IS&T/SPIE Electronic Imaging), vol. 4307, pp. 44–55. San
Jose,CA 2001.

21 W3, HTML: The Markup Language (an HTML language reference) http://www.w3.org/TR/html-markup/syntax.html#doctype-

syntax (retrieved Sept. 25, 2015) (retrieved Sept. 25, 2015)

22 Creativyst, The Comma Separated Value (CSV) File Forma http://creativyst.com/Doc/Articles/CSV/CSV01.htm

23 W. Gatterbauer, P. Bohunsky, B.Krüpl, and B. Pollak, M. Herzog, “Towards Domain Independent Information Extraction from Web
Tables,” WWW 2007, May 8–12, Banff, Alberta, Canada, 2007.

24 A. Amano, N. Asada, “Graph grammar based analysis system of complex table form document,” Proceedings of the Seventh

International Conference on Document Analysis and Recognition 2003.

25 L. Bing, J. Zao, X. Hong, “New method for logical structure extraction of form document image,” Proceedings of Document

Recognition and Retrieval VI (IS&T/SPIE Electronic Imaging ’99), vol. 3651, pp. 183–193. San Jose, CA 1999.

26 T. Kieninger, A. Dengel, “A paper-to-HTML table converting system,” Proceedings of Document Analysis Systems, (DAS) 98.
Nagano, Japan, 1998.

27 B. Coüasnon, J. Camillerapp, I. Leplumey, “Making handwritten archives documents accessible to public with a generic system of

document image analysis,” Proceedings of the International Workshop on Document Image Analysis for Libraries, pp. 270– 277.
Palo Alto, CA 2004.

28 I. Martinat, B. Coüasnon, J. Camillerapp. “An Adaptative Recognition System Using a Table Description Language for Hierarchical

Table Structures in Archival Documents,” Graphics Recognition: Recent Advances and Perspectives, Vol. 5046, pp. 9-20, Lecture
Note in Computer Science, Springer-Verlag, 2008.

https://link.springer.com/article/10.1007/s10032-016-0259-1
http://www.w3.org/TR/html-markup/syntax.html#doctype-syntax
http://www.w3.org/TR/html-markup/syntax.html#doctype-syntax

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1
Page 20 of 21

29 A. Lemaitre, J. Camillerapp, B. Coüasnon, Multiresolution Cooperation Improves Document Structure Recognition, International

Journal on Document Analysis and Recognition (IJDAR), 11(2):97-109, Novembre 2008.

30 B. Klein, S. Agne, A. Dengel, On Benchmarking of Invoice Analysis Systems. Document Analysis Systems 312-323, 2006:

31 B. Klein, A. Dengel, Problem-adaptable document analysis and understanding for high-volume applications. IJDAR 6(3): 167-180,

2003.

32 . H. Hamza, Y. Belaid, Y., and A. Belaid, “A case-based reasoning approach for invoice structure extraction,” in Procs. Ninth

International Conference on Document Analysis and Recognition, ICDAR 2007, Vol. 1, pp. 327-331, 2007.

33 T. Watanabe, Q.L. Quo, N. Sugie, “Layout recognition of multikinds of table-form documents,” IEEE Trans. Pattern Anal. Mach.
Intell. 17(4), 432–445 1995.

34 H. Shamalian, H.S. Baird, T.L. Wood, “A retargetable table reader,” Proceedings of the International Conference on Document
Analysis and Recognition (ICDAR’97), pp. 158–163, 1997

35 J. Fang, P. Mitra, Z. Tang, L. Giles, “Table Header Detection and Classification,” Proceedings of the Twenty-Sixth AAAI Conference

on Artificial Intelligence, 599-605, 2012.

36 A.O. Shigarov, “Table understanding using a rule engine,” Expert Systems with Applications, 42(2), 929-937, Feb. 2015.

37 A. Halevy, P. Norvig, and F. Pereira, “The Unreasonable Effectiveness of Data,” IEEE INTELLIGENT SYSTEMS. March/April

2009.
38 P. Venetis, A. Halevy. J. Madhavan, M. Pasca, W. Shen, F. Wu, G. Miao, C. Wu, “Recovering Semantics of Tables on the Web,”

Proceedings of the LDB Endowment, Vol. 4, No. 9, 2011.

