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Deletion of Shank1 has minimal effects on the molecular 
composition and function of glutamatergic afferent 
postsynapses in the mouse inner ear

Jeremy P. Braude1, Sarath Vijayakumar2, Katherine Baumgarner1, Rebecca Laurine1, 
Timothy A. Jones2, Sherri M. Jones2, and Sonja J. Pyott1,3,*

1University of North Carolina Wilmington, Department of Biology and Marine Biology, 601 South 
College Road, Wilmington, NC 28403

2University of Nebraska Lincoln, Department of Special Education and Communication Disorders, 
304B Barkley Memorial Center, Lincoln, NE 68583-0738

Abstract

Shank proteins (1–3) are considered the master organizers of glutamatergic postsynaptic densities 

in the central nervous system, and the genetic deletion of either Shank1, 2, or 3 results in altered 

composition, form, and strength of glutamatergic postsynapses. To investigate the contribution of 

Shank proteins to glutamatergic afferent synapses of the inner ear and especially cochlea, we used 

immunofluorescence and quantitative real time PCR to determine the expression of Shank1, 2, and 

3 in the cochlea. Because we found evidence for expression of Shank1 but not 2 and 3, we 

investigated the morphology, composition, and function of afferent postsynaptic densities from 

defined tonotopic regions in the cochlea of Shank1−/− mice. Using immunofluorescence, we 

identified subtle changes in the morphology and composition (but not number and localization) of 

cochlear afferent postsynaptic densities at the lower frequency region (8 kHz) in Shank1−/− mice 

compared to Shank1+/+ littermates. However, we detected no differences in auditory brainstem 

responses at matching or higher frequencies. We also identified Shank1 in the vestibular afferent 

postsynaptic densities, but detected no differences in vestibular sensory evoked potentials in 

Shank1−/− mice compared to Shank1+/+ littermates. This work suggests that Shank proteins play a 

different role in the development and maintenance of glutamatergic afferent synapses in the inner 

ear compared to the central nervous system.
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1. Introduction

Excitatory glutamatergic transmission in the cochlea occurs between the sensory inner hair 

cells (IHCs) and their afferent fibers and relies on specialized multi-molecular, pre- and 

postsynaptic structures. Presynaptic ribbons are electron-dense structures that tether 

glutamate-filled synaptic vesicles and enable multi-vesicular release (see recent review by 

Safieddine et al., 2012). Glutamate activates postsynaptic AMPA receptors (Glowatzki and 

Fuchs, 2002) that are part of postsynaptic densities (PSDs) on the afferent dendrites (Meyer 

et al., 2009). Although recent work has contributed greatly to our understanding of the 

molecular components that shape release from the hair cell ribbons, we know considerably 

less about how the molecular organization of the PSD shapes afferent responses.

PSDs of the cochlear afferent dendrites are morphologically (Nouvian et al., 2006) and 

molecularly (Davies et al., 2001) similar to glutamatergic PSDs found in the central nervous 

system (CNS; reviewed in Sheng and Hoogenraad, 2007): they are electron dense, oppose 

presynaptic structures, and contain similar proteins, including a variety of glutamate receptor 

subtypes and canonical postsynaptic density (PSD) proteins. These PSD proteins include 

signaling and scaffolding proteins that have long been appreciated to shape AMPA receptor 

expression (including localization, recruitment, and recycling) and, thereby, the diversity of 

responses seen in glutamatergic synapses of the CNS (reviewed in Sager et al., 2009). Like 

central glutamatergic synapses, across mammals, auditory afferents, even those contacted by 

the same hair cell, can display enormous diversity in their responses, including differences 

in thresholds and spontaneous firing rates (Liberman, 1982; el Barbary, 1991; Tsuji and 

Liberman, 1997; Taberner and Liberman, 2005). Recent work identified differences in 

AMPA receptor expression that may contribute to differences in auditory nerve thresholds 

and spontaneous firing rates (Liberman et al., 2011). Moreover, auditory sensitivity in vivo 

has been shown to be regulated by reversible changes in surface AMPAR expression in the 

cochlea (Chen et al., 2007). These previous findings suggest that, as in the CNS, differences 

in PSD composition shape glutamatergic responses in the cochlea.

Of the variety of proteins comprising the PSD, Shank proteins (1–3) are found in nearly all 

glutamatergic synapses in the CNS and are considered the “master” organizers of the PSD 

(reviewed in Sheng and Kim, 2000). Shank proteins constitute a significant part of the 

overall protein content of the PSD and, via various protein-protein interaction and 

multimerization domains, link AMPA and other glutamate receptor subtypes to the 

cytoskeleton. In the CNS, shank proteins are also involved in the dynamic structural and 

molecular reorganization of dendritic spines (Sala et al., 2001). Knockout mice for Shank1 

(Hung et al., 2008), 2 (Schmeisser et al., 2012) and 3 (Peca et al., 2011; Schmeisser et al., 

2012) are viable and their molecular and behavioral phenotypes have been examined. 

Compared to wild type mice, Shank1 knockout mice display altered molecular composition 

of postsynaptic density proteins, reduced number and size of dendritic spines and thinner 

PSDs, and decreased AMPA receptor-mediated synaptic strength (Hung et al., 2008). Since 

comparable synaptopathies are observed in Shank2−/− and Shank3−/− mice, there is likely 

only partial redundancy in the function of Shank family members.
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These observations from the CNS coupled with the recent identification by 

immunofluorescence of Shank1 in the afferent PSDs of the developing cochlea (Huang et 

al., 2012), led us to hypothesize that Shank proteins are also essential components of 

cochlear afferent PSDs and that the absence of Shank proteins would disrupt the structural 

and molecular organization of the PSD and result in auditory deficits. To investigate this 

hypothesis, we examined the expression of Shank1, 2, and 3 in the cochlear inner ear by 

both immunofluorescence and quantitative real time PCR (qPCR). Because we identified 

only Shank1 in the cochlear inner ear, we then examined for changes in afferent synaptic 

organization and function in Shank1−/− mice, which presumably lack all known Shank 

isoforms. To our surprise we observed only subtle changes in the morphology and 

composition of IHC afferent PSDs and no changes in auditory brainstem responses (ABRs) 

in Shank1−/− mice compared to Shank1+/+ littermates. Similarly, there was no observed 

deficit in the vestibular function of Shank1−/− mice compared to Shank1+/+ littermates.

2. Materials and methods

2.1. Animals

All experimental procedures were carried out in accordance with the Institutional Animal 

Care and Use Committees (IACUCs) at both the University of North Carolina Wilmington 

and the University of Nebraska Lincoln. C57BL/6 were used for initial experiments (Figure 

1) and were obtained from the The Jackson Laboratory. For all other experiments (Figures 

2–6), 129S4/SvJae Shank1tmShng-heterozygous (Shank1+/−) mice were obtained from The 

Jackson Laboratory. Homozygous wild type (Shank1+/+) and knockout (Shank1−/−) mice 

were obtained from crosses of heterozygous (Shank1+/−) mouse matings. Genotyping was 

performed using a protocol described previously (Truett et al., 2000; Silverman et al., 2011). 

