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High current table-top setup for femtosecond gas electron
diffraction

Omid Zandi, Kyle J. Wilkin, Yanwei Xiong, and Martin Centurion
Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln,
Nebraska 68588, USA

(Received 15 March 2017; accepted 27 April 2017; published online 8 May 2017)

We have constructed an experimental setup for gas phase electron diffraction with

femtosecond resolution and a high average beam current. While gas electron

diffraction has been successful at determining molecular structures, it has been a

challenge to reach femtosecond resolution while maintaining sufficient beam

current to retrieve structures with high spatial resolution. The main challenges are

the Coulomb force that leads to broadening of the electron pulses and the temporal

blurring that results from the velocity mismatch between the laser and electron

pulses as they traverse the sample. We present here a device that uses pulse

compression to overcome the Coulomb broadening and deliver femtosecond

electron pulses on a gas target. The velocity mismatch can be compensated using

laser pulses with a tilted intensity front to excite the sample. The temporal

resolution of the setup was determined with a streak camera to be better than 400 fs

for pulses with up to half a million electrons and a kinetic energy of 90 keV. The

high charge per pulse, combined with a repetition rate of 5 kHz, results in an

average beam current that is between one and two orders of magnitude higher than

previously demonstrated. VC 2017 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4983225]

I. INTRODUCTION

Gas electron diffraction has a long history in the determination of the structure of isolated

molecules in the gas phase,1–3 in part due to the high scattering cross section of electrons in

comparison to x-rays.4 There has also been significant progress in time-resolved electron dif-

fraction, which has been used to capture short-lived molecular structures.5–10 The field of ultra-

fast gas electron diffraction (UGED) came to life with the pioneering experiments by the

groups of Zewail and Weber in the 1990s and early 2000s that achieved a temporal resolution

of a few picoseconds.11–14 From then on, the group of Zewail produced a series of ground-

breaking electron diffraction results to capture the structures of transient molecular states with

very high precision.15–23 This was made possible by numerous technological improvements that

resulted in a temporal resolution of a few picoseconds combined with high spatial resolution.

A major challenge in UGED is to reach femtosecond resolution while maintaining the high

electron beam current needed to capture diffraction patterns with a high signal to noise ratio

(SNR). The differential scattering cross section drops rapidly with increasing scattering angle;

thus, a high beam current is needed to capture the diffraction pattern at the larger angles that

are needed to reach high spatial resolution. Working with highly charged electron bunches

requires compensating for the Coulomb effect that leads to broadening of the pulse duration.

The development of compact electron guns resulted in a resolution of around 200 fs in ultrafast

transmission electron diffraction from solid samples.24–27 For UGED, the guns could not be

made as compact as those used in condensed matter due to the proximity of the gas source to

the accelerator; however, reducing the gun length and the charge in each pulse resulted in a
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resolution between 0.85 ps and 1 ps.28–30 The resolution was limited by both the electron pulse

duration and the group velocity mismatch between the laser and electron pulses.31 Recent

experiments using relativistic electron pulses with MeV energy have reached a resolution of

220 fs.32–35 In this case, relativistic effects significantly reduce the Coulomb broadening of the

pulse duration and mostly eliminate the velocity mismatch. Operating at these high energies,

however, requires a significantly larger infrastructure compared to the table-top electron guns

operating at keV energies.

We present here a table-top setup operating at an energy of 90 keV that can reach femto-

second resolution with a high electron beam current. We use a radio frequency (RF) cavity

with a longitudinal electric field to compress highly charged electron pulses.36,37 The RF com-

pression technology has been used for ultrafast electron diffraction (UED) experiments with

solid samples38–41 but so far has not been implemented in UGED. We have measured sub-400

fs pulse durations at the position of the sample using a streak camera. The measurement reflects

both the electron pulse duration and the time of arrival jitter between the laser and electrons. In

addition, our setup has the capability to deliver a tilted laser pulse on the sample to compensate

for the group velocity mismatch.42 Tilted laser pulses have previously been used by the Zewail

group to improve the temporal resolution in ultrafast electron crystallography.43 We also show

that with the high beam current a high-quality diffraction pattern can be recorded in 20 s, com-

pared to tens of minutes or hours in previous UGED experiments.