39 H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen, J. Madhavan, R. Shapley, W. Shen, J. Goldberg-Kidony, “Google Fusion
Tables: Web-Centered Data Management and Collaboration,” SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.2010.

40 M.D. Adelfio and H. Samet, “Schema Extraction for Tabular Data on the Web,” Proceedings of The 39th International Conference

on Very Large Data Bases, (Proceedings of the VLDB Endowment, Volume 6, Number 6), Riva del Garda, Trento, Italy 26–30
August, 2013.

41 V. Long, An Agent-Based Approach to Table Recognition and Interpretation, Macquarie University PhD dissertation, May 2010.

42 N. Astrakhantsev, “Extracting Objects and Their Attributes from Tables in Text Documents,” Denis Turdakov, Andrey Simanovsky
(Eds.): Proceedings of the Seventh Spring Researchers Colloquium on Databases and Information Systems, SYRCoDIS 2011,

Moscow, Russia, June 2-3, 2011. CEUR Workshop Proceedings 735 CEUR-WS.org 2011 pp 24-37 OR pp 297-309? 2011.

43 M. Hurst, S. Douglas, “Layout and language: Preliminary investigations in recognizing the structure of tables,” Proceedings of the
International Conference on Document Analysis and Recognition (ICDAR’97), pp. 1043–1047, 1997.

44 M. Hurst, “Towards a theory of tables,” Int. J. Doc. Anal. Recognit.,“ 8 (2-3), Springer, Heidelberg, 66-86, 2006.

45 M. Hurst, The Interpretation of Tables in Texts. Ph.D. thesis, University of Edinburgh, 2000.

46 A. Costa e Silva, A. M. Jorge and L. Torgo, “Design of an end-to-end method to extract information from tables,” Int. J. Doc.

Anal.Recognit. 8 (2-3), Springer, Heidelberg, 66-86, 2006.

47 Y-S Kim, K-Y Lee, “Extracting logical structures from HTML tables,” Computer Standards & Interfaces, 30, 5, Pages 296-308,
July 2008.

48 A. Pivk et al., “Transforming arbitrary tables into logical form with TARTAR,” Data & Knowledge Engineering 60 (2007) 567–595

//AleksanderPivk, Philipp Cimiano, York Sure, MatjazGams,VladislavRajkovic, Rudi Studer, 2007.

49 Z. Chen and M. Cafarella, “Automatic Web Spreadsheet Data Extraction,” Proceedings of the 3rd International Workshop on

Semantic Search over the Web (SSW 2013), Riva del Garda, Trento, Italy, 30 August 2013.

50 N. Astrakev, D. Turdakov, N. Vassilieva, “Semi-automatic Data Extraction from Tables,” Proceedings of the 15th All-Russian Conf.
on Digital Libraries: Advanced Methods and Technologies, Digital Collection ― RCDL, Yaroslavl, Russia, 2013.

51 T Kasar, T K Bhowmik and A Belaid, “Table information extraction and structure recognition using query patterns,” Procs.13th

International Conference on Document Analysis and Recognition, ICDAR 2015, Vol. 1, pp. 1086-1080, 2015.

52 D. Lopresti and G. Nagy, “Automated table processing: an (opinionated) survey,” Proceedings of IAPR Workshop on Graphics

Recognition (GREC99), pp. 109-134, Jaipur, India, September 1999.

53 J. Hu, R. Kashi, D. Lopresti, G. Wilfong, and G. Nagy, “Why table ground-truthing is hard,” Proceedings of International Conference
on Document Analysis and Recognition, pp. 129-133, Seattle, WA, IEEE Computer Society Press, September 2001.

54 D.W. Embley, D. Lopresti, and G. Nagy, “Notes on Contemporary Table Recognition,” Document Analysis Systems VII, 7th

International Workshop, Procs. DAS 2006, H. Bunke and A. L. Spitz, Eds., vol. 3872, LNCS, pp. 164-175,Springer, Nelson, New
Zealand, February 13-15, 2006.