All data were collected from mice aged 4 weeks and from littermates originating from at 

least three different litters for each experimental condition.

2.2. Immunofluorescence of auditory and vestibular sensory epithelia

Mice were anaesthetized via halothane inhalation before being sacrificed. Auditory and 

vestibular sensory epithelia were isolated and immunostained as described previously 

(McLean et al., 2009; Schuth et al., 2014). The primary antibodies used in this study are 

listed in Table 1. Alexa Fluor secondary antibodies (Life Technologies) included: goat anti-

mouse IgG1 488; goat anti-mouse IgG2b 488 and 647; goat anti-mouse IgG2a 594 and 647; 

goat anti-rabbit IgG 488 and 568; donkey anti-goat 488; donkey anti-rabbit 594; and donkey 

anti-mouse 647.

2.3. Confocal microscopy and image analysis

Micrographs were acquired using an Olympus Fluoview FV1000 confocal microscope 10× 

air or 60× oil immersion lens under the control of the Olympus Fluoview FV10-ASW 2.1 

software (Olympus Corporation). For organs of Corti, tonotopic maps were superimposed on 

low magnification micrographs of complete organs of Corti in ImageJ (http://

www.masseyeandear.org/research/ent/eaton-peabody/epl-histology-resources and Muller, 

1991; Mueller et al., 2005). High magnification confocal micrographs of identified tonotopic 

regions of the organ of Corti were collected to encompass the entire synaptic pole of the row 
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of IHCs from the 8 kHz and also 32 kHz region. High magnification confocal micrographs 

of the striolar region of the vestibular sensory epithelium of the utricular macula were 

similarly collected to encompass the entire synaptic pole of the sensory hair cells. For both 

the auditory and vestibular sensory epithelia, the step size (optical section thickness) was 

determined by stepping at half the distance of the theoretical z-axis resolution (the Nyquist 

sampling frequency). Images were acquired in a 1024 × 1024 raster (x = y = 0.207 µm/pixel) 

at sub-saturating laser intensities for each channel. Images are presented as z-projections 

through the collected optical stack. All quantitative image analysis was performed on the 

raw image stacks, without deconvolution, filtering, or gamma correction.

3D reconstructions were obtained using Imaris 6.4 software (Bitplane Inc.) and used to 

determine the number and volume of synaptic elements for the two tonotopic regions of 

organs of Corti. To determine the number of synaptic elements per IHC, the Imaris spot 

detection function was used to detect immunopuncta corresponding to specific synaptic 

proteins within a given field of view. This value was then divided by the total number of 

IHCs within that field of view. IHC counts were obtained from counts of 

immunofluorescently detected IHC nuclei (for CTBP2 immunolabeling) and/or DIC-imaged 

IHC bodies (when CTBP2 immunolabeling was not performed). Volumes (µm3) of 

immunopuncta corresponding to specific synaptic proteins were calculated from contour 

surfaces generated in Imaris using a surface area detail of 0.2 µm. All numerical values were 

exported for further statistical analyses.

2.4. Primer design, RNA extraction, and quantitative real time PCR (qPCR)

Primers for Shank1–3, Gria1–4, Dlgap1, Hprt1, B2m, and Pgk1 were either designed or 

selected from primer bank (pga.mgh.harvard.edu/primerbank) and are provided in Table 2. 

Amplicons were selected from exons that are expressed in all known splice variants of the 

given gene as determined using the UCSC genome browser database (genome.ucsc.edu). 

Additionally, another Shank1 primer set was designed to target the amplicon in the deleted 

region of the gene in Shank1−/− mice. Primer sequences were selected using Primer3 

software (frodo.wi.mit.edu), and in-silico PCR (UCSC genome browser) was performed to 

confirm a single PCR product for each primer set. The primers and amplicons were aligned 

with their mRNA reference sequences from GenBank (www.ncbi.nlm.nih.gov) using 

Sequencher software (Gene Codes Corporation) to confirm homogeneity in the primer and 

amplicon sequences.

Organs of Corti and spiral ganglion cell bodies were dissected from Shank1+/+ and 

Shank1−/− mice. A total of four cochlea (both cochleae from two individuals of the same 

genotype) were pooled for each biological replicate. Three unique biological replicates for 

each genotype were collected. Dissected samples were immediately placed into ice-cold 

lysis buffer (RNAqueous®-Micro Kit, Life Technologies), flash frozen in liquid nitrogen, 

and stored at −80 °C until RNA was extracted. Total RNA was extracted (without DNase 

treatment) using the RNAqueous®- Micro Kit (Life Technologies) according to the 

manufacturer’s instructions. RNA quality was determined using the 2100 Bioanalyzer 

(Agilent), and RNA quantity was determined using the Nanodrop 2000 (Thermo Scientific). 

cDNA synthesis was performed using the iScript™ cDNA Synthsis Kit (BioRad) according 
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to the manufacturer’s instructions. qPCR was performed using the SsoAdvanced™ SYBR® 

Green Supermix (BioRad) reagent and MyiQ™ Single-Color RealTime PCR Detection 

System (BioRad). The cycling protocol included an initial denaturing step at 95 °C for 3 min 

followed by 40 cycles of 95 °C for 10 s, 60 °C for 30 s and 72 °C for 30 s. Biological 

replicates and control samples were run as triplicates. Primer specificity to single amplicons 

was confirmed by examining melting curves and identifying single peaks. qPCR was also 

performed on the negative controls from the reverse transcription reaction to confirm that 

amplicons originated from the cDNA pool. Amplicon identity was subsequently verified by 

DNA sequencing (Macrogen, USA). Quantification of gene expression was performed using 

the relative standard curve method (as described in Larionov et al., 2005), with target gene 

expression normalized against the geometric mean of the three control genes. Shank1–3, 

Gria1–4, and Dlgap1 transcript expression in Shank1+/+ mice is presented as the normalized 

transcript expression of each gene (that is, normalized to the expression of the control genes 

Hprt1, B2m, and Pgk1 in Shank1+/+ mice). To examine relative changes in gene expression 

in Shank1−/− compared to Shank1+/+ mice, Shank2–3, Gria1–4, and Dlgap1 transcript 

expression is presented as the normalized expression (that is, normalized to the expression 

of the control genes in Shank1−/− mice) relative to the normalized expression of Shank2–3, 

Gria1–4, and Dlgap1 in Shank1+/+ mice. Thus, relative expression values close to 1 would 

suggest little to no relative differences in transcript expression between genotypes or, more 

specifically, little to no up or down regulation in Shank1−/− compared to Shank1+/+ mice. 

Importantly, no significant variations in control gene expression were observed between or 

within genotypes.