In the following, we describe the experimental setup, present measurements of the electron

pulse duration, and demonstrate the capability to capture diffraction patterns with a short inte-

gration time.

II. EXPERIMENTAL SETUP

A. Overview of the experimental setup

Figures 1(a) and 1(b) depict a block diagram of our UED setup and a photograph of the

setup, respectively. The laser system is described in Section II B. The electron pulses are gener-

ated in a photoemission process by illuminating the photocathode with femtosecond UV laser

pulses. The UV beam is focused by a lens outside the vacuum chamber and directed to the pho-

tocathode by an in-vacuum mirror. The reflection from the photocathode is monitored to steer

the beam. The photo-emitted electrons are accelerated in a static electric field generated by

keeping the cathode at �90 kV. The electron beam exits the acceleration stage through a hole

in the grounded anode. We use two magnetic deflectors to steer the electrons along the beam-

line and three magnetic lenses to control the beam divergence. An RF cavity with a longitudi-

nal time-varying electric field is used to temporally compress the electron pulses at the target

position. We have used a homemade laser-activated streak camera to measure the electron pulse

duration in situ.44,45

The target molecules are delivered into the vacuum in a gas jet with a diameter of approxi-

mately 200 lm using a small nozzle. The nozzle consists of a 20 mm tube with an inner diame-

ter of 100 lm. A collimating aperture is placed before the sample to remove stray electrons and

to match the electron beam diameter to that of the gas jet. The setup includes an optical system

to excite the target molecules with laser pulses that are velocity matched to the electrons by the

pulse-front tilt technique, which is described briefly in Section II B and in more detail in a pre-

vious publication.42 The central part of the electron beam is captured by a beam block that is

connected to a pico-ammeter to measure the beam current. We have observed that the number

of electrons grows linearly with UV laser power up to 5� 106 electrons per pulse, as expected

for a one-photon process.46 The scattered electrons are detected using a phosphor screen that is

imaged onto a low-noise, high-gain EMCCD camera (Andor, iXon Ultra 888).

B. Optical system

A mode locked Ti:Sapphire laser generates the laser seed pulses with a central wavelength

of 800 nm and a repetition rate of 75 MHz. The repetition rate is actively stabilized using a
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frequency counter that provides feedback to an actuated mirror inside the laser cavity to adjust

the cavity length. The laser is amplified using chirped pulse amplification to generate 40 fs, 2

mJ pulses at a 5 kHz repetition rate with a central wavelength of 800 nm and 30 nm bandwidth.

The laser beam pointing is actively controlled using a feedback loop with two CCD cameras

and two actuated mirrors. The laser beam is split into three paths as shown in Figure 2. The

first path is used to trigger the photocathode, the second to trigger the streak camera, and the

third is used to excite the sample after going through a pulse tilting setup.

The laser path to the photocathode consists of a frequency tripler that generates 267 nm

UV laser pulses. The frequency tripler uses four crystals in an in-line configuration: a BBO sec-

ond harmonic generator, a delay crystal to temporally overlap the 400 nm and 800 nm pulses, a

half-wave plate that matches the polarization of the two pulses, and finally a second BBO crys-

tal that mixes the two pulses to generate the 267 nm laser pulse. After the last crystal, three har-

monic separators are used to filter out the IR and blue components. The UV beam is truncated

first by a 400 lm diameter pinhole and then by 200 lm one to eliminate remaining beam point-

ing instabilities. The second pinhole is imaged onto the photocathode by a UV lens with a

demagnification of 4 as is shown in Figure 1(a). The laser beam has a uniform circular profile

on the photocathode, which results in an emitted electron pulse with a density profile that