55 D.W. Embley, D. Lopresti, M. Hurst, and G. Nagy, "Table Processing Paradigms: A Research Survey," International Journal of

Document Analysis and Recognition, vol 8, no. 2-3, pp. 66-86, Springer, June 2006.

56 Embley, D., Tao, C., Liddle, S. 2005. “Automating the extraction of data from HTML tables with unknown structure,” Data Knowl.

Eng., 54(1), 3–28, July 2005.

57 C. Tao and D.W. Embley, “Automatic Hidden-Web Table Interpretation, Conceptualization, and Semantic Annotation,” Data &
Knowledge Engineering, 68(7), 683–703, July 2009.

58 R. C. Jandhyala, M. Krishnamoorthy, G. Nagy, R. Padmanabhan, S. Seth, and W. Silversmith, “From Tessellations to Table

Interpretation,” Proceedings of the 8th International Conference on Mathematical Knowledge Management, MKM 2009, Grand

https://link.springer.com/article/10.1007/s10032-016-0259-1

Preliminary version of IJDAR February 2016 article at https://link.springer.com/article/10.1007/s10032-016-0259-1
Page 21 of 21

Bend, Ontario, in J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 422–437, 2009. Springer-Verlag Berlin Heidelberg

2009.

59 G. Nagy, “Learning the Characteristics of Critical Cells from Web Tables,” Procs. ICPR, Tsukuba, Japan, Nov. 2012.

60 D. W. Embley, M. Krishnamoorthy, G. Nagy, and S. Seth, “Factoring Web Tables,” K.G. Mehrotra et al. (Eds.): IEA/AIE 2011, Part

I, LNAI 6703, pp. 253–263, 2011. © Springer-Verlag Berlin Heidelberg 2011.

61 G. Nagy, M. Tamhankar, “VeriClick, an efficient tool for table format verification,” Proc. SPIE 8297, Document Recognition and

Retrieval XIX, 82970M, January 23, 2012.

62 S. Seth, and G. Nagy, Segmenting Tables via Indexing of Value Cells by Table Headers, Proc. ICDAR 2013, Washington, D.C.,
August 2013.

63 G. Nagy, D. W. Embley, S. Seth, “End-to-End Conversion of HTML Tables for Populating a Relational Database,” Proc. DAS 2014,
Tours, France, 2014.

64 D.W. Embley, S. Seth, G. Nagy, “Transforming Web tables to a relational database,” Procs. ICPR 2014, Stockholm, Sweden, 2014.

65 D.W. Embley, S. Seth, M. Krishnamoorthy, G. Nagy, Clustering header categories extracted from web tables, Procs. SPIE/IST
Document Recognition and Retrieval, San Francisco, CA, Feb. 2015.

66 U.S. Government Printing Office, Style Manual “An official guide to the form and style of Federal Government printing,” Section

13, 281-299, 2008. Also accessible at: http://www.gpoaccess.gov/stylemanual/index.html. 2008.

67 P. Balbiani, J-F. Condotta, L. Farinas Del Cero,” Tractability Results in the Block Algebra,” J. Logic Computat. 12, 5, 885-909,

2002.

68 James F. Allen, “Maintaining knowledge about temporal intervals,” Communications of the ACM, v.26 n.11, p.832-843, Nov. 1983.

69 R. Padmanabhan, R. C. Jandhyala, M. Krishnamoorthy, G. Nagy, S Seth, and W. Silversmith. "Interactive Conversion of Large Web

Tables," GREC. 2009. 25-36, 2009.

70 M. Cafarella: http://web.eecs.umich.edu/~michjc/structuredweb/index.html (accessed Jan 6, 2016)

71 W3C Semantic Web.(2014). Resource Description Framework (RDF). Retrieved 1/31/2015 from www.w3.org/RDF/

72 W3C Semantic Web.(2013). Web Ontology Language (OWL). Retrieved 1/31/2015 from www.w3.org/OWL

https://link.springer.com/article/10.1007/s10032-016-0259-1

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2016

	Converting Heterogeneous Statistical Tables on the Web to Searchable Databases
	David W. Embley
	Mukkai Krishnamoorthy
	George Nagy
	Sharad C. Seth

	tmp.1501190893.pdf.6lyhP