2.5. Functional assessment of auditory and vestibular function

Auditory brainstem responses (ABRs) and vestibular sensory evoked potentials (VsEPs) 

were measured for Shank1−/− and Shank1+/+ littermates using methods similar to those 

described previously (Jones et al., 1999; Jones et al., 2004; Mock et al., 2011). Mice were 

anaesthetized via a ketamine (18 mg/mL) and xylazine (2 mg/mL) solution (5 to 7 µL/g 

body weight) injected intraperitoneally. Core body temperature was maintained at 37 °C 

using a homeothermic heating pad (FHC, Inc.).

For ABRS, pure tone burst stimuli were generated and controlled using National Instruments 

data acquisition system and custom software. Tone bursts at 8, 16, and 32 kHz had 1.0 ms 

rise and fall times with 1.0 ms plateau (3 ms total duration). Stimuli for ABR testing were 

calibrated using a Bruel & Kjaar ¼ inch microphone and Nexus amplifier. Stimuli were 

calibrated in dB peSPL and were presented via high frequency transducers (ED1 driver, EC1 

speakers, Tucker-Davis Technologies) coupled at the left ear via a modified commercial ear 

tip (ER 10D–T03, Etymotic Research, Inc.). Auditory stimuli were presented at a rate of 17 

stimuli/s. ABR intensity series were collected by reducing the stimulus in 10 dB steps at 

higher stimulus levels and 5 dB steps closer to threshold. P1-N1 amplitudes and P1 latencies 

are presented as the input-output (I/O) function slopes of the amplitude and latency growth 

function curves (that is, amplitude and latency as a function of stimulus intensity) as 

described previously (Burkard et al., 1990; Jones and Jones, 1999).
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DPOAE stimuli were generated and controlled using TDT System III (RX6, PA5 modules) 

and SigGen/BioSig software. Pure tone frequencies (f1, f2, f2/f1 ratio = 1.25), at equal 

levels (L1 = L2 = 60 dB SPL), 150 ms duration, were generated by RX6 multifunction 

processor, attenuated through PA5 programmable attenuators and routed through separate 

drivers to mix acoustically in the ear canal via the same eartip used for ABR testing. Primary 

stimulus frequencies were such that the geometric mean [GM = (f1 x f2)0.5] frequencies 

ranged from 6.0 to 48.5 kHz. Ear canal sound pressure levels were recorded with a low noise 

probe microphone (ER 10B+, Etymotic Research Inc., Elk Grove Village, IL). The 

microphone output was amplified (10×) and routed to RX6 multifunction processor for 

sampling at 100 kHz and Fast Fourier transforms (FFT) of the averaged responses. The 

amplitudes of f1, f2, and the cubic (2f1-f2) distortion product were measured from the FFT 

waveform. The corresponding noise floor was determined from sound levels in the eleven 

frequency bins above and below the 2f1-f2 frequency bin.

For VsEPs, stimuli were delivered by securing the mouse head using a noninvasive head clip 

to a mechanical shaker (Model ET-132–203, Labworks Inc.) Linear acceleration pulses (17 

pulses/s, 2 ms duration) ranging in amplitude from +6 to −18dB re: 1.0 g/ms (where 1 g = 

9.8 m/s2) adjusted in 3 dB steps were presented to the head in the naso-occipital axis. 

Subcutaneous needle electrodes were placed posterior to the right pinna and at the right hip 

for inverting and ground electrodes, respectively. Stainless-steel wire placed subcutaneously 

at the nuchal crest served as the noninverting electrode. Electroencephelographic activity 

was amplified (200,000×), filtered (300–3,000 Hz), and digitized (1,024 points at 10 µs/

point). 256 primary responses were averaged and replicated for each VsEP waveform. VsEP 

intensity series were collected with and without acoustic masking (50–50,000 Hz forward 

masker at 90 dB SPL) beginning with the maximum stimulus intensity (i.e., + 6 dB re: 1.0 

g/ms) and then descending in 3 dB steps until no response was visible.

2.6. Statistical Analyses

Except for qPCR data, in which values are presented as mean ± SDM, all other group results 

are reported as the mean ± SEM. Mean values for synaptic elements per IHC were 

calculated across individuals of a given genotype and frequency (i.e., from the average of 

the synaptic elements per IHC calculated for an individual). Mean values for the volumes of 

synaptic elements were calculated from pooled values for a given genotype and frequency. 

Statistical analyses were performed using GraphPad Prism 4 (GraphPad Inc). Ordinary one-

way ANOVA followed by a Tukey’s multiple comparison test was used to determine 

statistically significant differences between the indicated groups. P values < 0.05 were 

considered statistically significantly different (and are indicated with asterisks in the 

figures). For qPCR data, transcript abundances differing more than two-fold were 

considered statistically significantly different (and are indicated with asterisks in the 

figures).
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3. Results

3.1. Shank1, but not Shank 2 and 3, is expressed in inner hair cell afferent PSDs

We investigated the localization of central glutamatergic scaffolding proteins in the mouse 

organ of Corti using immunofluorescent labeling and confocal microscopy at two 

tonotopically distinct regions, 8 kHz and 32 kHz. By immunostaining for C-terminal binding 

protein 2 (CTBP2, green, Figure 1A), an established marker for hair cell ribbons (Khimich 

et al., 2005), using a mouse monoclonal (IgG1) antibody, we compared the localization of 

presynaptic active sites to that of PSD95 (red, Figure 1B), an established marker of 

glutamatergic PSDs in the CNS and also identified in the cochlea (Davies et al., 2001), using 

a mouse monoclonal IgG2A antibody (Figure 1A–C). Observations of individual samples 

revealed that almost every presynaptic CTBP2-positive ribbon was juxtaposed to a PSD95-

positive PSD and vice versa (Figure 1C). To obtain values of synaptic elements per IHC, the 

total number of IHCs was determined by counting the total number of CTBP2-positive 

nuclei as well as total number of DIC-imaged IHCs. Values for the total number of IHCs 

were identical regardless of methodology. Across samples, mean values for synaptic 

elements per IHC were comparable for both CTBP2-positive and PSD95-positive 

immunopuncta (Figure 1D). At 8 kHz, there was a mean of 17.7 ± 0.5 CTBP2-positive 

ribbons (n = 2,163 immunopuncta) and 18.2 ± 0.5 PSD95-positive PSDs (n = 2,220 

immunopuncta) per IHC (n = 122 IHCs from 5 individuals). At 32 kHz, there was a mean of 

19.7 ± 0.1 CTBP2-positive ribbons (n = 2,504 immunpuncta) and 19.0 ± 0.4 PSD95-positive 

PSDs (n = 2,403) per IHC (n = 127 IHCs from the same 5 individuals; Figure 1D). There 

was no significant difference in the number of CTBP2-positive ribbons and PSD95-positive 

PSDs at either 8 or 32 kHz. However, the difference in CTBP2-positive ribbons at 8 

compared to 32 kHz was significantly different (with approximately 2 fewer ribbons per 

IHC at 8 kHz). Although not investigated specifically in our analyses, these results of 

statistical analyses suggest that the likelihood of finding PSD95-positive PSDs not 

juxtaposed to CTBP2-positive ribbons is slightly greater in higher (32 kHz) compared to 

lower (8 kHz) frequencies. This 1:1 relationship between pre- and postsynaptic elements (at 

a given frequency) has been reported before in the organ of Corti (Khimich et al., 2005; 

Liberman et al., 2011). Perhaps due to strain differences, we observed slightly higher 

numbers of synaptic elements per IHC than previous immunofluorescent quantifications, 

which reported maximal values of approximately 17 synapses per IHC in the mouse organ 

of Corti (Meyer et al., 2009; Liberman et al., 2011; Vincent et al., 2014). Importantly, 

because we also find PSD95-positive PSDs juxtaposed to presynaptic ribbons in a nearly 1:1 

relationship, we can conclude that PSD95 is present in all IHC afferent PSDs.