FIG. 1. (a) The UGED setup block diagram. The electron pulses are generated by ultrafast laser photoemission and then

accelerated in a static electric field. Three magnetic coils are used to control the beam size and an RF cavity is used to tem-

porally focus the beam on the sample. Electrons are collimated and directed to a molecular gas jet target. The scattered

electrons are detected by a phosphor screen that is imaged onto the chip of an EMCCD camera. The electron pulse duration

is measured with a laser activated streak camera. The streaking device can be moved into the position of the target to mea-

sure the electron pulse duration. (b) A photograph of a top view of the UGED setup.
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closely approximates a uniformly charged spheroid,47 which can be compressed in all directions

by linear forces.

The second laser path is designed to trigger the streak camera that measures the electron

pulse duration. Only a small fraction of the laser pulse energy (approximately 80 lJ) is needed to

trigger the streak camera. The electron pulse duration measurement is described in Section III.

The last path is designed to excite the target and to compensate for the velocity mismatch

between the laser and electron pulses. As is shown in Figure 2, an optical delay line is used to

match the time of arrival of the laser and electron pulses on the target. A gold-coated holo-

graphic grating with grating constant d ¼ 150 mm�1 tilts the energy front of the laser beam.

The tilt angle on the target is determined by the central wavelength of the laser pulse, the angu-

lar dispersion of the grating, and the demagnification factor M of the imaging system that

images the grating face onto the target gas jet (Figure 3(a)). The laser beam makes an angle of

FIG. 2. Three laser paths used in the UED setup. The first path consists of nonlinear crystals that convert the IR beam to

UV to generate electrons. The second path is used to trigger the streak camera. The third path is designed to tilt the intensity

front of the laser beam to velocity match it to the electron beam.

FIG. 3. Diagram of the optical setup to deliver laser pulses with a tilted front to compensate the group velocity mismatch.

The laser beam is reflected by a grating, which produces a tilted pulse front. The laser beam is incident on the gas target

with a 58� angle with respect to the electron beam so that the velocity component in the direction of electron beam propaga-

tion matches the speed of the electrons. The grating accordingly tilts the intensity front of the laser beam so that it is paral-

lel to that of the electron beam.
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58� with respect to the electron beam so that the component of its velocity in the direction of

the electron beam matches the speed of the electrons (0.53c at 90 keV). The laser is demagni-

fied by a factor 13.5, which results in a pulse front that is tilted to match the electron beam at

the sample. The tilted pulse front is compressed temporally only at the image plane of the grat-

ing; however, we have previously measured that the pulse duration remains below 100 fs for a

length of about 1 mm,42 which is significantly longer than our gas target.

The large incidence angle of the pump laser beam with respect to the electron beam means

that the laser beam must be larger than the electron beam to excite the whole sample volume

that is probed by the electron beam. For example, if both the electron and gas beams have a

diameter of 200 lm and the laser beam has a diameter of 300 lm, approximately 90% of the

sample will be excited by the laser. The current optical design is optimized for exciting the

sample with a laser wavelength of 800 nm. A small change in laser wavelength can be accom-

modated by changing the angle of incidence of the laser onto the grating and the magnification

of the imaging system to deliver the correct tilt angle. For a large change in wavelength, for

instance the second or third harmonics of the laser (at 400 nm and 267 nm, respectively), a dif-

ferent grating will be necessary, but the rest of the optical system will not require major

changes.