After establishing PSD95 to be a reliable marker of all IHC afferent PSDs, we investigated 

whether and to what extent Shank1 is present in IHC afferent PSDs (Figure 1E–H). For 

these experiments, we performed double immunolabeling experiments using a rabbit 

polyclonal antibody against Shank1 (green, Figure 1E) and the mouse monoclonal antibody 

(IgG2A) against PSD95 (red, Figure 1F). Shank1 has been previously localized to afferent 

synapses in the apical organs of Corti isolated from developing (P0, 3, 6, and 12) and adult 

(P35–42) mice using an antibody different from the one used in this study (Huang et al., 

2012). Similar to these previous findings, we observed Shank1 in the IHC-afferent (Figure 
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1E) but not OHC-afferent (data not shown) synapses. Observations of individual samples 

from both tonotopic regions further revealed that almost every PSD95-positive PSD also 

expressed Shank1 immunoreactivity and vice versa (Figure 1G). Thus, across samples, mean 

values for synaptic elements per DIC-imaged IHC were comparable for both Shank1-

positive and PSD95-positive immunopuncta (Figure 1H). At 8 kHz, there were 15.8 ± 0.6 

Shank1-positive PSDs (n = 1,586) and 15.8 ± 0.4 PSD95-positive PSDs (n = 1,592) 

immunopuncta per IHC (n = 101 IHCs from 4 individuals). At 32 kHz, there were 16.3 ± 1.7 

Shank1-positive PSDs (n = 1,653 immunopuncta) and 16.3 ± 1.5 PSD95-positive PSDs (n = 

1,652 immunopuncta) per IHC (n = 100 IHCs from the same 4 individuals). There were no 

significant differences between any of the six possible comparisons of synaptic elements per 

IHC and tonotopic region. Similar patterns of Shank1 immunoreactivity were also observed 

when we used a mouse monoclonal antibody to Shank1 (data not shown). These findings 

indicate that Shank1 is a component of IHC afferent PSDs.

To validate the specificity of Shank1 immunoreactivity, we triple immunolabeled organs of 

Corti isolated from Shank1+/+ and Shank1−/− littermate mice with the mouse monoclonal 

antibody against CTBP2 (blue, Figure 2A,E), the rabbit polyclonal antibody against Shank1 

(red, Figure 2B,F), and a goat polyclonal antibody that recognizes all three Shank isoforms 

(panShank, green, Figure 2C,G). For these experiments, a single tonotopic region (16 kHz) 

was isolated. As expected, in organs of Corti isolated from Shank1+/+ mice, we observed 

Shank1-positive immunopuntca (Figure 2B) juxtaposed to CTBP2-positive presynaptic 

ribbons (Figure 2A,D). We also observed panShank-positive immunopuncta (Figure 2C) 

colocalized with Shank1-positive immunopuncta and juxtaposed to CTBP2-positive ribbons 

(Figure 2D). In organs of Corti isolated from Shank1−/− littermate mice, we still observed 

CTBP2-positive ribbons (Figure 2E), indicating that afferent presynaptic ribbons are 

conserved in the absence of Shank1. In contrast, we observed no immunoreactivity for 

Shank1 (Figure 2F,H). These findings confirm the specificity of the Shank1 polyclonal 

antibody. Interestingly, we also observed no immunoreactivity for panShank in organs of 

Corti isolated from Shank1−/− mice (Figure 2G,H). The presence of panShank 

immunoreactivity in the organs of Corti isolated from Shank1+/+ mice but not Shank1−/− 

littermate mice suggest that Shank1 is the only Shank isoform present in IHC afferent PSDs 

in the mouse organ of Corti. To corroborate this finding, we examined immunoreactivity in 

organs of Corti from Shank1+/+ using mouse monoclonal antibodies specifically recognizing 

Shank2 and Shank3. We found no immunoreactivity with either of these antibodies (data not 

shown). Thus, the IHC afferent PSDs in Shank1−/− mice appear to be devoid of all identified 

Shank isoforms, suggesting that Shank1−/− mice provide an excellent model to examine the 

contribution of Shank proteins in general to the synaptic organization and function of IHC 

afferent PSDs.

To further confirm the absence of all Shank isoforms in the organs of Corti from Shank1−/− 

mice, we examined Shank1–3 transcript expression in the organs of Corti and spiral 

ganglion cells (SGCs) isolated from Shank1+/+ and Shank1−/− mice using qPCR. Although 

evidence supports the dendritic localization of Shank transcripts (Boeckers et al., 2004), we 

also included SGC bodies to ensure transcripts (which are synthesized in the cell bodies) 

were detected if present. As described in the Methods, Shank1–3, Gria1–4, Dlgap1, Hprt1, 
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B2m, and Pgk1 transcript expression in Shank1+/+ mice is presented as the normalized 

transcript expression of each gene (that is, normalized to the expression of the control genes 

in Shank1+/+ mice). In samples from Shank1+/+ mice, we found 30-fold greater expression 

of Shank1 compared to either Shank2 or Shank 3 (Figure 2I). Relative to control gene 

expression, we found expression levels in Shank1+/+ mice of 1.25 ± 0.23 for Shank1, 0.04 ± 

0.01 for Shank2, and 0.05 ± 0.01 for Shank3 (Figure 2I). To examine relative changes in 

gene expression in Shank1−/− compared to Shank1+/+ mice, Shank2–3, Gria1–4, Dlgap1, 

Hprt1, B2m, and Pgk1 transcript expression is presented as the normalized expression (that 

is, normalized to the expression of the control genes in Shank1−/− mice) relative to the 

normalized expression of Shank2–3, Gria1–4, Dlgap1, Hprt1, B2m, and Pgk1 in Shank1+/+ 

mice. Thus, relative expression values close to 1 would suggest little to no relative 

differences in transcript expression between genotypes. Relative to Shank2 and Shank3 

expression in Shank1+/+ mice, we found expression levels in Shank1−/− mice of 0.80 ± 0.33 

for Shank2 and 1.04 ± 0.22 for Shank 3, suggesting no compensatory up or down regulation 

of Shank2 or Shank3 in the cochleae of Shank1−/− mice (Figure 2J). As expected, very low 

Shank1 signal was detected in samples collected from Shank1−/− mice, so relative 

expression is not plotted in Figure 2J. Together with our observations of protein expression 

using immunofluorescence, these findings are consistent with the conclusion that Shank1 is 

the primary and likely exclusive Shank isoform found in the cochlea and that Shank1−/− 

mice are, therefore, devoid of all known Shank isoforms.

3.2. The composition of cochlear afferent PSDs is subtly altered in the absence of Shank1

To identify potential changes in the molecular composition of cochlear (and especially IHC) 

afferent PSDs, which are comprised of a multitude of proteins, resulting from the absence of 

Shank1, we examined the presence and relative transcript abundance of the genes encoding 

the four GluA subtypes (Gria1–4). We also examined expression of Dlgap1, a gene that 

encodes the protein guanylate kinase-associated protein (GKAP). GKAP binds directly to 

both Shank and PSD95 and is critical for recruitment and accumulation of Shank and the 

assembly of PSDs (Sheng and Kim, 2000). In this way, we could assess possible changes in 

the receptor types mediating cochlear afferent synaptic transmission as well as changes more 

deeply in the molecular scaffold of the cochlear afferent PSD. Of the four Gria transcripts 

examined, in wildtype Shank1+/+ mice (normalized to control gene expression), both Gria3 

and Gria4 were significantly more abundantly expressed than Gria2; Gria2, 3 and 4 were all 

significantly more expressed than Gria1; and Gria1 was expressed at very low levels. 

(Normalized expression values were: Gria1: 0.017 ± 0.003; Gria2: 0.101 ± 0.003; Gria3: 

0.822 ± 0.066; and Gria4: 0.499 ± 0.100.) These values are highly consistent with previous 

findings from the rat cochlea: both immunocytochemical localization (Kuriyama et al., 

1994; Matsubara et al., 1996) and in situ hybridization (Luo et al., 1995) report abundant 

GluA2/3 (or Gria2 and Gria3) expression and no GluA1 (or Gria1) expression. We also 

detected transcript expression of Dlgap1 (0.176 ± 0.036). Although there was a decrease in 

mean values for Gria2 and Gria4 relative transcript abundance in Shank1−/− relative to 

expression of Gria2 and Gria4 in Shank1+/+ samples across all three biological replicates, 

no genotypic differences in expression (greater than two-fold) were observed for any of the 

genes (Gria1–4 and Dlgap1) examined. (Expression values in Shank1−/− mice relative to 

gene expression in Shank1+/+ mice were: Gria1: 1.06 ± 0.16; Gria2: 0.65 ± 0.15; Gria3: 
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0.85 ± 0.50; Gria4: 0.69 ±0.05; and Dlgap1: 1.04 ± 0.04. Again, relative expression values 

close to 1 would suggest little to no relative differences in transcript expression between 

genotypes).

To examine for changes in protein expression, and especially AMPAR expression suggested 

by the changes in transcript abundance, we examined GluA2/3 and also GKAP expression in 

the IHC afferent PSD of organs of Corti isolated from Shank1+/+ and Shank1−/− littermate 

mice using immunofluorescence as described in the Methods and used previously to 

quantify relative protein abundances/distributions (Wersinger et al., 2010; Maison et al., 

2013). Specifically, we triple immunolabeled organs of Corti with a mouse monoclonal 

(IgG1) antibody against CTBP2 (green, Figure 4A,E), a rabbit polyclonal antibody that 

recognizes both the GluA2 and 3 subtypes (GluA2/3, red, Figure 4B,F,I-L), and a mouse 

monoclonal (IgG2B) antibody against GKAP (blue, Figure 4D,H,I-L). The antibody against 

GluA2/3 was chosen because it reliably labels the most abundantly expressed GluA in the 

cochlea (GluA3). Unfortunately, antibodies that reliably detect individual GluA subtypes, 

especially for GluA2–4, in our hands, have not been identified. In organs of Corti isolated 

from either Shank1+/+ or Shank1−/− mice, we observed CTBP2-positive ribbons juxtaposed 

to GluA2/3- and GKAP-positive PSDs (Figure 4D,H). These findings indicated no overt 

qualitative changes in PSD localization or composition in the absence of Shank1.

To more rigorously examine PSD number and composition, we calculated the number of 

PSD elements per IHC (Figure 4M) from 3D reconstructions of confocal micrographs 

spanning the entire afferent synaptic pole from two tonotopic locations (8 kHz and 32 kHz). 

Mean values are summarized in Table 3. The mean number of GluA2/3- and GKAP-positive 

PSDs did not vary by genotype at either of the two frequencies. However, there were 

significantly greater PSD elements (approximately 4 per IHC) at 32 kHz compared to 8 kHz 

for both genotypes. Tonotopic differences were not observed when examining PSD95-

positive PSDS (Figure 1) and may reflect strain differences: C57BL/6 mice were used to 

collect the data in Figure 1 whereas all other data were collected from Shank1+/+ and 

Shank1−/− mice on the 129/SvJae background strain. The bases of these differences were not 

investigated further. Notwithstanding, these results indicate that the absence of Shank 

proteins causes no obvious alteration in the number of IHC afferent PSDs and the presence 

of key PSD proteins in the IHC afferent PSDs across tonotopic ranges.

In addition to characterizing the number of IHC afferent PSDs and the presence of GluA2/3 

and GKAP in the IHC afferent PSDs, we also examined the volumes of the GluA2/3 and 

GKAP immunopuncta from 3D reconstructions to assess differences in their relative protein 

abundances and/or distribution in the absence of Shank proteins (Figure 4I–L, N). 

Methodologically similar quantifications of relative protein abundances/distributions have 

been used previously (Wersinger et al., 2010; Maison et al., 2013), and relative abundances/

distributions determined using immunofluorescence parallel abundances/distribution 

determined using electrophysiology (Pyott et al., 2004). Mean values of immunopuncta 

volumes are summarized in Table 4. Between the two genotypes, we found significantly 

smaller volumes for both GluA2/3 and GKAP immunopuncta at the 8 kHz region in 

Shank1−/− mice compared to Shank1+/+ littermate mice. There were no statistically 

significant differences in either GluA2/3 or GKAP immunopuncta volumes between 
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genotypes at 32 kHz. Between the two frequencies, GluA2/3 immunopuncta volumes were 

significantly larger at 8 kHz compared to 32 kHz in Shank1+/+ mice. In contrast, GluA2/3 

immunopuncta volumes were significantly smaller at 8 kHz compared to 32 kHz in 

Shank1−/− mice. Similarly, we observed significantly larger GKAP immunpuncta at 8 kHz 

compared to 32 kHz in Shank1+/+ mice. There was no statistically significant difference in 

GKAP immunpuncta volumes between frequencies in Shank1−/− mice. These data suggest 

that the loss of Shank indeed alters the abundance and/or distribution of PSD proteins 

specifically at lower frequency tonotopic regions.