C. Compression of the electron pulse duration

The electron pulses are compressed by the longitudinal electric field of the RF cavity.36,37

When the electrons enter the cavity, there is a decelerating force, and by the time the electrons

exit the cavity, the direction of the force has reversed. On the short time scale that it takes the

electrons to traverse the cavity, the force changes approximately linearly with time, and hence

in the rest frame of the electrons it behaves as a linear force in space. This force produces a

temporal focus of the electron pulse at a distance that depends on the amplitude of the electric

field. The compression is optimal when the electron pulse is synchronized to the zero-crossing

of the electric field. The laser repetition rate of 75 MHz is synchronized to a 3 GHz signal using

a synchronizer from AccTec BV, and this signal is amplified using a commercial microwave

amplifier and sent to the RF cavity by use of a phase stable coaxial cable. The laser oscillator

works as a clock for the whole setup synchronizing the electrons to the RF cavity field. The

phase and amplitude of the field in the cavity are adjusted to reach the minimum pulse duration

on target.

III. MEASUREMENT OF THE ELECTRON PULSE DURATION

We constructed a laser activated streak camera with capability to measure pulse durations

below 200 fs (Figure 4). The performance of the streak camera was characterized in a previous

publication.45 Briefly, the streaking device consists of a charged parallel plate capacitor in par-

allel to a GaAs photo-switch. Once a laser pulse excites the switch, the capacitor will be short

circuited and the electric field across the capacitor starts a damped oscillation. An electron

pulse traversing the capacitor will be streaked by the time varying field so that its temporal pro-

file is mapped into the deflection angle. On the detector, the pulse duration can be extracted by

recording the beam profiles with the streaking field on and off.

Figure 5 shows the pulse duration as a function of the RF cavity input power for different

phases of its electric field, for pulses containing 5� 105 electrons. Phase zero corresponds to

the phase where the electric field crosses zero when the electron pulse is at the center of the

cavity. The optimal compression is achieved at the phase zero, where the applied force is sym-

metric in time and the average kinetic energy of the electron pulse does not change. The pulse

duration was measured in an accumulation mode where the signal is averaged over 5 s, corre-

sponding to 25 000 electron pulses. The resulting measurement is a convolution of the electron

pulse duration and the time of arrival jitter between the laser and electron pulses. We have

reached a resolution of 35068 fs FWHM by optimizing the amplitude and phase of the cavity,

which is consistent with previous results using similar systems.48–50 The pulse duration and

uncertainty were retrieved from a set of 30 measurements with 500 ms integration time each.
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The main factor limiting the temporal resolution of the current setup is the time of arrival

jitter between the laser and electrons at the sample, which is caused by phase jitter in the RF

signal. Based on numerical simulations using the General Particle Tracer code, we expect that

the electron pulse duration on the target should be 250 fs for 5� 105 electrons and 100 fs for

105 electrons. However, we have observed that the temporal resolution does not improve from

350 fs when reducing the charge from 5� 105 to 105 electrons, which suggests a large contribu-

tion from the timing jitter. The timing jitter could be reduced by adding an additional feedback

loop after the microwave amplifier that drives the RF compression cavity. If successful, the

temporal resolution would approach the electron pulse duration, which can be less than 100 fs.

IV. DIFFRACION MEASUREMENTS

We demonstrate the capability of the setup to capture diffraction patterns with a short inte-

gration time using two molecules, Trifluoroiodomethane (CF3I) and Nitrogen (N2). In order to

get accurate interatomic distances from the diffraction patterns, the conversion from detector

pixels to the scattering angle must be calibrated. We used the data from CF3I to calibrate the

detector and then applied this calibration to extract the bond length from the diffraction pattern

of N2.

FIG. 4. (a) A photograph of the streak camera showing the main components. (b) Diagram of the streak camera. A GaAs

photo-switch is placed in parallel to a charged parallel plate capacitor. Once the laser excites the switch, the capacitor is

short-circuited resulting in a damped oscillating electric field across the capacitor plates. The electron pulse is first trun-

cated by a pinhole to fit between the capacitor plates. The time-varying electric field introduces a time-dependent deflection

to the electron pulse.