3.3. Cochlear function is normal in the absence of Shank1

The findings of IHC afferent PSDs of reduced size (GluA2/3 and GKAP immunoreactive 

volumes) in the 8 but not 32 kHz region of Shank1−/− mice compared to Shank1+/+ 

littermate mice predicts potential low frequency auditory deficits in the Shank1−/− mice. 

Specifically, the loss of AMPARs from IHC afferent PSDs should result in a reduction in 

the strength of glutamatergic afferent signaling in Shank1−/− compared to Shank1+/+ mice in 

response to auditory stimuli of equal intensities. Depending on the magnitude of reduction, 

an increase in ABR thresholds, decrease in P1-N1 amplitudes, and increase in P1 latencies 

specifically at lower frequencies would be predicted in Shank1−/− compared to Shank1+/+ 

mice. To test this prediction, we recorded auditory brainstem responses (ABRs) from 

Shank1+/+ and Shank1−/− littermate mice as described in the Methods (Figure 5A). ABR 

thresholds were obtained at three frequencies: 8, 16, and 32 kHz. Although mean ABR 

thresholds were indeed elevated at 8 kHz in Shank1−/− mice (60 ± 7 dB peSPL) compared to 

Shank1+/+ littermates (46 ± 3 dB peSPL), this difference was not statistically significant nor 

were differences in thresholds between genotypes at 16 and 32 kHz statistically significant. 

We also examined first peak amplitude (P1-N1) and latencies (P1). For both Shank1+/+ and 

Shank1−/− littermate mice, as stimulus intensity increased, ABR amplitudes increased and 

latencies decreased (raw traces not shown). To compare changes across genotypes and 

frequencies, we calculated (as described in the Methods) input/output (I/O) linear regression 

slopes for amplitudes (Figure 5B) and latencies (Figure 5C) as a function of stimulus 

intensity at 3 frequencies (8, 16, and 32 kHz). There were no significant differences between 

genotypes for any of the tested frequencies. Raw values for ABR data are provided in Table 

5. These findings indicate that changes in IHC afferent PSD composition, specifically the 

absence of Shank1 and concomitant reduction in AMPAR and GKAP expression, do not 

cause measurable auditory deficits in Shank1−/− compared to Shank1+/+ littermates. 

Moreover, wave II amplitudes and latencies were quantified and compared between 

genotypes; however, no significant differences were observed. Although not quantified, 

waves III through V also showed no striking differences across genotypes. These data 

suggest that the absence of Shank1 does not disrupt synapse further along the auditory 

pathway. Although there were no effects of genotype on ABR thresholds, thresholds were 

elevated in both genotypes compared to CBA mice (Mock et al., 2011), suggesting mild 

hearing loss in both genotypes. This observation is consistent with a mild early onset hearing 

loss reported for the 129 mouse strain (Zheng et al., 1999), the background strain of these 

mice. Finally, we also observed intact DPOAEs in both genotypes, excluding substantial 

functional pathology of the OHCs in Shank1−/− mice and consistent with the observed 

absence of Shank1 in the OHC afferent PSDs.
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3.4. Vestibular function is normal in the absence of Shank1

For completeness, we also examined the expression of Shank1 in the vestibular sensory 

epithelia using immunofluorescence and vestibular function of Shank1−/− mice. Vestibular 

afferent neurotransmission also relies on glutamatergic signaling (recently reviewed in 

Eatock and Songer, 2011). We triple immunolabeled isolated vestibular sensory epithelia of 

the utricular macula from Shank1+/+ and Shank1−/− littermate mice with the mouse 

polyclonal antibody against Shank1 (red, Figure 6A,E), the mouse monoclonal antibody 

against PSD95 (green, Figure 6B,F), and a mouse monoclonal IgG1 antibody that recognizes 

tubulin J, a neurofilament enriched in the afferent calyx and bouton terminals (TuJ, blue, 

Figure 6C,G; Perry et al., 2003). For these experiments, images of the striolar region were 

examined. We observed Shank1 immunoreactivity in the vestibular sensory epithelia 

isolated from Shank1+/+ but not Shank1−/− mice, indicating that Shank1 is also normally 

expressed in the vestibular sensory epithelia. In Shank1+/+ mice, Shank1 immunoreactivity 

was almost always colocalized with PSD95-positive PSDs (Figure 6C,D) associated with 

both calyx and bouton vestibular afferent terminals, indicating that Shank1 is, not 

surprisingly, part of the vestibular afferent PSD. In Shank1−/− mice, we also observed 

PSD95-positive PSDs associated with both types of afferent terminals (Figure 6G,H). 

Across samples, PSD95-positive PSDs appeared smaller (mirroring the trend observed in the 

organs of Corti of Shank1−/− mice) and less abundant in Shank1−/− compared to Shank1+/+ 

mice. Analysis of PSD95-positive PSD areas from individual optical sections using 

methodology described previously (Pyott et al., 2004) indicated that PSD95-positive PSDs 

were not smaller although they were less numerous (approximately 30% less PSD95-

positive PSDs per µm2) in Shank1−/− compared to Shank1+/+ mice. Further quantification of 

3D reconstructions would be necessary to corroborate this finding and identify the types of 

afferent PSDs (bouton or calyx) that are potentially sparser in Shank1−/− mice. Although not 

quantified, GluA2/3-positive PSDs were also observed in the vestibular sensory epithelia of 

both Shank1+/+ and Shank1−/− mice (data not shown). Functionally, as observed for ABRs, 

we found no differences in vestibular sensory evoked responses (VsEPs) between Shank1+/+ 

and Shank1−/− littermates. There were no significant differences in thresholds (Shank1+/+: 

−8.3 ± 0.8 dB re: 1.0 g/ms, n = 4; Shank1−/−: −9,9 ± 1.1 dB re: 1.0 g/ms, n = 5; Figure 6B) 

or P1-N1 amplitude I/O slopes (Shank1+/+: 0.020 ± 0.007 µV/dB, n = 4; Shank1−/−: 0.020 ± 

0.010 µV/dB, n = 5; Figure 6J). Although there was a trend of flatter P1 latency I/O slopes in 

Shank1−/− compared to Shank1+/+ mice, this trend was not significant (Shank1+/+: 0.036 ± 

0.011 ms/dB, n= 4; Shank1−/−: 0.020 ± 0.003 ms/dB, n= 5; Figure 6K).

4. Discussion

Analogous to glutamatergic synapses in the CNS, afferent synapses of the inner ear likely 

shape their response properties via the molecular composition of their PSDs. Of the 

multitude of proteins comprising the PSD proteins, Shank proteins (1–3) are considered the 

“master” molecular determinants of the PSD composition, with the loss of Shank proteins 

associated with altered protein composition of the PSD and weaker glutamatergic signaling 

(Hung et al., 2008; Peca et al., 2011; Schmeisser et al., 2012) in the CNS. Motivated by 

these findings, we investigated the functional contribution of Shank proteins to the 

glutamatergic afferent synapses of the inner ear and especially cochlea. In summary, by 
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immunofluorescence, we verified the expression of Shank1 in the IHC afferent PSDs 

(Figure 1 and Figure 2). We found no evidence by immunofluorescence for the expression 

of Shank2 and Shank3, the two other known Shank isoforms, in the afferent synapses 

(Figure 2). These findings were corroborated by qPCR, in which we detected abundant 

Shank1 transcript and very little Shank2 and Shank3 transcript in the organs of Corti and 

spiral ganglion cells (Figure 2). We then investigated the morphology, composition, and 

function of IHC afferent PSDs in the cochlea of Shank1−/− mouse, which presumably lack 

all three Shank isoforms (see Figure 2G). Although we found subtle changes in the 

morphology and composition (but not number and localization) of IHC afferent PSDs, 

specifically a reduction in size and GluA2/3 and GKAP expression at the lower frequency 

region (8 kHz) in Shank1−/− mice (Figure 4), we detected no differences in ABRs compared 

to Shank1+/+ littermate mice (Figure 5). We also identified Shank1 in the vestibular afferent 

synapses, but detected no differences in VsEPs in Shank1−/− compared to Shank1+/+ 

littermate mice (Figure 6). Given the enormous importance of Shank proteins to the 

composition, form, and strength of glutamatergic synapses in the CNS, these results are very 

surprising and lead to a variety of interpretations. First, our data show, at the very least, that 

Shank1 plays little role organizing IHC afferent PSDs, either during their prehearing 

establishment or maintenance after the onset of hearing. These results were unexpected 

considering that, in the CNS, even single genetic deletions of Shank proteins (Hung et al., 

2008; Peca et al., 2011; Schmeisser et al., 2012) result in a range of ultrastructural, 

molecular, physiological and behavioral deficits, leading to the conclusion that there is, at 

most, only partial redundancy and functional compensation across isoforms. On the other 

hand, a diminished role of Shank1 in the inner ear compared to the CNS may reconcile the 

conspicuous absence of Shank1 in the outer hair cell (type II) afferent synapses that we and 

others (Huang et al., 2012) observed. Outer hair cell afferent synapse are also glutamatergic 

(Weisz et al., 2009) and presumably organize their PSDs with a set of proteins similar to 

those found in IHC afferent synapses and glutamateric synapses of the CNS but, as this 

work suggests, without the requirement of Shank1.

Second, our data indicate that Shank2 and Shank3 are not expressed in the mouse cochlea 

after the onset of hearing. Importantly, failure to detect a protein or transcript cannot be 

considered proof of its absence and further experiments will be needed to confirm the 

absence of Shank2 and Shank3 in the cochlea. With this caveat in mind, it is at least 

plausible that Shank1 is the only isoform expressed in the mouse cochlea. Non-overlapping 

distributions of Shank isoforms have been reported in the CNS: for example, Shank2 and 

Shank3 show complementary distribution in the cerebellum, with Shank2 mRNA expressed 

only in Purkinje cells and Shank3 mRNA expressed only in granule cells (Boeckers et al., 

1999). If Shank1 is indeed the only Shank isoform expressed in the mouse cochlea, then our 

findings would further suggest that Shank1, 2, and 3 play little role organizing afferent PSDs 

in the cochlea. Importantly, our data do not exclude the possibility that Shank2 and 3 are 

expressed transiently before the onset of hearing and may contribute to the maturation of 

inner hair cell afferent synapses and potentially compensate for the loss of Shank1. 

Transient, prehearing expression has been observed for synaptotagmin proteins (Syt1 and 

Syt2) and suggests that the molecular composition of immature inner hair cell synapses may, 

in fact, be more similar to central synapses than synapses from mature inner hair cells 
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(Beurg et al., 2010). To test the possible contributions of Shank2 and 3 to afferent synapse 

development and function explicitly, the auditory function of Shank2−/− and Shank3−/− as 

well as double and triple knockouts (if they are viable) should be investigated.

Third, if Shank proteins are nonetheless necessary components of IHC afferent PSDs in the 

cochlea and Shank1, 2, and 3 play little role organizing afferent PSDs in the cochlea, then 

our data suggest the possibility that other Shank isoforms, specific to the inner ear, exist. 

Although the pan-Shank antibody failed to detect protein in organs of Corti from Shank1−/− 

mice, the existence of inner ear specific isoforms is, nevertheless, not without precedent. In 

fact, a handful of proteins necessary for glutamateric signaling that are relatively selectively 

expressed in the inner ear have been identified. For example, VLUT3, a vesicular glutamate 

transporter (Seal et al., 2008), otoferlin, a Ca2+ sensor necessary for glutamate release from 

hair cells (Roux et al., 2006), and EAAT5, a glutamate transporter expressed in the 

vestibular sensory epithelia (Dalet et al., 2012) show more or less restricted expression to 

the inner ear (or ribbon synapses). Therefore, future work should investigate the expression 

of novel Shank isoforms in the inner ear.

Fourth, we cannot exclude the possibility that a change in form or function of inner ear 

afferent PSDs in Shank1−/− mice was not inadvertently overlooked. The PSD is comprised 

of a vast number of proteins, of which we only examined for differences in a subset of the 

receptor types mediating afferent synaptic transmission, GluA2/3, and a direct binding 

partner of Shank, GKAP. However, the minimal changes in PSD composition observed in 

the cochleae from Shank1−/− mice compared to Shank1+/+ littermates failed to motivate a 

more exhaustive examination. Similarly, as discussed in the Results, auditory function was 

measured on a background strain known to show elevated hearing thresholds (Zheng et al., 

1999) and also observed in our examination. Nonetheless, profound hearing loss was not 

observed in Shank1−/− mice and thresholds, P1-N1 amplitude I/O slopes, and P1 latency I/O 

slopes were not statistically significantly different between Shank1−/− mice and Shank1+/+ 

littermates. The lack of significant findings in these animals did not justify an effort to 

backcross this mouse onto a strain that does not show accelerated age-related hearing loss. 

Finally, Shank proteins are also known regulators of NMDAR and mGluR expression 

(Sheng and Kim, 2000). Very little is known about the functional contributions of these two 

receptor families to mammalian inner ear synaptic transmission (but see Kleinlogel et al., 

1999; Doleviczenyi et al., 2005; Ruel et al., 2007), so potential differences in NMDAR or 

mGluR signaling in the inner due to the loss of Shank1 was not investigated but could 

nonetheless prove insightful.

In conclusion, our findings contribute to the growing body of work that emphasizes that, 

while there are many conserved molecular players between CNS and inner ear glutamatergic 

synapses, there are also differences that almost certainly underlie their functional 

differences. Importantly, even mature glutamatergic synapses of the CNS display 

remarkable plasticity over varying timescales, and Shank proteins appear to be important for 

that plasticity (recently reviewed in Zheng et al., 2011). Although reversible changes in 

surface AMPAR expression following acoustic overexposure have been shown in vivo 

(Chen et al., 2007), under normal conditions glutamatergic synapses of the inner ear may, by 
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necessity, be much less plastic than their CNS counterparts and, therefore, have different 

demands of their repertoire of PSD scaffolding proteins.