FIG. 5. Electron pulse duration as a function of the RF cavity input power at different phases of the cavity electric field for

pulses containing 5� 105 electrons.
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The intensity of the diffraction pattern on the detector, for a gas of randomly oriented mol-

ecules, can be written as51

ITotal sð Þ ¼ I0

XN

i¼1

XN

j¼1

fi sð Þf �j sð Þ
sin rijsð Þ

rijs
; (1)

where I0 is a constant, s ¼ 2k sin ðh=2Þ is the magnitude of the momentum transfer, h is the

scattering angle, k ¼ 2p=k is the wavenumber of the electrons, k is the de Broglie wavelength,

rij is the distance between atoms i and j, fiðsÞ is the scattering form factor of the ith atom, and

the double summations are over all atoms in the molecule.

The total scattering intensity can be split into an atomic and a molecular contribution

ITotalðsÞ ¼ IAtomicðsÞ þ IMolecularðsÞ; (2a)

IAtomicðsÞ ¼ I0

XN

i¼1

jfiðsÞj2; (2b)

IMolecular sð Þ ¼ I0

XN

i ¼ 1

XN

j ¼ 1

j 6¼ i

jfi sð Þjjfj sð Þj cos gi sð Þ � gj sð Þ
� � sin rijsð Þ

rijs
; (2c)

where jfiðsÞj and gi are the amplitude and phase of the form factor of the ith atom, respectively.

IMolecular contains the structural information in the form of interference between the scattering

of different atoms in the molecule, while IAtomic depends only on the atomic scattering ampli-

tudes and does not contain structural information. The interference pattern can be better visual-

ized using the modified molecular scattering sM defined by

sM ¼ ITotal � IAtomicð Þs
IAtomic

¼ s IMolecular

IAtomic
: (3)

The radial distribution function frðrÞ, which has a peak corresponding to the interatomic dis-

tance rij between each atom pair, is calculated by taking a sine-transform of sM

frðrÞ ¼
ðsMax

0

sMðsÞ sin ðrsÞe�as2

ds; (4)

where sMax is the maximum measured value of s, and a is a damping constant that is adjusted

to minimize edge effects in the transform.

Figure 6(a) shows the measured diffraction pattern of CF3I on a logarithmic scale. The

image shows that there is a significant number of scattered electrons even at the largest diffrac-

tion angles captured by the screen. The diffraction was acquired in a single frame with an inte-

gration time of 20 s, with a beam current of 70 pA (�105 electrons/pulse). The diameter of the

gas jet was 220 lm and the backing pressure on the nozzle was 140 Torr. Based on the ratio of

scattered to incident electrons and the known atomic scattering factors,52 we estimate the gas

density in the interaction region to be 1:6� 1016 molecules/cm3. An image with the gas jet

turned off was also acquired and used for background subtraction. The electron beam was pur-

posely placed off-center to increase the s-range of the measurement. A beam stop was used to

block the directly transmitted electron beam.

The sM and fr are extracted from the diffraction patterns using standard data analysis meth-

ods for gas electron diffraction.53 The total intensity is azimuthally averaged and filtered to

remove high frequency noise. The background is removed by fitting an exponential function to

the zeros of the theoretical sM function. To calibrate the detector, the fitting process is repeated

for different values of the pixel number to s conversion factor of the detector, until the
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minimum difference between the experiment and the theory is found. Figure 6(b) shows the azi-

muthally averaged sMðsÞ obtained from the diffraction pattern in Figure 6(a). There is good

agreement between the theory and the experiment after the calibration. Figure 6(c) shows the

corresponding fr, which also shows a close match between the theory and the experiment. The

peaks correspond to the different interatomic distances in the molecule, rFI ¼ 2:89 Å,

rFF ¼ 2:15 Å, rCI ¼ 2:14 Å, and rCF ¼ 1:33 Å. These results compare favorably with previous

UGED experiments with CF3I,28 where the integration time required for a single diffraction pat-

tern was on the order of 1 h for comparable gas densities, due to the lower electron beam

current.

We have used the calibration obtained with CF3I to extract the N-N bond length. The

diffraction pattern was captured with a total integration time of 20 s with a beam current of

70 pA. The backing pressure behind the nozzle was 700 Torr, and the gas jet had a diameter

of approximately 200 lm in the interaction region. The density in the interaction region was

estimated to be 1:6� 1017 molecules/cm3. Figure 7(a) shows the experimental and theoretical

sM for N2, and Figure 7(b) shows the corresponding fr. In both cases, there is good agree-

ment between the experiment and the theory. We have retrieved a bond length of

1.093 6 0.013 Å, which agrees with the known value of 1.098 Å. The bond length was

retrieved by simulating the sM for different values of the bond length and finding the value

that best fits the experimental data. The uncertainty represents the standard deviation in a set

of measurements taken under the same conditions. Figure 7(b) shows that the position of the

FIG. 6. (a) Detected diffraction pattern of CF3I by the low noise CCD camera on a logarithmic scale. The data are gathered

over 20 s exposure time. (b) Azimuthal average of sM in Equation (3) from the detected intensity in (a). (c) Real space

reconstruction of the interatomic distances.
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peak in fr overlaps very well in the experiment and theory. The FWHM of the peak is 0.4 Å,

which becomes important for retrieving the structure of molecules where there are multiple

closely spaced distances.

It is important to note that one of the bottlenecks in UGED was that integration times on

the order of an hour were needed to achieve a sufficient SNR for structure retrieval. Previous

UGED experiments with keV electrons reached a resolution of 850 fs, with an average beam

current of 3 pA,28 while recent UGED experiments with MeV electrons have reached a resolu-

tion of 200 fs with an average beam current of 0.7 pA. Our setup approaches the temporal reso-

lution achieved with MeV electrons, but with a two order of magnitude increase in the beam

current. For pump-probe experiments where many diffraction patterns are needed, this will be a

significant advantage in how many pump-probe delays can be probed. In addition, the high

beam current will be essential for investigating more complex molecules with low vapor pres-

sure, where the target density can be one or two orders of magnitude lower.

V. CONCLUSION

A new table-top setup was designed and built for UGED experiments that can reach femto-

second resolution with a high average beam current. The setup uses an RF cavity to compress

the electron pulses and a tilted laser pulse to compensate for the group velocity mismatch. We

have shown that the device can compress electron pulses with up to half a million electrons;

however, we have found the best configuration for UGED experiments to be pulses with �105

electrons/pulse (average beam current of 70 pA at the repetition rate of 5 kHz) which can be

compressed to a duration of 350 fs and delivered on the target with a small divergence angle

and a transverse diameter of 300 lm FWHM to match the size of the gas jet. There is a tradeoff

between the number of electrons, pulse duration, and the beam divergence, where any parame-

ter can be improved at the expense of the others. The RF compression broadens the energy

spread of the electron pulses, so there is an additional tradeoff between the minimum com-

pressed electron pulse duration and the energy spread. Based on numerical simulations, we

expect that the energy spread for 105 electrons will be below 1%. An energy spread of a few

percent does not significantly affect the quality of the diffraction patterns, but for pulses with

more than a million electrons the energy spread may become an issue. Currently, the s-range

that can be captured by this setup is limited by the size of the phosphor screen to 6.9 Å�1 with

the beam at the center of the screen, which we increased to 8.8 Å�1 by moving the beam off-

center, as shown in Figure 6(a). We are planning to add a magnetic lens after the sample to

refocus the diffraction pattern, such that the s-range can be adjusted for each experiment. This

flexibility will allow us to fully optimize the system depending on the temporal and spatial

scales relevant to a given molecular reaction.

FIG. 7. (a) Experimental and theoretical sM for Nitrogen. (b) The real space reconstruction retrieved from the sM in part (a).
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