Acknowledgements

We thank Ryan Byrns and Isabel Campos (University of North Carolina Wilmington) with assistance analyzing 
immunopuncta volumes. This work was supported by funds from the University of North Carolina Wilmington (S. 
J. P.), the Nebraska Tobacco Settlement Biomedical Research Foundation (S. V. and T. A. J.) and the Department 
of Special Education and Communication Disorders, University of Nebraska Lincoln (T. A. J. and S. M. J.).

Abbreviations

IHC inner hair cell

AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

PSD postsynaptic density

CNS central nervous system

ABR auditory brainstem response

VsEPs vestibular evoked potentials

CTBP2 C-terminal-binding protein 2

DIC differential interference contrast

GKAP guanylate kinase-associated protein
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Highlights

• Scaffolding proteins, Shank1–3, were examined in the inner ear afferent 

synapses

• Shank1, but not 2 and 3, is expressed in the inner hair cell postsynaptic densities

• Inner hair cell postsynaptic densities are subtly altered in Shank1−/− mice

• Shank1 is also present in the vestibular afferent postsynaptic densities

• Shank1−/− mice show no hearing or vestibular loss compared to Shank1+/+ mice
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Figure 1. Shank1 is a component of inner hair cell (IHC) afferent postsynaptic densities (PSD)
Organs of Corti from 4 week old mice were immunostained with either a mouse monoclonal 

IgG1 antibody against CTBP2 (green, A) or rabbit polyclonal antibody against Shank1 

(green, E) and a mouse monoclonal IgG2A antibody against PSD95 (red, B,F). Observations 

of individual samples revealed that almost every presynaptic CTBP2-positive ribbon was 

juxtaposed to a PSD95-positive PSD and vice versa (C) and that almost every PSD95-

positive PSD also expressed Shank1 immunoreactivity and vice versa (G). Images are 

presented as Z-projections of a stack of confocal micrographs from the 32 kHz region. Mean 

values (± SEM) of CTBP2-positive presynaptic ribbons (D) or Shank1-positive PSDs (H) 

and PSD95-positive PSDs across samples are compared at two tonotopic regions (8 and 32 

kHz). Statistically significant differences are indicated with an asterisk.
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Figure 2. Shank proteins are not detected in the cochleae of inner hair cell (IHC) afferent 
postsynaptic densities (PSD) from Shank1−/− mice nor is there compensatory upregulation of 
Shank2 or Shank3 in cochlea from Shank1−/− mice
Organs of Corti from 4 week old Shank1+/+ (A–D) and Shank1−/− (E–H) littermate mice 

were immunostained with a mouse monoclonal IgG1 antibody against CTBP2 (blue, A and 

E), a rabbit polyclonal antibody against Shank1 (red, B and F) and a goat polyclonal 

antibody that recognizes all three Shank isoforms (panShank, green, C and G). Colocalized 

Shank1 and panShank immunoreactivity was observed juxtaposed to CTBP2-positive 

presynaptic ribbons in Shank1+/+ mice (D). Although CTBP2-positive presynaptic ribbons 

were observed, neither Shank1 nor panShank immunoreactivity was observed in Shank1−/− 

mice (H). Images are presented as Z-projections of a stack of confocal micrographs from the 
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16 kHz region. Shank1–3 transcript expression was investigated in the cochleae of 

Shank1+/+ mice (and presented normalized to control gene expression in Shank1+/+ mice, I). 

Shank2–3 transcript expression was investigated in Shank1−/− mice (and presented relative 

to Shank2 and Shank3 expression in Shank1+/+ mice, J). Two-fold or more greater changes 

in expression are indicated with asterisks.
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Figure 3. Cochleae from Shank1−/− mice show minimal changes in transcript abundances for 
genes encoding GluA1–4 and GKAP
Gria1–4 and Dlgap1 transcript expression was investigated in the cochleae of Shank1+/+ 

mice (normalized to control gene expression in Shank1+/+ mice, A) and Shank1−/− mice 

(relative to Gria1–4 and Dlgap1 expression in Shank1+/+ mice, B). Two-fold or more 

greater changes in expression are indicated with asterisks.
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Figure 4. Inner hair cell (IHC) afferent postsynaptic densities (PSDs) from Shank1−/− mice show 
subtle changes in their morphology and composition
Organs of Corti from 4 week old Shank1+/+ (A-D,I,K) and Shank1−/− (E-H,J,L) littermate 

mice were immunostained with a mouse monoclonal IgG1 antibody against CTBP2 (green, 

A and E), a rabbit polyclonal antibody against GluA2/3 (red, B and F,I-L), and a mouse 

monoclonal IgG2B antibody against GKAP (blue, C and G,I-L). Colocalized GluA2/3 and 

GKAP immunoreactivity was observed juxtaposed to CTBP2-positive presynaptic ribbons 

in both Shank1+/+ (D) and Shank1−/− mice (H). Images are presented as Z-projections 

through a stack of confocal micrographs from the 32 kHz region (AH) or as 3D 
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reconstructions comparing the 8 and 32 kHz region (I–L) from Shank1+/+ and Shank1−/− 

mice. Mean values (± SEM) of GluA2/3-positive and GKAP-positive immunopuncta per 

hair cell (M) and mean values (± SEM) of GluA2/3-positive and GKAP-positive 

immunopuncta volumes (N) for each genotype are compared at two tonotopic regions (8 and 

32 kHz). Statistically significant differences are indicated with an asterisk.
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Figure 5. Auditory brainstem responses are comparable in Shank1+/+ and Shank1−/− mice
ABR raw traces (A), thresholds (B), P1-N1 amplitude (I/O) slopes (C), and P1 latency I/O 

slopes (D) are compared between genotypes across frequencies.
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Figure 6. Vestibular function is comparable in Shank1+/+ and Shank1−/− mice
The vestibular sensory epithelia of the utricular maculae was isolated from 4 week old 

Shank1+/+ (A–D) and Shank1−/− (E–H) mice and immunostained with a rabbit polyclonal 

antibody against Shank1 (red, A and E), a mouse monoclonal IgG2A antibody against 

PSD95 (green, B and F), and a mouse monoclonal antibody against tubulin J (TuJ, blue, C 

and G). Shank1 immunoreactivity was colocalized to PSD95-positive PSDs observed in 

TuJ-positive calyx and bouton afferent terminals in Shank1+/+ mice (D). In contrast, no 

Shank1 immunoreactivity was observed in PSD95-positive PSDs in Shank1−/− mice (H). 
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Images are presented as a single optical section from the striolar region. Vestibular evoked 

potentials (VsEPs) showed comparable thresholds (I), P1-N1 amplitude (I/O) slopes (J) and 

P1 latency I/O slopes (K) between genotypes.
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